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Abstract

We consider the Gierer-Meinhardt system with small inhibitor diffusivity and very small activator dif-
fusivity on a compact two-dimensional Riemannian manifold without boundary. We study steady state
solutions which are far from spatial homogeneity. We construct two different spike clusters, each consist-
ing of two spikes, which both approach the same nondegenerate local maximum point of the Gaussian
curvature. We show that one of these spike clusters is stable, the other one is unstable.
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1. Introduction
1.1. The problem

Since the pioneering work of Turing in 1952 [39], many different reaction-diffusion system
in biological modeling have been proposed and the occurrence of pattern formation has been
investigated by studying what is now called Turing instability. One of the most popular models
in biological pattern formation is the Gierer-Meinhardt system [14], see also [26]. In this paper,
we consider the following Gierer-Meinhardt system on a compact two-dimensional Riemannian
manifold (M, g) without boundary:

2 A?
N, A—A+ 5 =0

& ' in M. (1.1
DAGH —H+A%=0

Throughout the paper, we assume that

O<e<<1,0<D<<1.

We prove the existence and study the stability of a cluster of two spikes near a non-degenerate
local maximum point p° of the Gaussian curvature of the manifold M.

1.2. The geometric setting

Before stating the results, we first introduce the geometric setting of the problem. Let 7, M
be the tangent place to M at p, and given an orthonormal basis {e;(p), e2(p)} of T, M, we
can obtain via the exponential map exp, : T, M — M, a natural correspondence Ej(x) =
xie1(p)+xz2e2(p) = g =exp,(x1e1(p) +x2e2(p)). Since M is a compact manifold, one knows
that there exists a constant i, > 0 such that

Xp:=E, oexp,': By(p.ig) —> B(0,iy)

is a diffeomorphism for every p € M. The values of this natural chart X, are called normal
coordinates about p.
We now define function spaces. Set

L*(M,) = { u measurable function defined on M., / uz(q)dvgg <00y,
M,

where dv,, denotes the Riemannian measure with respect to the metric g.. We further set
H'(M,) = {u € LA(M,), Vg,u € L*(M,)}.
We will construct cluster solutions near a non-degenerate local maximum point of the Gaus-

sian curvature function K (p). In the rest of the paper, we assume that there is a local maximum
of K(p)isat p® =0, i.e. we have
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VK(0) =0, V2K(0) = (KO” 1(022>

where K11, K2 < 0. ‘
Let the local normal coordinates around p be x = (x1, x3). Then we set x = 1 for |x| < %”

and x =0 for |x| > %”, and introduce x. = X(%)-
1.3. The main results

Let w be the unique solution of the problem

Aw—w+w?>=0, w>0inR? w(0) = max w(y), w(y) = 0as |y — oo. (1.2)
yeR

In this paper, we shall prove results on the existence and stability of a spike cluster of (1.1)
located around p° = 0 with two spikes. Our first result is on the existence:

Theorem 1.1. Let p° be a non-degenerate local maximum point of the Gaussian curvature K (p)
of M. Assume that

0<e<<+D<< 1,0<\/510g7<<1, (1.3)
82Dlog@
and
K»
—= £1. (1.4)
Ky 7

Then the Gierer-Meinhardt system (1.1) has at least two different 2-spike cluster solutions
(A;, Hy) for i = 1,2, which both concentrate near p°. In particular, each of these solutions
satisfies

A

Dé&, D§,
~ 2 (W tap +wC - g0). Heza ~ 5,

where eq; — 0 as e — 0 and &, 1og@f0” =1,2.

Remark 1.2. The limit LD — 0 means that the diffusivity of the activator u is asymptotically

smaller than the diffusivity of the inhibitor v. If this is not assumed, then the pattern will no longer

have a spike profile. The second limit /D log % —> 0 is the condition which guarantees
e2Dlog ¥2

that the spikes form a cluster, i.e. eg; — 0 as ¢ — 0.

Remark 1.3. As one will see from the proof, we will construct an approximate solution which
concentrates on a regular k-polygon shrinking to the point O for general k > 2. But when solving
the reduced problem we can only handle the case k = 2. The condition (1.4) is imposed to make
sure that the reduced problem is solvable.
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Next we study the stability of the 2-spike cluster constructed in Theorem 1.1. Our second
result on the stability is the following:

Theorem 1.4. Let p° be a non-degenerate local maximum point of the Gaussian curvature K (p).
Assume (1.3), (1.4) and let (A;, H;) fori = 1,2 be the solutions constructed in Theorem 1.1. Then
one of the solutions is stable and the other one is unstable.

Using the transformation

3 €
x=¢ey,u=—A, v=—H,
D D
equation (1.1) becomes

Agu—u+ % =0
in M, (1.5)
Agv—0crv+u?=0

where 0 = - In the rest of this paper, we will work with (1.5).

7

1.4. Related work and motivation

We now comment on some related work. Generally speaking, the Gierer-Meinhardt system is
difficult to solve since it does neither have a variational structure nor a priori estimates. One way
to study it is to examine the so-called shadow system. Namely, we let D — +oo0 first. It is known
(see [21,28,35]) that the study of the shadow system amounts to the study of the following single
equation for p = 2:

EAu—u+uP=0, u>0 inQ,
(1.6)

g—’s =0 onodf.

Equation (1.6) has a variational structure and has been studied by numerous authors. It is
known that equation (1.6) has both boundary spike solutions and interior spike solutions. For
existence of boundary spike solutions, see [16,29-31,46,47] and the references therein. For ex-
istence of interior spike solutions, see [17,33] and the references therein. For stability of spike
solutions see [32,44,45].

Next we review some results for bumps, spikes and related patterns in the Gierer-Meinhardt
system. Ground states on the real line are studied in [9,11,12,58] and for the whole RZ in [10].
Spikes for an interval are studied in [18,19,25,37,43] and for bounded two-dimensional domains
in [23,24,31,48-52]. Hopf bifurcation of spikes is investigated in [7,41,42]. For dynamics we
refer to [5,6,13,20,36]. Steady states with spherical layers have been constructed in [25,34].
Stripes have been studied in [22]. Nonlocal eigenvalue problems related to the one in this paper
have been studied in [44,45,57].

The existence of spikes for single semilinear elliptic PDEs on manifolds has been investigated
in [4,8,27]. Existence and stability of a single spike solution for the Gierer-Meinhardt system on
a Riemannian manifold has been shown in [38].
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In [52] the existence and stability of N-peaked steady states for the Gierer-Meinhardt sys-
tem with precursor inhomogeneity has been explored. The spikes in the patterns can vary in
amplitude. In particular, the results imply that a precursor inhomogeneity can induce instability.
Single-spike solutions for the Gierer-Meinhardt system with precursor including spike dynamics
have been studied in [40].

For more background, modeling, analysis and computation on the Gierer-Meinhardt system,
we refer to [54] and the references therein.

Previous results on stable spike clusters include a stable spike cluster for a consumer chain
model [53]. For the Gierer-Meinhardt system spike clusters have been established in the fol-
lowing situations: stable interior spike clusters for the one-dimensional Gierer-Meinhardt system
with precursor inhomogeneity [55], stable interior spike clusters for the two-dimensional Gierer-
Meinhardt system with precursor inhomogeneity [56] and stable boundary spike clusters for the
two-dimensional Gierer-Meinhardt system [2]. In the last paper the boundary curvature plays the
role of the precursor in the previous papers. In the current paper we will see that the Gaussian
curvature takes over that role for the Gierer-Meinhardt system on a compact two-dimensional
Riemannian manifold without boundary. We would like to summarize this role as follows: the
spikes in the cluster are mutually repelling and also each spike is attracted to a local maximum
point of the Gaussian curvature (or to a local minimum of the precursor gradient or local max-
imum of the boundary curvature, respectively). This balance between attracting and repelling
interactions can lead to a stable spike cluster.

This paper is organized as follows. In Section 2, we give some preliminaries and describe
the construction of the approximate cluster solution. In Section 3, we use the Liapunov-Schmidt
method to reduce the existence problem to finite dimensions. In Section 4 we solve this reduced
problem. In Sections 5-6, we study the stability of the spike cluster steady states. In Section 5
we consider large eigenvalues. In Section 6 we study small eigenvalues. In Section 7 we discuss
the results of the paper. In the appendix we give some identities needed in the main part of the
paper and we calculate the eigenvalues of the reduced matrix in main order for a general number
of spikes.
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2. Preliminaries and construction of the approximate solution
2.1. Expansion of the Laplacian

Let the local normal coordinates around point p be x. For a function u in the rescaled coordi-
nates y = 7, one has the following expansion of the Laplace-Beltrami operator (see appendix A

of [38] and also [1]):

Aggu()’) = Ayu(y)

HEK@E + LKD) 9’ + 2 VK (e (Qlul - 2PLu)
3 6 20
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1
+ 5K2<p>|y|%4<3Q[u] 4P[ul)

4
1, 14 5
+68 Ri[u] + To¢ Ro[u]l+ O(e”) 2.1
where
O] ,0%u , 3%u 28214
uf=y V22— s
28y1 ay10y2 18 %
Plu] ou + u
Ul=y1—=r+y»27—,
3y ay2
y1 9K ou
Ri[u] = [ ( )— - —( )—]
oK 8u
—Y1)’2[—(P)— —(p)—],
dx; "0y
y2 —y? du 92K 2
Rylul=[Z—"L— —yi»m ][yl (P)-H’z o)
2 o
iR ][aK(>+ 2K()]
2 oy y1Y28 y232p )’18 219-
2K 3’K
__ (0K 0K 2 o dx10x1; 0x10x
Note that VK (p) = (33 5y;) (), and VK (p) = a;Kl Blsz (p) are not rescaled.

0x10x2 0x20x)
2.2. The Green’s function

Now we introduce a Green’s function G, which is needed for our analysis. Let G, be the
Green’s function given by

Ag.Go(p,q) — 0%Go(p,q) + 8, =0in M,. (2.2)

For properties of this Green’s function please see [3]. From (2.2), one has

/ Godvg, (p) = -
M,

Setting G5 (p,q) = m +Go(p.q), then G, satisfies

{A&(‘;U—azég—ﬁswq:om/m 03

S, Godvg, =0.

Let G, be defined by
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AGy — %Gy +8)=0in R?.
By the expansion of the Laplace Beltrami operator, one has
Go(q.r)=G(y.2) +£°G1(y,2) + O(e”) (2.4)

where y = X,(q), z=X,(r) and G(y, ) is even function in |y — z|.
For Gg(y, 7) = Gl(oy, 07), one has

Lemma 2.1. If |y — z] << 1,

- 1 1 -
Gi(y,2) = Elogm + Hi(y,2)

where H\ is the regular part of the Green’s function and Vyﬁl 7, Dly=; =0.
If|y - Zl =>> l)

~ 7l v ~ ~
Gi(y.2)=cly —z[72e A+ o)), [V,Gi(y.2)| =Gy, )1 +0(1))
for some constant ¢ > 0.
2.3. The construction of the approximate solutions
In this subsection, we describe the approximate solution we will use. Given k > 2, define
qj? = (Rcosbj, Rsin;) for j=1,--- ,k
where 0; = o + 27” (j — 1) in geodesic normal coordinates. Here « is the parameter for the angle
representing the degeneracy due to rotations. The constant R for the radius will be determined
later in the leading order of the reduced problem. Since our manifold is not rotationally symmet-
ric o will be derived below in a higher order of the reduced problem. _
Next we introduce suitable coordinates in a neighborhood of q0 = (q?, cee, q,?). Let f;, gi €
R, i=1,---,k, wedefine
qi =q) + filii + &ty (2.5)
where
7 = (—sinb;, cos;), n; = (cosb;, sinb;).
So f,-, gi measure the displacements in the normal and tangential directions, respectively. Denote
Q={gi, i=1,- .k olfil +0lgl < C}. (2.6)

Now we introduce w; to be the unique radially symmetric solution of the equation

1
Aywj —wj — 2 K(eq)e?rw(r) + wj(r) =0in R? 2.7)
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where K (¢g) is the Gaussian curvature at g € M.

Existence and uniqueness of w; can be derived using the implicit function theorem and the
non-degeneracy of the positive solution w to the equation Aw — w + w? = 0. Moreover, one has
lwj —wll g2Rr2) = 0(&?) if |eq ;| is bounded. The readers are referred to [38] for more details.

Then we set our approximate solution to be

k
U= Eqwi(y—a)xe(y —ai) (2.8)
i=1

where x = 1 for x| < % and x =0 for |x| = % and x. = x (%), the height &4, is to be deter-
mined in the following subsection.

2.4. Calculating the height of the peaks
In this subsection, we formally calculate the height of the peaks. It turns out that the height of

the peaks does not depend on the spike location in leading order but only in higher order.
For a function u € H2(M,), let T[u] be the unique solution to the equation

Ag, Tlul — o*T(ul +u=0.
Then from the equation satisfied by v, one can choose the approximate solution as
u=Unv=TU*=V. (2.9)
Next we calculate the height of the peaks
§e.q; = V(q))

= / Go(q;,q)U*(q)dvg, (q)
M

zgez,qj/GU(Qj’Y)wj(y_Qj)2X£,degg

M.
+Y &, / Go(gj> YIwi(y — i) Xe idvg,
#i M,

+ Y0,
i

1 1
2 2 2
=82 5 lon [ wiy 0T e2)
R2 !

one has

Please cite this article in press as: W. Ao et al., Stable spike clusters on a compact two-dimensional Riemannian
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RZ
Denote
1 1 5
Ee=| sz log— [ widy

2 o
RZ

Then one has & 4, = & (1 + 0(10; ))-

3. Existence: reduction to finite dimension

3.1. Error of the approximate solution

9

111 5 1
=—log— widy + 0 | —— . (2.10)
eqp 2m "o J logo

Let us start to prove Theorem 1.1. The first step is choosing a good approximate solution
which was done in the last section. The second step is to use the Liapunov-Schmidt reduction to
reduce the problem to a finite dimension problem which we do in this section. First we need to

calculate the error of the approximate solution (U, V) given in (2.9).

U2
SIU, V)= AU =U+ >
k
U2
=5~ D _Eeq Wi — g xe
i=1
k

1 1
+ 38 [ VK ean - (v = g (Qlwi] = 2PLui]) + < Rifuw
1

k
+
i=

1
84[2_o(y — q) VK (eq)(y — 1) (Qlw;] — 2P[w;])
1

2 K2(eq0)ly — i PGOIui] — 4Plw ) + - Rolwi] | + O(%)
45 qi)ly — 4qi i i 10 2lwi .

Next we calculate for j =1,---,k,and y =¢q; + z with |ez| < %,

Vig; +2)—Vig))

= f [Go(gj +2,p) — Go(gj, p)]Uz(p)dvgg
M,

=&, / [Go(gj +2, P) = Go(gj, P)Iw;(y — ;)" xjdvg,
M.

Please cite this article in press as: W. Ao et al., Stable spike clusters on a compact two-dimensional Riemannian
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+> 82, / [Go(q) +2.2) — Gogj. PIwi(y — @) x7dvg, + O (2 2R )
I#j M

J

= Sﬁq.[/ (Go(gj+2.p) — Go(qj. PIW;(y — q;)* x;dvg,]

M.
+Z$§m/Vq,-éa(q,qu)-zwz(y—qz)2x12dvg5
I#j M,

1 .
+Z€§,q1§ / 2V, Go(g), qnZ wi(y — g1)° xj dvg,
I#] M.

— 1 _JRsinZ -5 =
+OEIR 2R L 8267 R, 2o R 2P+ £207 Y Golgjr an)lzl)

J#l
[yl 1
:582[/10g 5 —zl w?(y)dy +Vy, F(@) -z w?dy + EngjF(q)Zt w?dy]
R? ' R? b
_1
+0(E2[0° 12> 4+ €21z 1R, 2 e~ o)
where
3 bid
F(q) = ZHU(qiv Ql) + ZG](O'q,‘,Uq]'), R(7 —=2Ro sin?' (31)

i=1 i#j

Using this estimate and the expansion (2.1), we have the following estimate for the error:

S1(U, V)(2)
i Iyl 1
N _Eezw?(z)-flog ly —zlw?(y)dHV%F(q) 'Z/wde EZV;fF(q)Zt/wzdy]
R2 R2 R2

rl I~
+ 2ttt 20, VK O (QIw] — 2P[w)) + < Rifw] |

k

rl

+> &ee %zsz(sqi)zt(Q[w]—ZP[w])
i=1 -

+iK2(sq~)|z|2(3Q[w] _4P[wD) + —R [w]]
15 i T
+0(£200° P + €212 PIR, e ) 4 £:6°)

where
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2 2
~ Z2 - Zl 0 u 0 ou
R = —VK@0)-gi— — —VKO0)-g;—
1[u] ) (3)61 (0) qj 921 9% () qj 822)

ta1za (VK ©) g 2 — L 9k©) -4 0%
Ay Yoz~ am gz,

It is easy to see from the above estimate that for y = g; + z, and |ez| < %”
Lemma 3.1.
S1(U, V)(z) =Su + Siz
where S11 is an even function in z given by
S =Ewi(QR1(2) + &£ Ra(w; (2)

and R1(z) = O (log(1 + [z])), Ra(z) = O(|z|?), while

1
Sip= —waf(z)[vqj F(q) ~zf w?dy + Ezvng(q)z’ / wzdy]
R? R2

k
1 1~
+ ;5554[EQjV2K(O)ZZ(Q[w] —2P[w)) + Rilw]]

1
+0(E2(10° 2 + &7 2P1R; P e Re) + & ).
Furthermore, S1(U, V) = O(ége_g)for |z] > g.
3.2. Linear theory

In this section, we study the linearized operator L : H 2(M,) x H*(M,) — L*(M,) x
L%(M,) defined by
U
Leq=DS$; (V)

To denote the dependence on ¢ and q we will also use the notation S; = S; g.
First define

8w,~
Zi,j)=-—0—g9)x:(y —qi)
J

ay

where the coordinates are the geodesic normal coordinates.
Set

Keq={Zij,i=1,k j=12}CH*M,),
Ceq=1{Ziji=1,-,k, j=1,2} C L*(M,).

Please cite this article in press as: W. Ao et al., Stable spike clusters on a compact two-dimensional Riemannian
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We define our approximate kernels and cokernels as

Keq:=Keq x {0} C HX(M,) x H*(M,),
Ce,q = Crq X {0) C L (M) x L2(M).
Then we let K jjq and Céq denote the orthogonal complement with respect to the scalar product
L*(M,) in H*(M,) and L?(M,), respectively.
Define

Kiq =Ky x {0} C H*(M,) x H* (M),
Coq = Carq x {0} C L* (M) x L*(M,).

Let 7 q denote the projection in L%(M,) onto Cg%q. We are going to show that the equation

ng,qosa,q<gi£> -0 (32)

has a unique solution ¥ = ( ZZ ) € ICéjq.

Set

Leq=meqoLeq:Kiq— Ciy (3.3)

The following proposition shows the invertibility of L, q. The proofs are quite standard now
and so we omit the details here. We refer to [2] for details.

Proposition 3.2. Let L, g be defined in (3.3). Then there exists a positive constant 8y such that
for % < 80, there is a constant C > 0 such that

1£e.qZ 22,y = CIEN g2, (3.4)
foranyqeQ., ¥ € ICg:q. Moreover, the map L q is surjective.
3.3. Solving the nonlinear problem module the cokernel

From the above proposition, we know that L q is invertible (denote the inverse by E;}l). Then
we can rewrite the equation (3.2) as

_ U _
T=—(Liho ng,q)<sg,q < v ) ) — (L5} 0T I Ne (D) i= M (2)

where

(9 . U+¢ U ., (U
5=(§) Ma=sia (V1) -sa(V)-5ta(V)=

Please cite this article in press as: W. Ao et al., Stable spike clusters on a compact two-dimensional Riemannian
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We are going to show that M, ¢(X) is a contraction mapping on

Bey = (¥ € HX(M,) x HX M Sl 2, < 1)

We have by Lemma 3.1 and Proposition 3.2 that

U
[| M, q(E)HHZ(Mg = <||7Ts,q o Ns,q(z)”LZ(MS) + [|7e,q © Se.q < V) ||L2(M8))
< C(c(mn+ce D)

where C > 0 is independent of 7, ¢(n) = 0 as n — 0 and c.p — 0 as max{j—ﬁ,
Dlog—1 _1_50. Moreover, we have
\/_ gsleog@}
| M, q(2) — Me,q(z/)”HZ(MF) <Ccmz-% 52,

We choose 1 such that Cc(n) < 3 and Ccep < 377 Such a choice of 7 is possible if we have
taken max{—= NGE VDlog 7J—} small enough. Then M; 4 is a contraction mapping in B .

By the contraction mapping pr1nc1ple there exists a solution to (3.2). Thus we have

Proposition 3.3. There exists 89 > 0 such that for max{—= NGL VDlo g f} € (0, 8o), and

q € Q., we can find a unique solution (¢, ) € ICE’q satisfying

U+
Sg,q<v+$>ecg,q

and

_1
b W)l 2,y < CES +Eee*R+EI0Rs e Fo).
For our purpose, we need more refined estimates on ¢. Recall that S; can be decomposed as
S11 + S12, where S11 in leading order is an even function in z while Sj» in leading order is an

odd function in z. So we can decompose ¢ = ¢, q as in the following lemma.

Lemma 3.4. Let ¢ = ¢ = ¢, q be defined in Proposition 3.3. Then for y = p; + z, |oz| < 8o, we
have

o=¢1+ ¢

where @1 is radially symmetric in z and

'
1621l 2,y = Cte (&0 Ry e~ +5°R).
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Proof. Let S[u]= Si(u, T (u?)), we first solve
k
S[U +¢11 = SIUT+ Y _Si(y —q)) € Cenq,
j=1
for ¢ € K jjq. Then we solve
k
SIU + 1+ ¢21 = SIU + 11+ Y S1a(y — ) € Ce g,
j=1

for ¢ € K jjq. Using the same proof as in Lemma 3.3, both the above two equations a have

unique solution for max{j—ﬁ, VDlog m} small enough. This implies the uniqueness of

¢ = @1 + ¢2. Moreover, it is easy to see from the estimate of S, that

_1
11201200,y = (60 R 2™ +&*R)

and S1; € C s{-q since S;; is an even function. Then we conclude that ¢, ¢, have the required
properties. [

4. The reduced problem
4.1. Deriving the reduced problem

By Proposition 3.3, for each q € Qg, there exists (u, v) = (U + ¢, V 4+ 1) such that

Se.q <Z > €Ceq-

Now, to solve the equation exactly, we have to further choose q such that

u
Se.q ( } > € Céq.

Lemma 4.1. Under the assumption of Proposition 3.3, the following expansion holds:

/ S1lU+¢,V+ '(//)Zj,jdvgs
M,

4
dK (0 ~ o

= e[ VD S Gl —an (L) ]

0.0 0x; Ittt lgi —ail/j

+O(E;)

where c1, c2 are given in (4.1) and (4.2), O(E;) = 0[55284R + égo Zi;ﬁj GU (gi, qj)].
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Proof. We compute

/ S1(U + (bs,q, V+ lﬁe‘q)zi,jdvgg

M
- U +de9)’7,
= f [Aga(U +Peq) — (U + e q) + m]zl,]dvgg
M,
U+ ¢e q)”
= / I:Ags(U + ¢8,q) - (U + (]55,(,) + #]Zﬁjdv&
M,
U+¢eq)” Ute:e9’],
" / 5= Vea  V J2sdve
=11+ D.

We decompose

(Es,q,' w; + ¢£,q)2

I = / [Ag, (Ee.qwi + ¢e.q) — (e,q; Wi + Pe.q) + V(g:)

]Z,"jdvgg

/ (e, (Se,q; Wi T Pe,q)” + e, q) V(g +2) — V(Qi)]zi,jdvge + O(égR—%efZRsin %)

V@)
=11 + 2.
Note that ¢, ¢ = ¢1 + ¢ which implies that
[ 1800ma 9+ 206012,
M,

= / (61 + $2)dy, [Ag,w; — wi + wildvg,
M,

_1
= 0<(§SRU 2o Ro £4R>82§8>,
and

¢e q
ée qi

_ [ 2¢]¢2+¢22 d
be.qi

Z; jdvg,

&€
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_1
=0 (ég (Ss R, 2oe Ro 4 54R>)
since ¢ is an even function. From the expression for 1§1 and using Lemma B.2 in [38], one has

/ &e,qi[Agwi —wi + wiz]Z,-,jdvgg
M

1 ~ el
= eyt [ [0V KO (Qlu) - 2PLw) + Rilul |5 dy + 06
R2 Y

—-—ff/kwﬁ%ﬁdm&w@4vaK“D'qi+cnae%
4 3)6]

0
K (0)

o dit 0 (&€)
Xj

4
= —C1&p,q8"V

where
o0
_jT N2..3
cl—z/(w)rdr>0. “.1)

Combining the above estimates, one has

dK (0)
ij

4
Iy = —ciée 46"V

“qi
_1
+0 (gﬁ(nga 25 Ro 4 84R>).
Next for 17, one has

e.q; Wi + P,
,u__/<5w” Eati 400y 0y vz, sa,

V(g)?

=—[/wﬂWm+m—V@»aM%g
M

2 wi
+ / £ (V(gi +2) — V(4i) Zi, jdvg,
£.di
¢2
+ / E(V(Qi +2)— V(Cli))Zi,jdvgg]

ow _1
= —ggq’_ 3, F(q) / w?dy [ wza—y_yjdy + 0(562(5ng 2ge R 4 g e%02 + 84R))
J
R2 R?
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= ngez,qi a(Ii,j F(qQ+ 0 <€g2 (‘sto_%Ue_R“ + 84R)>,

where

d
)= —/‘wzdy/wza—w'yjdy > 0. 4.2)
R2 R2 Y

In conclusion, one has

0K (0)
11 = _‘i:g,lli [C184V ax

= g — 26,40, F(@ | + O(E).
J

For I, recall that ¢ g satisfies
Ags '(pg’q — O’Z'lpg,q + 2U¢g,q + ¢£2',(] =0.
We can make the following decomposition

Ags 1p»s,q,l - Uzl/fe,q,] + 2U¢e,q,l + ¢’iq,1 =0

and

Ags ws,q,Z - 0'2W8,q,2 + 2U¢s,q,2 + ¢52’q’2 + 2¢e,q,l¢a,q,2 =0.

Then one can see that V¢ ¢,1 is radially symmetric with respect to z, and

_1
ezl = 0 (& (&R 2o~ +&*R)).

Moreover, from the Green’s representation formula,

Vea(di +72) — Veqla) = f (Go @i +2,p) = Golai, )| QUBeq + 62 v, (p)
Me

= 0()Vy F(Qlz] + Re(2)

where R,(z) is even function in z. This implies

(U +¢eq)? (U+deg)?
- [ Ve  V ]Z"’fd”ge
M, '
(U + ¢e.q)°
=— T“lws,qz,-, jdvg, + O(Ey)
M,

[ Low )dy + O(E
—_/ggj(w.&q_wg,q(%)) y+ O(E¢)

= O (E,).
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Thus one has

1o 0K (0)
SIU +6.V + )7 jdvg, = —&:[e18*V =" i — 2,04, F@ | + O(E).
M, !
Recall the definition of F(q) from (3.1):
k
F(@:=) Hi(og,0q)+ )y Gi(gi0q;)
i=1 i#j
and VyH (y, 2)|y=, = 0.
Using the asymptotic behavior of
~ 1
Gi(x,y)=clx —y| 2e 11+ 0(1)), 4.3)

one has

/ SIU + ¢,V +9)Z; jdv,,

M.
4
C1€ 0K (0) -, g —qi
:—625520'[ \Y% qi — Z G(O’|ql—ql|)<17>]+0(E8) O
c26e0 0%; I=it1,i—1 lgi —aqil/J
Define
oU . . . _
%Z(qu s L N Zgy N g 1)’

and
Qi =0q; = Q) +o filii +0gif;.
In the following, we denote

ng(‘fls"' 9]st§17"'sgk)tz(flv"'afkvglv"'vgk)t

and

Ro=10}|=0R.
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4.2. The reduced problem for general k =3, 4, ...

Next we analyze fMg S1U+¢,V+ lﬁ)%dv&.. We have the following:

Lemma 4.2. fM; S1U+¢,V + 1/f)38—gdvgS = 0 is equivalent to the following system for the

perturbation q:

(éM +1M +QM)~—Cb +0(&)
4 1 pl 2 4 3)q=C2bo

where d =2Rosin%, and d is defined in (4.5),

and &; are k-dimensional vectors of the form

&1=0 [g5+i2+|¢1|2]i ,&=0 [‘§—S+i2+m]i .
R Ro  R; Ro
Further, C| = 4sin? EKDK;HK”, Cr=-2 sin%K”K;HK” are two constants and the matrices

My, My, M3 and the vector by are given as follows:

u (Aq +4I)sin2% Apsin % cos T
1= . ,
—Apsin 7 cos —A| cos? T

2m 2w T b4
My = Ajcos” T +4sin“ I —ApsinZ cos 1
—Alsinz%

: g g
Ar sin  cos ¢

_(B1 B _(B1 0=
M3_(Bz B3>’b0_<0 32>1

where
-2 1 0 1
1 -2 1 0 O
A= . . ,
1 0 O 1 -2
0 1 0 0o -1
-1 01 --- 0 0
A= . . . . . N
1 00 --- —-1 0
B = diag{sinzel, cee ,sin2 Ok},
By = diag{sin6; cos by, - - - , sin O cos bk},
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B3 = diag{cos2 01,---, cos? Ok}.

Proof. Wlog, assume that

2 _(Ku O
VK(O)_<O Kzz)

where K1, K2, < 0.
By direct calculation, one has

VK (0) - Q;

= VK (0) - (Q) + firii + gify)

= K11 (QY + filt; + giti)
+(Kay — KU)[(RO + £;)(sin? 6;7i; + sin6; cos 6;1;) + g; (sin 6; cos 6;7i; + cos’ el-fi)]

= K11 Ron;
+Ro(K2 — K11)(sin® 0;7i; + sin6; cos 6;1;)
i K11 fi + (Ko2 = K1) (sin® 6, fi + sin; cos6g1)

+ii| Ki1gi + (K22 = K11)(sin6 cos ) fi + cos6ig; . (44)

Next using the facts that

R 2 D 2m. o L 2w 27 S
nj41 = COS Tni —+ sin 7t,~, tiy1 = —sIn 7’1[ —+ cos 7@,
R 2 D 2m. o L 2w 27 S
nj_1 = Cos Tni — sin 7t,~, ti_1 =sin 7’% -+ cos 7”’

and for |a| >> |b|

a+b_a+b a-ba+0(|b|
la+bl lal * lal lal? |a] lal>”
one has
Qit1— 0i
[Qiv1— Oil

_ Q?H — OV + fisifiig1 + giv1fip1 — filli — gili
100, — QF + fisiitist + gip1liv1 — filli — gili

N T
= —SIn —n; + CoS —t;
k k

+ ! [* (fi+1cos 2 si n i) + 6 (fig1 sin 2n + cos 2 )]
—— |1 (fi — —giy18in— — fi) +t;(fix18in— + g — =g
2Ro sin% ilJi+1 X 8i+1 X i ilJi+1 % 8i+1 X 8i
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1 2 2
—7,[—(]‘[+1c0s— gi+18in — f,)sm—

2Rpsin T k
. 2w 2 T
~+ (fi41sin a ~+ gi41c08 = gi)cos Z]
lq

X (— n,smk +t,cos—)+0( )

and

Qi—1— 0
1Qi—1— Qil
_ 0% | — 0%+ fioiiii—1 + gimiti—1 — filli — gil;
B 10V | — OV + fisini—1 + gi—1fi—1 — filii — giti]

LT 7'[?
= —SIn —n; —COS —1{;
k k

27 27 2 2
+——f——h(ﬁ1cm——+& 1 8in — —ﬁ)+h(ﬁ 1sin— + gi— wm———&ﬂ
2Rpsin % k k k

1

2
e a—— + sin — sm —
2R0 sin k gi-1 -/

[(f, 1 COS Zk

. 2m 27 T
+ (= fi—1sin - + gi—1c08 - = gi) Cos E]

x(n,smk +7; cos = )+0(|q|)

Moreover, we define

A:_éﬁm
G\ @)

d=d+ 0(1). (4.5)

We expand

Gi(1Qis1 — Qi) =G1(107,, — 07 + G110}, — 27

2 2 2 2 T
x| = (fis 41€08 — — g sin - - f)sin = o (figrsin ==+ gigycos = gi)cos;]

and

G (1Qi—1 — Qi) =G1(10Y_, — Q') + G{(1Qi—1 — Qi)

27 2 T
—fl)sm——( fi— 1s1n7+g, 1COS — . —g,-)cos—].

2 2
[ (fi—1co8 — 4+ gj—1 sin — .

k k
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Combining all the above expansions, one has
i+1
B Q;— 0;
> G- oih—L—=
frall 1Q; — Qil

— G\ in 7
=G () —Zsmzn,

A

d T\ . o T
_E[_ (fi+1 + fic1 +2fi + (&it1 — gi—l)COtz> sin” -
T 2 T >
+<(fi+1 - fi—l)tan; +gi+1+8i-1 — 2gi) cos Zti:l

+1[<f ¥ fiii—2fi —( )t ”) 2T
— fi i—1—2fi — (gi+1 — gi—1) tan — ) cos” —n;
d i+1 i—1 i 8i+1 — &i—1 X 2 i

(it = im0t T = (it + g1 +2g)) sin 77, ||

=7 ~ 1ql lql
0( 1(d) |:|(l| +7fz+R—gi|>-

Now let us define Ry such that

C184K11
C2§802

—2sin%€;’l <2R0 sin %) + Ro=0

which is possible since é’l <0and K7 <O.

Then
oU
/ Sl —dvgs =0
aq

&

is reduced to the following linear system for the perturbation q = (f1, -+ , fi, &1, » &)"

(C?M Ly +C1M)~—cb 10
d 1 d 2 d 3)1q=C2bp

where

and &; are k-dimensional vectors of the form

al , o o[, a @]
& = <|:ES+R—O+||:|),52—0([R0+R2+R0:|1>.

Further, we have C| = 4 sin® 7]: M , Co = —2sin ’]Z K”Ki]f“,

(4.6)
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) .
My = (A +4I)sin“ T Apsincos T
—ApsinfcosT  —Aj cos? 2

2 2 ST b4
M2:<A1005 ?+4S1n 1 —Azsmfcos;>

T T 2w
Azschos? —Ajsin T

_ (B B (B 0=
o= 5) (5 51

where
-2 1 0 1
1 -2 1 -~ 0
Ar=| . . R
1 0 0 1 -2
0 1 0 0 -1
-1 01 --- 0 0
Ar=| . . . . . .
1 00 --- =1 0
B) = diag{sin® 6y, - - - , sin® 6},
By = diag{sinf; cos by, - - - , sinO cos Oy},
B3 = diag{cos2 o1, ,0052 6r}. O

Remark 4.3. Since for general k > 2, the linear system (4.6) is not easy to solve, we now
compute q for k = 2. In this case, only two spikes interact with each other, and one has
| sinf| = |sinby|, |cosO| = | cos B> |. This will simplify our computations a lot.

4.3. The reduced problem for k =2

The reduced problem for k = 2 is given by the following result:

Lemma 4.4. When k = 2, fMg SilU+¢,V+ w)%—zdvgs = 0 is equivalent to the following
system for the perturbation q:

i I (& + 2 +1a]a, b
Mg = (—Ml F— M+ —M3)(1=b0 +0 5 4.7)
& lal |, ldl
d Ro Ro [R—O+Rig+g—0](1,1)f

where
Bi1Ap O Bl B3A;
M = M =
! ( 0 0)’ 2 (/33A1 ﬂzl)’

0 0 0 0\=
M3—<O _%ﬂlA()),bo——/%(O Al)l’
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11 10
we(ih) = )

B1=Ki1+(Ka—Ki11)sin? 61, o = K11+ (Koo — K11) cos® 01, B3 = (Koo — K11) sinéy cos 6.

and

Proof. The proof is similar to Lemma 4.2.
First we get

02— 01

G/ —
1191 Q2|)|Q2 O]

- d .1 .
= Gi@ (1= 501+ ) (=i = a1+ &0
s o [1ans 18P
+0 (1@ | 1P + =i

where d = 2Ry.
Combining with (4.4), we have

f S1(U+ ¢,V +y)Vwdug,
M,

C184

C2§e‘72
X ((Kn + (K2 — K11)sin®01)iiy + (K22 — K11) sin ) cos 6171)
1 . . .
+R—O(K11f1 + (K2 — K11)(sin® 6 f1 + sin6y cos 6y g1))ii

1 . N
+ g Kingn + (Ko = Ki)(sin cos1 i + cos? elgmn)
-, d o1 R
—-G(d) 1—E(f1+f2) n1+3(81+gz)t1

= - la*- | gl
+O | Gi(@) |14 + =t + 5 | | + O(E).
RO

Here by carefully checking the error estimates and using the facts that for k =2, if |q| << 1,

01— - 1) -

721 1 0 - ’

01— 0y ~ I Hom A+ (d)”

) - o oGi(d) _\-
0, ;F(@) -z=0(0G(d)z-ni)ni + O TZ'E‘ i
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and
1~ - -
01 VK (0)z(Q[w] — 2P[w]) + ERl[w] = O(Rop)n1 + Oy,

one can have a more accurate estimate for the error term E, i.e.

E_(&)_O F%@+QGZ#G%@4ﬂaJV

E .
’ RLo[ ce'R+ &0 Zi;&j Ga(%‘,q‘/)](l, 1!
Define Ry as
cre* X o\ s
5 Ro( K11+ (K22 — K11) sin” 01 ) = G| (2Ro).
60

Considering the leading order matrix M, the kernel in leading order is spanned by the vectors
a(l,—1,0,0)", (0,0,1,0)", y(0,0,0,1)".

Since the righthand side in leading order is by = —B3(0, 0, 1, —1)" we get the solvability condi-
tion B3 = 0. Therefore we have to choose 6; = 0 or 5. By Taylor expansion,

1

1 1 3 1 1
Rop==-log—5— — —log(log 5—) — = 1 4.8
0=7log =+ — 7 log(log 77) 708y log 1 (4.8)
where
c1Bi
c3=———
2ccy
since B1 < 0.
So the reduced system becomes
Mq 3M+1M+1M q=bo+ O [ée-i-%-i-lfllz](l,l)'
(11=<— 1+ 5 My + —— 3)q= 0 a2
d Ro Ro [,i—j)—i—%—k%](l,l)t

given in (4.7), where
prAo O il B3A;
M = 3 M = )
! ( 0 0> 2 (mAl mz)
0 0 0 0=
M3—<O —%ﬁ1A0>’b0__ﬂ3<0 A1>1’

11 10
e ) =6 )
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and

B1=Ki1+ (Kyn — K1) sin? 6y,
Bo=Ki1+ (K — K11)cos 6y,
B3 = (K2 — K1) sinf; cos 0.

This finishes the proof. O

Remark 4.5. From the definition of Ry, one can check that

1

R
elq1] ~ 220 ~+Dlog ——~.
o 82D10g@

So under assumption (1.3), one can easily see that ¢|q;| — 0 as ¢ — 0.
Finally, for kK = 2 we solve the reduced problem and complete the proof Theorem 1.1.

Proof of Theorem 1.1. First since 83 = 0, we have to choose 0; = 0 or % In this case, the
reduced system becomes

d 1 sg+"”+|ﬁ|2(1 1)f
Mq=<<dAo+Rol>ﬂ1 0 ! ] wo)

0 %O(ﬂzl—%ﬂlflo)>q [& + "1‘ L+ 81, 1y

If B> — B1 # 0, the matrix is invertible, and one can check that [|[M~!|| < CRy.
Our idea is to first improve the top line of the right hand side of (4.9) to 0( & ) from O (&;).

This is done in the following way. Since when 6 = 0 or 7, this approximate solutlon has some

symmetry around each spike in main order, by carefully checking the calculation in Section 3

and 4, one can decompose E. in Lemma 4.1 as [61&. + 821% + 0(%)]&‘884R for some &1, &,
0

which is tedious but standard. So one can decompose f; = f0 + f! + f,-, where f0, f! are
chosen to match the O (&) and O(i—&(‘)) term on the right hand side of the reduced problem. First

£ is chosen such that G, (2Ro +2 %) = G} (2Ro)(1 + 81£.), which implies that | 0| = 0(58).
Then we choose f! such that G (2Rg +2f° +2f1) — G| (2R + 2f°) = G| (2R0)82 3= - and
I fl = O( ) In this way we can get the reduced problem for { f, , i} (we still denote its solutlon
by q) as follows.

[— W +iar]a,
M(]:<(dAo+ sD B 1 0 1 )(1:0 g \ql a2 .
0 7 (Bal — 31 A0) [+ 4700

Since [M~!|| < CRy, one can find a solution q to by contraction mapping such that

lq] < C&;.
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In conclusion, we find a solution such that max; (|f:-| +1gil) = O(&).

It is easy to check that when 61 = 0, then 8y — 1 = K22 — K11; while when 8] = %, Br—pB1 =
K1 — K. Soif % # 1, one can solve the equation and get two solutions which correspond to
61 =0 and 6; = 7, respectively. O

5. Stability study I: study of the large eigenvalues

We consider the stability of the steady-state (u., v.) constructed in Theorem 1.1.
In this section, we first study the large eigenvalues which satisfy A, — Ao # 0 in the limit as
max{%,\/ﬁlog }— 0.

Linearizing the system around the equilibrium states (u., v;) obtained in Theorem 1.1, we
obtain the following eigenvalue problem:

1
£2Dlog @

2u, ug
Rgep =+ 50— 3V =29,
Ag ¥ — 0y +2ucp =Tho ),

(5.1)

for (¢, ¥) € H*(M,) x H*(M,).
In this section, since we study the large eigenvalues, we may assume that |A;| > ¢ > 0
£ 1 N .
for max{TE, v Dlog m} small enough. If Re(X;) < —c < 0, then A; is a stable large

eigenvalue, we are done. Therefore, we may assume that Re(A;) > —c and for a subsequence
e 1 . T .
max{ﬁ, v D log m} — 0, Ay = Ag # 0. We shall derive the limiting eigenvalue prob-

lem which is given by a coupled system of NLEPs.
The second equation of (5.1) is equivalent to

Ag, ¥ — (14 The) Y + 2u.p =0 on M,. (5.2)
We introduce the following notation:

o, =014 1A,

where in 4/1 + TA,, we take the principal part of the square root.
Let us assume that

ol g2, =1
We cut off ¢ = ¢, as follows:
¢£,j=¢sXs(Z_Qj)7 j=19”'7k’ (53)

where the cutoff function y. has been defined in (2.8).
From (5.1) and the exponential decay of w, it follows that

k
o= e (1+0(1) in HA(M,). (5.4)

j=1
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Then by a standard procedure (see [15], Section 7.12), we extend ¢, ; to a function defined
on R? such that

”¢€s]”H2(]R2) = C”¢e,j||H2(MS), j=1,-- k.

Since [|¢ell g2,y = 1s [19e,jll g2 Rz) < C. By taking a subsequence, we may assume that
bej — ¢; as max{%,«/ﬁlog f} — 0 in H'Y(R?) for some ¢; € H'(R?) for j =

1,--- k.
By (5.1), we have

Vo)) = f Go, (@) ¥)2uebe () dy
M

k
= / Go, (@), )20 _ e qwi(y — qi)ei + OED) dy
M, i=1

1 1
=5 log — /ZSS,jwj(ﬁg,j(l +o(1))dx.
RZ

Substituting the above equation into the first equation of (5.1) and using the expansion of & ;,
. o B
in the limit max{—_D, v Dlog
problem (NLEP):

2m—f} — 0 we arrive at the following nonlocal eigenvalue

2 Jrz wojdx
2
1+ tho fRfi w?dx

Apj —¢j +2wg; — w?=dogj. j=1. .k (-3)

By Theorem 3.5 in [54], (5.5) has only stable eigenvalues if t is small enough.
In conclusion, we have shown that the large eigenvalues of the solutions given in Theorem 1.1
are all stable if t is small enough.

6. Stability study II: study of the small eigenvalues

Now we study the eigenvalue problem (5.1) with respect to small eigenvalues. Namely, we
& 1
assume that A, — 0 as max{ﬁ, «/Elog P Dlog @ }—0

Our main result in the section says that if A, — 0, then

Ae ~ & Rop(M)

where og(M) is an eigenvalue of M defined in (4.9). So the stability of the solutions depends on
the eigenvalues of M. It turns out that it is related to the ratio Ilg—f]z
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6.1. Eigenfunctions and error estimates
Let (u, vs) be the equilibrium state constructed for equation (1.5), and define
g j =8eq;ue(y), j=1,--- .k,
where & 4, is defined in (2.8) and calculated in (2.10). It is easy to see that
k
e =Y ue j(1+0(1))in H*(M,).
j=1

Now let us set Lo =0 in (5.5), we have

f]RZ wo;dy
Apj—¢j+2wp; —2w? B 1~ —, 6.1)
8 =)+ 2w, = 20* 25
which is equivalent to
Jr2 wo;dy
L ( - _ o JR2 TS >=(), =1, .k,
0 ¢j fRz wzdy w J

where Lo = A — 1 + 2w. We have

_ 2fR2 we;dy

(bj /Rz wzdy

0
wespan{—w,izl,Z}, j=1,--- k.
dyi

This implies that fRZ we¢;jdy =0, and we can decompose ¢; as
k2 e
at . ou, ;
e ZZ j.i Ol j +¢8¢

imli=l & Oy

where

- 0 :
¢;LK8,q:=span{ gyejf, =1,k i=1,2}.
1

The decomposition of ¢, implies that
k2
Ye = Z Zaiil/fs,j,i + IpeJ_
j=li=1

where v, ; ; is the unique solution of

2 _1, ke
Ag Ve ji — 03 Ve, ji + 28, ue i 0,
L
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and

Ag W — o + 267 ued =0

Supposing | ¢ || HX (M) = =1, then we have a .= O0(1). Substituting the decomposition of ¢,
and v into (5.1), using the fact that

u? .
Agoltej —Us, j+ %/ —h.o.t.,
Vg
we have
2
ug Byl Vg ]l aug ] 9
YD ITLICTIININS 3p pic HISC
j=1i=1 j=1i=1 Yi Vi
2 ) e (62)
2u at . ou.
T S S ox LT
DT S O
We set
2
ug ayl 'Ug aus’j 9
h= ZZ /’vz( g _TAggug,j]
j=li=1 & j=1i=1 Vi
=Ty + 112,
2u u2
T = Do i — b+~ — v_;%l — 2.
Ve £

First we shall derive the estimate for ¢;-. Since ¢~ L K q, we have

I 172 < CI Tl 2.
By the expansion of Ag, in (2.1), one knows that

IZ12]l < C&? ZZ a5 ;1. 6.3)

j=li=l1

For 711, using the equation satisfied by ¥, ; ;, we get

~ _1 Ougj
Ve i) = | Go, (v, D28, ue ™ ldz +h.o.t.
1

M (6.4)
ow(z — CI])Z .

dz +h.o.t.,
0z;

=& / Go,(¥,2)
M
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and using the equation satisfied by v,, we have

v 8G(,
€=f (v, Duz (2)dz
0y;

&€

=¥/8

&

(6.5)
q;)z)dz + h.o.t.

Combining (6.4) and (6.5), one has

1 dvg
) — Ve, i ()
£ Oy;
- dw(z —q;)°
=§a[/ q;) )dz — / ng(y,z)qudz+h.o.t.] (6.6)
M, =1 M, !
1 9 1 1 dw(z—gq))
=&|— [ —1In w’(z—¢;)—In Idz 6.7)
&[5 /wiw—m W e
9H, - ow(z —q;
+/ %y, (= ;) — Hy (v, ) EZ 9D g (6.8)
0y 0z
G
+Z/ 3 fy(y,z)wz(z—q;)dz—l—h.o.t.]. (6.9)
l#JM Vi

Using the fact that (% + 3%) log|y — z| =0 for y # z, we have

1 ov oF; (y)

o) =Yg () = & L (/2d+mm
& l
where
Fi(y) =Hy(y,9))+Y_ Go(y.q0).
£
From this estimate, using the fact that oF; (q’ ) = % 33[;(_(:‘_) , we have
Jui
k2 5 2
a;iu v
Ty = St ZerZ78 o
11 Z Z &: Ug [ ayi Sews,],l]

dF; u?
¢, %(/ wdz)(1+ O(oly — %mz

Il
M»
Pgw
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k2

daF(q)

=0<€s o )Z a5 ;|
4. /2o
84RU

-0 . (6.10)

o

Combining (6.3) and (6.10), one has || Z || ;2 g,y < Ce?. So

k2
I 2,y < CE2 )Y las 1 6.11)

j=li=1

Using the equation satisfied by v;-,

k2
I 2o, < Ce2 Y1) " las . 6.12)

j=1i=1
6.2. Derivation of the finite-dimensional eigenvalue problem

a
“em and integrating over M., one has

Multiplying (6.2) by L By

2
ZAZZ“}ZSLML@/ (§y1> dy +o(1) (6.13)

For the L.h.s., we get

d e,m d sm
/I2$_1 e gy —fs Agr — ¢+ TEgk —agt — zwﬂ e gy

——A/s gy

&

Mg,m v ausm
¥ / e L
Z_A/s ¢la”“”
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2
Uem 1 1,00 dve
- — —(q, d
+/ Ug Sg ¢g (ayZ (Gqm +y) dye (gm))dy

e

. 9
N jz S T
M

_ em —18 e,m 1
w Gm +y) — ¥ (gm))dy
M

2
u L 0u
- / L S )y + ofe
M.
=D+ b+ I+ D+ Js+o(h). (6.14)

Using the equation for 1/4}, one has

v (gm) = f Go, (v, 226 uedp ) (2)dz = O (9L || 2) = O(£2),
Mg

U (gm + ) — v (gm) = / [Goy (v + Gm» 2) — G, (qm> 2)126  ue (2)dz

a (6.15)
ZZ/VQmGGA(CIm,Z) y%‘s M5¢ldz
M;
4R
=0(* pr: Z1y]) = o(e*|y)).

Similarly, using the equation satisfied by v, one has

ovg oF
o ) = <s§ . (q)),
qm.t

(6.16)
81)8( ) 8v8( ) 0( 5 32F(q) | |>
E— y — — pr— .
ay ayg I £ 0qm,00q;,

So using the definition of ¢j‘, one has J; = 0. Using (6.16),

4
R
Hh+J3=0 (828 6) =0(84),
o
while using (6.15), one has

Ji+ Js = o(eh).

Combining all the above estimates, one has
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/Izg—la;’”dy_o(s“) (6.17)

Next recall the estimate for 1 3”5 (y) Y i in (6.9), we have
’]5

M.
k2 2
oF; ow:(y —
ZZZQ?;& f ](‘y)u_z iy qm)dy+h.o.t. /wzdy
j=1i dyi 3 dye
= M R2 (6.18)
SN M@ o )
=ZZaj e g — i w(y)yi7—dy +o(l) wdy +o(1)
i1 i— 0q;.i9qm.e dy;
j=li=1 R2 e

3’F(q
:—szzajlggaqjlia(’z(g +o (1))

where ¢; is defined in (4.2).
For Z;,, we get

ow 0 ow(y — qm)
=3 Y [ e =) = g gl =gy, 8 o)

&

(6.19)

Consider the expansion of A, around each point g}, i.e. replacing 0 by £g; in (2.1), we have

0
—A

W — A
ay; %

w 1 9

1 el
(VK (eg)) e[ - (0wl = 2P(w]) — (QIw] ~ 2P (o)

1
+ga—(VK(8q]) y)e* (Qlw] —2P[w])

0
+%(yv21<(eq,->yf>e4[;(g[w] —2P[w]) — (Ql3w] —2P[3;w])

1
+%a_(yv K (sq))y"e* (Qlw] — 2Pw])
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1
+5K (8q1)|y|284[—(3Q[w] 4P[w]) — (Ol w] — 4PL3;w)]

2 2 4
+ 5 K7 (eq)yie” GQlw] —4Plwl)

1 0
+583[a_le[w] - Rl[aiw]]

1
+5¢"15 [—Rz[w] Ra[d;w]] + o(e*).

Using Lemma A.1, one has

dw_ dw 13°K 122
/[ = By = ey [ Wit
i R2
& 32 N2 2
_ —ZF(O) / W) 2y2dy(1 +o(1)) (6.20)

2K
=—c184F(0)(1 +o(1)).

Combining (6.18) and (6.20),

Qe m 32K
/Ilg” e gy —Zzajl[ cgga a( 9 L. 84ﬁ(0)81~,m](8,~,g+0(1)). (6.21)
M, j=1li=1 4j.i%qm.e i

So one has

F (q) 92K
Lhs =33 at, - Czégiq&,e + c16* S (0)8.¢8;m + 0(D)]. (6.22)
i=li=1 89]18 qm.¢ d ;

Combining the 1.h.s. and r.h.s.,

F(q) ’K
ZZaf,[ Cabe o b0 + 18" (008 mbi.e] + 0(e®)
==l qj, 18Qm 14 ax

i
ow\2
= Adf, é(/ (—) dy + o(1)) (6.23)
’ ay1
2
Finally, for k =2 we solve the finite-dimensional eigenvalue problem and complete the proof
of Theorem 1.4.

Proof of Theorem 1.4. Equation (6.23) shows that the small eigenvalues 1, of (5.1) are given
by
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3°F(q) 12K 4
3 ~ oo - e+ 18 = (0)0)nbie) ~ c1e*Rog(M
e ™~ 00 26 04;.10qm.¢ it +ci 3)6,-2( )8 j.mdi,e el k=12 c1 oo(M)

(6.24)

where M is given in (4.7). From the expression of M, we know that if 6] = 0, the eigenvalues are
given by A ~ I,(T‘Ol, A~ (B4 %O)Kll, A3 ~ %, Ay ~ RLO(Kzz — K11); while when 6 = 7,

. . K i K
the eigenvalues are.: given by A ~ R—zoz, Ay~ (% + R%))Kzz, A3~ R—'Ol, Ay~ RLO.(KU — K»).So
since K11 # K»», it follows that one of the solutions is stable and the other one is unstable. O

7. Discussion

In this section we discuss the main results given in Theorems 1.1 and 1.2. We consider specific
two-dimensional Riemannian manifolds without boundary. In particular let us choose the surface
of a three-dimensional ellipsoid.

First we study the surface of a tri-axial ellipsoid with semi-axes a; < ay < a3. There are two
maximum points of the Gaussian curvature near each of which two different two-spike cluster
solutions exist. The orientation of the stable cluster is towards the smaller principal curvature
and the orientation of the unstable cluster is towards the larger principal curvature. There are
also two saddle points of the Gaussian curvature for which a single two-spike cluster exists
whose spikes are orientated in the direction in which the saddle point is a local maximum of the
Gaussian curvature. These spike clusters are unstable. Finally, there are two minimum points of
the Gaussian curvature near which no two-spike cluster exists.

Second we consider an American football for which the semi-axes are a; = a» < a3. This
surface has two maximum points of the Gaussian curvature. Near each of them multiple two-
spike clusters exist. Since the manifold is invariant under rotation around the maximum points
any orientation is possible. All of these two-spike clusters are stable. This result is not proved in
the current paper but it will follow by adapting our analysis to the case of rotationally symmetric
manifolds (which is simpler than the more general non-rotationally symmetric setting considered
here), then the finite-dimensional problems for existence and stability can be handled as in [56].
Further, for the American football case there is also a minimum point of the Gaussian curvature
near which no spike cluster exists.

The degenerate case of a point for which the two principal curvatures are the same but the
manifold is not rotationally symmetric is more difficult to handle. Further expansions are required
which will determine the existence and stability of two-spike cluster solutions near this point.

Spike clusters of more than two spikes have not been considered in this paper since higher-
order expansions of the contributions from the local geometry of the manifold are required to
determine the orientation of the cluster. We are currently investigating this problem.

Appendix A

In this appendix, we will give some useful identities and we will compute the eigenvalues of
the matrix M.

A.l. Some identities

By direct calculation (following Appendix B of [38]), one has the following lemma:
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Lemma A.1. If w is a radial function, then the following identities hold:

/ (Qlw] — 2P[w])y,—dy = / (w)?yidy = —n / (w')*r3dr,
R2 R2

/ (30lw] - 4P[w])yl , / (' ()2 y2dy,

/[—Rl[w] ~ Rifgwn ay —o,
dyi dyj

9 ow 392K
/[8yi Rr[w] — Rz[aiw]]a—yidy = -5 P 2 (8q])/(w )Zyzdy,
2

a
a—y(Q[W] —2P[w]) — (Q[diw] —2P[9;w]) =0

A.2. Eigenvalues of the matrix M

Next we will compute the eigenvalues of the matrix M = M| + $(M2 + C1M3) given in
Lemma 4.2. By direct calculation, the eigenvalues of A are given by

My=—2+e T 4 e®TDED — _ggin? £ _kl)n

and the eigenvalues of A, by

Ay =gt = e®DED — 9j in 20=Dm
k
for/=1, .-, k. Denote the diagonal matrices of A; and A; by

Dy =diag(r1,1,- -+, A1k) and Dy =diag(r2 1, -+, A2.k), respectively.

Using the matrix Py of eigenvectors for a k x k circulant matrix, we have

B 1 Pl o 1 P, 0
P M +-M+C M) ) P=( F S M+ oMy ) S
i 0 P, d 0 P

(D1 +41)sin® ¥ + <(Dycos® T +4sin T/ + C1By)  DasinfcosF(1—5)+5CiBs

—Dzsin%cos%(l—ﬁ)—l—%QBz —Dl(cosz%—i-dsm Ty4 L ClB3

Since the matrix M| + é(Mz + C1M3) is symmetric and its entries are all real numbers, its
eigenvalues are also real and satisfy the equations

A} +biA+ e =0,
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S
v
Q..)I

+
! — 2 4 [—1 2 C
=—4 sngcos—n+sm2n + = 2ucos—n—sinzz——l
k d k k k4

and

1 1
—)L%,l (cos2 % + 7 sin’ %) (sin2 % + 7 cos? %)
45 1+ Iy  ,m o T + I  ,m
- — ) sin® — | cos® — 4 < sin” —
L J k kG &

4 I—1 4 [—1 -1
+dC1 smz%cos2 % + ﬁ_zcl [—sin2 % +sin2% (1 + sin? %)}

16 -1 1 -1
:—Asinzg sin2£<1+cos2£>—sin J + = C sin nc szg
k k k k d k

d k
16 ,(U—-Dm 7 2
in“ — cos —
2 k k
4 [—1 I—1
+EC1 [—sinz%ﬁ-s' 7]: (1—!—51 2%)]

For k > 3, we get b; < —% < 0. Denote the solutions by

Ay=——=|1- [1—= dAy =— 14+ [1-——], tively.
1.1 ( 12) and Ay 12 respective

Fork=3,5,6,7, ..., we have

Iy  ,m
A11=0, Ap1=4(14=]sin"—>0
d k
andforl=2,...,k, i =1,2 it follows that
c4
|Al,i|>ﬁ

for some ¢4 > 0.
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