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Statistics of a simple transmission mode on a lossy chaotic background
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Scattering on a resonance state coupled to a complicated background is a typical problem for mesoscopic
quantum many-body systems as well as for wave propagation in the presence of a complex environment. On
average, such a simple mode acquires an effective damping, the so-called “spreading” width, due to mixing
with the background states. Modeling the latter by random matrix theory and employing the strength function
formalism, we derive the joint distribution of the reflection and total transmission at arbitrary absorption in the
background. The distribution is found to possess a remarkable symmetry between its reflection and transmission
sectors, which is controlled by the ratio of the spreading to escape width. This in turn results in a symmetry
relation between the marginal densities, despite the absence of the flux conservation at finite absorption. As an
application, we study the statistics of total losses in the system at arbitrary coupling to the background.
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I. INTRODUCTION

Strength function phenomena [1] have a rich history of
various applications in atomic and nuclear physics [2–6] as
well as in open mesoscopic systems [7–10]. In such prob-
lems, one deals with a “simple” excitation (associated with
a specific signal) that is coupled to the background of many
“complicated” (usually chaotic) states. As a result of this
coupling, the simple mode is spread over exact stationary
states with a rate determined by the so-called spreading width
[1,2]. Transmission through such a simple mode is therefore
characterized by the competition between the two damping
mechanisms, escape to the continuum and spreading over the
background, and becomes strongly suppressed when the ratio
η = �↓/�0 of the spreading (�↓) to escape (�0) width exceeds
unity [10].

Under real laboratory conditions, there are also sources of a
coherence loss in quantum transport, with finite absorption be-
ing one of them [11]. This has dramatic consequences in scat-
tering, since the S matrix becomes no longer unitary. For open
quantum or wave chaotic systems, exact analytical results
were recently obtained for various scattering characteristics
at finite absorption [12–15]. Recent advances in experimental
techniques have made it possible to change absorption in a
controlled way and to test the theory with high accuracy in
microwave cavity experiments [16], including in particular the
statistics of reflection and transmission coefficients [17–19],
complex impedances [20–22], and decay rates [23].

On the theory side, the resonance scattering formalism
[24] is well adopted to treat both dynamical and statistical
features of such systems on equal footing [25–27]. When
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combined with random matrix theory (RMT) to model in-
ternal chaotic dynamics [28,29], it offers a powerful tool to
describe universal fluctuations in scattering, see Refs. [30,31]
for recent reviews. The approach is also flexible in incorpo-
rating system-specific effects. In particular, the simple mode
in such a context was recently introduced as a useful model
for quantifying fluctuations induced by complex environments
in the transmission intensity [10] and phase [32]. For the
complete characterization of the scattering process, however,
both transmission and reflection fluctuations need to be treated
at the same time. This becomes even more challenging at
finite losses, since the two are no longer related by the flux
conservation.

Here, we develop a general approach to scattering on the
simple mode coupled to a lossy chaotic background. We
derive exact results for the joint distribution of reflection and
total transmission at arbitrary absorption. The distribution is
shown to have a specific symmetry between its reflection and
transmission sectors under the involution η → η−1. We also
study marginal densities and the statistics of total losses.

II. SIMPLE MODE

Let us consider a simple state with energy ε0, which is
coupled to the continuum by means of the decay amplitudes
Ac, where index c labels the scattering channels open at energy
E . In the resonance approximation, Ac may be assumed to be
energy-independent, leading to a multichannel Breit-Wigner
formula [24] S(0)

ab (E ) = δab − iA∗
aAb/(E − ε0 + i

2�0) for the
S-matrix elements. The escape width �0 is then given by the
sum of the partial (per channel) widths, �0 = ∑

c |Ac|2. This
ensures the unitarity of the S matrix (at real E ).

Following Refs. [1,2], an interaction between such a mode
and the surrounding background described by a Hamiltonian
Hbg results in the modified energy dependence of the S matrix,

Sab(E ) = δab − i
A∗

aAb

E − ε0 + i
2�0 − g(E )

, (1)
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where g(E ) = V †(E − Hbg)−1V is the strength function and V
stands for a coupling vector to N background states. The latter
usually have a very complex structure, fluctuating strongly
on the scale of the mean level spacing � ∼ 1/N . When
averaged over this fine structure, the mean amplitudes acquire
an effective additional damping and read

〈Sab(E )〉 = δab − i
A∗

aAb

E − ε0 + i
2 (�0 + �↓)

,

where �↓ ≡ 2Im〈g(E − i0)〉 = 2π‖V ‖2/N� is the spreading
width. Introducing η = �↓/�0 as a natural parameter control-
ling the strength of coupling to the background, we can cast
the matrix S at the resonance energy E = ε0 as follows:

S = 1 − 1

1 + iηK
(1 − S(0) ). (2)

Here, K ≡ 2g(ε0)/�↓ has the meaning of the (dimensionless)
local Green’s function of the complex background [33]. The
unitary matrix S(0) stands for the deterministic part of S,
S(0)

ab = δab − 2
�0

A∗
aAb, accounting for the direct mixing of the

channels. Expression (2) provides the multichannel general-
ization of two-channel formulas derived recently in [10].

The established connection of S to the background spec-
trum enables us to accommodate its physically relevant prop-
erties. Following the RMT paradigm [28,29], we model Hbg

by a random N × N matrix drawn from the Gaussian or-
thogonal (GOE) or unitary (GUE) ensemble, depending on
the presence or absence of time-reversal invariance (TRI),
respectively. Universal fluctuations are then expected to occur
in the limit N 
 1. Furthermore, homogeneous dissipation
can be easily taken into account by uniform broadening �abs of
the background states. Since such a damping is operationally
equivalent [12] to the purely imaginary shift ε0 + i

2�abs in
Green’s function K , the latter becomes complex,

K = (2/�↓)g(ε0 + i�abs/2) ≡ u − iv, (3)

with v > 0 being the local density of states (normalized as
〈v〉 = 1) [33]. The universal statistics of mutually correlated
random variables u and v is solely determined by the (di-
mensionless) absorption rate γ = 2π�abs/�. They have the
following joint probability density function (jpdf) [33]:

P (u, v) = 1

2πv2
P0(x), x = u2 + v2 + 1

2v
> 1. (4)

In the present context, the function P0(x) has the meaning of
the distribution of reflection induced by the background [34].
This function is known exactly for both symmetry classes
as well as in the crossover regime of gradually broken TRI
[14,35]. We now apply these findings to derive nonperturba-
tive results for the joint statistics of reflection and transmission
of the simple mode at arbitrary values of η and γ .

Scattering in a given channel a is commonly studied by
means of the coefficients of reflection R ≡ |Saa|2 and total
transmission T ≡ ∑

b�=a |Sab|2. Making use of Eq. (2), one
finds that these two quantities are expressed as follows:

R =
(
S(0)

aa + ηv
)2 + η2u2

(1 + ηv)2 + η2u2
, (5a)

T = 1

(1 + ηv)2 + η2u2
T0, (5b)

where T0 ≡ ∑
b�=a |S(0)

ab |2 = 1 − (S(0)
aa )2 is the total transmis-

sion coefficient in a “clean” system. At zero absorption, we
have v ≡ 0 and thus R + T = 1 in agreement with the flux
conservation. The latter is no longer valid at finite absorption,
when S becomes subunitary. Such a unitarity deficit can be
naturally described by the following positive quantity:

D ≡ 1 − R − T = 2
(
1 − S(0)

aa

)
ηv

(1 + ηv)2 + η2u2
� 1 − S(0)

aa

2
, (6)

which gives the part of the total flux in the channel that gets
dissipated in the background. The deficit D = 0 identically at
S(0)

aa = 1, when the channel is closed. It covers its maximum
range 0 � D � 1 at S(0)

aa = −1, when the wave gets reflected
in full after the interaction with the background. (Note that
both cases correspond to zero transmission.) We will study
the probability distribution of D below as well.

III. JOINT DISTRIBUTION OF R AND T

Relations (5) enable us to relate the jpdf in question to that
from (4), expressing the result in terms of the known function
P0(x). Formally, this amounts to computing the relevant Ja-
cobians. Conceptually, such a link provides a duality between
two different viewpoints when studying statistical fluctuations
either “from outside” (e.g., via scattering measures [16–19])
or “from inside” (e.g., impedance and admittance [20–22]).

A. Perfect coupling

It is instructive to consider first the case of perfect coupling,
S(0)

aa = 0 (T0 = 1). We reserve the notation t = T |T0=1 and
r = R|T0=1. Computing the Jacobian ∂ (u,v)

∂ (r,t ) , we find after some
algebra the following attractive formula for the jpdf:

P (r, t ) = 2

π (1 − r − t )2√y
P0

(
η−1r + ηt

1 − r − t

)
, (7)

for 1 − r − t > 0 and y ≡ 1 + 2rt − (1 − r)2 − (1 − t )2 >

0, being zero otherwise. It follows at once that function (7)
has the following important symmetry under η → η−1:

P (r, t )|η = P (t, r)|η−1 . (8)

This holds at any γ and shows that the background coupling
η controls the weight of the total flux distribution between its
reflection and transmission sectors. In particular, distribution
(7) becomes symmetric with respect to the line r = t at the
special coupling η = 1. This is further illustrated on Fig. 1.

In the limit of vanishing absorption, γ → 0, the function
P0(x) is known [33] to reduce to δ( 1

x ), which readily yields

Pγ=0(r, t ) = δ(1 − r − t )P0(t ). (9)

The first (singular) factor above stands for the conditional
probability density function (pdf) of r, expressing here the
flux conservation. The marginal distribution P0(t ) denotes the
transmission distribution for an ideal stable background (at
zero absorption) and reads [10]

P0(t ) = 1

π
√

t (1 − t )[ηt + η−1(1 − t )]
. (10)

This distribution is insensitive to the presence of TRI.
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FIG. 1. Contour plots of the joint distribution (7) of reflection
and transmission for the GUE case of the chaotic background at
moderate absorption γ = 1 and various couplings η. Darker regions
correspond to higher values of the jpdf, whereas the dashed lines in-
dicate the boundaries of the distribution support. Note the symmetry
of the distribution at η = 1 and at the reciprocal values of η.

The singularity of the joint distribution is removed at finite
absorption, since r and t are no longer functionally dependent.
Further analysis is possible in the physically interesting lim-
iting cases of weak and strong absorption, when the function
P0 is known to take simpler asymptotic forms [33]. One has
P0(x) ≈ (βγ )β/2+1

4�(β/2+1) ( x+1
4 )β/2 e− βγ

4 (x+1) at γ � 1, where β = 1
(β = 2) stands for the GOE (GUE) case. As a result, the jpdf is
concentrated within a thin layer near the boundary r = 1 − t ,
being approximated in the leading order by

Pγ�1(r, t ) ≈ 1

�
(

β

2 + 1
)
d

(
βγ z

4d

) β

2 +1

e− βγ z
4d P0(t ), (11)

where z ≡ ηt + η−1(1 − t ) and d ≡ 1 − r − t (note d ∼ γ �
1). When γ is increased, the distribution starts exploring its
whole support. Making use of P0(x) ≈ βγ

4 e− βγ

4 (x−1) at γ 
 1,
we find an asymptotic expression at strong absorption,

Pγ
1(r, t ) ≈ βγ exp
[− βγ

4
(1+η−1 )r+(1+η)t−1

1−r−t

]
2π (1 − r − t )2√y

. (12)

This clearly shows that the transmission and reflection exhibit
nontrivial statistical correlations even at large absorption.

B. Marginal distributions

The marginal distributions of transmission or reflection can
now be obtained from the jpdf (7) by integrating it over r or
t . Note that y is symmetric under the interchange r ↔ t and
thus can be also cast as follows:

y = (r+ − r)(r − r−) = (t+ − t )(t − t−), (13)

with r± = (1 ± √
t )2 and t± = (1 ± √

r)2. One readily finds
the following expression for the transmission distribution:

P (tr)
η (t ) =

∫ 1−t

r−

dr

π (1 − r − t )2

2P0
(

η−1r+ηt
1−r−t

)
√

(r+ − r)(r − r−)
, (14)

for 0 � t � 1 and zero otherwise [36]. The advantage of
representation (14) is that it utilizes the symmetry property
(8) explicitly. It becomes then obvious that the distribution of
reflection is simply related to that of transmission as follows:

P (ref)
η (r) = P (tr)

η−1 (r). (15)

This is a remarkable relation showing that despite lacking any
apparent connection between the reflection and transmission
coefficients at finite absorption, their distribution functions
turn out to be linked by symmetry (15). With explicit formulas
for P0 found in [14,35], Eqs. (7), (14) and (15) provide the
exact solution to the problem at arbitrary η and γ .

In the limiting cases of weak and strong absorption, one
can further make use of the asymptotic forms derived above.
Performing the integration in (14), we arrive after some alge-
bra at the following leading-order result at γ � 1:

P (tr)
γ�1(t ) ≈ P0(t ) exp

[
−βγ

8η

(1 + (η − 1)
√

t )2

√
t (1 − √

t )

]
. (16)

It has a bimodal profile of (10) in the bulk, which gets
crucially modified near the edges due to exponential cutoffs
induced by absorption. In the opposite case of γ 
 1, one
finds

P (tr)
γ
1(t ) ≈

√
βγ exp

[− βγ

8η

(1−(η+1)
√

t )2√
t (1−√

t )

]
4
√

πt3/4(1 − √
t )

√
ηt + η−1(1 − t )

. (17)

Figure 2 shows P (tr)
η (t ) at moderate absorption γ = 1.

C. Nonperfect coupling

In the general case of S(0)
aa �= 0, it is also convenient to

express the reflection and transmission coefficients (5) in
terms of r and t studied above. One finds

T = T0t, R = S(0)
aa + (

1 − S(0)
aa

)(
r − S(0)

aa t
)
. (18)

Now only a part (given by T0) of the incoming flux contributes
to the transmission. Thus the distribution of T is obtained by a
simple rescaling of expression (14). The reflection coefficient
takes a more elaborate form because of the interference be-
tween the two reflected waves, the one backscattered directly
at the channel interface and the one originating from the
background. The corresponding distribution can be found in
a closed form using Eqs. (7) and (18) and reads

Pη(R) =
∫ T∗

T−

dT

π (1−R−T )2

2P0(X )√
(T+ − T )(T − T−)

, (19)

where T∗ = min(1 − R, T+), T± = 1+S(0)
aa

1−S(0)
aa

(1 ± √
R)2, and

X =
(
1 + S(0)

aa

)(
R − S(0)

aa

) + T
(
η2 + S(0)

aa

)
η
(
1 + S(0)

aa
)
(1 − R − T )

. (20)

It reduces to Eq. (15) at perfect coupling, S(0)
aa = 0.
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FIG. 2. Distribution of transmission (top) and reflection (bottom)
for the GUE case at γ = 1 and various η. (a) Transmission distri-
bution (14) at perfect coupling T0 = 1. By the symmetry (15), the
corresponding reflection distributions would be given by the same
curves at the reciprocal values of η. (b) Reflection distribution (19) at
nonperfect coupling T0 = 0.75, corresponding to S(0)

aa = ±√
1 − T0.

Note a hard gap R > 1 − T0 of the distribution when S(0)
aa > 0 and

a finite value of P (0) when S(0)
aa < 0. The dashed line shows the

reflection distribution at perfect coupling for comparison.

A particular feature of the reflection distribution (19) is the
dependence of its support on the sign of S(0)

aa (see Fig. 2(b)
and Ref. [10]). The distribution vanishes identically for R �
1 − T0, when S(0)

aa > 0, and covers the whole range 0 � R � 1,
when S(0)

aa < 0. This follows from the compatibility condition
T− < T∗ and is, of course, in agreement with definition (5).

IV. APPLICATION TO LOSS STATISTICS

We now apply the obtained results to discuss the distri-
bution of the unitary deficit (6), which is a useful measure
of total losses in the system. By the construction D = (1 −
S(0)

aa )d , where d = D|T0=1 = 1 − r − t is the deficit at perfect
coupling [37]. We note that property (8) enforces the deficit
distribution to depend on η and η−1 in a symmetric way. It
is therefore convenient to introduce g ≡ 1

2 (η + 1
η

) � 1 as the
effective coupling constant to the background. After some
algebra, we arrive at the following exact result for the dis-
tribution of the loss parameter d (0 � 2d � 1):

Pg(d ) =
∫ π

0

dθ

πd2
P0

[
g(1 − d )

d
−

√
(g2 − 1)(1 − 2d )

d
cos θ

]
.

(21)

At the special coupling g = 1 (η = 1), this expression simpli-
fies further to Pg=1(d ) = 1

d2 P0( 1−d
d ). The asymptotic forms of

Pg(d ) can also be obtained in the limits of weak and strong

FIG. 3. Distribution (21) of the loss parameter d = 1 − r − t
(unitarity deficit) for the GUE case at the increased absorption γ .
The background coupling g = 1 (top) and g = 5 (bottom, note the
semilog scale in this case). The dashed lines at γ = 5 correspond to
the asymptotic expression (22) at strong absorption.

absorption. In particular, in the latter case, it reads

Pγ
1(d ) ≈ βγ e
βγ

4 (g+1− g
d )

4d2
I0

[
βγ

4d

√
(g2 − 1)(1 − 2d )

]
, (22)

where I0(x) is a modified Bessel function.
For arbitrary absorption, expression (21) can be evaluated

further only in the GUE case, when P0 takes the follow-
ing simple form: P0(x) = 1

2 [ γ

2 (x + 1)A + B]e−γ (x+1)/2, with
the γ -dependent constants A = eγ − 1 and B = 1 + γ − eγ

[33,38]. Performing the subsequent integration results in

P (gue)
g (d ) = 1

2d2

(
B − Aγ

∂

∂γ

)
F, (23)

where F = e
γ

2 (g−1− g
d )I0[ γ

2d

√
(g2 − 1)(1 − 2d )]. This distribu-

tion for various values of γ and g is shown on Fig. 3. The
behavior of Pg(d ) in the GOE case is similar and can be
qualitatively described by rescaling γ → γ

2 in (23).
It is worth noting that the unitarity deficit is closely re-

lated to the time-delay matrix Q at finite absorption [12] as
well as to the so-called probability of no return τ ≡ 1 − R
[13]. The former is defined by Q = �−1

abs(1 − S†S), yield-
ing D = �absQaa, whereas the later is given by τ = D + T .
Refs. [12,13] provide the exact multichannel formulas for
the mean eigenvalue density of Q and for the distribution
of τ in a different setting of fully chaotic scattering without
a direct mixing between the channels. The two distributions
are distinct in general, but reduce to the same expression
in the special case of the single channel, since T = 0 then
identically. It turns out that the deficit distribution (21) is also
given by the very same expression, provided that d = τ/2
and η is identified with the channel coupling. This can be
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substantiated by noting that zero transmission in the present
model is realized at S(0)

aa = −1, resulting in D = 2d and Saa =
1−iηK
1+iηK . The latter is the usual form for the elastic (single-
channel) scattering [25], with η now playing the role of cou-
pling to the continuum. This proves the connection observed.

V. DISCUSSION AND CONCLUSION

The approach developed shows that scattering on the
simple mode coupled to the complex background serves as
a sensitive probe of its internal structure. Fluctuations in
scattering induced by the background states are governed by
the interplay between the spreading width and losses in the
environment. We have derived the joint distribution of the
reflection and total transmission at arbitrary coupling to and
absorption in the background. The reflection and transmission
coefficients are found to develop strong and nontrivial sta-
tistical correlations, which remain essential even in the limit
of strong absorption. The obtained results have been further
applied to derive and study the exact statistics of total losses
in the system.

Of particularly interest is the new and remarkable symme-
try between fluctuations in reflection and transmission sectors,
expressed by Eqs. (8) and (15), which holds at arbitrary
absorption. This can be traced back to the symmetry

properties of the local density of states, which were first
established for ergodic states in [33,35] and then generalized
to multifractal spectra at Anderson transition [39] and at
critical points of other disordered systems [40]. Studying
the symmetry of relevant multifractal exponents has recently
become accessible experimentally [41]. The formalism pre-
sented here offers the promising way to study manifestations
of such symmetries at the level of scattering characteristics.

The approach is flexible in incorporating other real-world
effects, e.g., inhomogeneous losses following [42]. The two
relevant model parameters, the background coupling (η) and
absorption strength (γ ), can be extracted from scattering data
as discussed in Ref. [43]. We also note that our results are
applicable equally well for the systems with as well as without
time-reversal invariance. The latter (and experimentally more
challenging) case has been recently realized using microwave
graphs [44]. Thus one can expect further applications of our
findings within a broader context of wave chaotic systems.
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