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As one of the factors in the noncoding RNA family, microRNAs (miRNAs) are involved in the development and progression of
various complex diseases. Experimental identification of miRNA-disease association is expensive and time-consuming. Therefore,
it is necessary to design efficient algorithms to identify novel miRNA-disease association. In this paper, we developed the
computational method of Collaborative Matrix Factorization for miRNA-Disease Association prediction (CMFMDA) to identify
potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, and experimentally
verified miRNA-disease associations. Experiments verified that CMFMDA achieves intended purpose and application values with
its short consuming-time and high prediction accuracy. In addition, we used CMFMDA on Esophageal Neoplasms and Kidney
Neoplasms to reveal their potential related miRNAs. As a result, 84% and 82% of top 50 predicted miRNA-disease pairs for these
two diseases were confirmed by experiment. Not only this, but also CMFMDA could be applied to new diseases and new miRNAs
without any known associations, which overcome the defects of many previous computational methods.

1. Introduction

MicroRNAs (miRNAs) are a class of short noncoding RNAs
(19∼25 nt), which normally regulate gene expression and
protein production by targeting messenger RNAs (mRNAs)
at the posttranscriptional level [1–9]. Since the first two
miRNA lin-4 and let-7 were found in 1993 and 2000 [10,
11], thousands of miRNAs have been detected in eukaryotic
organisms ranging from nematodes to humans. The latest
venison of miRBase contains 26845 entries and more than
2000 miRNAs have been detected in human [12–14]. With
the development of bioinformatics and the progress of
miRNA-related projects, researches are gradually focused on
the function of miRNAs. Existing studies have shown that
miRNAs are involved inmany important biological processes

[15, 16], like cell differentiation [17], proliferation [18], signal
transduction [19], viral infection [20], and so on. Therefore,
it is easy to find that miRNAs have close relationship with
various human complex diseases [12, 21–26]. For example,
researchers found that mir-433 is upregulated in gastric
carcinoma by regulating the expression of GRB2, which is
a known tumour-associated protein [27]. Mir-126 can not
only function as an inhibitor to suppress the growth of
colorectal cancer cells by its overexpression, but also can help
to differentiate between malignant and normal colorectal
tissue [28]. Besides, the change of mir-17∼92 miRNA cluster
expression has close relationship with kidney cyst growth
in polycystic kidney disease [29]. Considering the close
relationship between miRNA and disease, we should try all
means to excavate all latent associations between miRNA
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and disease and to facilitate the diagnose, prevention, and
treatment human complex disease [30–33]. However, using
experimental methods to identify miRNA-disease associa-
tion is expensive and time-consuming. As themiRNA-related
theories are becoming more and more common, such as the
prediction model about miRNA and disease, the function of
miRNA in biological processes, and signaling pathways, new
therapies are urgently needed for the treatment of complex
disease; it is necessary to develop powerful computational
methods to reveal potential miRNA-disease associations [12,
15, 20, 34–40].

Previous studies had shown that functionally similar
miRNAs always appear in similar diseases; therefore many
computational models were proposed to identify novel
miRNA-disease associations [13, 41–46]. For example, Jiang
et al. [31] analyzed and improved disease-gene prediction
model, introduced the principle of hypergeometric distri-
bution and how to use it, and discussed its application in
prediction model and its actual effect. In order to real-
ize the prediction function of the improved model, they
used different types of dataset including miRNA functional
similarity data, disease phenotype similarity data, and the
known human disease-miRNA association data. Therefore,
the prediction accuracy of this method is greatly impacted
by miRNA neighbor information and miRNA-target inter-
action prediction. Chen et al. [47] reported a new method
HGIMDA to identify novel miRNA-disease association by
using heterogeneous graph inference. This algorithm can get
better prediction accuracy by integrating known miRNA-
disease associations, miRNA functional similarity, disease
semantic similarity, and Gaussian interaction profile kernel
similarity for diseases and miRNAs. In addition, HGIMDA
could be applied for new diseases and new miRNAs which
do not have any known association. Li et al. [48] proposed the
computational model Matrix completion for MiRNA-disease
association prediction (MCMDA) to predict miRNA-disease
associations. This model only uses known miRNA-disease
associations and achieved better prediction performance.The
limitation of MCMDA is that it could not be applied for new
diseases and new miRNAs which do not have any known
association. You et al. [49] developed model Path-Based
MiRNA-Disease Association Prediction (PBMDA) to predict
miRNA-disease associations by integrating known human
miRNA-disease associations, miRNA functional similarity,
disease semantic similarity, and Gaussian interaction profile
kernel similarity formiRNAs and diseases. Depth-first search
algorithm was used in this model to identify novel miRNA-
disease associations. Benefiting from effective algorithm and
reliable biological datasets, PBMDA has better prediction
performance. Furthermore, Xu et al. [50] introduced an
approach to identify disease-related miRNAs by the miRNA
target-dysregulated network (MTDN). Furthermore, in order
to distinguish and identify disease-related miRNAs from
candidate, a SVM classifier based on radial basis function
and the lib SVM package had been proposed. Researches
have shown that miRNAs can functionally interact with
environmental factors (EFs) to affect and determine human
complex disease. Chen [51] proposed model miREFRWR
to predict the association between disease and miRNA-EF

interactions. Random walks theory was applied on miRNA
similarity network and EF similarity network. In addition,
drug chemical structure similarity, miRNA function sim-
ilarity, and networked-based similarity were also used in
miREFRWR. Based on these biological datasets and efficient
calculation method, miREFRWR could be an effective tool
in computational biology. What is more, Chen et al. [52]
also proposed a computational model RKNNMDA to predict
the potential associations between miRNA and disease. Four
biological datasets, experimentally verified human miRNA-
disease associations, miRNA functional similarity, disease
semantic similarity, and Gaussian interaction profile kernel
similarity for miRNAs and diseases were integrated into
RKNNMDA. It can be found that the prediction accuracy
of RKNNMDA is excellent. Moreover, RKNNMDA could be
applied for newdiseaseswhich do not have any known related
miRNA information.

Generally speaking, current prediction model on
miRNA-disease association is still demonstrating some short-
comings. For example, unreliable datasets have a great influ-
ence on the accuracy of prediction model, such as miRNA-
target interactions and disease-genes associations. In
addition, for miRNAs and diseases which do not have
any known associations, we cannot use some of the existing
models to predict its relevant information. In other words, we
need to design and develop a new effective computational
model. According to the assumption that functionally similar
miRNAs always appear in similar diseases, we introduce the
model of Collaborative Matrix Factorization for MiRNA-
Disease Association prediction (CMFMDA) to reveal novel
miRNA-disease association by integrating experimentally
validated miRNA-disease associations, miRNA functional
similarity information, and disease semantic similarity
information. For CMFMDA, we can obtain its test results
with three different ways: 5-fold CV, Local LOOCV, and
global LOOCV. The AUCs of these three methods are
0.8697, 0.8318, and 0.8841, respectively, which suggest that
CMFMDA is a reliable and efficient prediction model. And
then, we use two cases: Esophageal Neoplasms and Kidney
Neoplasms, to evaluate the performance of CMFMDA. In
both of these two important diseases, 42 and 41 out of top 50
predicted miRNA-disease associations were confirmed by
recent experimental literatures, respectively. In addition,
experiments show that CMFMDA can be applied for diseases
and miRNAs without any known association.

2. Materials and Methods

2.1. HumanmiRNA-Disease Associations. We obtained infor-
mation about the associations between miRNA and dis-
ease from HMDD, including 5430 experimentally confirmed
human miRNA-diseases associations about 383 diseases and
495 miRNAs. Adjacency matrix 𝐴 is proposed to describe
the association between miRNA and disease. If miRNA 𝑚(𝑖)
is associated with disease 𝑑(𝑗), the entity 𝐴(𝑚(𝑖), 𝑑(𝑗)) is
1, otherwise 0. Furthermore, we declared two variables nm
and nd to represent the number of miRNAs and diseases
investigated in this paper, respectively.
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2.2. MiRNA Functional Similarity. Base on the assumption
that miRNAs with similarity functions are regarded to be
involved in similar diseases,Wang et al. [42] present amethod
to calculate the miRNA functional similarity score. We
downloadedmiRNA functional similarity scores from http://
www.cuilab.cn/files/images/cuilab/misim.zip and constructed
matrix 𝑆𝑀 to represent the miRNA function similarity
network, where the entity 𝑆𝑀(𝑚(𝑖), 𝑚(𝑗)) represents the
functional similarity score between miRNA𝑚(𝑖) and𝑚(𝑗).

2.3. Disease Semantic Similarity. In this paper, disease can be
described as aDirectedAcyclic Graph (DAG) andDAG(𝐷) =
(𝐷, 𝑇(𝐷), 𝐸(𝐷)) was used to describe disease𝐷, where 𝑇(𝐷)
is the node set including all ancestor nodes of 𝐷 and 𝐷 itself
and 𝐸(𝐷) is the corresponding links set including the direct
edges from parent nodes to child nodes. The semantic value
of disease𝐷 in DAG(𝐷) is defined as follows:

𝐷𝑉1 (𝐷) = ∑
𝑑∈𝑇(𝐷)

𝐷1𝐷 (𝑑) ,

𝐷1𝐷 (𝑑)

=
{
{
{

1 if 𝑑 = 𝐷
max {Δ ∗ 𝐷1𝐷 (𝑑) | 𝑑 ∈ children of 𝑑} if 𝑑 ̸= 𝐷,

(1)

where Δ is the semantic contribution factor. For disease 𝐷,
the contribution of itself to the semantic value of disease 𝐷
is 1. However, with the growth of the distance between 𝐷
and other disease, the contributionwill fall.Therefore, disease
terms in the same layer would have the same contribution to
the semantic value of disease𝐷.

If there is much in common between two diseases in
DAG, their semantic similarity will become larger.Therefore,
the semantic similarity between diseases 𝑑(𝑖) and 𝑑(𝑗) can be
defined as follows:

𝑆𝐷 (𝑑 (𝑖) , 𝑑 (𝑗)) =
∑𝑡∈𝑇(𝑖)∩𝑇(𝑗) (𝐷1𝑖 (𝑡) + 𝐷1𝑗 (𝑡))

𝐷𝑉1 (𝑖) + 𝐷𝑉1 (𝑗) , (2)

where 𝑆𝐷 is the disease semantic similarity matrix.

2.4. CMFMDA. In this study, we developed the compu-
tational model of Collaborative Matrix Factorization for
MiRNA-Disease Association prediction (CMFMDA) to pre-
dict novel miRNA-disease associations [53]. The flow of
CMFMDA is shown in Figure 1.

In the first step in Figure 1, we will get the final miRNA
similarity matrix 𝑆𝑀 and diseases similarity matrix 𝑆𝐷 by
integrating miRNA functional similarity network, disease
semantic similarity network, and experimentally verified
miRNA-disease associations.

Then, we use WKNKN [54] to estimate the association
probability for these unknown cases based on their known
neighbors.

Thirdly, Collaborative Matrix Factorization was used to
obtain the final prediction 𝐹. This step contains three parts:

(1) For the input matrix𝑌, this step adopts singular value
decomposition to get the initial value of 𝐴 and 𝐵.

[𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷 (𝑌, 𝑘) ,

𝐴 = 𝑈𝑆1/2𝑘 ,

𝐵 = 𝑉𝑆1/2𝑘 .

(3)

(2) We use 𝐿 to represent the objection function and use
𝑎𝑖 and 𝑏𝑗 to represent the 𝑖th and 𝑗th row vectors of 𝐴
and 𝐵. Two alternative update rules (one for updating
matrix𝐴 and one for updatingmatrix𝐵) were derived
by setting 𝜕𝐿/𝜕𝐴 = 0 and 𝜕𝐿/𝜕𝐵 = 0. According to
alternating least squares, these two update rules are
run alternatingly until convergence.

min
𝐴,𝐵

𝑌 − 𝐴𝐵
𝑇
2

𝐹
+ 𝜆𝑙 (‖𝐴‖2𝐹 + ‖𝐵‖2𝐹)

+ 𝜆𝑚
𝑆𝑀 − 𝐴𝐴𝑇

2

𝐹
+ 𝜆𝑑

𝑆𝐷 − 𝐵𝐵𝑇
2

𝐹

𝐴 = (𝑌𝐵 + 𝜆𝑑𝑆𝑑𝐴) (𝐵𝑇𝐵 + 𝜆𝑙𝐼𝑘 + 𝜆𝑑𝐴𝑇𝐴)
−1

𝐵

= (𝑌𝑇𝐴 + 𝜆𝑚𝑆𝑚𝐵) (𝐴𝑇𝐴 + 𝜆𝑙𝐼𝑘 + 𝜆𝑚𝐵𝑇𝐵)
−1 .

(4)

Finally, the predicted matrix for miRNA-disease associa-
tions is then obtained by multiplying 𝐴 and 𝐵.

3. Results

3.1. Performance Evaluation. Based on the known miRNA-
disease associations obtained fromHMDDdatabase [55], the
predictive performance of CMFMDA is evaluated through
two ways: Local and global LOOCV. Not only that, three
computational models: WBSMDA [4], RLSMDA [12], and
NCPMDA [56], were introduced to compare the prediction
performance with CMFMDA. To obtain relevant miRNA
information for the chosen disease 𝑑, all association related
to disease 𝑑 was left out, and the rest of the associations
serve as a training set to get prediction association by
CMFMDA. For cross-validation, the difference between local
LOOCV and global LOOCV is that all diseases would be
investigated simultaneously or not. Furthermore, Receiver-
Operating Characteristics (ROC) were used to express the
difference between true positive rate (TPR, sensitivity) and
false positive rate (FPR, 1 − specificity) at different thresholds.
In this case, sensitivity indicates that the percentage of the
test miRNA-disease association which obtained ranks higher
than the given threshold. Meanwhile, specificity indicates the
percentage of miRNA-disease associations below the thresh-
old. What is more, Area under the ROC curve (AUC) could
be calculated to demonstrate the prediction performance of
CMFMDA. AUC = 1 showed that the model has perfect
prediction ability; AUC = 0.5 indicates random prediction
ability.

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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Figure 1: Flowchart of potential miRNA-disease associations prediction based on CMFMDA.

To illustrate the performance of CMFMDA, we com-
pare it with the existed computational model: NCPMDA,
RLSMDA, and WBSMDA. The comparison result has been
shown in Figure 2. As a result, these four models obtained
AUCs of 0.8841, 0.8630, 0.8501, and 0.7799 in the global
LOOCV, respectively. For local LOOCV, these four models
obtained AUCs of 0.8318, 0.8198, 0.8068, and 0.7213, respec-
tively. In general, CMFMDA has not only high prediction
performance, but also better ability to identify novel miRNA-
disease association.

3.2. Case Studies. All diseases in this paper have been inves-
tigated by CMFMDA to predict some novel miRNAs which
have association with the disease. Here, two case stud-
ies, Esophageal Neoplasms and Kidney Neoplasms, were
proposed to demonstrate the prediction performance of
CMFMDA. In addition, we use two important miRNA-
disease association databases to validate the prediction
results: miR2Disease [57] and dbDEMC [58]. A final note
about validation datasets is that only the associations which
were absent from the HMDD database would be used. In

other words, validation datasets have no correlation with the
datasets which have been used for prediction.

Esophageal Neoplasms is a serious disease in diges-
tive system, which leads to high death rate [59–61]. Early
diagnosis and treatment is essential for improving patient’s
survival [62, 63]. Here, we use CMFMDA to identify poten-
tial miRNAs associated with Esophageal Neoplasms. As a
result, 9 out of the top 10 and 42 out of the top 50 pre-
dicted related miRNAs were experimentally confirmed to be
associated with Esophageal Neoplasms (See Table 1). For
example, mir-133b can inhibit the cell growth and invasion
of esophageal squamous cell carcinoma (ESCC) by targeting
Fascin homolog 1 [59]. The expression level of mir-335 is an
independent prognostic factor in ESCC, which might be a
potential valuable biomarker for ESCC [64].

As a common urologic malignancy, the morbidity and
mortality of Kidney Neoplasm have been shown to rise grad-
ually [65–68]. Renal cell carcinoma (RCC) can be divided
into several different types of cancer [69–71], including chro-
mophobe RCC (CHRCC), collecting duct carcinoma (CDC),
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Figure 2: Performance comparisons between CMFMDA and three state-of-the-art disease-miRNA association prediction models
(NCPMDA, RLSMDA, and WBSMDA) in terms of ROC curve and AUC based on local and global LOOCV, respectively. As a result,
CMFMDA achieved AUCs of 0.8841 and 0.8318 in the global and local LOOCV, significantly outperforming all the previous classical models.

clear cell RCC (CCRCC), and papillary RCC (PRCC). Previ-
ous studies have shown that miRNAs play a significant part
in Kidney Neoplasm [72–74]. In this paper, CMFMDA was
employed to identify potential miRNAs associated with Kid-
neyNeoplasms. As a result, 9 out of the top-10 candidates and
41 out of the top-50 candidates of Kidney Neoplasm related
miRNAs were confirmed by dbDEMC and miR2Ddisease
(See Table 2). For example, the serum level of mi-210 may
be used as a novel noninvasive biomarker for the detection
of CCRCC [75]. Experiment results demonstrate that mir-
9 expression is correlative not only with the development of
CCRCC, but also with the development of metastatic recur-
rence [76].

The results of cross-validation and independent case
studies show that CMFMDA can satisfy the needs to iden-
tify potential miRNA-disease associations. Furthermore, all
diseases in HMDD have been investigated by CMFMDA to
predict potential miRNAs (See Supplementary Table 1 in
Supplementary Material available online at https://doi.org/
10.1155/2017/2498957). We hope that potential disease-
miRNA association predicted by CMFMDA could be con-
firmed by further biological experiments.

4. Discussion

According to the assumption that functionally similar miR-
NAs are often associated with similar diseases, we proposed
the computational model of Collaborative Matrix Factoriza-
tion forMiRNA-Disease Association prediction (CMFMDA)
to identify potential miRNA-disease associations by integrat-
ing miRNA functional similarity, disease semantic similarity,
and experimentally verified miRNA-disease associations. We
compare CMFMDA with the existing computational model:
NCPMDA, RLSMDA, and WBSMDA, and concluded that
CMFMDA has better prediction performance from these
four models’ obtained AUCs in the global LOOCV or
local LOOCV, respectively. There are some reasons for the
reliable performance of CMFMDA. Firstly, several types of
experimentally confirmed biological datasets are used in
CMFMDA, including known miRNA-disease associations,
miRNA functional similarity network, and disease semantic
similarity network, which help improve the prediction per-
formance and reduce variance. Then, CMFMDA can work
not only for known miRNA-disease association, but also for
diseases andmiRNAswithout any known association. Finally,

https://doi.org/10.1155/2017/2498957
https://doi.org/10.1155/2017/2498957
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Table 1: We implemented CMFMDA to predict potential Esophag-
ealNeoplasms-relatedmiRNAs.As a result, 9 out of the top 10 and 42
out of the top 50 predicted Esophageal Neoplasms related miRNAs
were confirmed based on miR2Disease and dbDEMC (1st column:
top 1–25; 2nd column: top 26–50).

miRNA Evidence miRNA Evidence
hsa-mir-142 dbDEMC hsa-mir-30c dbDEMC
hsa-mir-1 dbDEMC hsa-mir-212 Unconfirmed
hsa-mir-16 dbDEMC hsa-mir-424 dbDEMC
hsa-mir-127 dbDEMC hsa-mir-429 dbDEMC
hsa-mir-497 dbDEMC hsa-mir-498 dbDEMC
hsa-mir-200b dbDEMC hsa-mir-340 Unconfirmed
hsa-mir-376c Unconfirmed hsa-mir-222 dbDEMC
hsa-mir-148b dbDEMC hsa-mir-146b dbDEMC
hsa-mir-335 dbDEMC hsa-mir-195 dbDEMC
hsa-mir-93 dbDEMC hsa-mir-10b dbDEMC
hsa-mir-125b dbDEMC hsa-mir-218 Unconfirmed
hsa-mir-18a dbDEMC hsa-mir-181a dbDEMC
hsa-mir-17 dbDEMC hsa-mir-137 dbDEMC
hsa-mir-30a dbDEMC hsa-let-7e dbDEMC
hsa-mir-133b dbDEMC hsa-mir-181b dbDEMC
hsa-mir-135a dbDEMC hsa-mir-106a dbDEMC

hsa-mir-107 dbDEMC,
miR2Disease hsa-mir-19b dbDEMC

hsa-mir-224 dbDEMC hsa-mir-95 dbDEMC
hsa-mir-199b dbDEMC hsa-mir-122 Unconfirmed
hsa-mir-221 dbDEMC hsa-mir-152 dbDEMC
hsa-mir-18b dbDEMC hsa-mir-370 dbDEMC
hsa-mir-191 dbDEMC hsa-mir-30d dbDEMC
hsa-let-7g dbDEMC hsa-mir-15b dbDEMC
hsa-let-7f Unconfirmed hsa-mir-629 Unconfirmed
hsa-mir-494 dbDEMC hsa-mir-204 Unconfirmed

as a global prediction model, CMFMDA could be used to
predict all disease-related miRNA at the same time.

Although CMFMDA has better prediction performance,
the limitation still exists in it and needs to be improved in
the future. Firstly, CMFMDA may cause bias to miRNAs
with more known associated diseases. Secondly, the known
miRNA-disease associations with experimental evidences are
still insufficient. The prediction performance of CMFMDA
will be improved by integrating more reliable biological
information [77–86]. Finally, how to more reasonably extract
and integrate information from biological datasets should be
investigated in the future.

5. Conclusions

Research has shown that the abnormal expression of miRNA
plays a crucial role in the occurrence and development of
human complex diseases. The in-depth study and analysis
of diseases-related miRNA could help find new biomarker
and therapies and then improve the survival rate of patients.

Table 2: We implemented CMFMDA to prioritize candidate miR-
NAs for Kidney Neoplasms based on known associations in the
HMDD database. As a result, 9 out of the top 10 and 41 out of the
top 50 predictedKidneyNeoplasms relatedmiRNAswere confirmed
based on miR2Disease and dbDEMC (1st column: top 1–25; 2nd
column: top 26–50).

miRNA Evidence miRNA Evidence
hsa-mir-429 dbDEMC hsa-mir-34c dbDEMC

hsa-mir-200b dbDEMC,
miR2Disease hsa-mir-10b dbDEMC

hsa-mir-200a dbDEMC hsa-mir-9 dbDEMC

hsa-mir-210 dbDEMC,
miR2Disease hsa-mir-199b dbDEMC

hsa-mir-203 dbDEMC hsa-mir-99b dbDEMC

hsa-mir-218 dbDEMC hsa-mir-126 dbDEMC,
miR2Disease

hsa-mir-127 dbDEMC hsa-mir-224 dbDEMC
hsa-mir-155 dbDEMC hsa-mir-195 dbDEMC

hsa-mir-205 dbDEMC,
miR2Disease hsa-mir-145 dbDEMC

hsa-mir-196a dbDEMC hsa-mir-7 dbDEMC,
miR2Disease

hsa-mir-143 dbDEMC hsa-mir-142 Unconfirmed
hsa-mir-135a Unconfirmed hsa-mir-139 dbDEMC
hsa-mir-92a Unconfirmed hsa-mir-16 dbDEMC
hsa-mir-19a dbDEMC hsa-mir-183 dbDEMC

hsa-mir-29c dbDEMC,
miR2Disease hsa-mir-296 Unconfirmed

hsa-mir-146a dbDEMC hsa-mir-367 Unconfirmed
hsa-mir-99a dbDEMC hsa-mir-15b dbDEMC

hsa-mir-101 dbDEMC,
miR2Disease hsa-mir-204 dbDEMC

hsa-mir-199a dbDEMC,
miR2Disease hsa-mir-196b dbDEMC

hsa-mir-27a dbDEMC,
miR2Disease hsa-mir-339 dbDEMC

hsa-mir-100 dbDEMC hsa-mir-26a dbDEMC,
miR2Disease

hsa-mir-452 dbDEMC hsa-mir-302c Unconfirmed
hsa-mir-34b dbDEMC hsa-mir-302b Unconfirmed
hsa-mir-93 dbDEMC hsa-mir-107 dbDEMC
hsa-mir-34a dbDEMC hsa-mir-133b Unconfirmed

Therefore, it is necessary to develop more effective compu-
tational models to identify potential miRNA-disease associ-
ations. In this paper, we presented a computational model
CMFMDA to identify novel miRNA-disease associations.
Except for disease semantic similarity andmiRNA functional
similarity, CMFMDA also uses known miRNA-disease asso-
ciations to predict miRNA-disease associations. LOOCVwas
chosen to evaluate the predict performance of CMFMDA.
The results of LOOCV and case studies show that CMFMDA
has better prediction performance than other models. In
other words, as an effective tool, CMFMDA can be used not
only to predict potential miRNA-disease associations, but
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also to identify new biomarker that gave new direction for
diagnosis and treatment of human complex disease.
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