VARIATIONAL INEQUALITIES
AND APPROXIMATION
M. ASLAM NOOR.

A B S T R A C T

The existence and uniqueness of the solution of a variational inequality is considered, and methods of approximation of the solution are given.

Some elementary theorems concerning bilinear forms and antimonotone operators are given in the appendix.

Let H be a real Hilbert Space with its dual H', whose inner product and norm are denoted by $((\cdot))$ and $\|\cdot\|$ respectively. The pairing between $f \in H^{\prime}$ and $u \in H$ is denoted by (f, u). Let F^{\prime} be the Frechet differential of a nonlinear functional F on a closed convex set M in H .

Consider also a coercive continuous bilinear form $\mathrm{a}(\mathrm{u}, \mathrm{v})$ on H , i,e. there exists constants $\alpha>0, \beta>0$ such that

$$
\begin{array}{ll}
a(v, v) \geq \alpha\|v\|^{2} & \text { for all } v \in H \\
|a(u, v)| \leq \beta\|u\|\|v\| & \text { for all } u, v \in H \tag{2}
\end{array}
$$

Furthermore let F be a given element of H^{\prime}. We now consider a functional $\mathrm{I}[\mathrm{v}]$ defined by

$$
I[v]=a(v, v)-2 F(v) \quad \text { for all } v \in H
$$

Many mathematical problems either arise or can be formulated in this form. Here one seeks to minimize the functional I[v] over a whole space H or on a convex set M in H. It is well-known [1] that if F is a linear functional, then the element u which minimizes I [v] on M is given by

$$
\begin{equation*}
a(u, v-u) \geq(F, v-u) \quad \text { for all } v \in M \tag{3}
\end{equation*}
$$

For a nonlinear Frechet differentiable functional F, it was shown [3] that the minimum of the functional $I[v]$ on M is given by $u \in M$ such that

$$
\begin{equation*}
a(u, v-u) \geq\left(F^{\prime}(u), v-u\right) \quad \text { for all } v \in M \tag{4}
\end{equation*}
$$

Such type of inequalities are known as variational inequalities [1]. Lions-Stampacchia. [1] have studied the existence of a unique solution of (3). The motivation for this report is to show that under certain conditions there does exist a unique solution of a more general variational inequality of which (4) is a special case.

Let us consider the following problem.

PROBLEM 1

Find $u \in M$ such that

$$
\begin{equation*}
a(u, v-u) \geq(A u, v-u) \quad \text { for all } v \in M \tag{5}
\end{equation*}
$$

where A is a nonlinear operator such than $A u \in H^{\prime}$.
For $M=H$, the inequality (5) is equivalent to finding $u \in H$ such that

$$
a(u, v)=(A u, v) \quad \text { for all } v \in H
$$

and thus our results include the Lax-Milgram lemma as a special case.

Definition

The operator $T: M \rightarrow H^{\prime}$ is called antimonotone, if

$$
(T u-T v, u-v) \leq 0 \quad \text { for all } u, v \in M,
$$

and is said to be hemicontinuous [4], if for all $u, v \in M$, the mapping $t \in[0,1]$ implies that $(T(u+t(v-u)), u-v)$ is continuous. Furthermore, T is Lipschitz continuous, if there exists a constant $0<Y \leq 1$ such that

$$
\|T u-T v\| \leq \Upsilon\|u-v\| \quad \text { for all } u, v \in M
$$

Theorem 1.

Let $\mathrm{a}(\mathrm{u}, \mathrm{v})$ be a coercive continuous bilinear form and M
a closed convex subset in H. If A is a Lipschitz continuous antimonotone operator with $Y<\alpha$, then there exists a unique $u \in M$ such that (5) holds.

The following lemmas are needed for the proof.

Lemma 1.

If A is an antimonotone hemicontinuous operator, then $u \in M$ is a solution of (5) if and only if u satisfies

$$
\begin{equation*}
a(u, v-u) \geq(A v, v-u) \quad \text { for all } v \in M \tag{6}
\end{equation*}
$$

Proof

If for a given u in M, (5) holds, then (6) follows by the antimonotonicity of A.

Conversely, suppose (6) holds, then for all $t \in[0,1]$ and
$w \in M, v_{t} \equiv u+t(w-u) \in M$, since M is a convex set. Setting $v=v_{t}$ in (6), we have

$$
a(u, w-u) \geq\left(A v_{t}, w-u\right) \quad \text { for all } w \in M
$$

Now let $t \rightarrow o$. Since A is hemicontinuous, $A v_{t} \rightarrow A u$. It follows that

$$
a(u, w-u) \geq(A u, w-u) \quad \text { for all } w \in M
$$

The map $v \rightarrow a(u, v)$ is linear continuous on H, so by Reisz-Frechet theorem, there exists an element $\eta=T u \in H^{\prime}$ such that

$$
\begin{equation*}
a(u, v)=(T u, v) \quad \text { for all } v \in H \tag{7}
\end{equation*}
$$

Let \wedge be a canonical isomorphism from H^{\prime} onto H defined
by

$$
\begin{equation*}
(f, v)=((\wedge f, v)) \quad \text { for all } v \in H, f \in H^{\prime} \tag{8}
\end{equation*}
$$

Then $\|\boldsymbol{\wedge}\|_{H^{\prime}}=\left\|\boldsymbol{\wedge}^{-1}\right\|_{\mathrm{H}}=1$. We note first that by (1),(2) and
(7), it follows that

$$
\begin{array}{lr}
\text { (i) } & \|\mathrm{T}\|
\end{array}
$$

The next lemma is a generalization of a lemma of Lions-Stampacchia [1].

Lemma 2

$$
\text { Let } \zeta \text { be a number such that } 0<\zeta<\frac{2(\alpha-\gamma)}{\beta^{2}-\gamma^{2}} \quad \text { and } \quad \zeta<\frac{1}{\gamma}
$$

Then there exists a θ with $0<\theta<1$ such that

$$
\left\|\phi\left(\mathbf{u}_{1}\right)-\phi\left(\mathbf{u}_{2}\right)\right\| \leq\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\| \text { for all } \mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbf{H}
$$

where for $u \in H, \phi(u) \in H^{\prime}$ is defined by

$$
\begin{equation*}
(\phi(u), v)=((u, v))-\zeta a(u, v)+\zeta(A u, v) \text { for all } v \in H \tag{9}
\end{equation*}
$$

Proof:
For all $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathrm{H}$.

$$
\begin{align*}
\left(\phi\left(u_{1}\right)-\phi\left(u_{2}\right), v\right)= & \left(\left(u_{1}-u_{2}, v\right)\right)-\zeta a\left(u_{1}-u_{2}, v\right)+\zeta\left(A u_{1}-A u_{2}, v\right) \text { for all } v \in H \\
& =\left(\left(u_{1}-u_{2}, v\right)\right)-\zeta\left(T\left(u_{1}-u_{2}\right), v\right)+\zeta\left(A u_{1}-A u_{2}, v\right), \text { by }(7) \\
& =\left(\left(u_{1}-u_{2}, v\right)\right)-\zeta\left(\left(\wedge T\left(u_{1}-u_{2}\right), v\right)\right)+\zeta\left(\left(\wedge A u_{1}-\wedge A u_{2}, v\right), \text { by }(8)\right. \tag{8}\\
& =\left(\left(u_{1}-u_{2},-\zeta T\left(u_{1}-u_{2}\right), v\right)\right)+\zeta\left(\left(A u_{1}-A u_{2}, v\right)\right)
\end{align*}
$$

Thus

$$
\left|\phi\left(\left(\mathrm{u}_{1}\right)-\phi\left(\mathrm{u}_{2}\right), \mathrm{v}\right)\right| \leq\left\|\mathrm{u}_{1}-\mathrm{u}_{2}-\zeta \mathrm{AT}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)\right\|\|\mathrm{v}\|+\zeta\left\|\mathrm{Au}_{1}-\mathrm{Au}_{2}\right\|\|\mid \mathrm{v}\|
$$

Now using (7) and (8) we have

$$
\begin{array}{r}
\left\|U_{1}-U_{2}-\zeta \wedge T\left(u_{1}-u_{2}\right)\right\|^{2} \leq\left\|u_{1}-u_{2}\right\|^{2}+\zeta^{2}\|T\|^{2}\left\|u_{1}-u_{2}\right\|^{2}-2 \zeta a\left(u_{1}-u_{2}, u_{1}-u_{2}\right) \\
\leq\left(1+\zeta^{2} \beta^{2}-2 \zeta \alpha\right)\left\|u_{1}-u_{2}\right\|^{2}, \text { by coercivity of } a(u, v)
\end{array}
$$

Then
$\left|\left(\phi\left(u_{1}\right)-\phi\left(u_{2}\right), v\right)\right| \leq \sqrt{\left(1+\zeta^{2} \beta^{2}-2 \zeta \alpha\right)}\left\|u_{1}-u_{2}\right\|\|v\|+\zeta\left\|A u_{1}-A u_{2}\right\|\|v\|$ for all $v \in H$. $\leq \theta\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\|\|\mathrm{v}\|$, by the Lipschitz coutinuity of A,
and $\theta=\sqrt{1+\zeta^{2} \beta^{2}-2 \zeta \alpha}+\gamma \zeta<1$ for $0<\zeta<2 \frac{\alpha-\gamma}{\beta^{2}-\gamma^{2}}$ and $\zeta<\frac{1}{\gamma}$, becausea $>\gamma$.
Hence for all $\mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{H}$

$$
\left\|\phi\left(u_{1}\right)-\phi\left(u_{2}\right)\right\|=\operatorname{Sup}_{v \in H} \frac{\left|\left(\phi\left(u_{1}\right)-\phi\left(u_{2}\right), v\right)\right|}{\|v\|} \leq \theta\left\|u_{1}-u_{2}\right\|
$$

The following results are proved by Mosco [2].

Lemma 3

Let M be a convex subset of H. Then, given $z H$ we have

$$
\mathrm{x}=\mathrm{P}_{\mathrm{M} \mathrm{Z}}
$$

if and only if

$$
\mathrm{x} \mathrm{M} ; \quad((\mathrm{x}-\mathrm{z}, \mathrm{y}-\mathrm{x})) \geq 0 \quad \text { for all } \mathrm{y} \in \mathrm{M} .
$$

where P_{M} is the projection of H in M .

Lemma 4.

$$
\mathrm{P}_{\mathrm{M}} \text { is non-expansive, i.e., }
$$

$$
\left\|\mathrm{P}_{\mathrm{M}} \mathrm{Z}_{1}-\mathrm{P}_{\mathrm{M}} Z_{2}\right\| \leq\left\|\mathrm{Z}_{1}-\mathrm{Z}_{2}\right\| \quad \text { for all } \mathrm{z}_{1}, \mathrm{Z}_{2} \in \mathrm{H}
$$

Using the technique of Lions-Stampacchia [1], we now prove theorem 1,

Proof of theorem 1,

(a) Uniqueness

Let $u_{i}, i=1,2$ be solutions in M of

$$
a\left(u_{i}, v-u_{i} .\right) \geq\left(A u_{i}-v-u_{i}\right) \quad \text { for all } v \in M
$$

Setting $\mathrm{v}=\mathrm{u}_{3-\mathrm{i}}, \mathrm{i}=1,2$ in the above inequality, by addition we have

$$
\mathrm{a}\left(\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{u}_{1}-\mathbf{u}_{2}\right) \leq\left(\mathrm{Au}_{1}-\mathrm{A} \mathbf{u}_{2}, \mathbf{u}_{1}-\mathbf{u}_{2}\right) .
$$

Since $a(u, v)$ is a coercive bilinear form, there exists a constant $a>0$ such that

$$
\alpha\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|^{2} \leq\left(A u_{1}-A u_{2}, \mathbf{u}_{1}-\mathbf{u}_{2}\right) \leq 0
$$

by the antimonotonicity of A. From which the uniqueness of the solution $u \in M$ follows.
(b) Existence

For a fixed ζ as in Lemma 2, and $u H$, define $\phi(u) \in H^{\prime}$ by (9). By lemma 3, there exists a unique $w \in M$ such that

$$
((w, v-w)) \geq(\phi(u), v-w) \quad \text { for all } v \in M
$$

and w is given by

$$
\mathrm{w}=\mathrm{P}_{\mathrm{M}} \wedge \phi(\mathrm{u})=\mathrm{Tu}
$$

which defines a map from H into M .

Now for all u., u H,

$$
\begin{aligned}
\left\|\mathrm{TU}_{1}-\mathrm{TU}_{2}\right\| & =\left\|\mathrm{P}_{\mathrm{M}} \wedge \phi\left(\mathrm{u}_{1}\right)-\mathrm{P}_{\mathrm{M}} \wedge \phi\left(\mathrm{u}_{2}\right)\right\| \\
& \leq\left\|\wedge \phi\left(\mathrm{u}_{1}\right)-\wedge \phi\left(\mathrm{u}_{2}\right)\right\|, \text { by lemma } 4 \\
& \leq\left\|\phi\left(\mathrm{v}_{1}\right)-\phi\left(\mathrm{u}_{2}\right)\right\| \\
& \leq \theta\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\|, \text { by lemma } 2 .
\end{aligned}
$$

Since $\theta<1$. Tu is a contraction and has a fixed point $u=T u$, which belongs to M, a closed convex set and satisfies

$$
((\mathrm{u}, \mathrm{v}-\mathrm{u}))>(\phi(\mathrm{u}), \mathrm{v}-\mathrm{u})=((\mathrm{u}, \mathrm{v}-\mathrm{u}))-\zeta[\mathrm{a}(\mathrm{u}, \mathrm{v}-\mathrm{u})-(\mathrm{Au}, \mathrm{v}-\mathrm{u})]
$$

Thus for $\zeta>0$,

$$
a(u, v-u) \geq(A u, v-u) \quad \text { for all } v \in M
$$

showing that u is a unique solution of problem 1.

Remarks

1 ; It is obvious that for $\mathrm{Au}=\mathrm{F}^{\prime}(\mathrm{u})$, the existence of a unique solution of a variational inequality (4) follows under the assumptions of theorem. 1 .

2: If A is independent of u, that is $A u=A^{\prime}$ (say), then the Lipschitz constant γ y is zero, and lemma 2 reduces to a lemma of

Lions-Stampacchia [1] and ζ is a number such that $0<\zeta<\frac{2 \alpha}{\beta^{2}}$.
Consequently theorem 1 is exactly the same as one proved by Lions-Stampacchia for the linear case. It is obvious that our result not only generalizes their result, but also includes it as a special case.

Method of Approximation

Suppose that the bilinear form is non-negative, i.e.

$$
\begin{equation*}
a(v, v) \geq 0 \quad \text { for all } v \in H \tag{10}
\end{equation*}
$$

Assume that there exists at least one solution $u \in M$ of

$$
\begin{equation*}
a(u, v-u) \geq(A u, v-u) \quad \text { for all } v \in M \tag{11}
\end{equation*}
$$

and X is the set of all solutions of (11). Let, finally, $b(u, v)$ be a coercive bilinear form on H, that is there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
b(v, v) \geq \alpha\|v\| \quad \text { for all } v \in H \tag{12}
\end{equation*}
$$

First of all we prove some elementary but important lemmas.

Lemma 5

If $a(u, v)$ is a non-negative bilinear form and $u \in M$, then the inequality (5) is equivalent to the inequality

$$
\begin{equation*}
a(v, v-u) \geq(A(u), v-u) \quad \text { for all } v \in M \tag{13}
\end{equation*}
$$

Proof

Let (5) hold, then

$$
a(v, v-u) \geq(A(u), v-u)+a(v-u, v-u) \geq(A(u), v-u), \text { by }(10)
$$

Thus (13) holds;
Conversely let (13) hold, then for all $t \in[0,1]$ and $w \in M, v_{t}=u+t(w-u) \in M$. Setting $v=v_{t}$ in (13) it follows that

$$
a(u, w-u)+t a(w-u, w-u) \geq(A(u), w-u), \text { for all } w \in M .
$$

Letting $\mathrm{t} \rightarrow 0$, (5) follows.
As a consequence of lemma 1 and lemma 5 we have the following result.

Lemma 6.

If $\mathrm{a}(\mathrm{u}, \mathrm{v})$ is non-negative bilinear form and A is hemicontinuous
antimonotone operator, then the inequality (5) is equivalent to $a(v, v-u) \geq(A(v), v-u) \quad$ for all $v \in M$.

Theorem 2

If $b(u, v)$ is a coercive continuous bilinear form and B is a Lipschitz continuous antimonotone operator with $Y<\alpha$ then there exists a unique solution $u_{o} \in X$ such that

$$
\begin{equation*}
b\left(u_{o}, v-u_{o}\right) \geq\left(B u_{o}, v-u_{o}\right) \text { for all } v \in x . \tag{14}
\end{equation*}
$$

Proof:

Obviously X is closed. In order to prove theorem (2), it is enough to show that X is convex. Since $a(u, v)$ is
non-negative, so (11) is equivalent to

$$
a(v, v-u) \geq(A v, v-u), \text { by lemma } 6
$$

Now for all $t \in[0,1], u_{1}, u_{2} \in X$,

$$
\begin{aligned}
a\left(v, v-u_{2}-t\left(u_{1}-u_{2}\right)\right)=a & \left(v, v-u_{2}\right)-t a\left(v, u_{1}-u_{2}\right) \\
& =a\left(v, v-u_{2}\right)-t a\left(v, u_{1}-v+v-u_{2}\right) \\
& =a\left(v, v-u_{2}\right)+t a\left(v, v-u_{1}\right)-t a\left(v, v-u_{2}\right) \\
& =(1-t) a\left(v, v-u_{2}\right)+t a\left(v, v-u_{1}\right) \\
& \geq(1-t)\left(A v, v-u_{2}\right)+t\left(A v, v-u_{1}\right),
\end{aligned}
$$

by lemma 6 .
Thus for all $t \in[0,1], \mathrm{U}_{1}, \mathrm{U}_{2} \in \mathrm{x}, \mathrm{tu}_{1}+(1-\mathrm{t}) \mathrm{u}_{2} \in \mathrm{x}$, which implies that X is a convex set. Hence by theorem (1), there does exist a unique solution $u_{o} \in X$ satisfying (14).

Theorem 3

Assume that (10) and (12) hold. If $a(u, v)+\in b(u, v)$ is a
continuous bilinear form and A, B are both antimonotone Lipschitz continuous with $\mathrm{Y}<\alpha$, then there exists a unique
solution $\mathbf{u}_{\varepsilon} \in \mathrm{M}$ such that

$$
\begin{equation*}
\mathrm{a}\left(\mathrm{u}_{\varepsilon}, \mathrm{v}-\mathrm{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{v}-\mathrm{u}_{\varepsilon}\right) \geq\left(\mathrm{Au}_{\varepsilon}-\varepsilon \mathrm{Bu}_{\varepsilon}, \mathrm{v}-\mathrm{u}_{\varepsilon}\right) \quad \text { for all } \mathrm{v} \in \mathrm{M} . \tag{15}
\end{equation*}
$$

Proof:
Since for $\in>0$ and by (10), (12), the continuous bilinear form $\mathrm{a}(\mathrm{u}, \mathrm{v})+\varepsilon \mathrm{b}(\mathrm{u}, \mathrm{v})$ is coercive on H , then by theorem 1 , there exists a unique $u_{\varepsilon} \in M$ satisfying (15).

Using lemma 1 and the methods of Sibony [4] and
Lions-Stampacchia [1], we prove that the elements of X can be approximated.

Theorem 4

Suppose A,B:M $\rightarrow \mathrm{H}^{\prime}$ are both hemicontinuous operators and the assumptions of theorems (2) and (3) hold. If u_{o} is the element of X defined by (14) satisfying

$$
\begin{equation*}
a\left(u_{o}, v-u_{o}\right) \geq\left(A u_{o}, v-u_{o}\right) \quad \text { for all } v \in X \tag{16}
\end{equation*}
$$

and u_{ε} is the element of M defined by (15), then

$$
\mathrm{u}_{\varepsilon} \rightarrow \mathrm{u}_{\mathrm{o}} \text { strongly in } \mathrm{H} \text { as } \varepsilon \rightarrow 0
$$

Proof:

Ihis is proved in three steps.

$$
\begin{equation*}
\mathrm{u}_{£} \text { is bounded in } \mathrm{H} \text {. } \tag{i}
\end{equation*}
$$

Setting $v=u_{o}$ in (15) and $v=u_{\varepsilon}$ in (16), we get

$$
\mathrm{a}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}_{\mathrm{o}}-\mathbf{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}_{\mathrm{o}}-\mathbf{u}_{\varepsilon}\right) \geq\left(\mathrm{Au}_{\varepsilon}+\varepsilon B \mathbf{u}_{\varepsilon}, \mathbf{u}_{\mathrm{o}}-\mathbf{u}_{\varepsilon}\right)
$$

and

$$
\mathrm{a}\left(\mathrm{u}_{\mathrm{o}}, \mathrm{u}-\mathrm{u}_{\mathrm{o}}\right) \geq\left(\mathrm{Au} \mathrm{u}_{\mathrm{o}}, \mathrm{u}_{\varepsilon}-\mathrm{u}_{\mathrm{o}}\right)
$$

By addition of these inequalities, it follows from (10) and the antimonotonicity of A that

$$
\begin{equation*}
\mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{u}_{\mathrm{o}}-\mathrm{u}_{\varepsilon}\right) \geq\left(\mathrm{Bu}_{\varepsilon}, \mathrm{u}_{\mathrm{o}}-\mathrm{u}_{\varepsilon}\right) \tag{17}
\end{equation*}
$$

Since $\mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{u}_{\varepsilon}\right)$ is a coercive bilinear form, there exists a constant a >0 such that

$$
\alpha\left\|\mathbf{u}_{\varepsilon}\right\|^{2} \leq \mathrm{b}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}_{\mathrm{o}}\right)+\left(\mathrm{Bu}_{\varepsilon}, \mathbf{u}_{\varepsilon}-\mathbf{u}_{\mathrm{o}}\right) .
$$

It follows that $\left\|\mathrm{u}_{\varepsilon}\right\| \leq$ constant, independent of ε.
Hence there exists a subsequence u_{ε} which converges to ξ, say.
(ii)

$$
\xi \text { belongs to } \mathrm{X} .
$$

Since A and B are antimonotone operators, by (15)
and the application of lemma 1 , we get

$$
\mathrm{a}\left(\mathrm{u}_{\varepsilon}, \mathrm{v}-\mathrm{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{v}-\mathrm{u}_{\varepsilon}\right) \geq(\mathrm{Av}+\varepsilon \mathrm{Bv}, \mathrm{v}-\mathrm{u} \varepsilon) \quad \text { for all } \mathrm{v} \in \mathrm{M} .
$$

Now let $\varepsilon \rightarrow 0$, then $\mathbf{u}_{\varepsilon} \rightarrow \xi$ and $\lim \inf \mathbf{a}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}_{\varepsilon}\right) \geq \mathrm{a}(\xi, \xi),[1]$ We have

$$
a(\xi, v-\xi) \geq(A v, v-\xi) \quad \text { for all } v \in X
$$

which is by lemma 1 equivalent to

$$
a(\xi, v-\xi) \geq(A \xi, v-\xi) \quad \text { for all } v \in X
$$

Thus $\xi \in X$.
(iii) \quad Finally $\left\|\mathbf{u}_{\varepsilon}\right\| \rightarrow\|\mathrm{c}\|$ when $\varepsilon \rightarrow 0$,

$$
\text { Setting } v=u \in X \text { in (15) and } v-u_{\varepsilon} \in X \text { in (11) }
$$

We obtain

$$
\mathrm{a}\left(\mathbf{u}_{\varepsilon}, \mathrm{u}-\mathbf{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathbf{u}_{\varepsilon}, \mathrm{u}-\mathbf{u}_{\varepsilon}\right) \geq\left(\mathrm{A} \mathbf{u}_{\varepsilon}+\varepsilon B \mathbf{u}_{\varepsilon}, \mathbf{u}-\mathbf{u}_{\varepsilon}\right),
$$

which is, by lemma 1 , equivalent to

$$
\mathrm{a}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}-\mathbf{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathbf{u}_{\varepsilon}, \mathbf{u}-\mathbf{u}_{\varepsilon}\right) \geq\left(\mathrm{Au}+\varepsilon \mathrm{Bu}, \mathbf{u}-\mathbf{u}_{\varepsilon}\right)
$$

Also,

$$
\mathrm{a}\left(\mathrm{u}, \mathrm{u}_{\varepsilon}-\mathrm{u}\right) \geq\left(\mathrm{Au}, \mathrm{u}_{\varepsilon}-\mathrm{u}\right)
$$

By addition one has

$$
\mathrm{a}\left(\mathrm{u}_{\varepsilon}-\mathrm{u}, \mathrm{u}-\mathrm{u}_{\varepsilon}\right)+\varepsilon \mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{u}-\mathrm{u}_{\varepsilon}\right) \geq \varepsilon\left(\mathrm{Bu}, \mathrm{u}-\mathrm{u}_{\varepsilon}\right)
$$

Using (10), and for $\varepsilon>0$, we get

$$
\mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{u}-\mathrm{u}_{\varepsilon}\right) \geq\left(\mathrm{Bu}, \mathrm{u}-\mathrm{u}_{\varepsilon}\right) \quad \text { for all } \mathrm{u} \in \mathrm{X}
$$

Letting $\varepsilon \rightarrow 0, u_{\varepsilon} \rightarrow \xi$, we have

$$
\mathrm{b}(\xi, \mathrm{u}-\xi) \geq(\mathrm{Bu} \cdot \mathrm{u}-\xi)
$$

$$
\geq(\mathrm{B} \xi, \mathrm{u}-\xi), \quad \text { by lemma } 1
$$

Thus $\xi \in X$ is a solution of (14) and since the solution is unique, it follows that $\xi-u_{o}$.

Also from (17), by the coercivity of $b\left(u_{\varepsilon}, u_{\varepsilon}\right)$, it follows that there exists a constant $\alpha>0$ such that

$$
\begin{aligned}
& \alpha\left\|u_{\varepsilon}-u_{o}\right\| \leq b\left(u_{\varepsilon}-u_{o}, u_{\varepsilon}-u_{o}\right) \\
& \leq\left(B u_{\varepsilon}, u_{\varepsilon}-u_{o}\right)-b\left(u_{o}, u_{\varepsilon}-u_{o}\right) \\
& \leq\left(B u_{o}, u_{\varepsilon}-u_{o}\right)-b\left(u_{o}, u_{\varepsilon}-u_{o}\right) \text {, by lennna } 1 \text {, }
\end{aligned}
$$

which $\rightarrow 0$, as, $\varepsilon \rightarrow 0$. Hence it follows that $\mathrm{u}_{\varepsilon} \rightarrow$ u strongly in H.

Theorem 5

If $a(u, v), b(u, v)$ are coercive continuous bilinear forms, M is a closed convex set in H, and A, B are heniicontinuous antimonotone Lipschitz continuous operators with $\alpha>\gamma$, then problem 1 has a
unique solution if and only if there exists a constant L, independent of ε, such that the solution of (15) satisfies

$$
\begin{equation*}
\left\|\mathbf{u}_{\varepsilon}\right\| \leq \mathrm{L} \tag{18}
\end{equation*}
$$

Proof:
If there exists a solution, then from theorem 4, it follows that (18) holds. Conversely suppose that (18) holds, then there exists a subsequence u_{η} of u_{ε} which converges to
w weakly in H. Since M is a closed convex set, $w \in M$, Further writing (15) in. the form

$$
\mathrm{a}(\mathrm{u}, \mathrm{u}-\mathrm{v})+\varepsilon \mathrm{b}\left(\mathrm{u}_{\varepsilon}, \mathrm{u}_{\varepsilon}-\mathrm{v}\right) \leq\left(\mathrm{Av}+\varepsilon \mathrm{Bv}, \mathrm{u}_{\varepsilon}-\mathrm{v}\right) \quad \text { for all } \mathrm{v} \in \mathrm{M}
$$

and taking $\varepsilon=\eta=0$, we find that

$$
a(w, w) \leq a(w, v)+(A v, w-v) \quad \text { for all } v \in M,
$$

which is by lemma 1 , equivalent to

$$
a(w, w-v) \leq(A w, w-v) \quad \text { for all } v \in M
$$

Thus w is the solution satisfying (11).

Existence of Solutions

In this section, the existence of the solution satisfying (10) for the cases, when M is bounded or an unbounded convex subset of H is considered.

Theorem 6

If M s a bounded closed convex subset, and A is a hemicontinuous Lipschiltz antimono tone operation, then there exists a unique solution of problem (1).

Proof:

Let $u_{\varepsilon} \in M$ be the element defined by (15). Since M is bounded, then $\left\|\mathrm{u}_{\varepsilon}\right\|$ is bounded, and theorem (6) follows from theorem (5).

Consider now the case when the set M is bounded. Let $\mathrm{M}_{\mathrm{R}}=\{\mathrm{k} ; \mathrm{k} \in \mathrm{M},| | \mathrm{k} \| \leq \mathrm{R}\}$ with R large enough so that $\mathrm{M}_{\mathrm{R}} \neq \phi$. Assume that A is hemicontinuous antimonotone operator, then by theorem (6), there exists a non-empty set,
$X_{R} \equiv$ set of all solution of $w \in M_{R}$ with
$a(w, v-w) \geq(A w, v-w) \quad$ for all $v \in M_{R}$

Theorem 7

Suppose $a(u, v)$ is a continuous bilinear form and A is a hemicontinuous antimonotone operator. If $u \in X_{R}$ with $\|u\|<R$, then u satisfies (11).

Proof
In fact, let w be any solution in M. Then for
$0<\varepsilon<1, \mathbf{u}+\varepsilon(\mathbf{w}-\mathbf{u}) \in \mathrm{M}$ and $\|\mathbf{u}+\in(\mathrm{w}-\mathbf{u})\| \leq\|\mathbf{u} \mid+\varepsilon\| \mathrm{w}-\mathrm{u} \|<\mathrm{R}$ for sufficiently small ε. Thus for $0<\varepsilon<\varepsilon_{1}, \mathrm{v}=\mathrm{u}+\varepsilon(\mathrm{w}-\mathrm{u}) \in \mathrm{M}_{\mathrm{R}}$.

Consequently such a v is allowed in (19) with $\mathrm{w}=\mathrm{u}$ and it follows that

$$
a(u, w-u) \geq(A u, w-u) \quad \text { for all. } w \in M .
$$

This proves theorem 7.

Let $\mathrm{a}(\mathrm{u}, \mathrm{v})$ be a coercive continuous bilinear form on H . The Cauchy-Schwarz inequality holds for $a(u, v)$ and is given by

$$
|a(u, v)|^{2} \leq a(u, u) a(v, v) \quad \text { for all } u, v \in H
$$

Theorem 8

A bounded bilinear form is continuous with respect to the norm convergence.

Proof:

Let $u_{n} \rightarrow u$ and $v_{n} \rightarrow v$, these sequences are bounded. We let Y be their bound, and then $\left\|\mathrm{u}_{\mathrm{n}}\right\| \leq \mathrm{Y}$.

Now

$$
\begin{aligned}
{\left[a\left(u_{n}, v_{n}\right)-a(u, v) \mid\right.} & =\left|a\left(u_{n}, v_{n}\right)-a\left(u_{n}, v\right)+a\left(u_{n}, v\right)-a(u, v)\right| \\
& \leq\left|a\left(u_{n}, v_{n}-v\right)\right|+\left|a\left(u_{n}-u, v\right)\right| \\
& \leq C \gamma\left\|v_{n}-v\right\|+C_{1}\left\|u_{n}-u\right\|\|v\|
\end{aligned}
$$

by the Cauchy-Schwarz inequality. But $\left\|\mathbf{u}_{\mathrm{n}}-\mathbf{u}\right\| \rightarrow 0$ and
$\|\left[\mathrm{v}_{\mathrm{n}}-\mathrm{v} \| \rightarrow 0\right.$ as $\mathrm{n} \rightarrow{ }^{\infty}$, and therefore
$\left|\mathrm{a}\left(\mathrm{u}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right)-\mathrm{a}(\mathrm{u}, \mathrm{v})\right| \rightarrow 0$, i.e.,
$a\left(u_{n}, v_{n}\right) \rightarrow a(u, v)$.

Theorem 9

Let v be in H and M be a closed convex subset of H. If u is a minimizing vector and $\mathrm{a}(\mathrm{x}, \mathrm{v})$ is any continuous bilinear form such
that $\mathrm{a}(\mathrm{x}, \mathrm{y})=((\mathrm{x}, \mathrm{y}))$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{H}$, then

$$
\begin{equation*}
a(u-v, w-u) \geq 0 \quad \text { for all } w \in M \tag{20}
\end{equation*}
$$

Conversely if (19) holds and $a(u, v)$ Is also coercive, then

$$
\|u-v\| \leq \alpha^{-1} c\|w-v\| \text { for all } w \in M
$$

Proof:

If u is the unique minimizing vector, then we have to show that $a(u-v, w-u) \geq 0$ for all $w \in M$.

Suppose to the contrary that there is a vector $\mathrm{v}_{1} \in \mathrm{M}$ such that $a\left(u-v, u-v_{1}\right)=\varepsilon>0$. For all $t \in[0,1]$ and $v_{1} \in M$, $\mathrm{v}_{\mathrm{t}} \equiv \mathrm{u}+\mathrm{t}\left(\mathrm{v}_{\mathbf{1}}-\mathrm{u}\right) \in \mathrm{M}$,

Now

$$
\begin{aligned}
\left\|\mathrm{v}_{\mathrm{t}}-\mathrm{v}\right\|^{2} & =\left\|\mathrm{u}+\mathrm{t}\left(\mathrm{v}_{1}-\mathrm{u}\right)-\mathrm{v}\right\|^{2} \\
& =\|\mathbf{u}-\mathrm{v}\|^{2}+\mathrm{t}^{2}\left\|\mathrm{v}_{1}-\mathrm{u}\right\|^{2}+2 \mathrm{t}\left(\mathrm{u}-\mathrm{v}, \mathrm{v}_{1}-\mathrm{u}\right) \\
& <\|\mathrm{u}-\mathrm{v}\|^{2}
\end{aligned}
$$

for, small positive t, which contradicts the minimizing property of u. Hence no such v_{1} can exist.

Conversely let ueM such that (20) holds, then for any $\mathbf{w} \neq \mathbf{u}, \mathbf{w} \in \mathrm{M}$,

$$
0 \leq a(u-v, w-u)=a(u-v, w-v+v-u)
$$

implies that

$$
a(u-v, u-v) \leq a(u-v, w-v) .
$$

Since $a(u, v)$ is a continuous coercive bilinear form, there exist constants $\mathrm{c}>0, \alpha>0$ such that

$$
\alpha\|u-v\|^{2} \leq c\|u-v\|\|w-v\| \quad \text { for all } w \in M
$$

i.e.,

$$
\|u-v\| \geq a^{-1} c\|w-v\| \quad \text { for all } w \in M
$$

The following representation of the differentiable
functions is needed

$$
F(u)-F(v)={ }_{o} \int^{1}\left(u-v, F^{\prime}(v+s(u-v)) d s\right.
$$

Theorem 10.

If F^{\prime} is antimonotone, then the real-valued functional F is weakly upper semicontinuous and concave.

Proof:

Consider

$$
\begin{aligned}
F\left(u_{n}\right)-F(u) & ={ }_{o} \int^{1}\left(u_{n}-u, F^{\prime}\left(u+s\left(u_{n}-u\right)\right) d s\right. \\
& ={ }_{o} \int^{1}\left(u_{n}-u, F^{\prime}(u) d s+{ }_{o} \int^{1}\left(u_{n}-u, F^{\prime}\left(u_{n}+s\left(u_{n}-u\right)\right)-F^{\prime}(u)\right) d s\right.
\end{aligned}
$$

If $\mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{u}$ weakly, as $\mathrm{n} \rightarrow \infty$, then the first term on R.H.S.
tends to zero. The second term is always non-positive. In fact, by antimonotonicity $\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}, \mathrm{F}^{\prime}\left(\mathrm{u}+\mathrm{s}\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right)\right)-\mathrm{F}^{\prime}(\mathrm{u})\right) \leq 0$ for all $0 \leq \mathrm{s} \leq 1$, and therefore the integrand ≤ 0 for all $0 \leq \mathrm{s} \leq 1$. Hence for a sufficiently large n, there exists $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that $F(u)-F(u) \leq \varepsilon_{n}$, i.e.,

$$
\lim _{\mathrm{n} \rightarrow \infty} \sup \mathrm{~F}\left(\mathrm{u}_{\mathrm{n}}\right) \leq \mathrm{F}(\mathrm{u})
$$

Thus F is a weakly upper semicontinuous functional. Using a similar argument, it can be seen that the antimenotonicity of F^{\prime} guarantees concavity of F .

Theorem 11.

If a functional F is concave on a convex set M, then the

Frechet differential F^{\prime} of F is antimonotone .

Proof:
For all $t \in[0,1]$ and $u, v \in M, t u+(1-t) v=v+t(u-v) \in M$.
By definition

$$
\mathrm{F}(\mathrm{v}+\mathrm{t}(\mathrm{u}-\mathrm{v}) \geq \mathrm{t} F(\mathrm{u})+(1-\mathrm{t}) \mathrm{F}(\mathrm{v})
$$

Dividing both sides by t, and letting $t \rightarrow 0$, we get

$$
\left.F^{\prime}(v), u-v\right) \geq F(u)-F(v)
$$

Similarly

$$
\left(\mathrm{F}^{\prime}(\mathrm{u}), \mathrm{v}-\mathrm{u}\right) \geq \mathrm{F}(\mathrm{v})-\mathrm{F}(\mathrm{u})
$$

By addition, it follows that

$$
\left(F^{\prime}(v)-F^{\prime}(u), u-v\right) \geq 0 \quad \text { for all } u, v \in M
$$

Thus from theorem 10 and theorem 11 one concludes that "A real-valued functional on a convex set in a Hilbert space is concave if and only if its Frechet differential is an antimonotone operator".

Acknowledgement.
Thanks are due to Professor A.Talbot and
Dr.J.R.Whiteman for many stimulating discussions and their valuable suggestions.

1. J.Lions-G.Stampacchia, Variational Inequalities, Comm.Pure Appl.Math.,20 (1967), pp.493-519,
2. U.Mosco, An introduction to the Approximate solution of Variational Inequalities in Constructive Aspects of Functional Analyst s; Edizioni Creraonese, Roma 1973, pp.499-685.
3. M.Aslam Noor, Bilinear Forms and Convex sets in Hilbert Space, Bull. Un. Math. Itaj.iana, 5 (19 72) ,pp . 24 1-244.
4. M.Sibony, Approximation of Nonlinear Inequalities on Banach Spaces in Approximation Theory, edited by A.Talbot, Academic Press,London (1970) pp.243-260.

