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Abstract: In a previous paper, a preliminary design methodology was proposed for the design of 

an axial turbine, replacing a conventional radial turbine used in automotive turbochargers, to 

achieve improved transient response, due to the intrinsically lower moment of inertia. In this second 

part of the work, the focus is on the optimisation of this preliminary design to improve on the axial 

turbine efficiency using a genetic algorithm in order to make the axial turbine a more viable 

proposition for turbocharger turbine application. The implementation of multidisciplinary design 

optimisation is essential to the aerodynamic shape optimisation of turbocharger turbines, as changes 

in blade geometry lead to variations in both structural and aerodynamics performance. Due to the 

necessity to have multiple design objectives and a significant number of variables, genetic 

algorithms seem to offer significant advantages. However, large generation sizes and simulation 

run times could result in extensively long periods of time for the optimisation to be completed. This 

paper proposes a dimensioning of a multi-objective genetic algorithm, to improve on a preliminary 

blade design in a reasonable amount of time. The results achieved a significant improvement on 

safety factor of both blades whilst increasing the overall efficiency by 2.55%. This was achieved by 

testing a total of 399 configurations in just over 4 h using a cluster network, which equated to 2.73 

days using a single computer. 
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1. Introduction 

This work is a continuation of a previous paper, presenting a preliminary design methodology 

for axial turbocharger turbines [1]. The computational resource increment in recent years has allowed 

multidisciplinary design optimisation (MDO) to permeate multiple R&D disciplines, to the point of 

becoming essential in aerodynamic shapes optimization [2,3]. Traditionally, the design process 

required a high degree of engineering involvement and was reliant on designer experience in the 

field. Over the past 20 years, with the improvement in computational resources and in fluid dynamics 

algorithms accuracy, the trend in research has shifted to a predominantly numerical approach: “In 

regard to human interface, MDO developers and users seem to have arrived at a consensus that 

computer-based MDO methodology is an increasingly useful aid to the creative power of human 

mind” [4]. 

In the specific case of turbines, a multidisciplinary approach is necessary as changes in blade 

geometry lead to variations in both structural and aerodynamics results, rendering it impossible to 

obtain realistic geometries without taking both fields into consideration. 
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Design optimisation processes are largely portable across similar applications, thus research can 

be conducted on optimisation techniques in axial turbines for different applications. Multiple sources 

are present, however, it is clear that the design optimisation topic is highly sensitive to manufacturers, 

with the majority of the sources being obsolete [5,6], as highlighted by the most recent paper on the 

topic [7]. The most notable common trait in previous examples of design optimisation is the fact that 

most of them were carried out using genetic algorithms (GAs). The method is one of the most popular 

in MDO, as it can handle “discontinuities, multimodality, disjoint feasible spaces and noisy function 

evaluations” [8], which are common features in the optimisation task to be carried out, as most of the 

objectives are effectively described by discontinuous functions. These capabilities are what 

distinguish GAs from its competitors. 

In recent years, research on this relatively new topic has been extremely prolific, with numerous 

innovations and schools of thoughts developing at an incredible pace. In 2018 alone, more than 20,000 

papers or books have been published on the topic of genetic algorithm optimisation [9]. The general 

consensus gauged from surveys [10,11] is that methodologies and implementations are still in an 

embryonal stage, and that there is no clear best implementation of the method. The authors’ 

conclusions are that techniques should be evaluated in a case-by-case manner. 

Recent literature focuses on theoretical of purely numerical approaches, especially in a 

manufactural design optimisation task. The complexity and time-consuming nature of MDOs 

featuring multiple evaluations, however, is preventing any complete (i.e., from preliminary to final) 

design optimisation tasks relevant for this project. Research has followed two different approaches, 

either reducing the objectives to optimise for [12], or accepting less accurate results by utilising 

simpler mathematical models [13]. 

The first example of axial turbine parameter optimisation available was published in 1985 [5]. 

The algorithm, coded in FORTRAN, allowed the user to obtain a preliminary blade design with 11 

independent parameters, mathematically derived by the author. The other 14 parameters were 

optimised by using a mathematical model. While the results were heavily approximated, this 

publication is of absolute importance from an historic point of view, as Pritchard, in their ingenuity, 

understood the need of a parametric blade generation to allow a faster preliminary design process, 

thus allowing engineers to apply their experience and expertise in a focussed way. The procedure 

features numerous approximations and essentially no integration with computational fluid dynamics 

(CFD), however it should be noted that the algorithm was executed on a computer with 8 Kb of RAM 

[14]. 

A systematic automatic design optimisation approach for turbine blades was firstly developed 

in 1996 [15] and was confirmed to be effective in 1997 [16]. The authors considered a GA approach to 

be possible, however overly expensive in terms of computational resources. In 1999, the first GA 

approach was implemented, and the authors utilised a simplified mathematical model, which 

estimated profile losses through a two-dimensional approximated CFD analysis [6]. The algorithm 

yielded extremely promising results, with two-dimensional losses reduced by an order of magnitude 

compared to baseline blades. The optimisation task was proved to be an effective tool for design 

exploration, as it aided the visualisation of trends and general behaviour with varying parameters. 

The innovation allowed blade designers to focus on the three-dimensional aspect of the design 

process, as they were provided with an excellent baseline. 

Öksüz and Akmandor published their MDO using a GA approach on an axial turbine in 2010 

[7]. The authors optimised an axial turbine and stator profiles to maximise efficiency and torque. 

Once again, the main challenge was the incredible amount of computational resources needed to 

perform multiple CFD evaluations. Their 37 parameters GA implementation used an approximation 

exploit, which featured a surrogate model, with a dynamic correction factor calculated as a function 

of the percentage difference between a fast, inaccurate CFD analysis, and a high-fidelity one. 

Algorithm run times required to implement this solution were relatively small if compared to a 

traditional design optimisation task, with 20 days of CPU usage for the first 10 generations. This 

process was also carried out with no consideration for any structural element, thus once again 
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providing results only useful in a preliminary design environment. The implementation showed that 

MDO using GAs is not only beneficial, but also highly viable. 

Across all reviewed literature, conclusions tend to be coherent in suggesting the methodology 

to be extremely promising, with computational time being the limiting factor preventing a 

widespread application. Computational resources have drastically increased since the last 

publication, however they still are not at a level that would allow a pure genetic algorithm to be 

implemented. Thus, any GA implementation involving CFD analysis should focus on minimising 

algorithm run time. The techniques used in this article are analysed in the next section. 

2. Genetic Algorithm Dimensioning 

An automated MATLAB script (R2018a, MathWorks, Natick, Ma, USA) was set to generate a 

population, simulate the members in a complex ANSYS Workbench project (18.2, ANSYS Inc., 

Canonsburg, Pa, USA), and evaluate the results through a fitness function. The foundation of the 

coding methodology was to allow multiple similar problems to be solved by the same script with 

minimal adjustments. This decision dramatically increased the complexity of the code, forcing an 

object-oriented programming approach [17].  

The main aim of the implementation was to provide a fast, reliable, and effective tool for design 

optimisation of axial turbines or other similar problems, thus many features of this GA are geared 

towards convergence rate and speed of execution, rather than focusing on providing the absolute 

optimal result. 

2.1. Population Member Chromosome Encoding 

Randomly generated chromosomes needed to be encoded in binary form, to facilitate crossover, 

population, and mutation calculations. It can also help assess the quality of the design optimisation 

approach, by giving a total design space dimension. Each of the 48 parameters was encoded as a bit 

sequence of length proportionate to the perceived relevance in the design quality. Once the value 

ranges were defined, parameters then had 2𝑥 number of possible values, ranging from minimum to 

maximum, with 𝑥  being the number of assigned bits to that value. The total number of bits is 

essential to estimate a correct number of population members, and it was chosen to be the maximum 

possible for a realistic execution. Number of bits allocation is discussed in the following section. 

2.2. Population Size 

The available literature in genetic algorithm dimensioning is surprisingly shallow, as researchers 

seem to have focused on more efficient procedures and direct applications, more than studying the 

actual dimensioning of the GA parameters. It should be noted that applications such as the one 

presented in this article, which feature significantly longer (time-wise) design evaluation phases 

relative to data processing phases are not a common occurrence. The dimensioning of this algorithm 

was derived from a statistical analysis of a generic GA, with several corrections applied to account 

for out-of-ordinary implemented methodologies [18]. Population number is constrained in the 

following way: 

𝑁𝑖,1
2 > 2𝑁𝑏, (1) 

𝑁𝑖,2 = − log2 [1 − (1 − 𝑝𝑚𝑖𝑠𝑠)
1

𝑁𝑏], (2) 

𝑁𝑖 = 𝑀𝑎𝑥(𝑁𝑖,1 ; 𝑁𝑖,2), (3) 

 

where 𝑁𝑖   is the population number, 𝑁𝑏  is the bit size of every chromosome, 𝑝𝑚𝑖𝑠𝑠  is the 

probability of a bit having the same value throughout the genetic pool. 𝑝𝑚𝑖𝑠𝑠   was chosen to be 



Appl. Sci. 2018, 8, x 4 of 22 

1/1024 as suggested by the literature [18]. This value was found to be appropriate for medium size 

GAs as this one through testing. Values of population numbers against total bits are shown as a 

continuous function in Figure 1. 

 

Figure 1. Growth of population size requirement with increasing chromosome bit size. 

Due to technical limitations, the maximum population number was set to be 21. This was chosen 

due to the implementation of a cluster network briefly explained in a Section 3.3, which was 

constrained by the number of computing facilities available. Another plot was then produced (Figure 

2) using only integer values of population sizes, resulting in the chosen number of bits per 

chromosome to be 220. 

 

 

Figure 2. Integer population size against total bits for total bits selection. 

2.3. Mutation Rate 

Gutowski suggested multiple formulations to optimally determine the mutation rate of a GA. 

Mutation is fundamental in a GA as it increases the coverage of the design space. Gutowski suggests 

multiple equations to be used to calculate mutation rates, shown below: 

𝑃𝑚𝑢𝑡
𝑀𝑎𝑥 = 1 − 2

−
1

𝑁𝑏, (4) 

𝑃𝑚𝑢𝑡
𝑀𝑖𝑛 = 1 − (

𝑁𝑖−1

𝑁𝑖
)

1

𝑁𝑏, (5) 

𝑃𝑚𝑢𝑡
𝑛𝑎𝑡 ≈ 1 − 0.82

1

𝑁𝑏, (6) 
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where 𝑃𝑚𝑢𝑡
𝑀𝑎𝑥, 𝑃𝑚𝑢𝑡

𝑀𝑖𝑛 , and 𝑃𝑚𝑢𝑡
𝑛𝑎𝑡  being the maximum, minimum, and suggested mutation rate 

for every bit for the algorithm at each iteration. The minimum mutation rate is calculated assuming 

an average of one chromosome mutating at each generation. The maximum mutation rate is set as 

the minimum required to have half the bits mutating at each generation. The suggested value is 

somewhat in-between the extremes and is defined as the maximum mutation probability that features 

negligible chances of two mutated chromosomes to perform a crossover with each other. 

While this approach is the purely theoretical optimum, it was not practically viable. It served 

more as a valid guideline. More recent literature [19] showed that algorithm performance is not 

sensitive to mutation rate in terms of quality of results, however lower mutation rates achieve faster 

convergences. Literature also suggests a chromosome-based mutation rate, with complete 

regeneration in case of mutation, with one full reset per generation. The mutation rate in this case 

that would correspond to this value is 4.76%. Later analysis on GAs featuring Elitism (see Section 2.5) 

identified a low genetic variability, requiring a higher mutation rate. Figure 3 provides a visualisation 

of increased genetic variance in the population with increased mutation rate. Red data points are 

relative to the first 15 generations of the GA, run with 4.76% entire-bit mutation rate (𝑝𝑚𝑢𝑡′). Black 

data points are representative of the final results, run with a value for mutation probability of 15.10%. 

Generation 13 onwards show a complete convergence for low mutation rates, and the algorithm is 

essentially relying on a mutation to improve on fitness values, thus operating as an incredibly 

inefficient Monte-Carlo-style search. Mutation was also chosen to not affect the elite member, as to 

not lose any GA progress to chance. This approach prevented the process from being chaotic, thus 

higher variance was effectively positive. The metric for genetic variability was chosen to be power 

generated, as it was a secondary objective of the optimization. Results would still be influenced by 

this parameter, while not as heavily as efficiency. This gave the algorithm the ability to pursue the 

lowest energy path to the optimal power generated value, which was reached after 13 generations. 

In other words, a low mutation rate meant that essentially all turbines were generating the same 

amount of power after an extremely low amount of design space exploration, and that was 

determined by the elite member’s power generation value, which in turn was determined by the 

random initialization. By observing Figure 3, one can see the gradual reduction of variance around 

the elite members for every generation (at around 1.81 kW). 

 

 

Figure 3. Genetic variability overview for power generated. 

2.4. Generation Number 

The minimum number of generations to be run is suggested by Gutowski for a statistically 

optimal solution [18]: 

𝑁𝑔𝑒𝑛 = −
𝑙𝑜𝑔10(𝑁𝑏)

𝑙𝑜𝑔10(1−𝑃𝑚𝑢𝑡)
. (7) 
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The theoretical number is unfeasibly high in a real-world scenario; thus the generation number 

should be as high as possible, up to the time limit allowed. An estimated minimum can be achieved 

by using values of 𝑃𝑚𝑢𝑡′ instead. The resultant minimum generation number for this case was set at 

16. This number, while seemingly small, was found to be rather correct in empirical tests, effectively 

due to elitism and parent selection choices. The final GA was run with 19 generations, and the GA 

would have had minimal improvement in maximum fitness if it were to be run for higher numbers 

of generations. Once again, the configuration surely is highly unlikely to converge to an absolute 

optimum, and tasks that would require an absolute optimum would require a substantially different 

layout in order to obtain it. 

2.5. Elitism 

Single-member elitism was implemented in this algorithm in order to ensure time efficiency of 

the script. By maintaining the best performing member of each generation, the algorithm is prevented 

from losing the best solution. This allows the algorithm to never lose progress, allowing for more 

flexibility in the search [20]. This technique is widely recognised as highly beneficial and is essential 

in the application discussed in this article, as any amount of computational resources invested in the 

optimisation had to yield positive or null results. 

2.6. Crossover Method 

A uniform crossover method was chosen as this method is more exploratory when compared to 

alternative methods, like chromosome splitting. The crossover probability was set to a fixed 0.5 as 

default in uniform crossover methods, as no discontinuous parameter behaviour was observed in 

preliminary analysis [21]. Crossover chance, or the probability for a pair of mating chromosomes to 

effectively perform crossover, was set to 1 as it is recognised as inefficient and extremely uninfluential 

[19]. An overview of the method is detailed in Figure 4. 

Parameter_ID < MAX_Parameter_ID

Generate random integer H from [0, 1]

Selected Crossover couples
Generation Number G

Parameter of (Element_ID) for (G+1) = Parameter of (Element_ID+H) 

Element_ID < Population Number Element_ID = Element_ID+2

Parameter of (Element_ID+1) for (G+1) = Parameter of (Element_ID+1-H) 

Next Generation

True

False

 

Figure 4. Schematic of crossover method implemented in the algorithm. 

2.7. Parent Selection 
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The chosen parent selection method was tournament mode with a size of 3. Compared to the 

alternative prominent parent selection method (roulette wheel selection), tournament selection does 

not feature stochastic noise [22]. Furthermore, it has been shown to be independent of the scaling of 

the algorithm fitness function [19]. The selection method with elitism schematic is shown in Figure 5. 

Fitness Evaluation on population number N

Define Tournament Size TS

Sort generation elements by fitness

Next Generation 1st Element
 =

 Current Generation 1st Element

Generate N × TS matrix (K) of random integer 
numbers  with range 1-N

Example of K:
[3     8     17
19     4     18

 
20      16      8]

Generate N 1 × TS Turbine Obj arrays, 
using rows of K as index 

Generate N 1 × TS Turbine Obj arrays

Turbine Array for generation G, row 1 of K:
[Element(3,G), Element(8,G), Element(17,G)]

Best elements of every even tournament are 
coupled with the following element

Tournaments #2 and #3, 
#4 and #5

   
#20 and #21 
are coupled

Crossover between couples

Figure 5. Schematic of parent 

selection methodology, utilizing tournament selection, and elitism. 

Takeover time (𝜏) is defined as the number of generations “for the population to be filled with 

the best solutions found in the initial generation, in the absence of recombination and mutation” [19]. 

Lower takeover times lead to faster convergence, with higher chances of premature (i.e., local 

minimum) convergences. According to literature [19], the takeover time can be approximated using 

the equation: 

𝜏 =
1

𝑙𝑛(𝑇𝑠)
 (𝑙𝑛(𝑁𝑖)  +  𝑙𝑛(𝑙𝑛(𝑁𝑖))) , (8) 

 

where 𝑇𝑠 is the chosen tournament size. The result for this particular case presented in the example 

of Figure 6 (population size 21) was ~6. This was an excessively low number, if the aim of the 

algorithm was to find the absolute optimal solution. However, this approach tries to find a better 

solution in a short time span, thus a premature convergence is effectively desired. Takeover time was 

found to be the most effective way of gauging the expected behaviour of a particular GA 

dimensioning, and values ranging from 5.5 to 7 were found to conform to the problem specific of a 

fast convergence, high average fitness gain per generation. 

2.8 Fitness Function 

The design constraints for this specific problem are presented in Table 1. Note the safety factor 

is defined as the ratio of Von Mises stress and the elastic limit of the material at 0.2% elongation. 
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Table 1. Final design constraints 

Parameter Constraint 

Power (W) >17000 

Rotor Safety Factor >2 

Stator Safety Factor >2 

Global Maximum Mach Number <1.35 

 

To implement these design constraints the following fitness function was used shown in Table 

1. The initial fitness function features efficiency maximisation exclusively, with the rest of the 

parameters being expressed as constraints: 

𝐹 = 100 ×  𝜂 ×  𝑁 + 𝜂, (9) 

where F is the fitness value, 𝜂 is the turbine efficiency, and N is a constraints check value of 0 if any 

values are outside acceptable ranges, 1 if within. The genetic pool in this configuration would, 

however, be strictly dependent on efficiency alone. This meant that the GA would not evolve towards 

a better blade overall, but towards a more efficient design exclusively. After numerous considerations 

and tests, a coefficient to account for power produced was added to the function. The reason behind 

this decision is that a turbine that would affect the flow in a more profitable way would not 

necessarily feature the maximum efficiency. Extremely, an exemplar A that would produce twice as 

much power, with 1% less efficiency compared to exemplar B would be considered closer to the 

optimum. Therefore, following some preliminary testing of the algorithm it was decided that an 

efficiency/power balance of 1% every ~2 Kw (2060 W). In practical terms, a 77% efficiency, 17 kW 

power turbine worse than a 75%, 21.5 kW one. While the main task was to obtain a hyper efficient 

blade, results would not have been realistically better than the results obtained. The fitness function 

implemented in the final GA run was as following: 

𝐹 = 100 ×  𝜂 ×  𝑁 + 3 ×  𝜂 + (𝑊 ̇ − 19000)/2000. (10) 

The scalar factors were added in to direct the genetic pool towards high fitness levels in case of 

populations featuring many failing chromosomes. The efficiency/power compromise ratio was 

revealed to be dramatically less impactful than the effective presence of the power factor, and in 

future applications this value should be tuned to fit the particular problem specifics. 

3. Numerical Modelling Setup 

The numerical modelling was conducted using various applications from ANSYS Workbench 

18.2 and schematic of the system is shown below in Figure 6 Within the file, the following applications 

are used: 

 Excel—Data interface tool between MATLAB and ANSYS Workbench; 

 BladeGen—Blade 3D geometry creation; 

 TurboGrid—Generation of blade meshes for CFD analysis; 

 CFX—Fluid analysis; 

 Mechanical—Structural analysis. 
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Figure 6. Schematic outlining the design evaluation process used in ANSYS Workbench 18.1. 

3.1. Computational Fluid Dynamics (CFD) 

The CFD setup was conducted as explained in Part 1, based around the preliminary blade design 

[1]. The CFD was conducted using ANSYS CFX (18.2, ANSYS Inc., Canonsburg, Pa, USA) with the 

built in turbo mode. A 3-D overview of the CFD setup is shown below in Figure 7. The scalar values 

of the boundary conditions used for the simulation are shown below in Table 2Error! Reference 

source not found.. 

Table 2. Computational fluid dynamics (CFD) boundary conditions at design point [1]. 

Boundary Conditions Value 

Inlet Mass Flow Rate 0.127238 kg/s 

Inlet Total Temperature 1168.55 K 

Inlet Turbulence Intensity 5% 

Outlet Static Pressure 1.30352 bar 

Rotational Speed 158,850 rpm 

 

 The fluid is modelled as air (ideal gas). 

 K-ω shear stress transport turbulence model was chosen, which uses an automatic wall function, 

which automatically switches between a wall function and low-Re wall treatment. 

 Interfaces between stator and rotor, and rotor and outlet are selected as stage (mixing-plane). 

 Interfaces between stator blades and interfaces between rotor blades are set as periodic. 

 The meshes were setup using ANSYS Turbo Grid consisting of a total of 267,089 nodes. From 

previous investigation, this was found to be acceptable for accuracy. 

 Stator blade average Y + 12.2053. 

 Rotor blade average Y + 9.8685. 
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Figure 7. Overview of CFD setup using ANSYS CFX turbo mode. 

3.2. Finite Element Analysis (FEA) 

The FEA setup was conducted using ANSYS Mechanical (18.2, ANSYS Inc., Canonsburg, Pa, 

USA) with the material used for the analysis as Inconel 738 an overview of the boundary conditions 

is shown in with the specific boundaries highlighted Figure 8. 

 Temperature dependent properties were implemented into the material model using 

manufacturing data [23]. 

 The fluid solid interaction (C) was added to the boundary conditions of each FEA model, 

importing temperature and pressures across the surface of the blades as calculated by the CFD 

simulation under design point boundary conditions. 

 Both blades were given the cylindrical support (B) applied to the bottom surface of the hub as 

shown below. The stator was fixed in the tangential direction, the rotor was fixed in the radial 

and axial directions. 

 A rotational velocity of 16,635 rad/s was applied to the rotor (A) 

 A displacement boundary (A) condition of 0 mm in the z direction was applied to the front 

surface of the stator hub to simulate a connection to the volute. 

 The rotor analysis was simulated using the Coriolis effect. 
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Figure 8. Overview of finite element analysis (FEA) boundary conditions applied of stator (left) and 

rotor (right). 

3.3. Algorithm Computational Cost 

Each design evaluation cycle required an average of 11 min and 42 s, with specific times 

presented in Table 3. The relatively fast design evaluation was achievable through a simplification of 

the fluid-structure interface (FSI) modules on the Workbench project by directly importing the steady 

state CFD results. The average times resulted in an expected algorithm runtime of ~65 h and 31 min, 

or 2.73 days. The calculated runtime was highly theoretical and was subject to computer facility 

specific technicality problems. 

Table 3. Design evaluation timings. 

Design Evaluation Phase Time (s) 

MATLAB script and Ansys Start-up 92 

File Reading and Importing 75 

CFD Analysis 328 

FSI Analysis (including CFD results importing) 207 

Total 702 

 

In order to further improve run time of the algorithm, a cluster network was implemented, this 

solution cut the total running time down to little over 4 h. The solution consisted of a “master” 

computer, which would manage the data structure and all specific operations required to complete a 

genetic algorithm, and 21 “slave” computers, one for each population member, that were only tasked 

to perform simulations. The master PC would generate data sets and save them in a folder, shared 

across all computers. 

4. Results and Discussion 
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As Table 4 shows, the optimisation process allowed a 2.55% gain in efficiency, which was the 

main aim of the fitness function; Safety factors defined as per section 3.3 and calculated within 

ANSYS 18.2 Mechanical, shifted from an unacceptable range to being amply within design 

constraints; finally, turbine power output was decreased by a 1.51 kW. The CFD calculated power 

was, in fact, underestimated. Boundary conditions (mass flow rate at inlet, static pressure at outlet) 

were unfavourable as correlated to a significantly lower efficiency blade for high fitness blades. The 

high static pressure at the outlet entailed a discrepancy between high efficiencies blades, which 

would have produced lower static pressures at outlet, and generated power, as they did not produce 

maximum power at the specified boundary conditions. 

Table 4. Design optimisation final results. 

 Preliminary Design Optimised Design Percentage Change 

Efficiency (T-s) 73.98% 75.87% +2.55% 

Power (kW) 20.3 18.79 –7.44% 

Rotor Safety Factor 1.78 2.38 +33.71% 

Stator Safety Factor 1.87 2.78 +48.66% 

4.1 Algorithm Design Exploration 

Figure 9 indicates the optimisation design exploration. The fitness values were plotted against 

optimisation objectives to show the influence of these parameters on design quality. 

Figure 9a shows fitness against turbine efficiency across all design evaluations. An expected 

linear behaviour pattern is clearly recognisable, as the parameter acts as the main influence. 

Compared to the total number of design evaluations, an extremely low percentage of random and 

pseudo-random blades were created with efficiencies below 0.7. The results are encouraging in terms 

of design process evaluation, as one could conclude that a close to ideal starting point and ranges 

where selected. Failing elements majority falls between 0.72 and 0.74 efficiency. While it is hard to 

speculate on such information, the higher-than usual fail rate would principally be a product of 

crossover between two very different blades with good performance data, creating data 

incompatibility in the offspring, causing them to fail. 

Figure 9b shows fitness values against the average safety factor (SF) across stator and rotor 

structural analysis. It is possible to discern an ideal value between 2.5 and 3. As shown in subsequent 

Figures, this is likely due to hub thicknesses and wedge angles increasing due to lower throat values 

required for optimisation. The increase in safety factor means, however, that blade influence the flow 

in a more invasive way to the higher occupied volume, leading to performance drops after the 

optimum at 2.75. For higher SF applications, however, turbines are showing surprising fitness values 

of ~77 at an average SF of 4. 

Figure 9c shows fitness values against the maximum global Mach number. Comparing these 

scatter plot to the other ones for other design constraints, it is possible to notice the scarcity of failed 

objects within the constraint’s boundaries. This is to be expected as low Mach numbers lead to lower 

forces on the part, increasing SF. It is not possible to interpret data to extrapolate any sort of particular 

relationship between this result and fitness values. From a theoretical point of view, the faster the 

flow would be, the better its performance. Majority of elements, including the final result, are located 

between 1.25 and 1.28 Mach. While this could be considered the optimum, it is more likely that the 

genetic pool evolved towards values with a safety margin on such a restrictive penalty to fitness. A 

lighter penalisation during fitness function definition would likely lead to Mach numbers closer to 

the accepted maximum values, but the gene pool might simply develop to overcome light 

penalisation, by proving hyper efficient, powerful blades with excessive Mach values. 

Figure 9d shows fitness function values against power. While there theoretically is a linear 

relationship between these two parameters, it did not show in the simulation results. This could be 

because of a relationship between efficiency and power close to inverse proportionality at high 

powers. While the outlet static pressure boundary condition did not impact efficiency simulations 

results in a meaningful way, produced power was highly affected, as high total-to-static pressure 
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ratio turbines (i.e., more efficient) would have led to lower static pressure outlets. In conclusion, high 

static pressures at the outlet in CFD compromised power estimations. On the other hand, the group 

was interested in a blade that would produce at least the same power of the baseline design with the 

same boundary conditions, thus validating the choice of those boundary conditions. Moreover, the 

degree of correlation between CFD calculated power and simulated power in Ricardo WAVE was 

extremely high, meaning that design quality evaluation algorithm was consistently underestimating 

power output, thus effectively representing the changes in design correctly in the fitness function 

values. 

Figure 9e shows the maximum fitness value at each generation. As predictable, given the elitism 

technique application, fitness values are in steady growth. The main observation is how the sudden 

increments in maximum fitness values gradually fade in favour of a marginal improvement, showing 

how evolution is rapid at correcting parameters to a point of acceptability, and demonstrates the 

notion found in literature regarding the need of excessively high generation numbers to achieve 

absolute optimums. Figure 9f, showing fitness distribution at each generation (scatter plot) and 

average fitness values at each generation, complements the information found in Figure 9e. Fitness 

values gradually migrate towards higher values, drastically reducing the fail percentage in an 

extremely low number of generations. As can be seen by fitness values at generation 19, the genetic 

variability is essentially null, thus the algorithm would be waiting on a lucky mutation. It is important 

to note how generation 15 effectively marks algorithm convergence, as observable by both graphs, 

with mutations happening on the preceding and following generation. This data is in accordance to 

what is predicted in literature in a system with these parameters [18]. More statistical data would, 

however, be necessary in order to validate a high-convergence multi-disciplinary genetic algorithm 

dimension methodology using a statistical estimation. 
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Figure 9. Design space exploration by (a) efficiency, (b) average safety factor, (c) Mach number, (d) 

power, (e) elite fitness vs. generation number, and (f) elite fitness vs. generation number. 

Overall, the algorithm shows convergence and no data instability. Extreme penalisation for out-

of-limits designs lead to lower Mach numbers and possibly sub-optimal safety factors. The choice, 

however, led to time effective (≈4 h), stable and varied design exploration. Table 5 shows the 

comparison between the preliminary blade parameters and the optimised. 
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Table 5. Comparison between preliminary parameters and optimised parameters. 

Preliminary Design 

 
Stator 

 

Rotor 

Hub Mean Tip Hub Mean Tip 

Axial Chord (mm) 6.43 6.43 6.43 9.36 6.93 4.63 

Stagger Angle (°) 48.96 48.96 48.96 41.64 56.45 64.24 

Chord (mm) 9.79 9.79 9.79 12.52 12.54 10.65 

LE Wedge (°) 26 26 26 24 24 24 

TE Wedge (°) 4 4 4 2 3 2 

LE Thickness (mm) 0.35 0.35 0.35 0.62 0.45 0.38 

TE Thickness (mm) 0.17 0.17 0.17 0.22 0.22 0.22 

Optimised Design 

 
Stator 

 

Rotor 

Hub Mean Tip Hub Mean Tip 

Axial Chord (mm) 6.06 5.81 6.72 6.81 5.87 5.03 

Stagger Angle (°) 45.39 46.35 52.3771 39.98 52.24 63.05 

Chord (mm) 8.63 8.42 11.01 8.89 9.59 11.10 

LE Wedge (°) 28 27 28 27 27 27 

TE Wedge (°) 3.43 5.37 5.85 4.88 5.37 5.37 

LE Thickness (mm) 0.39 0.32 0.23 0.75 0.43 0.43 

TE Thickness (mm) 0.22 0.20 0.22 0.23 0.19 0.16 

Percentage Change 

 
Stator 

 

Rotor 

Hub Mean Tip Hub Mean Tip 

Axial Chord (mm) −5.75% −9.64% 4.51% −27.24% −15.30% 8.64% 

Stagger Angle (°) −7.29% −5.33% 6.98% −3.99% −7.46% −1.85% 

Chord (mm) −11.85% −13.99% 12.46% −28.99% −23.52% 4.23% 

LE Wedge (°) 7.69% 3.85% 7.69% 12.50% 12.50% 12.50% 

TE Wedge (°) −14.25% 34.25% 46.25% 144.00% 79.00% 168.50% 

LE Thickness (mm) 11.43% −8.57% −34.29% 20.97% −4.44% 13.16% 

TE Thickness (mm) 29.41% 17.65% 29.41% 4.55% −13.64% −27.27% 

Table 5 shows initial pre-optimised blade geometries and percentage difference with the final 

blade, respectively. As shown by the percentage change section, the more significant changes were 

achieved by rotor trailing edge wedge angles among all layers, as well as stator trailing edge wedge 

angles at median and tip layers. Wedge angles increase was also met with a considerable hub leading 

edge rotor thickness and stator trailing edge thickness among all layers. This is in accordance with 

what was already discussed, with blades tending towards higher thicknesses. 

Figures 10 and 11 below are a meridional side view of the blade profiles, visualising part of what 

is presented in Table 5. The more prominent difference when comparing the blade to the preliminary 

optimisation result, shown in Figure 11, is the stator tip being closer to the rotor. By guiding the flow 

further in the stage, the stator achieves faster speeds at rotor inlet, allowing more kinetic energy in 

the system, which can then be harvested by the rotor. Another important change in side view blade 

geometry is the dramatic change in chord length. Optimised blades tend to be shorter at hub and 

median layers and, as presented later, thicker. A possible explanation would be that flow through the 

blade would experience choking and considerable losses on longer blades, thus causing the chord 

reduction. Having thicker blades would increase the safety factor, as well as flow speed in the throat 

area, leading to possibly a more efficient energy harvesting mechanism. 
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Figure 10. Meridional side view of optimised blades. 

 

Figure 11. Meridional side view of preliminary blades. 

Figure s12 and 13 show thickness contours for preliminary and optimised blades. The blade 

shape has consistently evolved towards higher thicknesses at stator centre, most likely to increase 

resistance to stresses applied by the flow. Constant chords were, as clearly shown and as expected, 

not optimised. The evolution trend shifted the trailing towards a shape that would better integrate 

with the rotor. The constant stator trailing edge thicknesses were heavily modified, however the 

ratios between layers were minimally modified. While this might be interpreted as a decisive result, 

stating that constant thicknesses were beneficial would not be advisable. The CFD simulations, along 

with the design evaluation algorithm were set up without a radial position based inlet speed, leading 

the flow to have similar characteristics throughout the stator. Realistic velocity distributions would 

likely lead to very different solutions, particularly regarding this parameter. In addition to this, the 

increase of upper rotor blade thickness is not common practice due to the potential to worsen the 

vibration of the rotor. However, this could be likely for one of two reasons. Firstly, a modal analysis 

was not included within the FEA due to the time additional time required, so theoretically a blade 

with poor vibrational characteristics could be deemed satisfactory by the fitness function. 

Alternatively, the methodology used does not consider common design practice when evaluating 

each population member. This prevents the restriction on potential design solutions, which 

conventionally would have been difficult to obtain. An overall view comparing preliminary to 

optimised geometry can be seen in Figure 14. 
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Figure 12. Meridional preliminary blade thickness contours (m) for (left) stator (right) rotor. 

 

 

Figure 13. Meridional optimised blade thickness contours (m) for (left) stator (right) rotor. 
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Figure 14. Visual comparison between preliminary blade (left) and optimised blade (right) designs. 

4.2 Parameter Evolutionary Behaviour 

Figure 15 shows the power against efficiency plot for all blades that met the design constraints 

requirements. The graph shows a clear pattern of inverse proportionality, as well as the effect of the 

difference in weighting within the fitness function of these two parameters. The majority of designs 

were tending towards maximum efficiency, while still avoiding low power values. The graph 

highlights the effect of high penalisation fitness functions, with the genetic pool autonomously 

developing its own safety factor to prevent frequent fitness drops due to slight design changes. An 

ideal curve could be drawn to derive an empirical equation for power in function of efficiency, 

however, given the high dimensionality of the results, it would be an excessive approximation with 

limited practical use. 

 

Figure 15. Power against efficiency for all assessed configurations within design objective constraints. 

Median leading-edge thickness for rotor (red data points) and stator (black data points) scatter 

plots against fitness is shown in Figure 16. In terms of stator data analysis, it is clear that best fitness 

values correspond to thicknesses between 0.3 mm and 0.45 mm. Rotor data is divided in two different 

genetic types: best fitness values are found at 0.73 mm or at 0.42 mm. This could be interpreted as the 

genetic pool developing into two separate species, with different characteristics. High thickness 

elements feature slightly lower efficiencies, and greatly increased power. Lower thickness element, 
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like the final result, feature significantly less power and marginally higher efficiency. This 

phenomenon occurred as a consequence of the multi-objective nature of the optimisation, and it is 

statistically likely that more parameters evolved into multiple species. 

 

Figure 16. Leading edge thickness at the median layer vs. fitness for rotor (red) and stator (black). 

Figure 17 shows the elite member rotor leading edge thickness behaviour over the course of the 

optimisation. From this graph, one can observe the hub values convergence to higher values 

compared to the preliminary design analysis, to accommodate for the need of a higher rotor safety 

factor. Values for the median layer were initially increased, only to be minimised at a later stage of 

the optimisation. This behaviour is a consequence of the genetic pool prioritising low turbine failure 

rates, increasing influential parameters to ensure constraints compliance. In this case, the safety factor 

constraint was likely the cause for this increase. As blade parameters get optimised, failure rates 

sharply decreased, leading higher fitness elements with lower thicknesses to be more prominent. Tip 

values were influenced by median values behaviour; however, they clearly were not as influential in 

design constraints compliance. 

 

Figure 17. Elite member rotor leading edge thickness against generation number. 

Figure 18 shows the evolution pattern of stator axial chord. As generation number increases, hub 

and median values are minimised, while tip values stabilise at a value close to the initial guess. This 

shows a tendency towards shorter blade as the evidently provide better results. Hub and median 

values tend to the lower end of their respective ranges, thus suggesting that theoretical values for 

axial chords are not based on accurate empirical equations. 
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Figure 18. Elite member stator axial chord against generation number. 

To provide a possible explanation to the phenomenon of unexpected stator axial chord, blade 

distance was plotted against generation number in Figure 18 and Figure 19, respectively. Blade 

distance was set up as a function of axial chords, and the graph shows this value being overestimated 

in preliminary design. It is probable that this parameter is so influential, that having worse than 

optimal values for all the dimensions that are included in the function used to estimate it is still 

beneficial. 

 

Figure 19. Elite member blade distance against the generation number. 

Figure 20 is showing the rotor/stator stagger angle ratio at each layer. Values barely vary 

between generation 1 and generation 19, indicating either a complete non-influence of the parameter 

(simply impossible) on the turbine behaviour or that an optimum was already reached. It is important 

to note that it is highly likely that “optimum” simply means correlation with low blade failure rates. 

While further analysis should be carried out before coming to any conclusion, these findings are 

surely relevant. The magnitude of these values is also worth noting, with stagger angles ratios 

decreasing from hub to shroud. This could possibly be linked to different tangential speeds at each 

rotor layer, suggesting correlation between these two entities. 
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Figure 20. Elite member stagger angles ratio against generation number. 

5. Conclusions 

The use of numerical MDO and genetic algorithms is an extremely beneficial method for the 

aerodynamic shape optimisation of turbocharger turbines with many parameters. The dimensioning 

of this specific genetic algorithm (GA) has been applied to the specific problem and opportunity 

represented by axial turbine design for turbocharger application. Implementation of the GA has 

allowed for the improvement of the preliminary axial design in just over 4 h (2.73 day for a single 

computer) by only assessing 399 individual configurations. The final blade configuration achieved a 

total-to-static efficiency of 0.7587, an increment of 2.55% from the preliminary design, while 

providing a sufficient amount of power and implementing a higher safety factor. 
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Nomenclature 

𝑁𝑏 Bit size of every chromosome 

𝑁𝑔𝑒𝑛 Number of Generations 

𝑁𝑖 Population number 

𝑝𝑚𝑖𝑠𝑠 Probability of a bit having the same value throughout the genetic pool 

𝑃𝑚𝑢𝑡  Mutation Rate 

𝑇𝑠 Chosen Tournament Size 

Abbreviations 

CFD Computational Fluid Dynamics 

FEA Finite Element Analysis 

GA Genetic Algorithm 

MDO Multidisciplinary Design Optimisation 
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