November 1974

TR/37

VARIATIONAL INEQUALITIES AND APPROXIMATION

M. ASLAM NOOR.

ABSTRACT

The existence and uniqueness of the solution of a variational inequality is considered, and methods of approximation of the solution are given.

Some elementary theorems concerning bilinear forms and antimonotone operators are given in the appendix.

Let H be a real Hilbert Space with its dual H', whose inner product and norm are denoted by $((\cdot))$ and $||\cdot||$ respectively. The pairing between $f \in H'$ and $u \in H$ is denoted by (f,u). Let F' be the Frechet differential of a nonlinear functional F on a closed convex set M in H.

Consider also a coercive continuous bilinear form a(u,v) on H, i,e. there exists constants $\alpha > 0$, $\beta > 0$ such that

$$a(v,v) \ge \alpha \mid \mid v \mid \mid^2 \qquad \text{for all } v \in H, \tag{1}$$

$$|a(u,v)| \le \beta ||u|| ||v||$$
 for all $u,v \in H$. (2)

Furthermore let F be a given element of H'. We now consider a functional I[v] defined by

$$I[v] = a(v,v) - 2F(v) \qquad \text{for all } v \in H.$$

Many mathematical problems either arise or can be formulated in this form. Here one seeks to minimize the functional I[v] over a whole space H or on a convex set M in H. It is well—known [1] that if F is a linear functional, then the element u which minimizes I [v] on M is given by

$$a(u,v-u) \ge (F,v-u) \qquad \text{for all } v \in M. \tag{3}$$

For a nonlinear Frechet differentiable functional F, it was shown [3] that the minimum of the functional I[v] on M is given by $u \in M$ such that

$$a(u,v-u) \ge (F'(u),v-u)$$
 for all $v \in M$. (4)

Such type of inequalities are known as variational inequalities [1]. Lions-Stampacchia. [1] have studied the existence of a unique solution of (3). The motivation for this report is to show that under certain conditions there does exist a unique solution of a more general variational inequality of which (4) is a special case.

Let us consider the following problem.

PROBLEM 1

Find $u \in M$ such that

$$a(u,v-u) \ge (Au,v-u)$$
 for all $v \in M$, (5)

where A is a nonlinear operator such than $Au \in H'$.

For M=H, the inequality (5) is equivalent to finding $u\in H$ such that

a(u,v) = (Au,v) for all $v \in H$, and thus our results include the Lax-Milgram lemma as a special case.

Definition

The operator $T: M \to H'$ is called <u>antimonotone</u>, if

$$(Tu-Tv, u-v) \le 0$$
 for all $u,v \in M$,

and is said to be <u>hemicontinuous</u> [4], if for all $u,v \in M$, the mapping $t \in [0,1]$ implies that (T(u+t(v-u)),u-v) is continuous. Furthermore, T is <u>Lipschitz continuous</u>, if there exists a constant $0 < \Upsilon \le 1$ such that

$$||Tu-Tv|| \le \Upsilon ||u-v||$$
 for all $u,v \in M$.

Theorem 1.

Let a(u,v) be a coercive continuous bilinear form and M

a closed convex subset in H. If A is a Lipschitz continuous antimonotone operator with $Y < \alpha$, then there exists a unique $u \in M$ such that (5) holds.

The following lemmas are needed for the proof.

Lemma 1.

If A is an antimonotone hemicontinuous operator, then $u \in M$ is a solution of (5) if and only if u satisfies

$$a(u,v-u) \ge (Av,v-u)$$
 for all $v \in M$ (6)

Proof

If for a given u in M, (5) holds, then (6) follows by the antimonotonicity of A.

Conversely, suppose (6) holds, then for all $t \in [0,1]$ and $w \in M$, $v_t \equiv u + t(w-u) \in M$, since M is a convex set. Setting $v = v_t$ in (6), we have

$$a(u,w-u) \ge (Av_t,w-u)$$
 for all $w \in M$.

Now let $t \to o$. Since A is hemicontinuous, $Av_t \to Au$. It follows that

$$a(u,w-u) \ge (Au,w-u)$$
 for all $w \in M$.

The map $v \to a(u,v)$ is linear continuous on H, so by Reisz-Frechet theorem, there exists an element $\eta = Tu \in H'$ such that

$$a(u,v) = (Tu,v) \qquad \text{for all } v \in H \tag{7}$$

Let A be a canonical isomorphism from H' onto H defined

by

$$(f,v) = ((\Lambda f,v)) \qquad \text{for all } v \in H, f \in H'$$
(8)

Then $\|\mathbf{A}\|_{H'} = \|\mathbf{A}^{-1}\|_{H} = 1$. We note first that by (1),(2) and

(7), it follows that

(i)
$$||T|| \leq \beta$$

(ii)
$$\alpha \leq \beta$$

The next lemma is a generalization of a lemma of Lions-Stampacchia [1].

Lemma 2

Let
$$\zeta$$
 be a number such that $0 < \zeta < \frac{2(\alpha - \gamma)}{\beta^2 - \gamma^2}$ and $\zeta < \frac{1}{\gamma}$

Then there exists a θ with $0 < \theta < 1$ such that

$$\|\phi(u_1)-\phi(u_2)\| \le \|u_1-u_2\|$$
 for all $u_1,u_2 \in H$,

where for $u \in H$, $\phi(u) \in H'$ is defined by

$$(\phi(\mathbf{u}), \mathbf{v}) = ((\mathbf{u}, \mathbf{v})) - \zeta \, \mathbf{a}(\mathbf{u}, \mathbf{v}) + \zeta(\mathbf{A}\mathbf{u}, \mathbf{v}) \text{ for all } \mathbf{v} \in \mathbf{H}. \tag{9}$$

Proof:

For all $u_1, u_2 \in H$.

$$\begin{split} (\phi(u_1) - \phi(u_2), v) &= ((u_1 - u_2, v)) - \zeta \ a \ (u_1 - u_2, v) + \zeta \ (Au_1 - Au_2, v) \ \text{for all } v \in H \\ &= ((u_1 - u_2, v)) - \zeta (T(u_1 - u_2), v) + \zeta (Au_1 - Au_2, v), \ \text{by (7)} \\ &= ((u_1 - u_2, v)) - \zeta \ ((\Lambda T(u_1 - u_2), v)) + \zeta ((\Lambda Au_1 - \Lambda Au_2, v), \ \text{by (8)} \\ &= ((u_1 - u_2, v) - \zeta \ T(u_1 - u_2), v)) + \zeta ((\Lambda au_1 - \Lambda au_2, v)) \end{split}$$

Thus

$$|\phi((u_1) - \phi(u_2), v)| \leq ||u_1 - u_2 - \zeta AT(u_1 - u_2)|| \ ||v|| + \ \zeta \ ||Au_1 - Au_2|| \ |\ |v||$$

for all $v \in H$.

Now using (7) and (8) we have

$$\begin{split} ||_{U_1-U_2-\zeta} & \wedge \ T(u_1-u_2)||^{\ 2} \leq \ ||u_1-u_2||^{\ 2} + \zeta^{\ 2} \ || \ T \ ||^2 \ ||u_1-u_2||^2 - 2\zeta \ a(\ u_1-u_2,u_1-u_2) \\ & \leq (\ 1+\zeta^{\ 2} \ \beta^2 \ - 2\zeta \ \alpha) \ || \ u_1 \ -u_2 \ ||^{\ 2} \ , \ by \ coercivity \ of \ a(u,v). \end{split}$$

Then

$$\begin{split} |\left(\phi(u_{1})-\phi(u_{2}),v\right)| &\leq \sqrt{(1+\zeta^{2}\beta^{2}-2\zeta\alpha)} \parallel u_{1}-u_{2} \parallel \parallel v \parallel + \zeta \parallel Au_{1}-Au_{2} \parallel \parallel v \parallel \text{ for all } v \in H. \\ &\leq \theta \parallel u_{1}-u_{2} \parallel \parallel v \parallel, \text{ by the Lipschitz continuity of } A, \end{split}$$

and
$$\theta = \sqrt{1 + \zeta^2 \beta^2 - 2\zeta \alpha} + \gamma \zeta < 1$$
 for $0 < \zeta < 2 \frac{\alpha - \gamma}{\beta^2 - \gamma^2}$ and $\zeta < \frac{1}{\gamma}$, because $\alpha > \gamma$.

Hence for all $u_1, u_2 \in H$

$$\parallel \phi(u_1) - \phi(u_2) \parallel = \frac{\sup_{v \in H} \frac{\mid (\phi(u_1) - \phi(u_2), v) \mid}{\parallel v \parallel} \leq \theta \parallel u_1 - u_2 \parallel.$$

The following results are proved by Mosco [2].

Lemma 3

Let M be a convex subset of H. Then, given z H we have

$$x = P_{MZ}$$

if and only if

$$x M$$
; $((x-z,y-x)) \ge 0$ for all $y \in M$.

where P_M is the projection of H in M.

Lemma 4.

 $P_{\rm M}$ is non-expansive, i.e.,

$$\|P_M\,Z_1\hbox{-} P_MZ_2\,\|\,\leq\,\|\,Z_1\hbox{-} Z_2\,\|\qquad\qquad \text{for all }z_1,\!z_2\in\,H.$$

Using the technique of Lions-Stampacchia [1], we now prove theorem 1,

Proof of theorem 1,

(a) Uniqueness

Let u_i , i=1,2 be solutions in M of

$$a(u_i, v-u_i) \ge (Au_i-v-u_i)$$

for all $v \in M$.

Setting $v = u_{3\text{-}\,i}$, i = 1 , 2 in the above inequality, by addition we have

$$a(u_1-u_2,u_1-u_2) \le (Au_1-Au_2,u_1-u_2)$$
.

Since a(u,v) is a coercive bilinear form, there exists a constant a > 0 such that

$$\alpha || u_1 - u_2 ||^2 \le (Au_1 - Au_2, u_1 - u_2) \le 0,$$

by the antimonotonicity of A. From which the uniqueness of the solution $u \in M$ follows.

(b) Existence

For a fixed ζ as in Lemma 2, and u H, define $\phi(u) \in H'$ by (9). By lemma 3, there exists a unique $w \in M$ such that

$$((w,v-w)) \ge (\phi(u),v-w)$$
 for all $v \in M$,

and w is given by

$$w = P_M \wedge \phi(u) = Tu$$
,

which defines a map from H into M.

Now for all u., u H,

Since $\theta < 1$. Tu is a contraction and has a fixed point u = Tu, which belongs to M, a closed convex set and satisfies

$$((u,v-u)) > (\phi(u),v-u) = ((u,v-u)) - \zeta[a(u,v-u) - (Au,v-u)]$$

Thus for $\zeta > 0$,

$$a(u,v-u) \ge (Au,v-u)$$
 for all $v \in M$

showing that u is a unique solution of problem 1.

Remarks

- 1; It is obvious that for Au = F'(u), the existence of a unique solution of a variational inequality (4) follows under the assumptions of theorem. 1.
- 2: If A is independent of u, that is Au = A' (say), then the Lipschitz constant γ y is zero, and lemma 2 reduces to a lemma of

Lions-Stampacchia [1] and ζ is a number such that $0 < \zeta < \frac{2\alpha}{\beta^2}$.

Consequently theorem 1 is exactly the same as one proved by
Lions-Stampacchia for the linear case. It is obvious that our result
not only generalizes their result, but also includes it as a special case.

Method of Approximation

Suppose that the bilinear form is non-negative, i.e.

$$a(v,v) \ge 0$$
 for all $v \in H$. (10)

Assume that there exists at least one solution $u \in M$ of

$$a(u,v-u) \ge (Au,v-u)$$
 for all $v \in M$ (11)

and X is the set of all solutions of (11). Let, finally, b(u,v) be a coercive bilinear form on H, that is there exists a constant $\alpha > 0$ such that

$$b(v,v) \ge \alpha \|v\| \qquad \text{for all } v \in H \tag{12}$$

First of all we prove some elementary but important lemmas.

Lemma 5

If a(u,v) is a non-negative bilinear form and $u \in M$, then the inequality (5) is equivalent to the inequality

$$a(v,v-u) \ge (A(u),v-u)$$
 for all $v \in M$. (13)

Proof

Let (5) hold, then

$$a(v,v-u) \ge (A(u),v-u) + a(v-u,v-u) \ge (A(u),v-u), by (10).$$

Thus (13) holds;

Conversely let (13) hold, then for all $t \in [0,1]$ and $w \in M$, $v_t = u + t(w - u) \in M$. Setting $v = v_t$ in (13) it follows that

$$a(u,w-u) + t \ a(w-u,w-u) \ge (A(u),w-u)$$
, for all $w \in M$.

Letting $t \to 0$, (5) follows.

As a consequence of lemma 1 and lemma 5 we have the following result.

Lemma 6.

If a(u,v) is non-negative bilinear form and A is hemicontinuous

antimonotone operator, then the inequality (5) is equivalent to $a(v,v-u) \ge (A(v),v-u)$ for all $v \in M$.

Theorem 2

If b(u,v) is a coercive continuous bilinear form and B is a Lipschitz continuous antimonotone operator with $\Upsilon < \alpha$ then there exists a unique solution $u_o \in X$ such that

$$b(u_o, v-u_o) \ge (Bu_o, v-u_o) \text{ for all } v \in x.$$
 (14)

Proof:

Obviously X is closed. In order to prove theorem (2), it is enough to show that X is convex. Since a(u,v) is non-negative, so (11) is equivalent to

$$a(v,v\hbox{-} u) \geq (Av,v\hbox{-} u) \; , \; by \; lemma \; 6 \; .$$
 Now for all $t \in [0,1], \; u_1 \; , \; u_2 \in X,$

$$a(v,v-u_2-t(u_1-u_2)) = a(v,v-u_2) -t \ a(v,u_1-u_2)$$

$$= a(v,v-u_2) -t \ a(v,u_1-v+v-u_2)$$

$$= a(v,v-u_2) +t \ a(v,v-u_1) -t \ a(v,v-u_2)$$

$$= (1-t) \ a(v,v-u_2) +t \ a(v,v-u_1)$$

$$\geq (1-t) \ (Av,v-u_2) +t \ (Av,v-u_1),$$

by lemma 6.

Thus for all $t \in [0,1]$, $U_1, U_2 \in x$, $tu_1 + (1-t)u_2 \in x$, which implies that X is a convex set. Hence by theorem (1), there does exist a unique solution $u_0 \in X$ satisfying (14).

Theorem 3

Assume that (10) and (12) hold. If $a(u,v) + \in b(u,v)$ is a

continuous bilinear form and A, B are both antimonotone Lipschitz continuous with Y < α , then there exists a unique solution $u_\epsilon \in M$ such that

$$a(u_{\varepsilon}, v-u_{\varepsilon}) + \varepsilon b(u_{\varepsilon}, v-u_{\varepsilon}) \ge (Au_{\varepsilon} - \varepsilon Bu_{\varepsilon}, v-u_{\varepsilon})$$
 for all $v \in M$. (15)

Proof:

Since for $\epsilon > 0$ and by (10), (12), the continuous bilinear form $a(u,v) + \epsilon b(u,v)$ is coercive on H, then by theorem 1, there exists a unique $u_{\epsilon} \in M$ satisfying (15).

Using lemma 1 and the methods of Sibony [4] and Lions-Stampacchia [1], we prove that the elements of X can be approximated.

Theorem 4

Suppose A,B:M \rightarrow H' are both hemicontinuous operators and the assumptions of theorems (2) and (3) hold. If u_o is the element of X defined by (14) satisfying

$$a(u_o, v-u_o) \ge (Au_o, v-u_o) \qquad \text{for all } v \in X. \tag{16}$$

and u_{ϵ} is the element of M defined by (15), then

$$u_{\epsilon} \rightarrow u_{o}$$
 strongly in H as $\epsilon \rightarrow 0$.

Proof:

Ihis is proved in three steps.

(i) u_{ℓ} is bounded in H.

Setting $v = u_0$ in (15) and $v = u_{\varepsilon}$ in (16), we get

$$a(u_{\varepsilon}, u_{o} - u_{\varepsilon}) + \varepsilon b(u_{\varepsilon}, u_{o} - u_{\varepsilon}) \ge (Au_{\varepsilon} + \varepsilon Bu_{\varepsilon}, u_{o} - u_{\varepsilon})$$

and

$$a(u_o, u-u_o) \ge (Au_o, u_{\varepsilon} - u_o)$$

By addition of these inequalities, it follows from (10) and the antimonotonicity of A that

$$b(u_{\varepsilon}, u_{o} - u_{\varepsilon}) \ge (Bu_{\varepsilon}, u_{o} - u_{\varepsilon})$$

$$(17)$$

Since $b(u_{\epsilon}, u_{\epsilon})$ is a coercive bilinear form, there exists a constant a > 0 such that

$$\alpha ||u_{\varepsilon}||^2 \leq b(u_{\varepsilon}, u_{\varepsilon}) + (Bu_{\varepsilon}, u_{\varepsilon} - u_{\varepsilon}).$$

It follows that $||u_{\epsilon}|| \le constant$, independent of ϵ . Hence there exists a subsequence u_{ϵ} which converges to ξ , say.

(ii) ξ belongs to X.

Since A and B are antimonotone operators, by (15) and the application of lemma 1, we get

$$a(u_{\epsilon}, v-u_{\epsilon}) + \epsilon b(u_{\epsilon}, v-u_{\epsilon}) \ge (Av + \epsilon Bv, v-u_{\epsilon})$$
 for all $v \in M$.

Now let $\varepsilon \to 0$, then $u_{\varepsilon} \to \xi$ and lim inf $a(u_{\varepsilon}, u_{\varepsilon}) \ge a(\xi, \xi)$,[1] We have

$$a(\xi, v-\xi) \ge (Av, v-\xi)$$
 for all $v \in X$,

which is by lemma 1 equivalent to

$$a(\xi, v-\xi) \ge (A\xi, v-\xi)$$
 for all $v \in X$.

Thus $\xi \in X$.

(iii) Finally
$$||u_{\varepsilon}|| \to ||c||$$
 when $\varepsilon \to 0$,

Setting $v=u \in X$ in (15) and $v-u_{\varepsilon} \in X$ in (11)

We obtain

$$a(u_{\varepsilon}, u-u_{\varepsilon}) + \varepsilon b(u_{\varepsilon}, u-u_{\varepsilon}) \ge (Au_{\varepsilon} + \varepsilon Bu_{\varepsilon}, u-u_{\varepsilon}),$$

which is, by lemma 1, equivalent to

$$a(u_{\varepsilon}, u-u_{\varepsilon}) + \varepsilon b(u_{\varepsilon}, u-u_{\varepsilon}) \geq (Au+\varepsilon Bu, u-u_{\varepsilon})$$

Also,

$$a(u,u_{\varepsilon} - u) \geq (Au,u_{\varepsilon} - u)$$

By addition one has

$$a(u_{\varepsilon} - u, u - u_{\varepsilon}) + \varepsilon b(u_{\varepsilon}, u - u_{\varepsilon}) \ge \varepsilon(Bu, u - u_{\varepsilon})$$

Using (10), and for $\varepsilon > 0$, we get

$$b(u_{\epsilon}, u-u_{\epsilon}) \ge (Bu, u-u_{\epsilon})$$
 for all $u \in X$.

Letting
$$\epsilon \to 0$$
, $u_{\epsilon} \to \xi$, we have
$$b(\xi, u-\xi) \ge (Bu.u-\xi)$$

$$\ge (B\xi, u-\xi), \qquad \text{by lemma 1.}$$

Thus $\xi \in X$ is a solution of (14) and since the solution is unique, it follows that ξ - u_o .

Also from (17), by the coercivity of $b(u_{\epsilon}, u_{\epsilon})$, it follows that there exists a constant $\alpha > 0$ such that

$$\begin{split} \alpha \mid\mid u_{\epsilon} - u_{o} \mid\mid & \leq b(u_{\epsilon} - u_{o} , u_{\epsilon} - u_{o}) \\ \leq & (Bu_{\epsilon} , u_{\epsilon} - u_{o}) - b(u_{o} , u_{\epsilon} - u_{o}) \\ \leq & (Bu_{o} , u_{\epsilon} - u_{o}) - b(u_{o} , u_{\epsilon} - u_{o}), \text{ by lennna 1,} \end{split}$$

which $\to 0$, as, $\epsilon \to 0$. Hence it follows that $u_\epsilon \to u$ strongly in H.

Theorem 5

If a(u,v), b(u,v) are coercive continuous bilinear forms, M is a closed convex set in H, and A,B are heniicontinuous antimonotone Lipschitz continuous operators with $\alpha > \gamma$, then problem 1 has a

unique solution if and only if there exists a constant L, independent of ε , such that the solution of (15) satisfies

$$\parallel \mathbf{u}_{\varepsilon} \parallel \leq L \tag{18}$$

Proof:

If there exists a solution, then from theorem 4, it follows that (18) holds. Conversely suppose that (18) holds , then there exists a subsequence u_{η} of u_{ϵ} which converges to

w weakly in H. Since M is a closed convex set, $w \in M$, Further writing (15) in. the form

$$a(u, u - v) + \varepsilon b(u_{\varepsilon}, u_{\varepsilon} - v) \le (Av + \varepsilon Bv, u_{\varepsilon} - v)$$
 for all $v \in M$

and taking $\varepsilon = \eta = 0$, we find that

$$a(w,w) \le a(w,v) + (Av,w-v)$$
 for all $v \in M$,

which is by lemma 1, equivalent to

$$a(w,w-v) \le (Aw,w-v)$$
 for all $v \in M$.

Thus w is the solution satisfying (11).

Existence of Solutions

In this section, the existence of the solution satisfying (10) for the cases, when M is bounded or an unbounded convex subset of H is considered.

Theorem 6

If M s a bounded closed convex subset, and A is a hemicontinuous Lipschiltz antimono tone operation, then there exists a unique solution of problem (1).

Proof:

Let $u_{\epsilon} \in M$ be the element defined by (15). Since M is bounded, then $||u_{\epsilon}||$ is bounded, and theorem (6) follows from theorem (5).

Consider now the case when the set M is bounded. Let $M_R = \{k \; ; \; k \in M, \; | \; | \; k \; | \; \leq R \; \}$ with R large enough so that $M_R \neq \varphi$. Assume that A is hemicontinuous antimonotone operator, then by theorem (6), there exists a non-empty set,

$$X_R \equiv \text{set of all solution of } w \in M_R \text{ with}$$
 (19)
 $a(w,v-w) \ge (Aw,v-w)$ for all $v \in M_R$

Theorem 7

Suppose a(u,v) is a continuous bilinear form and A is a hemicontinuous antimonotone operator. If $u \in X_R$ with ||u|| < R, then u satisfies (11).

Proof

In fact, let w be any solution in M. Then for $0 < \epsilon < 1$, $u + \epsilon(w - u) \in M$ and $||u + \epsilon(w - u)|| \le ||u| + \epsilon ||w - u|| < R$ for sufficiently small ϵ . Thus for $0 < \epsilon < \epsilon_1$, $v = u + \epsilon(w - u) \in M_R$.

Consequently such a v is allowed in (19) with w = u and it follows that

$$a(u,w\hbox{-} u) \geq (Au,w\hbox{-} u) \qquad \qquad \text{for all. } w\hbox{-} M.$$

This proves theorem 7.

APPENDIX

Let a(u,v) be a coercive continuous bilinear form on H.

The Cauchy-Schwarz inequality holds for a(u,v) and is given by

$$|a(u,v)|^2 \le a(u,u)a(v,v)$$
 for all $u,v \in H$.

Theorem 8

A bounded bilinear form is continuous with respect to the norm convergence.

Proof:

Let $u_n\to u$ and $v_n\to v,$ these sequences are bounded. We let Y be their bound, and then $||\;u_n\;||\le Y$.

Now

$$\begin{split} [\,a(u_n\;,\!v_{\;n}\;) - a\;(u,\!v) \mid &= \mid a(u_n\;,\!v_n\;) - a(u_n\;,\!v) + a(u_n\;,\!v) - a(u,\!v) \mid \\ &\leq \mid a(u_n\;,\!v_n\;-\!v) \mid + \mid a(u_n\;-\!u,\!v) \mid \\ &\leq C\;\gamma \parallel v_n - v \parallel + C_1 \parallel u_n - u \parallel \|v\|, \end{split}$$

$$\label{eq:continuous} \begin{split} \parallel \left[v_n \text{ -} v \parallel \to 0 \text{ as } n \to ^{^{\infty}} \text{, and therefore} \right. \\ \\ \left. \left[\text{ a}(u_n \text{ ,} v_n \text{)} \text{ - a}(u,v) \mid \to 0 \text{, i.e.,} \right. \\ \\ \left. \text{a}(u_n \text{ ,} v_n \text{)} \to \text{a}(u,v) \right. \end{split}$$

Theorem 9

Let v be in H and M be a closed convex subset of H. If u is a minimizing vector and a(x,v) is any continuous bilinear form such

that a(x,y) = ((x,y)), for all $x,y \in H$, then

$$a(u-v,w-u) \ge 0$$
 for all $w \in M$. (20)

Conversely if (19) holds and a(u,v) Is also coercive, then

$$||u-v|| \le \alpha^{-1} c ||w-v||$$
 for all $w \in M$.

Proof:

If u is the unique minimizing vector, then we have to show that $a(u-v,w-u) \ge 0$ for all $w \in M$.

Suppose to the contrary that there is a vector $v_1 \in M$ such that $a(u-v,u-v_1) = \varepsilon > 0$. For all $t \in [0,l]$ and $v_1 \in M$, $v_t \equiv u + t(v_1-u) \in M$,

Now

$$\begin{split} || \ v_t - v ||^2 &= || \ u + t \ (v_1 - u) \ - v ||^2 \\ &= || u - v ||^2 + t^2 \ || \ v_1 - u \ ||^2 + 2t (u - v, v_1 - u) \\ &< || \ u - v \ ||^2, \end{split}$$

for, small positive t, which contradicts the minimizing property of u. Hence no such v_1 can exist.

Conversely let ueM such that (20) holds, then for any $w \neq u$, $w \in M$,

$$0 \leq a(\ u\text{---}v,w\text{-}u) = a(u\text{-}v,w\text{-}v + v\text{----}u)$$
 implies that

$$a(u-v,u-v) \le a(u-v,w-v)$$
.

Since a (u, v) is a continuous coercive bilinear form, there exist constants c > 0, $\alpha > 0$ such that

$$\alpha \|u\text{-}v\|^2 \le c\| \text{ }u\text{-}v\| \parallel \text{ }w\text{-}v \parallel \qquad \qquad \text{for all } \text{ }w \in M,$$

i.e.,

$$\parallel u\text{-}v\parallel \geq a^{\text{-}1}\ c\ \lVert w\text{-}v\parallel \qquad \qquad \text{for all } w\text{-}M.$$

The following representation of the differentiable functions is needed

$$F(u) - F(v) = \int_{0}^{1} (u - v, F'(v + s(u - v))) ds.$$

Theorem 10.

If F is antimonotone, then the real-valued functional F is weakly upper semicontinuous and concave.

Proof:

Consider

$$\begin{split} F(u_n) - F(u) &= {_{O}} \int^1 \ (u_n - u, F'(u + s(u_n - u)) \ ds \\ &= {_{O}} \int^1 \ (u_n - u, F'(u) ds + {_{O}} \int^1 \ (u_n - u, F'(u_n + s(u_n - u)) - F'(u)) ds \end{split}$$

If $u_n\to u$ weakly, as $n\to\infty$, then the first term on R.H.S. tends to zero. The second term is always non-positive. In fact, by antimonotonicity $(u_n$ -u,F' $(u+s(u_n$ -u)) - F' (u)) ≤ 0 for all $0\leq s\leq 1$, and therefore the integrand ≤ 0 for all $0\leq s\leq 1$. Hence for a sufficiently large n, there exists $\epsilon_n\to 0$ as $n\to\infty$ such that F(u) - $F(u)\leq \epsilon_n$, i.e.,

$$\lim_{n\to\infty}\sup F(u_n)\leq F(u).$$

Thus F is a weakly upper semicontinuous functional. Using a similar argument, it can be seen that the antimonotonicity of F' guarantees concavity of F.

Theorem 11.

If a functional F is concave on a convex set M, then the

Frechet differential F' of F is antimonotone.

Proof:

For all $t \in [0,1]$ and $u,v \in M$, $tu+(1-t)v = v + t(u-v) \in M$.

By definition

$$F(v+t(u-v) \ge t F(u) + (1-t)F(v)$$

Dividing both sides by t, and letting $t \to 0$, we get

$$F'(v),u-v) \ge F(u) - F(v)$$

Similarly

$$(F'(u),v-u) \ge F(v) - F(u)$$

By addition, it follows that

$$(F'(v) - F'(u), u-v) \ge 0$$
 for all $u,v \in M$.

Thus from theorem 10 and theorem 11 one concludes that "A real—valued functional on a convex set in a Hilbert space is <u>concave</u> if and only if its Frechet differential is an antimonotone operator".

Acknowledgement.

Thanks are due to Professor A.Talbot and Dr.J.R.Whiteman for many stimulating discussions and their valuable suggestions.

References

- 1. J.Lions-G.Stampacchia, Variational Inequalities, Comm.Pure Appl.Math.,20 (1967), pp.493-519,
- 2. U.Mosco, An introduction to the Approximate solution of Variational Inequalities in Constructive Aspects of Functional Analyst s; Edizioni Creraonese, Roma 1973, pp.499-685.
- 3. M.Aslam Noor, Bilinear Forms and Convex sets in Hilbert Space, Bull. Un. Math. Itaj.iana, 5 (1972),pp. 241-244.
- 4. M.Sibony, Approximation of Nonlinear Inequalities on Banach Spaces in Approximation Theory, edited by A.Talbot, Academic Press, London (1970) pp.243-260.

