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Abstract  8 

In this paper, an activity testing model was proposed to detect and assess automatic correction of 9 

hand pointing. The average recognition rate for automatic corrections of hand pointings was 98.2% 10 

using the acceleration data. Moreover, a score was calculated using the activity data of successful 11 

recognition and it provided sufficient estimation for the performance level of automatic correction. 12 

Experimental results showed that our model was effective and it could be applied to 13 

neurorehabilitation. 14 
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1. Introduction 16 

Activity recognition can be used in the human-centric applications such as eldercare, healthcare 17 

and rehabilitation, especially the rehabilitation after brain injury or ischemia (e.g., stroke). Activity 18 

recognition has been widely investigated through accelerometer or wearable devices by many 19 

research groups [1-3]. Some daily activities, such as standing, walking, climbing up/down stairs or 20 

brushing teeth, have been analyzed with the classifiers. Ravi et al. [4] found that these activities 21 

can be recognized with fairly high accuracy using a single triaxial accelerometer. Hu el al. [5] and 22 

Yu et al. [6] investigated the pattern classification of surface electromyography (EMG) signals for 23 

activities of elbow extension and forearm pronation. In addition, some researchers [7,8] studied 24 

activity recognition and applied this to the medical rehabilitation using the somatosensory devices, 25 

such as Nintendo Wii and Microsoft Kinect 3D sensor.  26 

The automatic correction mechanism plays an important role in both planning and execution of 27 

visually guided movements in daily life [9,10], and it can be a worthwhile method of 28 

neurorehabilitation. Although the research results of activity recognition had been plentiful, it is 29 

unclear whether automatic correction of hand pointing can be recognized accurately. 30 
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In this work, an activity testing model of automatic correction was proposed to recognize and 1 

assess the performance of a certain group of hand pointings based on their trajectory signals 2 

recorded by a motion capture system. Two types of trajectory and acceleration data were extracted 3 

from the raw data of hand pointings. They were then processed and tested respectively using the 4 

same processing procedure. The correct classification data of hand pointings were calculated a 5 

score by the proposed scoring system to indicate the performance level of automatic correction of 6 

hand pointing. 7 

The presented model has the following features: (1) It was based on the mechanism of 8 

automatic correction of hand pointing; (2) Two types of hand pointings were calculated and tested; 9 

(3) The score from the proposed scoring system provided sufficient estimation; (4) Our testing 10 

model can be applied to neurorehabilitation. 11 

The rest of this paper is structured as follows: Section 2 reviews the related background studies, 12 

Section 3 presents the data processing and construction of the activity testing model, Section 4 13 

shows the experimental results, and Section 5 concludes this work. 14 

2. Background 15 

The automatic correction mechanism allows human to quickly and involuntarily adjust ongoing 16 

hand movements (e.g., hand grasping and hand pointing) in response to the unexpected change of 17 

the target's properties (e.g., location). It is commonly a double-step hand pointing, namely, an 18 

initial pointing towards the first target location followed by a fast online correction to the final 19 

location [9,10]. Recent studies suggest that automatic corrections of hand pointings are mainly 20 

mediated by the dorsal visual pathway and associated with posterior parietal cortex (PPC) 21 

[11,12,13]. The neurological evidence supporting this view comes from the study on bilateral 22 

lesion of the PPC [9,14,15], and transcranial magnetic stimulation (TMS) applied to the cortical 23 

areas to disrupt the unconscious correction [16]. In addition, the direct evidence of automatic 24 

correction in stereoscopic depth has been reported in our recent work [13]. 25 

Patients with brain injury (e.g., stroke) often suffer from hemiparesis and experience dramatic 26 

limitations in performing everyday activities [17,18] (e.g., losing arm and hand movement skills). 27 

Therefore, it is very important to continue rehabilitation until maximum recovery has been 28 

achieved. We suggest that the rehabilitation based on automatic correction mechanism is 29 

worthwhile for patients with brain injury in PPC, and the method will help patients to relearn 30 



sensori-motor capabilities by exploiting the plasticity of the neuromuscular system. Virtual Reality 1 

(VR) based rehabilitation is an effective therapy which can help to improve patient motivation and 2 

sufficiently stimulate brain to remodel itself to provide better motor control and reduce therapy 3 

costs [19-21]. Chang et al. [20] and González-Ortega et al. [21] presented and assessed the 4 

intervention application based on Kinect device during the rehabilitation training. They found that 5 

the low-cost consumer game (Kinect-based) system could overcome the shortcomings of previous 6 

2D systems because of using depth information and its motion tracking performance was satisfied 7 

to take the simple rehabilitation treatment. However, Kinect sensor has its drawback to be used as 8 

a tracking tool for automatic correction of hand pointing because of its poor frame rate (30fps). 9 

Although there have been studies which used optical motion capture system for activity analysis 10 

on individuals with neurological injury [19], the rehabilitation system based on automatic 11 

correction of hand pointing has not been reported yet. 12 

In this work, we present that the automatic correction training of hand pointing can be as the 13 

effective therapy for upper limb motor rehabilitation to remodel brain areas after brain injury. The 14 

proposed data processing steps and scoring system of performance can assess the performance 15 

level of automatic correction of hand pointing. This score of hand pointing as the real-time 16 

feedback information further instructs patients to improve their automatic correction of hand 17 

pointing performance in a rehabilitation system. 18 

3. Design 19 

3.1 Data Collection 20 

Hand pointing data from the motion capture system has the following attributes: time, coordinate 21 

in X axis (horizontal direction), coordinate in Y axis (upward height-direction) and coordinate in Z 22 

axis (depth direction). Participants sat in a dimly lit room with their chin resting on a chin-rest. 23 

Their eyes were 500mm away from the monitor screen and aligned both vertically and 24 

horizontally with the center of the screen. The stimuli were presented by using a 3D LCD monitor 25 

(Zalman 3D, 22 inches, 1680×1050 pixels, 75HZ), which was viewed through a polarized 26 

stereoscopic 3D spectacles (passive glasses with no receivers and no batteries). The positions of a 27 

participant's index finger wearing a marker (Infrared-emitting Diode, Maximum Frame Rate: 4600 28 

Hz) were recorded by the Optotrak Certus motion capture system (Maximum resolution: 0.01 mm) 29 

with a temporal frequency of 200Hz. 30 



In the experiment, the classic double-step paradigm [9,11,12] which instructs participant fast 1 

adjust ongoing hand pointing in response to the unexpected change (i.e., 20% change rate) of the 2 

target's location was adopted. The hand pointings were performed by thirteen participants. Each of 3 

them made 200 hand pointings (i.e., 200 trials), and was asked to reach and point to the target in 4 

3D environment as quickly and accurately as possible within a limited time window (≤300ms). In 5 

each trial, a virtual circular target randomly appeared in one of the three depth positions, which 6 

were located at distances of 320mm (d1), 360mm (d2), and 400mm (d3) from the viewer 7 

respectively. In 20% of the trials, the target changed its depth position at the hand pointing onset 8 

and these trials were called the jump trials in which participants were asked to point to the 9 

perceived position and correct their index fingers to point to the new target position (i.e., 10 

automatic correction of hand pointing). The target jumped from d1 to d2 in half of the jump trials, 11 

and from d2 to d3 in the other half. The remaining 160 trials were called the static trials in which 12 

the target stayed in its initial position. 13 

These trajectory data of the static and jump trials in 3D space were extracted from the raw data 14 

recorded by the motion capture system. The acceleration data along X axis, Y axis and Z axis were 15 

also calculated using these raw data. Figure 1 shows the sample of trajectory data for static trials 16 

and jump trials (i.e., automatic correction of hand pointing) in 3D space. Figure 2 shows the 17 

sample of the acceleration curves in three spatial orthogonal axes in the activities.  18 

3.2 Data Processing 19 

In order to build an excellent model of activity testing for automatic correction, two types of 20 

trajectory data and acceleration data were processed and tested respectively using the same 21 

processing procedure which consists of three steps: preprocessing, feature computation and 22 

classification.  23 

3.2.1 Preprocessing 24 

Because the lengths and the amplitudes of acceleration data were not equal for every hand 25 

pointings, we need the preprocessing to normalize these data before analysis. The preprocessing 26 

step comprises three sub-steps: denoising, normalization and resampling. 27 

(1) Denoising 28 

The obtained acceleration data contained measure noises and participants' unintended hand 29 

tremblings. It is necessary to get rid of such noises for extracting reliable features. A 1-D Gaussian 30 



smoothing was used to reduce the noises. 1 

(2) Normalization 2 

Given that the signal size of hand pointing changed according to the pointing force, the 3 

amplitudes of acceleration data were different between the hand activities. Normalization is a 4 

process for reducing this variation. In our work, the amplitudes for each axis' data were 5 

normalized to the interval [-1,1] in all of the data. The normalized data are given as follows: 6 

𝐾𝑖 = 𝐿𝑑 +
(𝐿𝑢−𝐿𝑑)×(𝑃𝑖−𝑀𝑖𝑛)

𝑀𝑎𝑥−𝑀𝑖𝑛
                 (1) 7 

where Pi was the input data points, Ld and Lu were the boundary value of the interval [-1,1] 8 

respectively.  9 

(3) Resampling 10 

Because the raw data of hand pointings were sampled in the equal-time intervals (5ms), the 11 

fast pointing interval had a small number of points and vice versa. Therefore, each of the 12 

acceleration data was resampled to the same length space. The predetermined unit length of these 13 

data was determined through experiment. The cubic spline interpolation was used to resample the 14 

acceleration data. In addition, zoom rates of resampling were calculated and saved to make the 15 

scoring system of our model.  16 

3.2.2 Feature Computation 17 

Extracting features is a fairly effective way to preserve class separability and can represent the 18 

characteristics of different activity signals in each hand pointing. Features’ mean (M), standard 19 

deviation (SD), energy (E), correlation between axes (Corr) and autoregressive coefficient model 20 

(AR) were combined as a feature-type set Ft to describe a single hand pointing. The form of the Ft 21 

can be given by 22 

𝐹𝑡 = {𝑀, 𝑆𝐷, 𝐸, 𝐶𝑜𝑟𝑟, 𝐴𝑅}                                        (2) 23 

The mean (M) feature is the DC component of the frequency domain over the frame of hand 24 

pointing. Standard deviation (SD) of a hand pointing indicates the amplitude variability of a hand 25 

pointing. 26 

The energy (E) feature to capture data periodicity was used to discriminate automatic 27 

correction of hand pointings. The discrete Fourier transform (DFT) on each hand point data Y(k) is 28 

obtained first by: 29 



  𝑌(𝑘) = 𝐷𝐹𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑊𝑁
𝑛𝑘      0 ≤ 𝑘 ≤ 𝑁 − 1                                                      (3)  1 

Where WN is a periodic function and can be given as: 𝑊𝑁 = 𝑒
−𝑗

2𝜋

𝑁 . N is the length of activity 2 

data after resampling.  3 

The energy (E) is  4 

𝐸 =
∑ |𝑌(𝑖)2|𝑁−1
𝑛=0

𝑁
                                     𝑖 = {1,2…𝑁 − 1}     (4) 5 

The correlation between axes is especially useful to discriminate the two-type hand pointings 6 

that involve translation in just one dimension. Only the correlation between Y axis and Z axis was 7 

calculated according to the motion characteristics of automatic correction of hand pointings. The 8 

covariance cov between the two axes of Y and Z can be given by: 9 

𝑐𝑜𝑣(𝑦, 𝑧)10 

= ∑ 𝑦𝑖 ∙ 𝑧𝑖 − 𝑦̅

𝑁−1

𝑖=0

11 

∙ 𝑧̅                                                                                                (5)        12 

where 𝑦̅ and 𝑧̅ are the mean value of the acceleration data in y axis and z axis respectively. A 13 

correlation coefficient 𝐶𝑜𝑟𝑟 between axes can be given as:  14 

𝐶𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑦,𝑧)

𝑆𝐷𝑦×𝑆𝐷𝑧
      (6) 15 

where SDy and SDz are the standard deviations of a hand pointing data in y axis and z axis 16 

respectively. 17 

We used AR model to describe acceleration features of hand pointings due to the fact that short 18 

duration acceleration data can indeed be a kind of stationary random signal. The following AR 19 

model AR(p) is established for each acceleration component y(i):  20 

𝑦(𝑖)21 

+∑𝑎𝑗∙𝑦(𝑖 − 𝑗)

𝑝

𝑗=1

22 

= 𝑒(𝑖)                                                                                                 (7) 23 

where  (j=1,2,…,p), p are the model parameters to indicate the model order of the AR 24 

model, e(i) is a white-noises sequence. Here the 4th-order AR coefficients were extracted from 25 

each of the three axes of the accelerometer data. 26 

𝑎𝑗  



3.2.3 SVM-Based Classification 1 

Activity data for hand pointings included two classes of "static" and "jump" data and we used the 2 

support vector machine (SVM) to classify these data due to the fact that SVM is well known for 3 

its high recognition performance in binary classes [4]. SVM is a small sample size method based 4 

on statistic learning theory and has become one of the most popular classification methods in 5 

Machine Learning field in recent years. It is originally designed for binary classification to aim at 6 

finding the maximum-margin hyperplane using a transformation that maps the data from input 7 

space to feature space.  8 

The feature-type sets (Ft) were calculated as the input features of the SVM classifier to train 9 

and test. The data of "jump" and "static" classes had the same number of samples and they were 10 

operated five times, consistent with the previous studies [4-6]. The 80% samples of these two 11 

classes were randomly selected to train the SVM classifier and the remains were used to test. The 12 

classification result was the average of the five testing results.  13 

Similarly, another type of trajectory data of hand pointings were operated by the same steps. 14 

The SVM classifiers were trained and tested using the two types of data, and the data type with the 15 

best recognition rate was selected to build activity testing model for automatic correction of hand 16 

pointing.   17 

3.3 Model Construction 18 

The activity testing model was shown in Figure 3. The model needed to generate one SVM 19 

classifier through training features (i.e., feature-type set Ft) of hand pointings. Moreover, the data 20 

of hand pointing recognized as the jump class (i.e., automatic correction of hand pointing) would 21 

generate a score by the scoring system of the model to indicate the performance level of automatic 22 

correction. 23 

A centesimal grade S based on sectional normalization was adopted in the scoring system in 24 

which the critical values of sectional normalization were suggested in previous studies and our 25 

results on automatic correction of hand pointing [9,13], and given by: 26 

S =27 



{
 
 

 
 
100,                                          𝑅𝑖 < 1                                                        

𝐿𝑛𝑑 +
(𝐿𝑛𝑢−𝐿𝑛𝑑)×(𝑅𝑖−1)

𝑅𝑚−1
,        1 < 𝑅𝑖 ≤ 𝑅𝑚 , 𝐿𝑛𝑑 = 100, 𝐿𝑛𝑢 = 61 

𝐿𝑝𝑑 +
(𝐿𝑝𝑢−𝐿𝑝𝑑)×(𝑅𝑖−𝑅𝑚)

𝑅𝑝−𝑅𝑚
,     𝑅𝑚 ≤ 𝑅𝑖 ≤ 𝑅𝑝, 𝐿𝑝𝑑 = 60, 𝐿𝑝𝑢 = 1    

0,                                                𝑅𝑖 > 𝑅𝑚 𝑜𝑟  𝐹𝑎𝑖𝑙𝑒𝑑 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛     

1 

 (8) 2 

𝑅𝑖 =
𝐿𝑖

𝐿𝑛
  (9) 3 

𝑅𝑚 =
𝐿𝑛𝑀𝑎𝑥

𝐿𝑛
 (10) 4 

𝑅𝑝 =
𝐿𝑝𝑀𝑎𝑥

𝐿𝑛
 (11) 5 

Where Ri was the zoom rate of input data and its length was Li. Ln was the length of activity 6 

data after resampling. LnMax and LpMax were the maximum lengths of activity data of automatic 7 

correction for normal persons and for patients respectively. Ln was assigned to the mean length 8 

(ML) of all activity data for automatic correction. Lnd and Lnu were the boundary values of the 9 

interval [61,100) in which automatic correction of hand pointing in response to a depth jump could 10 

occur within the specific time windows (LnMax) for normal persons. Similarly, Lpd and lpu were 11 

the boundary values of the interval [1,60] in which the duration of hand pointing correction is 12 

more than LnMax and less than LpMax for patients. Rm and Rp were the zoom rates of normal 13 

persons and patients respectively. To determine LnMax, we calculated Z-scores [9] using ML and 14 

standard deviation (SD) of activity data for automatic correction in all jump trials. LnMax was the 15 

value with a length corresponding to a Z-score larger than 1.96 (i.e., p=0.05 two-tailed), namely, 16 

LnMax=ML+1.96×SD. As suggested by previous study on automatic correction of hand pointing 17 

for patients [9], LpMax was assigned to 500 (ms) here. 18 

The score of performance indicates the successful automatic correction of hand pointing if it is 19 

more than 60. The score suggests unsuccessful automatic correction if it is less than or equal 60. 20 

The more score participants get, the better their hand pointings execute. According to the score, 21 

participants could take the score as a feedback information to improve their performance of 22 

automatic correction of next hand pointing as well as possible 23 

4. Experiment Results 24 

In our experiment, the behavioral data analysis clearly indicated that automatic correction evoked 25 

by depth could elicit fast corrective pointing movements before participants were aware of their 26 



intentional modifications. Our results showed that automatic correction was not affected by the 1 

target depth using repeated measures analysis of variance (ANOVA) [13]. Moreover, automatic 2 

correction of hand pointing in response to a depth jump could occur as early as within 190ms and 3 

the average duration of full hand pointings for automatic correction was 280ms, namely, Ln could 4 

be assigned to 280ms. 5 

According to the results of our behavioral data analysis, the 190 samples of activity data 6 

derived from the correctly completed automatic correction in the jump trials and the same number 7 

of activity data in the static trials were extracted from the raw data recorded by the motion capture 8 

system. Trajectory and acceleration information in three spatial orthogonal axes were calculated 9 

from these data to test the recognition performance of SVM respectively. In each of types 10 

(trajectory data and acceleration data), 304 samples (i.e., 80% of total samples) of the two classes 11 

("static" and "jump") were randomly selected to train the SVM classifier and the remains were 12 

used to test. These data of the two types (trajectory data and acceleration data) were both operated 13 

five times using SVM classifier. The classification result was the average of the five testing results 14 

(Table 1). The average recognition rate of the trajectory data was 83.4% and the acceleration data 15 

was further enhanced into 98.2%. One possible reason for this difference is that the trajectory data 16 

included some redundant properties that would reduce the recognition rate but the acceleration 17 

data would not. Therefore, here the acceleration data were selected to build the activity testing 18 

model due to its high recognition rate.  19 

5. Conclusion 20 

In this work, we presented an activity testing model for automatic correction of hand pointing 21 

using acceleration data. The trajectory data and acceleration data were extracted from the raw data 22 

of hand pointings recorded by a motion capture system. The two type data of hand pointings were 23 

processed and tested respectively by using the same processing procedure that consisted of the 24 

data pre-processing, feature computation and classification. The average recognition rate for 25 

automatic correction of hand pointings was 98.2% using the acceleration data, which was better 26 

than using the traditional trajectory data. The score from our proposed scoring system using the 27 

activity data of successful recognition provided sufficient estimation for the performance level of 28 

automatic correction. Our results suggested that the activity testing model of automatic correction 29 

of hand pointing can be effective for the activity recognition of automatic correction of hand 30 



pointing.  1 
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Figure Legends 1 

Figure 1. The sample of trajectory data. (A) for the target jumped from d1 to d2 in the jump trials. (B) for the 2 

target jumped from d2 to d3 in the jump trials. (C) and (D) for the static trials at depth "d1"and depth "d2". 3 

Figure 2. The sample of acceleration data. (A) for the target jumped from d1 to d2 in the jump trials. (B) for the 4 

target jumped from d2 to d3 in the jump trials. (C) and (D) for the static trials at depth "d1"and depth "d2". 5 

Figure 3. Activity testing model scheme for automatic correction of hand pointing. 6 
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Tables 1 

Table 1. Recognition results of the trajectory and acceleration data 2 

Times 

Recognition rate (%) 

Trajectory Data Acceleration Data 

1 76.32% 96.05% 

2 85.53% 97.37% 

3 81.58% 100% 

4 92.11% 98.68% 

5 81.58% 98.68% 

Average accuracy 83.42% 98.16% 
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