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Abstract  

Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are 

lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. 

However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to 

help fill this knowledge-gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the 

cerebral microcirculation following ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 

2-weeks post-cerebral I/RI led to: decreased mortality rate, decreased infarct volume, improved functional 

outcome, reduced microglial activation and reduced cerebral leukocyte adhesion. Confocal microscopy and 

FACs analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. 

We isolated migrated HSPCs from the brain and using RNA-seq to investigate the transcriptome we found 

Metallothionein (MT, particularly MT-1) transcripts were dramatically upregulated. Finally, to confirm the 

significance of MT, we exogenously administered MT-1 following cerebral I/RI and found that it produced 

neuroprotection in a manner similar to HSPCs treatment. These findings provide novel evidence that the 

mechanism through which HSPCs promote repair following stroke maybe via direct action of HSPC-

derived MT-1 and could therefore be exploited as a useful therapeutic strategy for stroke.  

 

Key words: brain, cerebrovascular disease, neuroprotectants, ischemia-reperfusion injury  
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Introduction 

The pathophysiology of ischemic stroke (IS) is prolonged throughout reperfusion of blood to injured brain 

tissue (1) through a process known as ischemia/reperfusion injury (I/RI). Although exact mechanisms 

responsible for post-ischemic cerebral damage are unclear, the inflammation following I/RI could be a 

contributing factor (2). This injurious process occurs over hours and days subsequent to stroke onset and 

thus provides an extended window for intervention beyond excitotoxic cell death, initiating within just 

minutes.   

 

Experimentally, stem cell (SC) treatments for IS have shown great success by improving both survival and 

functional recovery (3-5). These results have been observed after administration of SCs from various 

lineages: most frequently adipose and other mesenchymal SCs (6, 7), neural SCs (8), and hematopoietic SCs 

(HSCs) (9), as-well-as after administration of induced pluripotent SCs that were reverse-engineered from 

fibroblasts (10) (embryonic or fetal SCs are now rarely used (3)).  

 

Clinically, trials are tentatively progressing on a large body of data reporting the secondary effects of SCs 

that is rarely underpinned by evidence of direct mechanisms through which SCs elicit protection. Recently, 

CD34
+
 HSCs successfully passed a Phase I clinical trial that assessed the safety and feasibility of the 

treatment (11). Patients in this trial had reduced brain lesions at the 6-month endpoint of the study and 

showed no significant treatment-related adverse effects. Despite its success this trial and the majority of 

related studies have not demonstrated how transplanted cells are directly of benefit to injured brain tissue, 

thus preventing optimization of the therapy (12).  

 

Several lines of evidence indicate the anti-inflammatory nature of transplanted SCs: SC treatment appears to 

correlate with increased anti-inflammatory interleukin (IL)-10 and transforming growth factor beta (TGF), 

as opposed to pro-inflammatory IL-1 and tumor necrosis factor alpha (TNF) (13). In addition, some 

evidence indicates the ability of SCs to promote growth and survival of surrounding tissue via secretion of 

vascular endothelial growth factor (VEGF) (14) or other growth factors (15). Despite these findings, 
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treatment with these elements individually is not able to replicate the success of SCs to any significant 

degree in clinical trials. Gaining further insight into mechanisms of SC therapy, as well as improving the 

migratory properties of transplanted cells, will provide huge potential for optimizing their use. It may also 

pave the way for their replacement with pharmaceuticals (16). Although autologous bone marrow-derived 

cells form the patients would remain the optimal option, the current practice of harvesting an autologous 

population of cells from the bone marrow of patients following stroke is both time and cost ineffective and 

involves subjecting frail stroke patients to an invasive surgical procedure. 

 

Populations of lineage negative (Lin-) hematopoietic stem/progenitor cells (HSPCs) were assessed for their 

potential in limiting brain damage following cerebral I/RI. We demonstrated a novel role of murine HSPCs 

in regulating leukocyte-endothelial interactions in the cerebral microvasculature following I/R, coupled with 

decreasing mortality, infarct volume (IV) and neurological score (NS) when administered as late as 24-h 

after stroke. The HSPCs migrated readily and without co-treatment with migration-enhancing cytokines 

such as granulocyte macrophage colony-stimulating factor [GM-CSF]. We also demonstrated increased 

levels of metallothioneins (MTs, low molecular weight anti-oxidative proteins) transcripts, especially MT-1 

in explanted HSPCs as determined using RNA sequencing (RNA-seq) analysis. Lastly, treatment of mice 

with MT-1 significantly reduced IV and NS.  Our studies could further advance HSPCs as a promising 

therapeutic strategy for promoting repair in cerebral I/RI. 
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Materials and Methods 

All studies were done blinded and performed on adult male mice. Wild-type (WT) C57BL/6 mice weighing 

25-29g were purchased from Jackson Laboratory (Bar Harbor, ME, USA). C57BL/6 LysM-eGFP (LyZM) 

mouse strain (constitutively expressing green fluorescent protein (eGFP) in myeloid cells) weighing 15-17g 

(4-5-wk-old) were a generous gift from Dr. Paul Kubes (University of Calgary, AB, Canada) and bred on 

site. Mice were maintained on a 12-h light-dark cycle during which room temperature (RT) was maintained 

at 21-23°C, and had access to a standard chow pellet diet and tap water ad libitum. All animal experiments 

were approved by the Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S) 

Institutional Animal Care and Use Committee (IACUC) and were in accordance with the guidelines of the 

American Physiological Society. 

 

Middle cerebral artery occlusion and reperfusion (MCAo) 

As a cerebral I/R model, MCAo was performed as previously reported (17) Briefly, mice were anaesthetized 

with i.p. injection of ketamine (150mg/kg) and xylazine (7.5mg/kg) and MCA was occluded for 30-min 

using a 6-nylon intraluminal filament (Doccol Corporation, Sharon, MA, USA), followed by 24-h, 48-h, 1-

wk or 2-wk reperfusion. Sham-operated mice were subject to anesthesia and other surgical procedures 

without MCA occlusion.  

 

Cerebral intravital fluorescence microscopy (IVM)  

IVM was performed as previously described (2).
 
Briefly, mice were re-anaesthetized with i.p. injection of 

ketamine (150mg/kg) and xylazine (7.5mg/kg). The jugular artery and vein were cannulated to monitor 

mean arterial blood pressure (MABP), as well as for i.v. administration of rhodamine 6G. The head of each 

mouse was fixed in a frame in sphinx position and left parietal bone exposed by a midline skin incision, 

followed by a craniectomy (diameter: 2.5mm). A 12mm glass coverslip was placed over the craniectomy 

and the space between the glass and the dura mater was filled with artificial cerebrospinal fluid (aCSF; Na
+
 

147.8mEq/L, K
+
 3.0mEq/L, Mg

2+
 2.3mEq/L, Ca

2+
 2.3mEq/L, Cl

−
 135.2mEq/L, HCO3

−
 19.6mEq/L, lactate

−
 

1.67mEq/L, phosphate 1.1mM, and glucose 3.9mM; all Sigma-Aldrich, ST Louis, MO, USA).  A Zeiss 
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Axioskop microscope (Zeiss, Thornwood, NY, USA) with a mercury lamp was used to observe the pial 

venules in the cerebral cortex. Two-minute videos were captured with a CoolSNAP HQ
2
 (Photomerics, 

Tuscon, AZ, USA) black-and-white camera and recorded for offline analysis.  

 

Confocal IVM 

MCAo was performed as described above in LyZM mice. 24-h into reperfusion, mice were treated with Cell 

Tracker Red labelled-HSPCs. 24-h after treatment (48-h after MCAo), mice were placed on an Olympus 

BX51WI upright microscope (Olympus, Venter Valley, PA, USA) with a 20X (LUCPlanFLN) objective 

and equipped with a 3i LaserStack laser launch (3i, Denver, CO, USA), Yokogawa CSU-X1-A1N-E 

spinning disk confocal unit (Yokogawa Electric Corporation, Tokyo, Japan) and electron multiplier CCD 

camera (C9100-13, Hamamatsu, Bridgewater, NJ, USA). Mice were treated with platelet-endothelial cell 

adhesion molecule (PECAM)-1] antibody (viewed at 594nm, 20μg per mouse, i.v. (eBioscience, CA, USA)) 

to visualize vessels.  

 

Video analysis for IVM studies 

Three to five randomly selected vessels, 30–70μm in diameter and 100μm long, were observed for each 

mouse after treatment. Adherent leukocytes were defined as cells remaining stationary for ≥30 seconds (s), 

expressed as the number of cells per square millimeter of the vessel surface and calculated from diameter 

and length, assuming cylindrical shape.
2 

 

Infarct volume (IV) 

After a 24-h reperfusion period, mice were euthanized and brains removed and placed into 4°C phosphate-

buffered saline (PBS, Sigma-Aldrich) for 15-min; sectioned (2mm) and stained with 2% 2,3,5-

triphenyltetrazolium chloride (TTC) in PBS at 37°C for 15-min and fixed by immersion in 10% 

formaldehyde. Stained sections were photographed and the digitized images of each brain section (and the 

infarcted area) were quantified using a computerized image analysis program (NIH 1.57 Image Software).  
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Mortality rate 

Mortality rate was a binary evaluation, calculated as the percentage of animals alive in each group post-

MCAo (24-h after treatment with either HPSCs or vehicle, see below for treatment details).  

 

Neurological score (NS) 

The functional consequences of cerebral I/R injury were evaluated by assessing general, sensory, motor and 

proprioceptive deficits that were assessed in a blinded fashion (Table 1). The 18-point score was compiled 

from a previously published scoring system to provide objective (‘yes or no’) criteria for assessment (18, 

19). A maximal score of 18 could be assigned to each experimental animal. 

 

Blood and tissue collection 

Blood was taken by cardiac puncture and centrifuged at 4°C, 450g for 5-min to yield plasma. Brains were 

dissected out and either snap frozen in liquid nitrogen or perfused with 10ml saline followed by 10ml 4% 

paraformaldehyde, then transferred into increasing concentrations of sucrose (20-30%) over 4 days. Fixed 

tissue was cryopreserved in Optimal Cutting Temperature compound (Thermo Fisher Scientific, NC, USA), 

then both sets of samples were stored at -80 °C until required.  

 

Bone marrow extraction 

4-5-wk old male mice (15-17g) were euthanized and femurs and tibias removed. Bones were flushed 

through with sterile Hank’s Buffered Saline Solution using a 25G needle. BM was dissociated mechanically, 

filtered through a 70μm gauze, centrifuged for 10-min at 450g, resuspended in 10ml PBS then counted 

using a cell counter (Thermo Fisher Scientific). 

 

Selection of HSPCs 

After BMCs were extracted, Lin
-
 cells were negatively selected using magnetic beads, according to the 

manufacturer’s instructions of a hematopoietic cell selection kit (Stem Cell Technologies Ltd, BC, Canada). 

The lineage cocktail used to removed unwanted/differentiated cells consisted of: CD45R (B cells), CD11b 
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(granulocytes, macrophages, and natural killer cells), CD3e (T cells), Ly-6G (lymphocytes), TER119 

(erythrocytes). 

 

Labelling HSPCs with carboxyfluorescein succinimidyl ester (CFSE) 

HSPCs were reconstituted at 1x10
6
 cells in 0.1% BSA, and incubated with 2μl of 5mM CFSE/ml cells at 

37°C for 10-min. Following incubation, cells were washed three times by centrifuging for 10-min at 450g 

and reconstituted at the required concentration (see below) in PBS. After staining, cell viability was 99-

100%, as observed with trypan blue staining.  

 

Labelling HSPCs with Cell Tracker Red 

HSPCs were reconstituted 5 x 10
6
 cells/ml in PBS. Cell Tracker Red dye (ThermoFisher, Waltham, MA) 

was added to make a final concentration of 5 μM at 37°C for 10-min (20). Following incubation, cells were 

washed three times by centrifuging for 10-min at 450g and reconstituted at the required concentration (see 

below) in PBS. After staining, cell viability was 99-100%, as observed with trypan blue staining. 

 

Administration of HSPCs 

Under isoflurane anesthesia, mice injected i.v. with either 1x10
6
 cells in 100μl PBS, 1x10

7
 cells in 200μl 

PBS, or vehicle (PBS). Cell viability was checked using trypan blue stain prior to injection (viability = 98-

100%), and care was taken to dissociate cells thoroughly prior to administration. All experiments were 

double-blinded, whereby the investigator administering treatments was unaware of the treatment type 

(HSPCs or vehicle), and an investigator unaware of the treatment mice conducted assessments of mice both 

pre- and post-mortem. 

 

Treatment with metallothionein I (MT-I) Mice were subjected cerebral I/R (30-min ischemia followed by 

48-h reperfusion) and treated with metallothionein (MT)-I, i.p. 5μg/g body weight (21) (Enzo Life Sciences, 

NY, USA) at the start of reperfusion.  Control mice were injected with PBS.  
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Imunohistochemistry (1) Immunofluorescence staining for neuroinflammation  

Cryopreserved brains were sectioned (18μm) and stained for activated microglia. Non-specific binding sites 

were blocked with 10% normal serum (Vector Laboratories, Burlingame, CA, USA) for 1h at RT. Sections 

were incubated with primary antibodies (diluted in 10% normal serum in PBS) at 4°C overnight. Microglia 

were detected by anti-Iba-1 antibody (Wako, Richmond, VA, USA, 1:1000). Secondary antibody used was 

goat anti-rabbit IgG (Life Technologies, CA, USA) for 1-h at RT, Alexa Fluor 488 (Vector Laboratories) for 

30-min at RT.  

 

Immunohistochemistry (2) 3,3’-Diaminobenzidine DAB staining for localized CFSE-positive HSPCs 

DAB staining was used to identify localized CFSE-positive (HSPC) cells. Slices were rinsed in PBS and 

covered with 0.5% fish serum gelatin (FSG) in PBS for 5-min. The FSG was aspirated and incubated with a 

HRP-conjugated anti-fluorescein antibody (Abcam, Cambridge, MA, USA) 1:200, for 1-h. The antibody 

was washed (three times) with PBS and slide incubated with 0.05% DAB and 0.015% H2O2 for 5-min, then 

counter-stained with hematoxylin.  

 

FACS analysis of stem cell markers and cell sorting of CFSE-positive cells from whole brain 

Analysis of CD34, Sca-1, c-kit, CD31-positive cells was performed on an LSRII flow cytometer (BD 

Biosciences, San Jose, CA, USA) and CFSE+ cells were sorted on a FacsAriaIII (BD Biosciences). Where 

FACS sorting was used to retrieve CFSE-positive transplanted HSPCs, experiments were conducted 24-h 

after administration of HSPCs, in order to ensure cells had time to migrate into the brain. 

 

Western Blotting 

Total protein was extracted in RIPA buffer (Sigma-Aldrich) by homogenization and sonication. Sonication 

followed by centrifugation at 2000g for 15-min at 4
0
C was repeated till clear solution was obtained. The 

concentration of protein in lysate was measured by Pierce
TM

 BCA Protein Assay Kit (Thermo Fisher 

Scientific). 30µg of protein was mixed with loading buffer (2X Laemmli Buffer (Bio-Rad, CA, USA)). The 

mix was loaded on 12% SDS-polyacrylamide gel with the appropriate molecular weight markers and 
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transferred to polyvinylidene fluoride (PDVF) membranes. Reversible protein staining of the membranes 

with 0.1% Ponceau S in 5% acetic acid was used to verify even protein transfer. Membranes were blocked 

with 5% non-fat dry milk followed by overnight incubation with 2µg/ml MT-1 primary antibody (Biomatik, 

Delaware, USA). This was followed by 30-min washing with Tris-buffer saline containing Tween-20 and 

incubation for 60-min at RT with diluted horseradish peroxidase-conjugated secondary antibody (1:2500. 

Sigma- Aldrich). Membranes were washed for 30 min and proteins detected by ECL detection kit (Bio-Rad) 

using film (Bio-Rad). Stripping was done using Re-blot Plus (EMD Millipore, MA, USA) and blocked with 

5% non- fat dry milk. Membranes were incubated for 60-min at RT with 1:2000 diluted beta-tubulin 

primary antibody and suitable secondary antibody (Cell Signaling, MA, USA). Relative band intensity was 

quantified using NIH image software 1.63. 

 

RNA sequencing (RNA-seq) 

RNA library preparation, sequencing reactions, alignment, and read count were conducted at GENEWIZ, 

LLC. (South Plainfield, NJ, USA).  Briefly, cDNA was directly synthesized from cell lysate and amplified 

by PCR, using SMARTer Ultra Low Input RNA kit for sequencing-v3 (Clontech Laboratories, Mountain 

View, CA, USA).  The Illumina Nextera XT DNA sample Prep Kit (Illumina, San Diego, CA, USA) was 

used to generate sequencing libraries from the cDNA.  Sequencing libraries were validated, using the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and quantified, using Qubit 2.0 

Fluorometer (Invitrogen, Gran Island, NY, USA) as well as real-time PCR (Applied Biosystems, Foster city, 

CA, USA).  Sequencing libraries were sequenced on the Illumina HiSeq 2500, according to manufacturer’s 

instruction.  Sequencing was performed, using a 1x50 Single Read configuration.  The raw sequences 

obtained were subject to quality trim and adaptor removal, using trimmomatic-0.32.  Within the CLCbio 

software environment (CLC genomics workbench 8.0.3, CLC Genomics Server 7.0.3), the trimmed 

sequences were aligned to reference genome, Mus musculus GRCm38.75, downloaded from ENSEMBLE 

(http://www.ensembl.org/).  RNA sequencing data have been deposited into the Gene Expression Omnibus 

(GEO) in National Center for Biotechnology Information (NCBI). Accession number: GSE95853. 
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RNA-seq data analyses 

Exon read count data of 12 samples given by the company were normalized with two methods: 1) read 

counts per kilobase (RPK) and 2) tag count comparison (TCC), using “R” (22).  RPK was conducted to 

compare the read count data among the different genes in each sample by normalizing to read counts per 

kilobase exon length (23), while TCC was conducted to compare the read count data among the 12 samples 

by normalizing whole read count data, using read counts of non-differentially expressed genes (24).   

 

Volcano plot   

A volcano plot was drawn using the OriginPro 8.1 (OriginLab Corporation, MA, USA) to visualize 

statistical significance together with log ratio of transcriptome data (25).  Log ratios of gene expression in 

treated samples compared with controls were used as the x-axis and the logarithms of p values to base 10 

were used as the y-axis. 

 

Functional clustering 

To determine what kinds of genes were differentially expressed, we entered a list of genes that were 

differentially expressed (p<0.05, more than 2-fold up or downregulated between the control and treated 

groups) for the Database for Annotation, Visualization and Integrated Discovery (DAVID; 

https://david.ncifcrf.gov/).  Enrichment score was calculated by Fisher’s Exact Test based on number of 

differentially expressed genes in the sample, matching with the total number of genes that are included in 

each canonical pathway in the database.   

 

Principal component analysis (PCA)   

PCA can reduce the dimensionality of a data set (e.g. RNA-seq data) consisting of a large number of 

interrelated variables, while retaining as much as possible of the variation present in the data set (26).  PCA 

was conducted as an “unsupervised” analysis to clarify the variance among RNA-seq data among the 

samples, using a Q-mode PCA package ‘prcomp’ of R (24).  The proportion of variance and factor loading 

were also calculated (27, 28). 
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Statistical analysis 

Data were analyzed using Student’s t-test (two groups), ANOVA with Bonferroni post-tests (more than two 

groups), or by chi-square analysis (neurological score only). Analysis was performed using GraphPad 

Prism5 software. Data are shown as mean values ± standard error of the mean (SEM). Differences were 

considered statistically significant at a value of p<0.05. 
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Results 

Freshly harvested HPSCs are a phenotypically stable source of SCs 

While CD34 is an established marker of undifferentiated BMCs in humans, in mice, undifferentiated BMCs 

express CD34 only in low amounts until they are 5-wk-old and cease to express CD34 after 10-wk (29). 

Thus, we harvested BMCs from 4-5-wk old mice and – rather than CD34-positive selection – used negative 

selection to isolate the lineage marker-negative (Lin
-
) population of progenitors from whole BM. These cells 

were phenotypically highly consistent and were therefore selected for use in this study (Figure 2A).  

 

HPSCs afford protection for up to 2-wk following I/R-induced cerebrovascular injury 

Mortality rates following 30-min MCAo and 48-h reperfusion showed HPSCs-treated mice to be protected 

against I/RI (Figure 2B): the incidences of death 24-h post treatment (48-h reperfusion) in saline-treated 

control animals and HPSCs-treated mice were 50% and 7%, respectively. No further mortality was observed 

in either group after 48-h up until 2 wk post-ischemia, the termination of the experiment.  

 

IV of saline-treated or HPSCs-treated mice subjected to 30-min MCAo and 24-h, 48-h, 1-wk or 2-wk 

reperfusion are presented in Figure 2C and D. Saline-treated mice displayed larger IVs than HPSCs-treated 

mice at all time points (Figure 2C). At 48-h post MCAo (24-h after treatment), IV in HPSCs-treated mice 

were reduced by 50% vs. saline-treated mice (10% vs. 27% respectively). Furthermore at 1-wk, no infarct 

was visible following HPSCs-treatment, whereas saline-treated mice retained infarcts of equivalent volumes 

(22%) to untreated mice 24-h after MCAo (20%). 

 

HPSCs improve neurological function up to 1 week post cerebral I/RI 

We evaluated neurological function in animals after cerebral I/RI using an 18-point NS, which assessed 

various aspects of functional recovery, including changes in sensory, motor and proprioceptive function in a 

blinded and binary fashion (Table 1) (18, 19, 30). NS reached 13-, 24-h after stroke (mice with a score 16+ 

accounted for 90% of the mortality rate). Mice treated with HPSCs showed 50% reduction in NS (on a scale 

of 0-18, 0 representing no signs of stroke) at 48-h (p < 0.05), and 10% in saline-treatment groups (Figure 2). 
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Furthermore, at 1-wk, HPSCs-treated mice exhibited near sham-level NS, compared with saline-treated 

mice. All mice were almost fully recovered at 2-wk – the only consistent sign of I/RI (in both groups) being 

a persistent head tilt more than 10 degrees from the vertical axis, indicating some prolonged motor 

dysfunction. 

 

Transplanted HPSCs home to the ischemic cortex following cerebral I/RI 

To determine whether HPSCs homed to the injured brain in HPSCs-treated mice, we detected CSFE-

labelled HPSCs in the ipsilateral hemispheres, indicating localization of HPSCs to the peri-infarct region 

(Figure 3D). No positive staining was observed in the liver, lung, spleen or muscle (gastrocnemius) (data 

not shown), indicating that transplanted cells home to the infarcted region. To determine whether 

transplanted cells had emigrated into the parenchyma (rather than remain adhered to the luminal endothelia), 

we used confocal IVM to identify fluorescently-labelled HPSCs that had migrated into the brain 

parenchyma. LyZM mice subjected to 30-min MCAo and 48-h reperfusion (and at 24-h treated with saline 

or HPSCs stained with Cell Tracker Red) (Figure 3G, Movie 1). HPSCs were detected outside of blood 

vessels in the cerebral vasculature, while eGFP positive endogenous PMNs were detected inside of blood 

vessels. At this time point (possibly due to HSPCs having already emigrated), interactions between HSPCs 

and PMNs were not observed. In addition, we also corroborated both the above findings in FACS sorting 

experiments designed to extract transplanted cells from the brains of HPSCs-treated mice, thereby 

identifying the migratory preference of HSPCs towards either the ipsi- or contralateral cerebral hemisphere. 

This confirmed that CFSE-labelled HPSCs migrated to the ipsilateral versus contralateral hemisphere at a 

ratio of 10:1 (Figure 3F). 

 

HSPCs reduce cellular responses for up to 1-wk in the cerebral microcirculation of mice following 

I/R.  

Leukocyte-endothelial interactions are required for immune cell infiltration following cerebral I/RI, with 

high levels of interactions leading to parenchymal inflammation and correlating with poor outcome. To 

investigate the impact by HPSCs treatment on these interactions, IVM of cortical venules of the ipsilateral 
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cortex was used to film the interactions in real-time (Figure 4A). In accordance with our previous findings 

[1,2], MCAo for 30-min followed by 24-h reperfusion induced interactions within the cerebral 

microcirculation of mice compared with sham animals (Figure 4C, D).  Mice treated with HPSCs displayed 

reduced leukocyte rolling, increased velocity and decreased adhesion at 48h vs. saline-treated mice, whose 

interactions continued for a further wk (Figure 4). By 2-wk, both saline-treated and HPSCs-treated mice 

displayed similar effects to pre-stroke levels. 

 

HPSCs protect against augmented neuroinflammation following I/RI 

To investigate whether HPSCs could affect neuroinflammation, we monitored microglial activation in 

saline-treated and HPSCs-treated mice. At 48-h reperfusion, using Iba-1 staining (Figure 5), as expected, 

Iba-1 expression was substantially elevated in both the ipsilateral (injured) and contralateral side in mice 

after I/R, with greater expression in the ipsilateral side. Furthermore, when compared with saline-treated 

mice, HPSCs-treated mice showed a significant decrease in Iba-1 expression, indicating a reduction in 

microglia activation. No Iba-1 expression was found in sham mice, or sham mice treated with HPSCs (data 

not shown).  

 

Explanted HPSCs display regulation of MT-I gene profile 

To identify potential mechanisms through which HSPCs might directly affect their milieu once transplanted 

and migrated, we determined the transcriptome profile of HPSCs extracted from the brain following their 

transplantation 24-h previously, following I/RI. Analysis of transcriptomes showed that 562 genes and 47 

genes were significantly up- or downregulated more than 2-fold, respectively, in isolated versus naïve 

HPSCs (Supplemental Figure 1+Table 1). Among the differentially expressed genes, we examined the 

expression levels of genes associated with inflammation and angiogenesis (Supplemental Table 2), in which 

IL-10 receptor α subunit (Il10ra) and epiregulin (Ereg) were significantly upregulated (Il10ra: 4.2-fold, p < 

0.05; Ereg: 6.9-fold, p < 0.05), respectively.    
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To identify molecular pathways that are potentially associated with HSPC activity following their homing to 

injured tissue, we performed functional clustering, using DAVID (Supplemental Table 3). Among the 

pathways, the DENN (Differentially Expressed in Normal and Neoplastic cells) domain-related pathway, 

oligoadenylate synthetase-related pathway, and steroid hormone receptor signaling pathway were listed as 

top three pathways based on enrichment scores.   

 

We conducted PCA to see overall gene expression patterns among the samples. Principal component (PC) 2, 

but not PC1, separated samples between controls and treated groups except one sample (sample T12) 

(Figure 6A).  Factor loadings for PC2 showed that upregulation of several genes contributed to the PC2 

value positively, while contribution by downregulated genes to the PC2 value was negligible (Figure 6B and 

Supplemental Figure 1).  The factor loadings in PCA are the correlation coefficients (r) between the 

variables (read numbers of molecules) and factors (PC2 values); the squared factor loadings (r
2
) are the 

amount of explained variation.  Among the genes that positively contributed to the PC2 value, only the 

metallothionein (Mt) 1 gene had moderately high r
2
 (=0.38), while the top 10 genes, including other MT 

genes (Mt2, Mt3, and Mt4), MTa genes (Mta1, Mta2, and Mta3) and other genes (Figure 6B) had low r
2 

(<0.2).  Based on these findings, we decided to investigate the role of MT-1.  

  

MT-1 attenuates I/R-induced cerebrovascular injury  

MT-1 has been shown to be a secreted protein (31). Having demonstrated that explanted HPSCs possess 

high levels of MT-1 when in the post-I/RI cerebral environment, we ascertained whether protein levels of 

MT-1 are upregulated in the contralateral and ipsilateral cerebral regions following HSPC administration. 

Supplemental Figure 2 shows that the expression of MT-1 is upregulated in ipsilateral cerebral regions 

following HSPC administration, versus vehicle administration. To further build on these findings, we next 

tested the potential of MT-1 treatment to afford protection following cerebral I/RI. Treatment of mice with 

MT-1 markedly attenuated the inflammatory response vs. saline-treated mice, as assessed by NS (reduced 

from 10-12 to 0-3 over 48-h) and IV (Figure 6C-E).  
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Discussion 

This study presents several key novel findings regarding the administration of HSPCs to mice following 

cerebral I/RI. We demonstrate that: 1) HSPCs mobilize and home to the injured brain without 

pharmacological intervention, 2) HSPCs exert protection within the cerebral microvasculature and recovery 

of neurological function, 3) HSPCs emigrate into the brain parenchyma where they produce MT mRNA and 

furthermore, 4) the protective effects of HSPCs in stroke can be recapitulated by the administration of MT-1 

(Figures 6 C-E, 7).  

 

Among the many potential regenerative medicine strategies tailored towards cerebral injury repair, SC-

based therapeutics have shown the most promise. Despite the encouraging results suggesting SC therapy, 

including CD34
+
 SC, as a stroke treatment, mechanisms of action warrant additional investigations. 

Endogenous CD34
+
 SCs are mobilized into the peripheral blood following stroke (32), and enhancing their 

migration using GM-CSF is highly neuroprotective (33). Results observed in a Phase I trial treating five 

ischemic stroke patients with 1x10
8
 CD34

+
 HPSCs indicated that transplantation of these cells might also 

induce neuroprotection, although mechanism of action remained unknown. We demonstrate herein that mice 

treated with HSPCs displayed an abrogated neuroinflammation with neuroprotection following I/RI. This 

was observed by decreased adherent leukocytes, which is consistent with the cerebral effects observed in 

other models (e.g. systemic administration of lipopolysaccharide (34)), and decreased microglial activation, 

along with decreased IV (which has been linked to levels of inflammation during cerebral reperfusion), 

decreased NS and increased survival. Our results are in-line with experimental and clinical findings 

supporting the use of SCs as a therapeutic in ischemic stroke. Furthermore, here we show that HPSCs may 

be a promising source of therapeutic SCs, supported by our findings that the injected HPSCs mobilized and 

preferentially homed to the ischemic hemisphere following cerebral I/R. 

 

Route of administration of SCs for treatment has long been under debate. Recent studies have shown that 

there is little or no difference in benefit between cells administered either i.v. or i.a. (35), Thus, we chose to 

administer 1 x 10
6
 (within the range of HSC numbers that have been used in previous publications, from 
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5x10
5 

(34), to 8x10
6
 (37)) HPSCs i.v. (by using a venular access point for the treatment rather than the 

carotid artery, patients need not be excluded based on carotid stenosis). In addition, we administered HPSCs 

24-h after stroke to represent a treatment regimen which can be applied to patients (i.e. after the onset of 

stroke) (38), in contrast to previous “prophylactic” studies that – while demonstrating efficacy of CD34
+
 

HSC – administered cells as early as 48-h prior to stroke (36).  

 

In this study, although HPSCs were found to be present in both the contralateral and ipsilateral (infarcted) 

hemispheres, considerably greater numbers were found in the ipsilateral hemisphere of experimental mice. 

Differences in the integrity and pathophysiological status of the blood-brain barrier (2) may facilitate 

HSPCs into the ischemic hemisphere more selectively (39), while some studies have shown that cells fail to 

localize to an infarct at all (although in some cases are still protective) (40). 

 

In addition, with respect to HSPC migration, we were able to achieve efficient migration when 

administering cells i.v. Clinical trials have commonly opted for i.a. administration via the common carotid 

artery ipsilateral to the infarct, since intuitively it is the most efficient way to deliver the largest number of 

cells rapidly to the infarct area, while avoiding the considerable invasiveness of i.c.v. injection. Pre-

clinically, recent work has shown little or no improvement when using i.a. and i.c.v. approaches compared 

with i.v. (41), with cells able to migrate in significant numbers to an infarct region having been administered 

i.v. (although some studies describe large numbers of cells becoming lodged in the lungs (40, 42)). This 

less-invasive route is preferable in a clinical setting when dealing with patients who are both frail and 

immunocompromised following stroke. Moreover, i.a. administration may be additionally deleterious due to 

the potential formation of microemboli and decreased cerebral blood flow (43). 

 

The homing and migratory ability of HSPCs in our study is perhaps unsurprising, as hematopoietic 

progenitors ultimately differentiate into blood cells that themselves have migratory abilities, as the 

machinery with which to respond to chemokine and cytokine gradients. In fact, HPSCs have previously 

been shown to express both vascular cell adhesion molecule-1 and its receptor very late antigen-4 (44, 45), 
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both of which would aid in the migratory process into the brain (46, 47). Interestingly, our findings 

demonstrated a vast improvement between HPSC- and saline-treated mice just 24-h after administration, 

suggesting that the protective mechanism of the cells was unlikely to involve direct replacement of infarcted 

brain tissue. In fact, it has yet to be observed in humans that any type of SCs applied as a therapy replace 

lost neuronal circuitry (48).  

 

Despite many studies focusing on the clarification of which signaling molecules attract SCs and direct their 

migration to damaged areas, little is known regarding what HPSCs do in the brain following stroke. We 

have demonstrated here that transcriptome in naïve HPSCs versus those that had been transplanted and had 

emigrated into the brain parenchyma showed marked differences in MT transcripts, in particular MT-1. 

RNA-seq analyses also uncovered increases in inflammation-associated transcripts and other transcripts. 

Upregulation of IL-10ra mRNA, suggested the activity of anti-inflammatory IL-10 pathway, which may 

inhibit the homing of inflammatory cells, but not that of HPSCs. The DENN domain-related pathway 

included upregulation of DENN/MADD domain containing 1A (Dennd1a), DENN/MADD domain 

containing 3 (Dennd3), and SET binding factor 1 (Sbf1), which has been associated with Rab-mediated 

processes or regulation of MAPK (mitogen-activated protein kinases) signaling (48). The oligoadenylate 

synthetase-related pathway included upregulation of 2'-5' oligoadenylate synthetase 1D (Oas1d), 2'-5' 

oligoadenylate synthetase 3 (Oas3), and 2'-5' oligoadenylate synthetase 1H (Oas1h), which has been 

associated with innate immune response (50). The steroid hormone receptor signaling pathway included 

upregulation of peroxisome proliferative activated receptor γ coactivator 1β (Ppargc1b), RNA binding 

protein, fox-1 homolog 2 (Rbfox2), and estrogen receptor 2 (Esr2). Since the factors released by HPSCs are 

broad, we have not ruled out that these factors may also be changeable depending on the evolving 

microenvironment within the brain. Further experiments will shed light on this.  

 

Although we checked the differentially expressed genes whose fold changes were more than 2-fold and P 

values were less than 0.05 in treated HSPCs compared with naïve controls (Supplemental Table 1), using a 



 21 

functional clustering tool, DAVID 6.8 (NIH, https://david.ncifcrf.gov/home.jsp), we found neither pro-

inflammatory nor anti-inflammatory cytokines (Supplemental Table 3). 

 

Finally, to test whether MT-I can be used as a pharmacological strategy for the treatment of stroke, we 

determined its impact in our model of I/RI. MT (MTI-IV) are small, free-radical scavenging proteins, 

ubiquitously expressed and with both intra- and extracellular functions (51, 52). Notably, they are highly 

inducible, and dramatically increased transcription is observed during ischemia (53) and various pro-

inflammatory mediators such as IL-6 and reactive oxygen species (54), promote growth and angiogenesis, 

neurogenesis and expression of anti-inflammatory cytokines (55). While few studies investigate MT 

activity, those that do indicate their protective effects: in one study, therapeutic effects of MT administered 

i.p. were observed (MT-II) in a rat model of cerebral I/R) (56). Our study upholds this trend, as we have 

showed that MT-I (the best studied MT along with MT-II, and the most significantly increased transcript in 

transplanted HSPCs) administered to stroked mice could produce neuroprotection and attenuate I/R-induced 

cerebrovascular injury. 

 

In summary, our results demonstrate that administration of HSPCs leads to neuroprotection in stroke. It is 

likely that the mechanisms providing therapeutic benefit in this study are multidimensional. However, our 

findings shed light on a previously unidentified mechanism of MT-1 upregulation, through which HSPCs 

may modulate inflammation and augment the detrimental effects of cerebral I/R. Furthermore, this was 

confirmed by the administration of MT-1 which was able to successfully protect against stroke. Therefore, 

this study demonstrates that HPSCs are an attractive treatment option for patients with stroke, and we urge 

the establishment of further, larger scale clinical trials investigating their therapeutic potential. 
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Figure Legends 

Figure 1. Overview of experimental design. Male C57BL/6J mice underwent 30 minute (min) middle 

cerebral artery occlusion (MCAo) followed by reperfusion. Mice were treated with hematopoietic 

stem/progenitor cells (HSPCs) or saline (vehicle) 24-h post-MCAo and analyses were conducted for up to 2 

weeks (wk).  

 

Figure 2. HSPCs improve outcome in the brain following I/R. Male C57BL/6J mice underwent 30-min 

middle cerebral artery occlusion (MCAo) followed by reperfusion. Mice were treated with hematopoietic 

stem/progenitor cells (HSPCs) or saline (vehicle) 24-h post-MCAo and analyses were conducted up to 2 

weeks (wk). Phenotypic analysis of HSPCs cells shows consistent expression of CD34, CD31, c-kit and 

Sca-1, indicating HSPCs, extracted on the day of treatment to be a phenotypically stable source of cells for 

use as a treatment, n=5 A). Various outcome parameters were assessed throughout and at the termination of 

experiments in order to assess the efficacy of HSPC treatment, including mortality rates B), infarct volume 

C, D) for representative images, and neurological score E). *p < 0.05 versus sham, 
#
p < 0.05 versus saline-

treated mice for respective time post-MCAo; n=>6 mice per group. 

 

Figure 3. HSPCs administered i.v. migrate to the ipsilateral hemisphere following cerebral I/R. DAB 

staining A-E) and sorting of CFSE-positive hematopoietic stem/progenitor cells (HSPCs)  from whole brain 

F) indicated that HSPCs localized to the ischemic brain following cerebral I/R (graph shows ratio of HSPCs 

emigrated to ipsi- versus contralateral hemispheres, where the number of HSPCs in the contralateral 

hemisphere has been normalized to 1), and confocal intravital microscopy of the ischemic brain 

demonstrated that once localized, HSPCs emigrated from blood vessels into the surrounding parenchyma 

G). Polymorphonuclear cells (PMNs) were detected in the vessels (dotted line).  No HSPCs were observed 

in the contralateral cortex.   

 

Figure 4. Leukocyte-endothelial interactions in the cerebral microcirculation are reduced following 

HSPC treatment. Intravital microscopy was performed on mice post-MCAo A), and leukocytes visualized 
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using Rhodamine 6G (selectively absorbed by leukocytes) B). Marked increases in leukocyte-endothelial 

interactions were observed following cerebral I/R versus sham-operated animals (C and D for stills from 

representative videos). Videos of 3-5 venular microvessels (30-70-μm diameter) were recorded for 2-min, 

and then analysed with respect to the number of rolling leukocytes (mm
-2

min
-1

) E) and their velocity (μm
-

1
min

-1
) F), as well as the number of leukocytes adherent to the cells wall for >30-sec (mm

-2
min

-1
) G). No 

interactions were observed in arterioles (data not shown). *p < 0.05 versus sham, 
#
p < 0.05 versus saline 

(vehicle)-treated mice for respective time post-MCAo; n=>6 mice per group. 

 

Figure 5. Neuroinflammation was suppressed following HSPC treatment after cerebral I/R. Activated 

microglia were stained (Iba-1) (A-D) and counted within three 100-μm x 100-μm cortical segments along 

the ipsilateral and contralateral hemispheres. The increase in activated microglia following MCAo was 

greater in the ipsilateral cortex, which was reduced by 50% in both cortices following HPSC treatment (E 

and F).  *p < 0.05 versus saline (vehicle)-treated mice; n=4 mice per group. 

 

Figure 6.  Principal component analysis (PCA) of RNA sequencing transcriptome data from stem cells 

before (controls: samples C1-3, C7-9) and 24-hours after transfer (“treated”: samples T4-6, T10-12).  

A) PCA of the 12-transcriptome data showed overall gene expression patterns.  Based on the principal 

component (PC) 2 values, PCA separated most samples between control versus treated groups with the 

exception of sample T12. B) Factor loading for PC2 ranked the genes that contributed to PC2 values 

positively (top half. Metallothionein (Mt1) most significant) and negatively (bottom half). C, D) Male 

C57BL/6 mice underwent 30-min MCAo followed by reperfusion. Mice were treated with MT-1 or PBS 

(vehicle) 24-h post-MCAo and neurological score C) and infarct volume (D) were quantified.  

 

Figure 7. Schematic overview of the important protective role HPSCs play in abrogating I/R-induced 

cerebrovascular injury. i.v., intravenous; I/R, ischemia/reperfusion; IV, infarct volume; NS, neurological 

score; MT, metallothionein. 
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Table 1. 18-point Neurological score (one point where any of the following apply) 

 
Sense assessed Test 
General Irritability/piloerection 

Immobility/staring 
Seizures/monoclonus/tremor 

Motor Flexion of forelimb 
Flexion of hindlimb 
Head tilt 10 degrees 
Some circling 
Circling over 50% of the tme while moving 
Inability to walk straight 
Falling down 

Sensory Corneal reflex 
Pinna reflex (response to pinch of ear "lobe") 
Startle reflex 

Proprioception Grasps side of beam 
Hugs beam, one limb down 
Hugs beam, two limbs down/spins about the beam 
Falls down after 5 sec attempt to balance 
No attempt to balance, falls down 
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Supplemental Figure Legends 

 

Supplemental Figure 1. Volcano plot showing transcriptome analysis of 562 genes and 47 genes that were 

significantly up- or downregulated more than 2-fold, respectively, in isolated versus naïve HPSCs. 

 

Supplemental Figure 2. HSPCs increase MT-1 expression in the brain following I/R. Male C57BL/6J mice 

underwent 30-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Mice were treated with 

hematopoietic stem/progenitor cells (HSPCs) or saline (vehicle) 24-h post-MCAo and 24-h later brains were 

harvested and separated into ipsilateral (Ips) and contralateral (Cont) regions. Blots were stained for MT-1 and 

then stripped and stained for tubulin to monitor protein loading. Densitometric analysis of MT-1. Values in B 

are means ± SE of n = 4 mice/group. *p < 0.05 vs. vehicle ipsilateral.  

 

Supplemental Table 1. 

Read count data of all genes (total 38924 genes) in naïve HPSCs (Naïve SC1, 2, 3, 7, 8, and 9) and treated 

HPSCs (Treated SC4, 5, 6, 10, 11, and 12).  Exon read count data of 12 samples given were normalized with 

two methods: 1) read counts per kilobase (RPK) and 2) tag count comparison (TCC), using “R”.  Fold changes 

were calculated using the average read count data of 6 naïve HPSCs data divided by those of 6 treated HPSCs.  

p values were calculated by Student’s t-test between naïve and treated HPSC groups.  Data were sorted by p 

values and fold changes. 

 

Supplemental Table 2. 

Read count data of inflammatory and angiogenic factor genes in naïve and treated HPSCs.  Interleukin-10 

receptor α subunit (Il10ra) and epiregulin (Ereg) were significantly upregulated (Il10ra: 4.2-fold, p<0.05; Ereg: 

6.9-fold, p<0.05). 

 

Supplemental Table 3. 

Functional clustering of significantly up- or down-regulated genes based on analyses of gene expression data of 

Supplemental Table 1 by the Database for Annotation Visualization and Integrated Discovery (DAVID).  The 

list of genes up- or down-regulated in treated HPSCs (p<0.05, more than 2-fold up- or down-regulated between 

the control and treated groups) was uploaded into DAVID for functional clustering.  Enrichment score was 

calculated by Fisher’s Exact Test based on the number of differentially expressed genes in the sample as well as 



the total number of genes that were included in each canonical pathway in the database.  Among the pathways, 

the DENN (after differentially expressed in neoplastic versus normal cells) domain-related pathway (Cluster 1), 

oligoadenylate synthetase-related pathway (Cluster 2), and steroid hormone receptor signalling pathway 

(Cluster 3) were listed as top three pathways based on enrichment scores.  
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