
Preprint / Computers & Graphics (2019) 1

Dynamic implicit muscles for character skinning

Valentin Roussellet1, Nadine Abu Rumman1, Florian Canezin1

Nicolas Mellado1, Ladislav Kavan2, Loı̈c Barthe1

1 Université de Toulouse, IRIT, CNRS
2 University of Utah, School of Computing

Abstract: Most current methods for character skinning can
be categorized into 1) geometric techniques, which are fast and
easy to use but often lack physical realism, 2) data-driven ap-
proaches, which require a large set of examples that are tedious
to edit, and 3) physics-based methods, which are highly realistic
but slow and difficult to use. Recently introduced geometric
Implicit Skinning methods can solve contact interactions and
skin elasticity with results comparable to physics-based sim-
ulation in real-time. In this paper we introduce an animation
method that adds anatomical plausibility while benefiting from
the advantages of Implicit Skinning. We propose an efficient way
to model muscle primitives with implicit surfaces. Volumetric
extrusions of individual muscles are attached to muscle cen-
ter lines simulated with a fast, low-dimensional physics-based
approach (Position Based Dynamics of one-dimensional line
segments). This combination of physics-based simulation with
implicit modeling allows us to elegantly resolve muscle-muscle
and muscle-bone collisions and add dynamic effects such as
flesh jiggling while guaranteeing volume preservation (which
is a property of real biological muscles) and producing visually
plausible skin-skin contact behavior. Our method runs at inter-
active frame-rates and features intuitive modeling parameters
which allow animators to quickly explore a variety of designs
and physics-based effects.

1. Introduction

Character animation is a central component of animated dig-
ital media such as films, computer games, and virtual reality.
However, the production of compelling and appealing deforma-
tions of a virtual character to imbue it with life remains very
challenging due to the complexity of the human (or humanoid)
body, which is composed of bones, muscles and soft tissues.
Specific challenges include run-time performance and param-
eter tuning. Ideally, the resulting deformation models should
run interactively on commodity machines and rely only on intu-
itive parameters with predictable outcomes on the result. While
providing basic skeletal articulation is mandatory to produce
animated characters, taking into account the motion of the un-
derlying anatomy significantly increases the realism of the final
animation. Existing methods simulating the behavior of all
anatomic tissues exist, but they require extensive computational
resources, limiting their use in interactive applications.

In this paper, we explore the idea of adding muscle defor-
mations to skeleton-based geometric skinning approaches. We
focus specifically on modelling the muscle’s shape deformation
when they contract, expand and activate under effort. Unlike fat

tissues, muscles tend to stay very tense and stiff. We model their
elasticity with a dynamic simulation.

Three main families of techniques have been considered to fol-
low this direction by extending Linear Blend Skinning (LBS) [1]
or Dual Quaternion Skinning (DQS) [2]. The first are pose-based
approaches, based on modeling and animation tools, allowing
users to edit the character skin in user-specified key poses [3].
Despite being very general and enabling users to model arbitrary
skin deformations, manual sculpting is very time-consuming and
tedious, especially if similar edits need to be repeated multiple
times. A second family of methods uses muscle primitives which
are positioned inside the character body and act as deformers
generating additional skin deformations, usually designed to
preserve volume. Geometric modeling of muscles provides inter-
active parameter tuning [4]. However, deformation parameters
are often tedious to set and the resulting skinning solution is sub-
ject to the well-known Linear Blend Skinning (LBS) and Dual
Quaternion Skinning (DQS) limitations, i.e., no skin-contact de-
formation and volume loss or gain near joints. The third family
is represented by data-driven methods, which learn a set of mesh
deformers from captured data [5, 6]. However, the produced
deformations are limited by the extent of the training set and the
difficulty to artistically control the results.

Our contribution is an approach that combines the advan-
tages of muscle primitive deformers with an interactive geo-
metric skinning technique producing high-quality skin deforma-
tion including contact handling (Figure 1). We rely on Implicit
Skinning [7, 8] to resolve self-intersections and represent skin
elasticity. However, unlike Implicit Skinning, in this paper we
also consider several important phenomena contributing to mus-
cle and skin shape, such as muscle-muscle and muscle-bone
collisions and dynamic effects induced by the skeletal motion.

Our technical contributions are two-fold: first, we introduce
new muscle primitives mimicking the shape and deformation
of real muscles (including bulging, deflation, and activation),
ranging from relatively simple ones such as the biceps to more
complicated pectoral muscles. During animation, our muscles
maintain nearly constant volume. We define our muscles as
curve-sweep surfaces, with the dynamics of the curves guided
by Position Based Dynamics [9]. The use of 3D scalar fields for
our muscle primitives enables the integration of these muscles in
the Implicit Skinning framework, which provides fast skin-skin
contact modeling. The implicit representation of muscles is also
perfectly suited for collision response, allowing us to efficiently
resolve muscle-bone and muscle-muscle collisions.

Secondly, we show how to adequately integrate our muscle
primitives in the Implicit Skinning framework so that the fi-
nal skinning solution naturally benefits from its skin contact
resolution.

In our implementation, muscle shapes and dynamic behavior
are controlled by a small set of intuitive parameters, avoiding
the need for tedious sculpting of corrective shapes (as in pose-
based methods), as well as expensive computational cost and
complicated parameter tuning of physical simulation techniques.
During the rigging phase, setting the skinning parameters can be
done interactively and the total computation time of our method,
given a character including more than fifty animated muscles, is

2 Preprint / Computers & Graphics (2019)

Figure 1. On the left, the muscular and bone structure of the character are shown in the bottom inset. These muscles are represented by new implicit
primitives deforming at constant volume with elasticity and collisions computed with Position Based Dynamics. On the right, the different poses of
the character jumping illustrate the change in muscle shape due to activation/relaxation, stretch/elongation and the result of the muscle-bone collision
resolution. Our muscles adequately seamlessly fit into the Implicit Skinning framework, allowing us to produce character animation with skin contact and
elasticity.

less than a second per frame on a standard CPU.

2. Related work

The production of plausible skin-muscle deformations from
skeletal motion is a long standing problem in computer anima-
tion and several types of approaches emerged in previous work.

Capture-based methods. Data-driven methods [10] can be di-
vided into 1) methods where artists directly craft the data such as
target skin or muscle shapes and 2) methods based on capturing
data of real subjects, e.g., using 3D scanning or motion cap-
ture. Seminal work in the latter category introduced statistical
shape models explaining both body and pose-based variations
[11, 12, 13]. Subsequent work focused on capturing and mod-
eling flesh and muscle motion using traditional motion capture
systems [14, 15] or multi-camera setups with dots painted on
the skin [16]. Loper et al. [17] showed how realistic pose
and body shapes can be extracted from standard motion capture
markers by using a data-driven human body model, and Tsoli et
al. [18] focused on capture-based modeling of breathing. Fast
models for real-time applications rely on combining linear blend
shapes [19], rotation regression [6] or helper-bone rigs that
have proven useful for delivering effects such as muscle bulging
[5, 20]. Another exciting strand of current research is learning
dynamics from data, either using statistical methods [21] or
by combining statistical methods with physics-based simulation
[22].The most recent work [22] is starting to show promise of
being able to generalize to imaginary artist-designed characters.
Nonetheless, capture-based methods are generally limited by the
availability of real-world human subjects.

Physics-based methods. The advantages of biomechanical mod-
eling of the human body have been recognized early on in
computer graphics [23, 24, 25, 26, 27]. More recently, re-
alistic Finite Element-based simulation of flesh has been ex-
plored [28, 29] and extended into a comprehensive biomechani-
cal upper-body model [30]. Biomechanical models are usually

more focused on accurate computation of the force exerted by
muscles and less on their mass or shape [31, 32]. These models
have been used to represent the underlying tendons and muscles
of an anatomy-based model to create realistic skin deformation
of the hand [33, 34]. Advanced numerical simulation methods
have been developed for production environments [35, 36]. Fan
et al. [37] explored an Eulerian-on-Lagrangian approach to sim-
ulate musculoskeletal systems, extended to tendons by Sachdeva
et al. [38].

An important advantage of physics-based simulation is the au-
tomatic handling of skin contact, e.g., when bending the elbow,
which is tedious to model accurately with data-driven methods.
The main concern of physics-based methods is speed, which
motivated the development of fast physics-based methods ca-
pable of handling collisions [39]. More recent works explore
the use of physics-based simulation in modeling [40] and the
combination of physics-based and data-driven methods [41, 22].

Geometric methods. The need for producing animations of both
realistic and stylized characters led to the development of various
skinning methods providing interactive and intuitive user control.
These methods usually start with geometric techniques to pro-
duce pose-based articulation [1, 42, 43, 44, 45, 46, 47, 48, 49],
which can be subsequently enriched with artist-provided “cor-
rectives” in a set of poses to produce flesh-like effects such as
muscle bulging [3, 50, 51]. Finite Element Methods with model
reduction in the rig-space [52] or in the pose-space domain [53]
may be used to help the artist. However, creating corrective
shapes to achieve the desired anatomical effects remains very
tedious [54]. Although these methods are included in several
commercial simulation packages such as Maya Muscle [55] and
Weta’s Tissue System [56], setting up musculoskeletal models
with adequate physical properties is time-consuming even for
experienced artists.

To avoid the manual modeling of muscle deformations in
key poses, muscles may be represented by geometric primitives
using parametric ellipses or more elaborated sweeping objects [4,

Preprint / Computers & Graphics (2019) 3

57]. Muscles are deformed at constant volume [58] and muscle
dynamics can be added by representing the muscle sweeping
axis with a mass-spring system [59]. Muscle transformations are
then weighted over the mesh representing the skin. In a similar
spirit, Hyun et al. [60] represented the character body with radial
sections that are deformed by the muscle primitives. A contact
plane is also introduced to resolve self-collisions at simple joints,
i.e., elbows and knees. Finally, Leclercq et al. [61] proposed
to represent the muscles as elliptic scalar fields. Even though
fast to compute, these approaches do not resolve muscle-bone
collisions that are required for realistic muscle deformation at
complicated joints (e.g. the shoulder). In general, they also do
not handle skin self-collisions and skin elasticity.

3. Technical background

Let us briefly summarize the basic concepts of Implicit Skin-
ning [8] and introduce the corresponding notation. The input is
an animated skeleton with the mesh representing the animated
character equipped with skinning weights and segmented ac-
cording to skeletal bones. This segmentation associates a part
defined by a set of mesh vertices to each bone, each of them
representing an articulated body part(finger phalanx, upper and
lower arm, thigh, leg, torso, etc.). In Implicit Skinning, each
part is approximated with an isosurface in a 3D scalar field with
compact support f j : R3 → R. Vaillant et al. [7] use Hermite-
Radial-Basis-Functions (HRBF) [62] to define these scalar fields
f j for their natural ability to approximate positions and normals
with smooth scalar fields. Following the standard convention
used in compact support implicit surface modeling [63], the
approximating isosurface of f j is the 0.5-isosurface.

By composing this set of by-part scalar fields f j, a single scalar
field f representing the entire character skin is then defined [64,
65]. Specific compositions achieve desirable deformations of
the 0.5-isosurface of f at joints, and include a contact surface
where the skin self-collides during its animation. At this step,
each mesh vertex stores its initial field value in f .

At run-time, the mesh is incrementally animated (i.e., each
animation frame provides the initial pose for the computation
of the following one) via geometric skinning and, simultane-
ously, the field function f by applying rigid transformations to
the underlying field functions f j. The mesh vertices then march
following the gradient of f with interleaved tangential relax-
ations minimizing a modified As-Rigid-As-Possible (ARAP)
energy [66] until they reach their initial field value.

4. Overview

In this paper, we present a new type of muscle primitives and
a way to embed them into the Implicit Skinning framework [8].
The key idea of Implicit Skinning is to produce the skin defor-
mation on the 0.5-isosurface of f (representing the character)
and let the mesh track these deformations while maintaining its
elasticity. In order to insert muscle dynamics into this frame-
work, we propose to modify the definition of the scalar fields
f j attached to the bones in order to include muscle deforma-
tions. Doing so, the field f (and thus the mesh after tracking)

a) b) c)

Figure 2. Influence of our muscle deformations on Implicit Skinning. Start-
ing from an input pose (a), the muscle is activated (b) and the arm flexed
(c). All along, the primitives preserve their volumes and are deformed to
avoid collisions. The shape of the muscle central line (in green) is deformed
using Position Based Dynamics (PBD) [9].

also includes these deformations and self-contact surfaces by
composition of scalar fields f j.

We thus define muscle shapes and dynamics using new field
functions fM (Sections 5 and 6), and insert them as additional
primitives in the definition of fields f j (Section 7). Muscle
primitives are parameterized as follows (see Figure 3):

• two extremity points: the origin m0 and the insertion m1,
attached relatively to the bones of the animation skeleton
and moving kinematically (Section 5.1),

• a set of user parameters to control the muscle geometry, e.g.
longitudinal/radial profiles and volume (Section 5.2),

• a rest shape, an activated shape, and a shape interpolation
scheme at constant volume to smooth the transition between
these two muscle states (Figure 2 and Section 5.2),

• a set of particles to simulate elastic deformation of the
muscle, resolve muscle-muscle and muscle-bone collisions
and add dynamics effects using Position Based Dynamics
(Section 6).

pi

m0

m1

q

C

nm0

nm1

fM = 0

θ(q)
qcross-sectional view:

ni C (s(q))

R(q)

Figure 3. Schematic view of our muscle primitive with notations.

4 Preprint / Computers & Graphics (2019)

5. Muscle Primitive

The range of shapes that our muscle model produces relies
on its adequation to the muscle shapes provided in an anatomic
human model [67], the set of muscle shapes and deformations
currently used in the computer graphics literature [68, 37], and
the capacity of the representation to satisfy our technical (col-
lisions, insertion in the Implicit Skinning) and performance
requirements.

We propose a formulation producing fusiform muscles defined
by swept primitives with a minimal number of user parameters:
two parameters for the longitudinal and one for the radial profile,
with a scaling parameter. Our model is able to change from rest
to activation shape at constant volume. More complex muscles
are represented by combining multiple primitives, as explained
in Section 5.3. We present the details of our muscle model in this
section and discuss the user parameters in Sections 8.3 and 8.4.

5.1. Model

We initially define a muscle M as a scalar field fM : R3 → R
constructed by sweeping a profile function R along a central
polyline C (see Figure 3 for notations). We design fM as a
smooth distance field with 0-isovalues describing the muscle
boundaries.

The evaluation of fM at a point q consists of three steps de-
tailed below: construction of the central polyline C , projection
of q on C to compute the distance d(q,C), and evaluation of the
sweeping profile function R(q). The value of the scalar field at
any point q is then given by

fM(q) = d(q,C) − R(q). (1)

Central polyline construction.. The two endpoints m0 and m1 of
the muscle primitive are each attached to an animation bone, so
they move kinematically during the animation. The line segment
[m0,m1] is divided into N parts with intermediate control points
pi. The resulting polyline C is parameterized by s ∈ [0, 1], and
we denote as s(q) the curvilinear parameter of the projection of
q on C . In order to model muscles with elliptic profiles, the
polyline is oriented at each endpoint by given normal vectors
nm0 and nm1 . We associate to each control point of the polyline
pi a normal vector ni, defined as follows:

1. we compute an interpolated normal vector by spherical lin-
ear interpolation of the normal vectors of the two endpoints,

2. we project this interpolated vector on the plane spanning
pi−1, pi and pi+1 to account for the local twist of the polyline.
If these three points are aligned, we interpolate the normals
of the two closest polyline control points for which they are
defined.

The polyline normal at s(q) is then computed by spherical linear
interpolation of the control point normals ni, ni+1 of the polyline
segment it belongs to.

Projection operator and distance to polyline.. The projection
of a query point q on C is a critical step of our approach, as it
shapes the properties (e.g. continuity) of the distance function

Orthogonal projection Our projection operator

Figure 4. Comparison between standard point-to-segment orthogonal pro-
jection, and ours. Colors are computed w.r.t. the curvilinear axis s(proj(q)).
Note the discontinuities appearing when using standard orthogonal projec-
tion.

d, and thus the primitive scalar field (see Eq. 1). The distance
function d is defined as follows:

d(q,C) =
∥∥∥q − proj(q,C)

∥∥∥
2 .

As shown in Figure 4 (left), projecting the query point on the
closest segment yields discontinuities in the interior regions
of the dihedral angles formed by the segments of the polyline.
Similar problems arise also with interpolation on triangle meshes
[69, 70].

pi

pi+1

pi+2

hi

hi+1
λi+1λi

q

We fix this problem by reparam-
eterizing the projection on the ar-
eas where a point q projects on the
interior of two consecutive seg-
ments using the cotangent of the
angles λi and λi+1 formed between
the point and the two segments, as
illustrated in the right inset. The projection algorithm is detailed
in algorithm 1. As shown in Figure 4 (right), our operator does
not exhibit discontinuities and allows projection onto the poly-
line vertices even in the interior regions of the dihedral angles
formed by the segments of the polyline.

Algorithm 1 Reparameterization of the polyline projection
for all segments [pi,pi+1] of C do

compute hi, the nearest point from q to the segment and si

its parameter
end for
Let h be the nearest point from q among all hi, and sh its
parameter.
if ∃i such as ((h = hi or h = hi+1) and (none of hi, hi+1
belongs to {p0..pN})) then

s(q) = si cot λi+si+1 cot λi+1
cot λi+cot λi+1

else
s(q) = sh

end if
return C (s(q))

Sweep surface. The sweep surface is defined by “sweeping” a
profile function R(q) along C . In order to describe the overall
shape of fusiform muscles, we parametrize R(q) w.r.t.

• s(q), the curvilinear parameter,

• θ(q), the angle between the polyline normal at s(q) and the
vector q − proj(q,C) (Figure 3).

Preprint / Computers & Graphics (2019) 5

We specify R to be separable to enable easy evaluation of the
muscle’s volume, i.e.,

R(q) = w Φ (s (q)) r (θ (q)) , (2)

where Φ(s) represents the distribution of mass along the axis, r
represents the polar profile of the muscle and w is a width scale
factor. A sufficient condition for the muscle volume to remain
constant is ensuring that

∫ 1
0 (Φ(s))2 ds and

∫ 2π
0 (r(θ))2 dθ are

constants, as will be shown in the next section. We define our
functions Φ and r so that these integrals both equal 1.

5.2. High level shape parameters

The shape of our muscle primitive is defined by the muscle
central polyline C , the scale factor w, and the two sweeping
functions r and Φ. In this section we discuss how these parame-
ters offer control over 1) the muscle volume, 2) the longitudinal
and radial shape profiles, 3) rest/activation muscle shapes. Pa-
rameters controlling the muscle shape are detailed in Section 8.4.

Volume. When C is a straight line we can evaluate the volume
of the muscle in cylindrical coordinates as

V =

∫ 1

s=0

∫ 2π

θ=0

∫ wΦ(s)r(θ)

ρ=0
ρdρ dθ lds = πw2l, (3)

where l is the length of the polyline C (see the derivation details
in Appendix A). When the muscle length l changes during
the animation, we simply recompute the scale w =

√
V/πl in

Equation 2. This makes the muscle inflate when it contracts and
shrink when it is stretched, with constant volume (see Figure 2,
top row). Our volume computation is global and performed
on a straight polyline C , it thus becomes approximate when
C is curved. In practice the volume loss due to the polyline
curvature is indiscernible (around 1-3% in our experiments, see
Section 8.2). Note that local computations could be considered
for a more accurate volume conservation, but this would involve
significant computations for a very subtle effect on our muscle
parameters adjustment.

Shape longitudinal profile. We define Φ, the distribution of mass
along the muscle axis, as

Φ(s) = ϕ(α, β; s),

where α, β are scalar parameters controlling the shape of the
profile. Our definition of ϕ is inspired by the Euler beta func-
tion, as it provides geometric profiles similar to muscle shapes.
According to Equation 3, volume conservation is guaranteed
when the integral of the square of our base function is constant,
regardless of α and β. We thus define

ϕ(α, β; s) =
ϕ0(α, β; s)
‖ϕ0(α, β; s)‖2

where ϕ0 is defined for s ∈ [0, 1] as

ϕ0(α, β; s) = sα−1(1 − s)β−1.

e = 0 e = 0.5 e = 0.7 e = 0.9

Figure 5. Elliptic profiles at constant area for different values of the ellipse
eccentricity e.

As such, ϕ(α, β; s) can be explicitly written as

ϕ(α, β; s) =
sα−1(1 − s)β−1√∫ 1

0 y2(α−1)(1 − y)2(β−1)dy
. (4)

In principle, α and β can be any positive numbers. For muscle
profiles we consider only integer values for efficiency of eval-
uation. We additionally impose α > 1 and β > 1 to yield a
function where ϕ(0) = ϕ(1) = 0, and α ≤ 9 and β ≤ 9, larger
values leading to very sharp profiles that do not correspond to
realistic muscle shapes. Note that the denominator of Equation 4
is independent of s and can be pre-computed for all allowed
values of α and β using the Euler beta function.

The ratio α/β controls the asymmetry of the shape (with the
distribution being symmetric for α = β) while the individual
values of α and β control the sharpness of the function’s rise on
each side, as illustrated by Figure A.16 in the Appendix.

Shape radial profile. In our muscle representation, the radial
profile is elliptic and controllable by a single parameter, the
ellipse eccentricity e as illustrated in Figure 5. Formally, we set
r to be an ellipse of semi-axis lengths u and v:

r(θ) =
uv√

u2 cos2 θ + v2 sin2 θ
. (5)

The ellipse parameters u and v are directly computed from the
eccentricity e so that the product uv = 1 (i.e., the area of the
ellipse is always equal to that of a circle of radius 1):

u =
4
√

(1 − e2) v = 1/u.

Rest and activation shapes. When modeling a muscle, there are
two shapes to control the muscle state during the animation: the
rest shape corresponding to a relaxed state of the muscle fibers
and the activation shape corresponding to an increase of tension
in the muscle fibers. As illustrated in Figures 2(a) and 2(b)
changing of state does not require a change in muscle length, it
is an abrupt modification of muscle shape (i.e longitudinal and
radial profiles) that can be smoothed over a small sequence of
frames by an interpolation at constant volume.

We propose to model this change of muscle state by inter-
polating between the two sets of shape parameters (α0, β0, e0)
and (α1, β1, e1). We use a ∈ [0, 1] to denote the interpolation
parameter. By convention, the rest shape of the muscle corre-
sponds to a = 0, and full activation to a = 1. While parameters
e0 and e1 are linearly interpolated, we need to re-normalize the
interpolation of the pairs α0, β0 and α1, β1 to preserve volume.
This is done as follows:

Φ(s) =
(1 − a)ϕ(α0, β0, s) + aϕ(α1, β1, s)

√
F(a)

,

6 Preprint / Computers & Graphics (2019)

2

1

0

a=1a=0 a=0.2 a=0.4 a=0.6 a=0.8

0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

Figure 6. Profiles of the Φ function for α0 = β0 = 3 and (α1, β1) = (4, 7).

where

F(a) =

∫ 1

0
((1 − a)ϕ(α0, β0; s) + aϕ(α1, β1; s))2 ds.

While the value of F might appear to be expensive to compute
for each a, it can be formulated as

F(a) = (1 − a)2 + a2 + 2a(1 − a) K(α0, α1, β0, β1),

where K is a constant term which can be expressed in terms of
the Euler beta function B

K(α0, α1, β0, β1) =
B(α0 + α1 − 1, β0 + β1 − 1)√

B(2α0 − 1, 2β0 − 1)B(2α1 − 1, 2β1 − 1)

(see derivation in Appendix B). In practice, K can be precom-
puted and tabulated in preprocessing, resulting in fast runtime
evaluations. Figure 6 shows an example family of functions Φ

at various levels of interpolation a .

5.3. Extension to non-fusiform muscles

This model produces fusiform muscles such as biceps brachii
of the upper limb or quadriceps from the lower limb. To model
more complex muscles such as the pectoralis major, we follow
a method similar to the one proposed by Scheepers et al. [57]
and Murai et al. [71]. We represent these muscles by instancing
several fusiform shapes, each integrating a set of muscle fibers.
Figure 7 shows an example of pectoral and shoulder muscles.
Depending on the desired deformation effects, muscle collisions
can be ignored (Figure 7 between green muscles) or enabled as
explained in Section 6.3 (Figure 7 between blue muscles).

Figure 7. Pectoral (green) and shoulder (blue) muscles represented by sets
of fusiform fibers. In this case, shoulder muscles collide against each other,
while the pectorals are allowed to overlap to better approximate the desired
shape.

6. Dynamic Muscle Deformations

In Section 5 we have introduced a purely kinematic model for
muscles, which deforms at constant volume and whose shape
is controlled by high level user parameters. In this section, we
show how we extend this model (Section 6.1) to deform the
muscles according to their reaction to the animation motion,
e.g. muscle jiggling (Section 6.2), and their surroundings: other
muscles, bones, or skin (Section 6.3).

6.1. Deformation modeling

To imbue muscles with dynamic behavior, we deform their
shape by letting the control points pi of the central polyline C be
driven by physics-based simulation. While the two extremities
m0 and m1 of C still follow the kinematics of their skeleton,
each internal point pi is represented by a particle animated by
Position Based Dynamics (PBD) [9]. Thus the muscle elastic-
ity and collisions are expressed as constraints solved with the
standard PBD Gauss-Seidel solver. This solver iterates on each
constraint sequentially yielding a correction applied to the parti-
cle’s position (see Figure 8). A strong benefit of our approach
is that muscles are defined by 3D scalar fields, which yields
very efficient distance queries and allows to interactively resolve
collisions (Section 6.3), even for a large number of constraints
and particles.

6.2. Muscle elasticity and animation-induced motion

The mass of the whole muscle is set by computing its initial
volume multiplied by the average density of muscle tissues ρM =

1.06 g.cm−3 [72]. Each moving particle of the muscle’s axis is
assigned a fraction of this mass proportionally to the width of
the muscle at their initial position on the axis.

The axis particles are tied together by elastic distance con-
straints which act as springs in the PBD framework. Each of
these constraints is parameterized by its rest length l0 and stiff-
ness k. The rest length is set as l0 =2% of the initial distance
between the central particles, to provide tension to the muscle
axis. A rest length of l0 =100% is assigned to the first 10 %
of the length of the muscle at each extremity to represent the
more rigid tendons linking the muscle to the bones. The stiffness
values k controls the strength of the muscle tone. As discussed
in Section 8, in our setup a value of k ≈ 0.1 generates a muscle
following the motion of its attachment bones with lots of inertial
effects, while a value of k ≈ 0.7 produces a very tense muscle
(almost no inertial effects).

6.3. Collision resolution

In our body, the shape of muscles is constrained by the pres-
ence of rigid bones, other muscles, soft tissues, and skin. To gen-
erate more plausible muscle deformations and to better capture
the effect of volume preservation, it helps to resolve collisions
among the individual organs. The use of scalar fields in con-
junction with PBD provides an efficient framework for collision
resolution.

Preprint / Computers & Graphics (2019) 7

Muscle elasticity Muscle-Bone Muscle-Muscle Muscle-Skin

Figure 8. Constraints used to model muscle properties and interactions
with surrounding elements.

Muscle-bone collision. We resolve muscle-bone collisions by
constraining the particles to stay above a certain radius from
the bones. To do so, each particle behaves as a sphere which
collides against the bone surface. The collision radius of the
particles pi is set as wΦ(pi), that approximates the average radius
of the muscle’s surface. Since the muscle’s shape evolves during
the animation, this radius has to be updated every frame before
the PBD solver is executed. The distance between particles
and bones is computed efficiently using precomputed distance
fields associated with bone shapes (as illustrated in Figure 2) or
analytically computing the distance to cylindrical bone proxies
(Figure 1).

Muscle-muscle collision. We optionally model collision be-
tween muscles in a similar fashion, by constraining the particles
of one muscle against the distance field fM of another muscle.
This feature is useful for modeling complex muscles consisting
of multiple parts that would otherwise overlap.

Muscle-skin interaction. To represent the effect of the skin en-
closing the muscles, we add a third field-based constraint to
keep the particles themselves inside the 0.5-isosurface of the
nearest HRBF field (see Section 7 for the integration of our
muscle primitives with the initial HRBF f j in the Implicit Skin-
ning framework). This is especially useful for muscles whose
shape runs astride a complex joint such as the pectoral across the
shoulder, since the tendency of the axis is to form a straight line
outside the body. It also prevents inertial effects from dragging
the particles outside of the skin in fast motions such as jumping
or running.

Regularization. Additionally, to model the visco-elastic prop-
erties of biological soft tissues, we introduce a global damping
coefficient µ of 0.9 on the velocities at each integration step of
the PBD solver. This damping models resistance due to interac-
tions of the muscles with other soft tissues (e.g. fat) and prevents
long-term muscle vibrations by dissipating their velocity. Also,
similarly to rigid-body PBD [73], we add a tangential friction
term for each particle which collides against a bone or a mus-
cle. This friction force is opposed to the current velocity of the
particle, simulating the loss of energy when the two anatomical
objects interact.

7. Integration with Implicit Skinning

7.1. Composition operators
As explained in Section 4, the dynamic deformations of our

muscles have to be included in the scalar fields f j (defined by
HRBF) before they are composed to produce the final field f
whose 0.5-isosurface represents the skin.

The field representation fM introduced in Section 5 is a dis-
tance field with a global support. Implicit Skinning relies on
compactly supported field functions and an homogeneous for-
mulation is required to adequately integrate our functions [63].
We thus convert our muscles to compact support by composing
fM with a fall-off transfer function as done for the HRBF fields
described by Vaillant et al. [7]. We then assemble together all
muscular fields associated with a given animation bone with a
union operator before blending them with the HRBF to produce
the new fields f j.

The mesh tracking step of Implicit Skinning (Section 3) relies
on a gradient descent in the field f . Gradient directions should
thus be smooth and singular points (where ∇ f = 0) in tracking
areas must be avoided. The standard max union operator on field
functions [75, 76] is known to produce gradient discontinuities
and we rather compose muscles with clean union operators
[77, 78] that generate a smoothed gradient. The blending of the
assembled muscles with the HRBF introduces singular points
along the muscle axis in the fields f j. It also produces gradient
directions pointing to the bone rather than the skin in the bone-
facing part of muscles as illustrated in Figure 9-center. This
problem in implicit modeling has been raised by Canezin et
al. [74] when small details are added to a large object with
a blending operator. The solution is to use the detail blending
operator of Canezin et al. [74] that blends only the outside
part of the muscle without including the central singular points
and the bone-facing parts in the resulting field, as illustrated in
Figure 9-right.

During the animation, we want the skin to capture the underly-
ing muscle’s shape when it bulges out but also when it contracts.
In our approach, muscles are added to the initial HRBF skin
approximation using a blending operator (union with a smoothed
transition between the combined objects). This means that if the
muscle deforms completely inside the HRBF, it will not modify
its shape, leaving the skin represented by f j unchanged. In order
to deform the skin shape f j with all visible muscle deformations,
we reduce the HRBF surface along muscles so that it represents
a muscular rest surface. The blending of the muscle primitives
then locally adds the muscle shapes in the limb representation,
and the skin shape in this area follows the deformations of the
muscles.

7.2. Integration in the Implicit Skinning pipeline
Figure 10 illustrates the framework to follow for the produc-

tion of an animation frame. At each new frame, the animation
skeleton is transformed to its new position. Data which is kine-
matically bound to the animation bones, such as the individual
HRBF fields, the muscles endpoints and the scalar fields rep-
resenting the rigid bones are updated. Keyframed per-muscle
shape parameters (eccentricity, activation and width exaggera-
tion) are also updated during this stage.

8 Preprint / Computers & Graphics (2019)

setup with union operator with detail operator

Figure 9. Left: a typical skinning setup with muscles and bone primitives blended with the HRBF field. Center: using a union operator yields singular
points (red dotted line) and wrong gradient directions (red arrows) near the 0.5-isosurface. Right : the use of Canezin et al. [74] detail blending operator
(right) avoids these problems, eliminating the singular points and yielding a smooth gradient.

Animation

Compute relative
transformations

Mesh Update

Transform HRBFs Transform
Muscles ends

Update Muscles
Parameters

PBD

Update Primitives

Mesh Tracking

Standard animation Implicit Skinning Muscles primitives (ours)

Figure 10. Breakdown of the Implicit Skinning pipeline with muscles. Steps
pictured in grey are the standard geometric skinning pipeline, steps in
brown are the Implicit Skinning correction algorithm and steps in salmon
are our new anatomic-related workflow. Each arrow represents a direct
dependency between steps.

Next, the PBD solver computes the new position of the parti-
cles. The PBD timestep can be set to a fraction of the animation
framerate, which yields an overall stiffer behavior of the physics
engine. After the new particle positions are computed, each mus-
cle updates its sampled normals ni as described in Section 5.1
and scales its width according to the new length of its axis, as
explained in Section 5.2. All underlying field functions are now
set and the final skin field f is ready to be evaluated by the
Implicit Skinning tracking to skin the character mesh vertices.

8. Results and discussions

We set up a variety of scenes ranging from simple motions,
such as an arm shake or a biceps curl (involving only a few
muscles) to challenging motions, such as jumping and running
with a fully rigged model. Please see Table 1 for details.

Results were generated on a 3.6 GHz Intel Xeon E5-1650
CPU with 64 GB of memory. Our method does not add signifi-

Table 1. Summary of the scenes used for our results. The number of PBD
constraints is given for 30 particles per muscle.

Scene # vertices # bones # muscles # constraints

Arm shake 2172 3 4 456
Biceps curl 2172 3 4 456
Jump 19296 12 50 4250
Run 19296 12 50 4250

Figure 11. Calf muscles in their least activated state (left; α0 = β0 = 3, a =

0) and their most activated state (right; α1 = 4, β1 = 8, a = 1). Dorsal
muscles are shown in their rest state (α0 = 2, β0 = 3).

cant memory overhead to Implicit Skinning due to the compact
representation of muscles in memory. The blending operator
of Canezin et al. [74] and the optional cached distance fields
for anatomic bones are the only memory overhead required for
adding our muscle deformations. This represents less than 200
KB for the operator and 8 MB per optional anatomic bone.

The default shape setting for our muscles is α0 = β0 = 3
and α1 = 4, β1 = 7, yielding a smooth symmetric shape in its
inactivated state and a significant bulge in its fully activated state,
as depicted in Figure 11, left. Other shapes are also used in large
flat muscles such as dorsals (α0 = 1, β0 = 3) (Figure 11, right)
or pectorals (α0 = 3, β0 = 9) (Figure 7).

The stiffness of the distance constraints between the particles
affects mostly the inertial motion of the muscle: stiff muscles
(k = 0.6) tend to closely follow the skeleton’s motion while

Preprint / Computers & Graphics (2019) 9

Table 2. Average times in seconds per frame for our different scenes and
30 particles per muscle. Times are given for Implicit Skinning without
muscles (IS only), for Implicit Skinning with muscles but without the PBD
simulation (IS), and for the PBD simulation (PBD).

Scene Standard IS IS + Muscles

Tracking PBD Total

Arm shake 0.008 0.013 0.055 0.068
Biceps curl 0.005 0.015 0.042 0.057
Jump 0.050 0.462 0.096 0.558
Run 0.051 0.473 0.096 0.569

softer muscles (k = 0.1) tend to drag and jiggle much more.

8.1. Timings

Table 2 shows the average time per frame for each of our
scenes. For reference, we included the time per frame of standard
Implicit Skinning without muscles. While Implicit Skinning runs
at real-time frame rates even in more demanding scenes, adding
more muscles or increasing the number of particles per muscle
increases both the physics solver time and the run-time of the
Implicit Skinning algorithm itself. The former happens because
more constraints have to be solved, while the latter occurs be-
cause the Implicit Skinning algorithm has to evaluate the muscle
fields several times for the neighboring vertices. Nevertheless,
even with our most complex scene with 50 muscles each in-
cluding 30 particles, we maintain a total frame time below one
second.

When editing the muscle parameters it is possible to disable
Implicit Skinning to have interactive response times (up to 5-6
fps for the jumping model with the physics of all muscles acti-
vated). The parameters of each individual muscle can be tuned
in real time, taking advantage of the fact that only one muscle
is edited. Also, muscles subject to small deformations can be
represented by fewer particles, which reduces the number of
constraints and increases the simulation speed while decreasing
the evaluation cost of the muscle scalar fields (see Figure 12).
Note that even though subtle in Figure 12-left, the muscle scalar
field computation time increases with the number of particles.
This increase is due to the larger number of segments to consider
for the evaluation point projection on the muscle polyline (see
Section 5.1).

8.2. Volume conservation

We measured experimentally the volume variation of our mus-
cle models due to the bending of the central axis (see Section 5).
Figure 13 shows the variation of a numerical approximation of
the volume of different muscles during the biceps and the jump
animations (using the volume of the representative mesh as a
proxy). The highest variation is approximately 3%.

Our model also allows a user to transgress this volume con-
straint to amplify the muscle growth for expressive effect by
tuning the scale factor w of the muscles as shown in Figure 14.

Implicit Skinning
PBD Simulation

1.5

1

0.75

0.5

0.25

Arm shake Jump

0 5 10 20 30 60

t

0 5 10 20 30 60

1.5

1

0.75

0.5

0.25

t

particles # particles

Figure 12. Average times in seconds for the computation of an animation
frame, for different numbers of particles per muscle. The brown represents
the computation of Implicit Skinning excluding the PBD simulation, and
the pink represents the PBD simulation.

biceps
triceps
radialis 1
radialis 2

0

−1

−2

t

t0

−0.1

−0.2 Abdominals
Dorsals
Left Deltoid
Left Pectoral

Figure 13. Relative variation over time (in %) of muscles volume during,
top - the biceps curl and bottom - the jump animation.

10 Preprint / Computers & Graphics (2019)

Figure 14. Left, normal biceps curl. Right, muscle width increased by 30%.

8.3. User parameters

Our model exposes two sets of muscle parameters, i.e. the
geometric parameters and the dynamic parameters, and a muscle
state, i.e relaxed and activated.

8.3.1. Geometric parameters
Geometric parameters are introduced in Section 5.2 with our

volume equations. They are α and β for the muscle longitudinal
shape, the eccentricity e for its radial cross-section, and the scale
factor w.

As shown in Figure A.16, the value of α and β, from 2 to 9,
control the position of the bulge along the axis and the sharpness
of its rise on each end of the axis. The shape is symmetrical
when α = β, with higher values corresponding to a narrower
bulge. The more the values differ, the further the maximum point
is from the axis center.

The eccentricity parameter produces circular radial shapes
when e = 0 and smoothly interpolates towards more elongated
elliptic cross-sections when it approaches 1, as illustrated in
Figure 5. Note that this parameter has a non linear impact on the
ellipse dimensions. This can easily be compensated by adjusting
the input value provided by the user, for instance when using a
slider moving from circular to flat.

The last geometric parameter, w controls the uniform scale
over the muscle width to adjust its global size.

8.3.2. Muscle activation
Two different shapes of a muscle can be defined using the

geometric parameters α, β, e and optionally w: the muscle rest
shape, and the activated state. A muscle activation is in gen-
eral almost instantaneous and the muscle may change its shape
from rest to activation in a few frames. Our model can vary
continuously from one shape to the other using the muscle shape
interpolation at constant volume introduced in Section 5.2. Once
these two shapes are set, the muscle state and its corresponding
shape are defined by the interpolation parameter a with a = 0
for the rest state and a = 1 for the fully activated shape.

8.3.3. Dynamic parameters
To be deformed in response to the skeleton motion as ex-

plained in Section 6, each muscle is parametrized by its mass,

its rest length and its stiffness k. The PBD solver is also con-
trolled by global parameters: the timestep δt and the damping
coefficient µ. The mass, rest length and damping parameters are
preset as explained in Sections 6.2 and 6.3. Changing the global
engine parameters is a possibility to access a wider variety of
motions, but this requires adjusting the stiffness of every muscle
in the scene to keep the muscles’ behavior consistent. This is
a limitation of the PBD approach that is discussed further in
Section 8.6 and we thus suggest to avoid the modification of
these paramters.

In our experiments, we thus only provide a single dynamic
user parameter, the stiffness k, to adjust per-muscle to obtain a
stiffer or looser behavior of a given muscle.

8.4. Parameter setting

8.4.1. Keyframing parameters
Keyframing is a standard approach for controlling parameters

over an animation. All the geometric parameters and the stiffness
can be keyframed in order to allow the user to have a maximal
control of the deformations. We linearly interpolate the eccen-
tricity e, interpolation a, scaling w and the stiffness k while α
and β are interpolated with our interpolation at constant volume
(see Section 5.2). If required, any higher degree interpolation
may be used for e, w and k.

8.4.2. User parameter setting
The parameters can be set in an interactive muscle modelling

session, using standard UI controllers such as sliders for the
continuously varying values e, w and k, and a set of icons for
automatically selecting the values of α and β. Common muscles
of a body may also be preset, together with their activated shape
and directly proposed to the user that just have to adjust the
endpoint positions and the scaling w, optionally tweaking the
other parameters.

Once both rest and activation shapes are set, the interpolation
parameter a can be keyframed by the user or automatically set if
forces information is provided by the animation system.

In our experiments, the manual edition of a muscle geometric
parameters including rest and activation shapes in a prototype
script interface takes around 10 minutes and the keyframing of
the muscle state interpolation a and its stiffness k takes a few
minutes for about a minute of animation. The use of a dedicated
UI as the one provided in a professional software would greatly
lower these timings by enabling the setting of individual muscles
in an interactive visual session.

8.4.3. Automatic parameter setting
One may consider automatic adjustment methods to set the

muscle parameters, for example by adapting existing anatomi-
cal models with Anatomy Transfer [79]. Another direction of
investigation is to use a data-based approach to set the muscle
shape parameters from sparse motion capture marker inputs,
by optimizing the muscle activation parameters as proposed by
Sifakis et al. [80]. Similarly, muscular activity models such as
the locomotion model of Lee et al. [81] can control the evolution
of muscle activation parameters.

Preprint / Computers & Graphics (2019) 11

Table 3. Average times in seconds per frame for minimizing PBD
constraints, without and with collision constraints (muscle/bones, mus-
cle/muscle, interactions with skin), in our different scenes.

Scene PBD - only elasticity PBD - with collision

Arm shake 0.003 0.055
Biceps curl 0.003 0.042
Jump 0.050 0.096
Run 0.048 0.096

8.5. Effects of collisions
As shown by Table 3, the addition of collision constraints in

the PBD solver doubles its convergence time on a full model.
However, the use of collisions is mandatory as without them,
two main phenomena occur. The first is that a significant part of
the muscle grows inside the bone and neighbor muscles when
it inflates. This cancels most of the inflation effect naturally
produced on the skin by the muscle volume preservation and thus
significantly reduces the deformation plausibility, as illustrated
in Figure 15 and in the accompanying video. The second is the
unnatural behavior of muscles that are allowed to move through
where the bones should be, instead of moving around them (for
instance on a shoulder).

Figure 15. The arm bent from left to right with Implicit Skinning only,
with our muscle but without resolving muscle/bones collisions and with
our muscles and muscle/bones collisions resolved. Without collision, the
muscle deformation in the middle is very similar to the solution without
muscle shown on the left. On the right, the collision makes the muscle
deformation clearly visible.

8.6. Muscle dynamics
Even though PBD is appreciated for its robustness, fast execu-

tion, and ease of implementation, there are also certain trade-offs.
One issue is the dependence between the time integration step
and the stiffness of the constraints: larger time steps yield softer
constraints, thus a more rubbery material. This issue could possi-
bly be avoided using the method proposed by Macklin et al. [82],
as it could improve predictability of the results with different
time steps.

Projective Dynamics [83] have been considered in place of
PBD. It averages all constraint projections in one global step
which limits oscillations. However, the pre-factorization of the
global step matrix in Projective Dynamics complicates colli-
sion resolution, especially in close proximity scenarios such as
muscle-bone or muscle-muscle scenarios. Therefore, we have
for now decided not to pursue this approach.

Unless muscles are set with a too low stiffness, which is un-
realistic as muscles are stiff organs compared to soft tissues,
especially when activated, the muscle dynamic is stable or most
muscles (as pectorals, biceps, triceps muscles) even with mus-
cle/bones and muscle/muscle collisions enabled. Some difficul-
ties may arise when muscles undergo large deformations due to
collisions. In this case collisions are strongly contradicting the
muscle elasticity and undesired oscillations may arise. In such
situations, our solution is to pinch the muscle between two other
muscles (as a small decomposition in fibers) and increase the
stiffness. This is a limitation of our model under its current form
that would be interesting to solve in further research.

Another limitation when using PBD is that the jiggling of
muscles may be hard to generate. While simple oscillations are
easy to obtain (such as the one shown in the video on the biceps
when shaking the arm), it is far more challenging to generate
plausible longitudinal jiggling as those expected on muscle legs
during a run, even acting on all PBD parameters. This is partially
due to the use of a dynamic system based on constraints rather
than forces.

8.7. Integration in other skinning frameworks

On the one hand, while our muscle primitives have been
specifically designed to enrich the Implicit Skinning ap-
proach [8], they may benefit weight-based geometric skinning
techniques [58, 59, 61]. In these systems, a set of weights is
defined over the mesh for each muscle. Mesh vertices with non-
zero weights store the initial field value of the corresponding
muscle primitives in rest pose. During the animation, muscle
deformation and skinning are performed. Then, for each vertex
with non-zero weight, a displacement corresponding to its pro-
jection on its initial field value in the deformed muscle field is
computed (using for instance a gradient descent). Vertex posi-
tions are then updated by applying the weighted displacements.

On the other hand, real-time physically or dynamic based
skinning methods, such as position-based skinning [84], usually
rely on a volumetrical mesh deformed by minimizing a function
defined by constraints. In that case, the definition and insertion
of constraints transferring the muscle field function deformations
on the volumetrical mesh remains an open challenge. In addition,
the interaction of these new constraints with the others will
also have to be specifically studied, especially because some of
them may violate each other. A way to avoid these issues is to
apply the muscle deformations as a post-process, but all physical
properties and eventual collision-handling would be lost.

8.8. Limitations

As can be seen in Figure 12, computations required by Im-
plicit Skinning are the main bottleneck for a full model. This
is due to the very large number of field functions that are struc-
tured in a composition tree [85] and evaluated several times
per mesh vertex for the isosurface tracking. This phenomenon
is accentuated by the increased number of deformed vertices
due to the muscle dynamics. Even though we use a bounding
box hierarchy to avoid unnecessary field evaluations, there is
room for specifically improving the field function filtering and

12 Preprint / Computers & Graphics (2019)

composition tree evaluations. We currently rely on a CPU im-
plementation which is multi-threaded, but not heavily optimized.
Both Implicit Skinning and PBD may be efficiently implemented
on a GPU, and it would be interesting to study a dedicated GPU
implementation including our muscle primitives.

The variety of muscle shapes produced with our model is
well-suited for the production of plausible body dynamics of
a human character. The main limitation is the application to
non-fusiform muscles as the pectoral, for which we allow the
introduction of visible deformations, but we provide a coarse
approximation of the muscle shape and the deformations could
be enhanced with a more accurate model. Different types of
muscle primitives may be studied to adapt to a larger variety of
virtual characters, including animals and imaginary creatures.

9. Conclusion

In this paper, we have presented a method to animate a char-
acter’s muscular system which achieves expressive, artistically
controllable results while maintaining interactive frame-rates.

To achieve this goal, we designed a family of shapes defined as
isosurfaces of a scalar field. These shapes mimic the appearance
of human muscles and are able to reproduce the contraction,
extension, volume preservation and activation of the real muscles.
Furthermore, we let the central axis of our muscles be driven by
physics-based simulation, thus enabling highly dynamic effects
such as jiggling. Using 3D scalar field representation allows us
to resolve collisions efficiently between muscles, bones and skin.
Another advantage of this implicit representation is the ability
to use the muscles as skin deformers while reaping the benefits
of Implicit Skinning.

As future work, a sketching approach may be investigated, en-
abling users to sketch the muscle deformation in different poses.
We also believe that combining physical simulation with implicit
modeling for animation is a promising line of research. Indeed,
using a similar representation for other anatomic elements with
highly dynamic behaviour and effect on the skin such as fat
tissues or cartilages (nose, ears) could improve the ability of
animators to efficiently produce realistic visual effects.

10. Acknowledgements

This research has been partially supported by the FOLD-Dyn
project (ANR-16-CE33-0015-01) and the CIMI Labex (ANR-11-
LABX-0040). This material is also based upon work supported
by the National Science Foundation under Grant Numbers IIS-
1617172, IIS-1622360 and IIS-1764071. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. We also gratefully acknowl-
edge the support of Activision, Adobe, and hardware donation
from NVIDIA Corporation. The authors would like to thank the
anonymous reviewers for their helpful comments and sugges-
tions. Finally, we wish to thank the Anatoscope company and
more specifically Pr François Faure for the gracious provision
of their anatomical model.

References

[1] Magnenat-Thalmann, N, Laperrire, R, Thalmann, D. Joint-Dependent
Local Deformations for Hand Animation and Object Grasping. In: Pro-
ceedings of Graphics Interface. GI 1988; Edmonton, Canada; 1988, p.
26–33.

[2] Kavan, L, Collins, S, Žára, J, O’Sullivan, C. Skinning with Dual Quater-
nions. In: Proceedings of the Symposium on Interactive 3D Graphics and
Games. I3D ’07; Seattle, USA: ACM. ISBN 978-1-59593-628-8; 2007,
p. 39–46. URL: http://doi.acm.org/10.1145/1230100.1230107.
doi:10.1145/1230100.1230107.

[3] Lewis, JP, Cordner, M, Fong, N. Pose space deformation: A uni-
fied approach to shape interpolation and skeleton-driven deformation.
In: Proceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’00; New Orleans, USA:
ACM Press/Addison-Wesley Publishing Co. ISBN 1-58113-208-5; 2000,
p. 165–172. URL: http://dx.doi.org/10.1145/344779.344862.
doi:10.1145/344779.344862.

[4] Wilhelms, J, Van Gelder, A. Anatomically-based modeling. In: Pro-
ceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’97; New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co. ISBN 0-89791-896-7; 1997,
p. 173–180. URL: http://dx.doi.org/10.1145/258734.258833.
doi:10.1145/258734.258833.

[5] Mohr, A, Gleicher, M. Building efficient, accurate character
skins from examples. ACM Transactions on Graphics 2003;22(3):562–
568. URL: http://doi.acm.org/10.1145/882262.882308. doi:10.
1145/882262.882308.

[6] Wang, RY, Pulli, K, Popović, J. Real-time enveloping with rotational
regression. ACM Transactions on Graphics 2007;26(3). URL: http://
doi.acm.org/10.1145/1276377.1276468. doi:10.1145/1276377.
1276468.

[7] Vaillant, R, Barthe, L, Guennebaud, G, Cani, MP, Rohmer, D, Wyvill,
B, et al. Implicit Skinning: Real-time Skin Deformation with Contact
Modeling. ACM Transactions on Graphics 2013;32(4):125:1–125:12.
doi:10.1145/2461912.2461960.

[8] Vaillant, R, Guennebaud, G, Barthe, L, Wyvill, B, Cani, MP. Robust Iso-
surface Tracking for Interactive Character Skinning. ACM Transactions
on Graphics 2014;33(6):189:1–189:11. URL: http://doi.acm.org/
10.1145/2661229.2661264. doi:10.1145/2661229.2661264.

[9] Müller, M, Heidelberger, B, Hennix, M, Ratcliff, J. Position based
dynamics. Journal of Visual Communication and Image Representa-
tion 2007;18(2):109 – 118. URL: http://www.sciencedirect.com/
science/article/pii/S1047320307000065. doi:http://dx.doi.
org/10.1016/j.jvcir.2007.01.005.

[10] Mukai, T. Example-Based Skinning Animation. Springer International
Publishing; 2016, p. 1–21.

[11] Allen, B, Curless, B, Popović, Z. Articulated body deformation
from range scan data. ACM Transactions on Graphics 2002;21(3):612–
619. URL: http://doi.acm.org/10.1145/566654.566626. doi:10.
1145/566654.566626.

[12] Anguelov, D, Srinivasan, P, Koller, D, Thrun, S, Rodgers, J, Davis, J.
Scape: Shape completion and animation of people. ACM Transactions on
Graphics 2005;24(3):408–416. URL: http://doi.acm.org/10.1145/
1073204.1073207. doi:10.1145/1073204.1073207.

[13] Allen, B, Curless, B, Popović, Z, Hertzmann, A. Learning a correlated
model of identity and pose-dependent body shape variation for real-time
synthesis. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Eurographics Association; 2006, p.
147–156.

[14] Park, SI, Hodgins, JK. Capturing and animating skin deformation
in human motion. In: ACM SIGGRAPH 2006 Papers. SIGGRAPH
’06; New York, NY, USA: ACM. ISBN 1-59593-364-6; 2006, p.
881–889. URL: http://doi.acm.org/10.1145/1179352.1141970.
doi:10.1145/1179352.1141970.

[15] Park, SI, Hodgins, JK. Data-driven modeling of skin and mus-
cle deformation. ACM Transactions on Graphics 2008;27(3):96:1–
96:6. URL: http://doi.acm.org/10.1145/1360612.1360695.
doi:10.1145/1360612.1360695.

[16] Neumann, T, Varanasi, K, Hasler, N, Wacker, M, Magnor, M, Theobalt,
C. Capture and statistical modeling of arm-muscle deformations. Computer
Graphics Forum 2013;32(2):285–294.

Preprint / Computers & Graphics (2019) 13

[17] Loper, M, Mahmood, N, Black, MJ. Mosh: Motion and shape capture
from sparse markers. ACM Transactions on Graphics 2014;33(6):220.

[18] Tsoli, A, Mahmood, N, Black, MJ. Breathing life into shape: capturing,
modeling and animating 3d human breathing. ACM Transactions on
Graphics 2014;33(4):52.

[19] Loper, M, Mahmood, N, Romero, J, Pons-Moll, G, Black, MJ.
SMPL: A skinned multi-person linear model. ACM Transactions on Graph-
ics 2015;34(6):248:1–248:16. URL: http://doi.acm.org/10.1145/
2816795.2818013. doi:10.1145/2816795.2818013; proceedings of
SIGGRAPH Asia.

[20] Mukai, T, Kuriyama, S. Efficient dynamic skinning with low-rank
helper bone controllers. ACM Transactions on Graphics 2016;35(4):36:1–
36:11. URL: http://doi.acm.org/10.1145/2897824.2925905.
doi:10.1145/2897824.2925905.

[21] Pons-Moll, G, Romero, J, Mahmood, N, Black, MJ. Dyna: A
model of dynamic human shape in motion. ACM Transactions on Graph-
ics 2015;34(4):120:1–120:14. URL: http://doi.acm.org/10.1145/
2766993. doi:10.1145/2766993.

[22] Kim, M, Pons-Moll, G, Pujades, S, Bang, S, Kim, J, Black, MJ, et al.
Data-driven physics for human soft tissue animation. ACM Transactions
on Graphics 2017;36(4):54:1–54:12. URL: http://doi.acm.org/10.
1145/3072959.3073685. doi:10.1145/3072959.3073685.

[23] Schneider, DC, Davidson, TM, Nahum, AM. In vitro biaxial stress-strain
response of human skin. Archives of Otolaryngology 1984;110(5):329–
333. URL: +http://dx.doi.org/10.1001/archotol.1984.

00800310053012. doi:10.1001/archotol.1984.00800310053012.
[24] Girard, M, Maciejewski, AA. Computational modeling for the com-

puter animation of legged figures. In: Proceedings of the 12th An-
nual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’85; New York, NY, USA: ACM. ISBN 0-89791-166-0; 1985,
p. 263–270. URL: http://doi.acm.org/10.1145/325334.325244.
doi:10.1145/325334.325244.

[25] Chadwick, JE, Haumann, DR, Parent, RE. Layered construction
for deformable animated characters. SIGGRAPH Computer Graphics
1989;23(3):243–252. URL: http://doi.acm.org/10.1145/74334.
74358. doi:10.1145/74334.74358.

[26] Zajac, FE. Muscle and tendon: properties, models, scaling, and applica-
tion to biomechanics and motor control. Critical reviews in biomedical
engineering 1989;17 4:359–411.

[27] Chen, DT, Zeltzer, D. Pump it up: Computer animation of a biomechani-
cally based model of muscle using the finite element method. SIGGRAPH
Computer Graphics 1992;26(2):89–98. URL: http://doi.acm.org/
10.1145/142920.134016. doi:10.1145/142920.134016.

[28] Teran, J, Blemker, S, Ng-Thow-Hing, V, Fedkiw, R. Finite vol-
ume methods for the simulation of skeletal muscle. In: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’03; Aire-la-Ville, Switzerland, Switzerland: Euro-
graphics Association. ISBN 1-58113-659-5; 2003, p. 68–74. URL:
http://dl.acm.org/citation.cfm?id=846276.846285.

[29] Teran, J, Sifakis, E, Blemker, S, Ng-Thow-Hing, V, Lau, C, Fed-
kiw, R. Creating and simulating skeletal muscle from the visible human
data set. IEEE Transactions on Visualization and Computer Graphics
2005;11(3):317–328. doi:10.1109/TVCG.2005.42.

[30] Lee, SH, Sifakis, E, Terzopoulos, D. Comprehensive biomechan-
ical modeling and simulation of the upper body. ACM Transactions
on Graphics 2009;28(4):99:1–99:17. URL: http://doi.acm.org/10.
1145/1559755.1559756. doi:10.1145/1559755.1559756.

[31] Pai, DK, Sueda, S, Wei, Q. Fast physically based musculoskeletal
simulation. In: ACM SIGGRAPH 2005 Sketches. SIGGRAPH ’05; New
York, NY, USA: ACM; 2005,URL: http://doi.acm.org/10.1145/
1187112.1187141. doi:10.1145/1187112.1187141.

[32] Pai, DK. Muscle mass in musculoskeletal models. Journal of Biome-
chanics 2010;43(11):2093 – 2098. URL: http://www.sciencedirect.
com/science/article/pii/S0021929010002149. doi:http://dx.
doi.org/10.1016/j.jbiomech.2010.04.004.

[33] Sueda, S, Kaufman, A, Pai, DK. Musculotendon simulation for
hand animation. ACM Transactions on Graphics 2008;27(3):83:1–
83:8. URL: http://doi.acm.org/10.1145/1360612.1360682.
doi:10.1145/1360612.1360682.

[34] Sueda, S, Jones, GL, Levin, DIW, Pai, DK. Large-scale dynamic
simulation of highly constrained strands. ACM Transactions on Graph-
ics 2011;30(4):39:1–39:10. URL: http://doi.acm.org/10.1145/

2010324.1964934. doi:10.1145/2010324.1964934.
[35] McAdams, A, Zhu, Y, Selle, A, Empey, M, Tamstorf, R,

Teran, J, et al. Efficient elasticity for character skinning with con-
tact and collisions. ACM Transactions on Graphics 2011;30(4):37:1–
37:12. URL: http://doi.acm.org/10.1145/2010324.1964932.
doi:10.1145/2010324.1964932.

[36] Patterson, T, Mitchell, N, Sifakis, E. Simulation of complex nonlin-
ear elastic bodies using lattice deformers. ACM Transactions on Graph-
ics 2012;31(6):197:1–197:10. URL: http://doi.acm.org/10.1145/
2366145.2366216. doi:10.1145/2366145.2366216.

[37] Fan, Y, Litven, J, Pai, DK. Active volumetric musculoskeletal systems.
ACM Transactions on Graphics 2014;33(4):152:1–152:9. URL: http://
doi.acm.org/10.1145/2601097.2601215. doi:10.1145/2601097.
2601215.

[38] Sachdeva, P, Sueda, S, Bradley, S, Fain, M, Pai, DK. Biomechanical
simulation and control of hands and tendinous systems. ACM Transactions
on Graphics 2015;34(4):42:1–42:10. URL: http://doi.acm.org/10.
1145/2766987. doi:10.1145/2766987.

[39] Gao, M, Mitchell, N, Sifakis, E. Steklov-poincaré skinning. In: Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation. SCA ’14; Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association; 2014, p. 139–148. URL: http://dl.acm.org/citation.
cfm?id=2849517.2849541.

[40] Saito, S, Zhou, ZY, Kavan, L. Computational bodybuilding:
Anatomically-based modeling of human bodies. ACM Transactions
on Graphics 2015;34(4):41:1–41:12. URL: http://doi.acm.org/10.
1145/2766957. doi:10.1145/2766957; proceedings of SIGGRAPH
2015.

[41] Kadleček, P, Ichim, AE, Liu, T, Křivánek, J, Kavan, L. Reconstruct-
ing personalized anatomical models for physics-based body animation.
ACM Transactions on Graphics 2016;35(6):213:1–213:13. URL: http://
doi.acm.org/10.1145/2980179.2982438. doi:10.1145/2980179.
2982438.

[42] Mohr, A, Tokheim, L, Gleicher, M. Direct manipulation of interactive
character skins. In: Proceedings of the 2003 Symposium on Interactive
3D Graphics. I3D ’03; New York, NY, USA: ACM. ISBN 1-58113-
645-5; 2003, p. 27–30. URL: http://doi.acm.org/10.1145/641480.
641488. doi:10.1145/641480.641488.

[43] Merry, B, Marais, P, Gain, J. Animation space: A truly lin-
ear framework for character animation. ACM Transactions on Graph-
ics 2006;25(4):1400–1423. URL: http://doi.acm.org/10.1145/

1183287.1183294. doi:10.1145/1183287.1183294.
[44] Forstmann, S, Ohya, J, Krohn-Grimberghe, A, McDougall, R. Defor-

mation styles for spline-based skeletal animation. In: Proceedings of the
2007 ACM SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association; 2007, p. 141–150.

[45] Kavan, L, Collins, S, Žára, J, O’Sullivan, C. Geometric skinning
with approximate dual quaternion blending. ACM Transactions on Graph-
ics 2008;27(4):105. URL: http://doi.acm.org/10.1145/1409625.
1409627. doi:10.1145/1409625.1409627.

[46] Jacobson, A, Baran, I, Popović, J, Sorkine, O. Bounded bihar-
monic weights for real-time deformation. ACM Transactions on Graph-
ics 2011;30(4):78:1–78:8. URL: http://doi.acm.org/10.1145/

2010324.1964973. doi:10.1145/2010324.1964973.
[47] Jacobson, A, Sorkine, O. Stretchable and twistable bones for skeletal

shape deformation. ACM Transactions on Graphics 2011;30(6):165.
[48] Kavan, L, Sorkine, O. Elasticity-inspired deformers for charac-

ter articulation. ACM Transactions on Graphics 2012;31(6):196:1–
196:8. URL: http://doi.acm.org/10.1145/2366145.2366215.
doi:10.1145/2366145.2366215.

[49] Le, BH, Hodgins, JK. Real-time skeletal skinning with optimized
centers of rotation. ACM Transactions on Graphics 2016;35(4):37:1–
37:10. URL: http://doi.acm.org/10.1145/2897824.2925959.
doi:10.1145/2897824.2925959.

[50] Sloan, PPJ, Rose III, CF, Cohen, MF. Shape by example. In:
Proceedings of the Symposium on Interactive 3D Graphics. I3D ’01;
Research Triangle Park, USA: ACM. ISBN 1-58113-292-1; 2001,
p. 135–143. URL: http://doi.acm.org/10.1145/364338.364382.
doi:10.1145/364338.364382.

[51] Kry, PG, James, DL, Pai, DK. Eigenskin: Real time large de-
formation character skinning in hardware. In: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

14 Preprint / Computers & Graphics (2019)

SCA ’02; San Antonio, USA: ACM. ISBN 1-58113-573-4; 2002,
p. 153–159. URL: http://doi.acm.org/10.1145/545261.545286.
doi:10.1145/545261.545286.

[52] Hahn, F, Martin, S, Thomaszewski, B, Sumner, R, Coros, S,
Gross, M. Rig-space physics. ACM Transactions on Graph-
ics 2012;31(4):72:1–72:8. URL: http://doi.acm.org/10.1145/

2185520.2185568. doi:10.1145/2185520.2185568.
[53] Xu, H, Barbič, J. Pose-space subspace dynamics. ACM Transactions

on Graphics 2016;35(4):35:1–35:14. URL: http://doi.acm.org/10.
1145/2897824.2925916. doi:10.1145/2897824.2925916.

[54] Lee, GS, Hanner, F. Practical experiences with pose space deformation.
In: Sketches of ACM SIGGRAPH Asia. SIGGRAPH Asia ’09; Yokohama,
Japan: ACM; 2009, p. 43:1–43:1. URL: http://doi.acm.org/10.
1145/1667146.1667201. doi:10.1145/1667146.1667201.

[55] Palamar, T. Mastering Autodesk Maya 2016. 1st ed.; Alameda, CA, USA:
SYBEX Inc.; 2015. ISBN 1119059828, 9781119059820.

[56] Weta Digital, . FEM horse simulation. Web Article; 2015. URL: https://
www.wetafx.co.nz/research-and-tech/technology/tissue/.

[57] Scheepers, F, Parent, RE, Carlson, WE, May, SF. Anatomy-based mod-
eling of the human musculature. In: Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH
’97; New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.
ISBN 0-89791-896-7; 1997, p. 163–172. URL: http://dx.doi.org/
10.1145/258734.258827. doi:10.1145/258734.258827.

[58] Ramos, J, Larboulette, C. A muscle model for enhanced character
skinning. Journal of WSCG 2013;21(2):107–116.

[59] Lee, KS, Ashraf, G. Simplified muscle dynamics for appealing real-time
skin deformation. In: Proceedings of the International Conference on
Computer Graphics and Virtual Reality. CGVR’07; Las Vegas, Nevada:
CSREA Press. ISBN 1-60132-028-0; 2007, p. 160–168.

[60] Hyun, DE, Yoon, SH, Chang, JW, Seong, JK, Kim, MS,
Jüttler, B. Sweep-based human deformation. The Visual
Computer 2005;21(8):542–550. URL: https://doi.org/10.1007/
s00371-005-0343-x. doi:10.1007/s00371-005-0343-x.

[61] Leclercq, A, Akkouche, S, Galin, . Mixing triangle meshes and im-
plicit surfaces in character animation. In: Proceedings of Eurographics
Workshop on Computer Animation and Simulation. 2001, p. 37–47.

[62] Macêdo, I, Gois, JP, Velho, L. Hermite radial basis functions im-
plicits. Computer Graphics Forum 2011;30(1):27–42. URL: http://
dx.doi.org/10.1111/j.1467-8659.2010.01785.x. doi:10.1111/
j.1467-8659.2010.01785.x.

[63] Barthe, L, Wyvill, B, de Groot, E. Controllable binary CSG operator for
”soft objects”. International Journal of Shape Modeling 2004;10(2):135–
154. URL: http://www.worldscientific.com/doi/abs/10.1142/
S021865430400064X. doi:10.1142/S021865430400064X.

[64] Gourmel, O, Barthe, L, Cani, MP, Wyvill, B, Bernhardt, A, Paulin,
M, et al. A Gradient-based Implicit Blend. ACM Transactions on Graph-
ics 2013;32(2):12:1–12:12. URL: http://doi.acm.org/10.1145/
2451236.2451238. doi:10.1145/2451236.2451238.

[65] Angles, B, Tarini, M, Wyvill, B, Barthe, L, Tagliasacchi, A. Sketch-
based implicit blending. ACM Transactions on Graphics 2017;36(6):181:1–
181:13. URL: http://doi.acm.org/10.1145/3130800.3130825.
doi:10.1145/3130800.3130825.

[66] Sorkine, O, Alexa, M. As-rigid-as-possible surface modeling. In: Pro-
ceedings of the Symposium on Geometry Processing; vol. 4 of SGP 07.
Barcelona, Spain; 2007, p. 109–116.

[67] Anatomical digital model. Anatoscope Inc 2015;URL: https://www.
anatoscope.com/.

[68] Lee, D, Glueck, M, Khan, A, Fiume, E, Jackson, K. Modeling and
simulation of skeletal muscle for computer graphics: A survey. Founda-
tions and Trends in Computer Graphics and Vision 2012;7(4):229–276.
doi:10.1561/0600000036.

[69] Kobbelt, L, Vorsatz, J, Seidel, HP. Multiresolution hierarchies on
unstructured triangle meshes. Computational Geometry 1999;14(1-3):5–
24.

[70] Panozzo, D, Baran, I, Diamanti, O, Sorkine-Hornung, O. Weighted
averages on surfaces. ACM Transactions on Graphics 2013;32(4):60.

[71] Murai, A, Hong, QY, Yamane, K, Hodgins, JK. Dynamic Skin Defor-
mation Simulation Using Musculoskeletal Model and Soft Tissue Dynam-
ics. In: Grinspun, E, Bickel, B, Dobashi, Y, editors. Pacific Graphics
Short Papers. The Eurographics Association. ISBN 978-3-03868-024-6;
2016,doi:10.2312/pg.20161335.

[72] Urbanchek, MG, Picken, EB, Kalliainen, LK, Kuzon Jr., WM. Specific
force deficit in skeletal muscles of old rats is partially explained by the
existence of denervated muscle fibers. The Journals of Gerontology: Se-
ries A 2001;56(5):B191–B197. URL: http://dx.doi.org/10.1093/
gerona/56.5.B191. doi:10.1093/gerona/56.5.B191.

[73] Deul, C, Charrier, P, Bender, J. Position-based rigid body dynamics.
Computer Animation and Virtual Worlds 2014;27(2):103–112. URL:
http://dx.doi.org/10.1002/cav.1614. doi:10.1002/cav.1614.

[74] Canezin, F, Guennebaud, G, Barthe, L. Adequate inner bound for
geometric modeling with compact field functions. Computers & Graph-
ics 2013;37(6):565–573. URL: http://www.sciencedirect.com/
science/article/pii/S009784931300099X. doi:10.1016/j.cag.
2013.05.024; shape Modeling International (SMI) Conference 2013.

[75] Sabin, M. The use of potential surfaces for numerical geometry. Tech.
Rep. VTO/MS/153; British Aerospace Corporation; Weybridge, United
Kingdom; 1968.

[76] Ricci, A. A constructive geometry for computer graphics. The Computer
Journal 1973;16(2):157–160. doi:10.1093/comjnl/16.2.157.

[77] Pasko, A, Adzhiev, V, Sourin, A, Savchenko, V. Function representation
in geometric modeling: concepts, implementation and applications. The
Visual Computer 1995;11(8):429–446. doi:10.1007/BF02464333.

[78] Bernhardt, A, Barthe, L, Cani, MP, Wyvill, B. Implicit blending
revisited. Computer Graphics Forum 2010;29(2):367–375. URL: http:
//webhome.cs.uvic.ca/~blob/publications/ibr.pdf.

[79] Ali-Hamadi, D, Liu, T, Gilles, B, Kavan, L, Faure, F, Palombi, O, et al.
Anatomy transfer. ACM Transactions on Graphics 2013;32(6):188:1–
188:8. URL: http://doi.acm.org/10.1145/2508363.2508415.
doi:10.1145/2508363.2508415.

[80] Sifakis, E, Neverov, I, Fedkiw, R. Automatic determination of facial
muscle activations from sparse motion capture marker data. In: ACM
SIGGRAPH 2005 Papers. SIGGRAPH ’05; New York, NY, USA: ACM;
2005, p. 417–425. URL: http://doi.acm.org/10.1145/1186822.
1073208. doi:10.1145/1186822.1073208.

[81] Lee, Y, Park, MS, Kwon, T, Lee, J. Locomotion control for many-
muscle humanoids. ACM Transactions on Graphics 2014;33(6):218:1–
218:11. URL: http://doi.acm.org/10.1145/2661229.2661233.
doi:10.1145/2661229.2661233.

[82] Macklin, M, Müller, M, Chentanez, N. XPBD: Position-based simulation
of compliant constrained dynamics. In: Proceedings of the International
Conference on Motion in Games. MIG ’16; San Francisco, USA: ACM.
ISBN 978-1-4503-4592-7; 2016, p. 49–54. URL: http://doi.acm.
org/10.1145/2994258.2994272. doi:10.1145/2994258.2994272.

[83] Bouaziz, S, Martin, S, Liu, T, Kavan, L, Pauly, M. Projec-
tive dynamics: Fusing constraint projections for fast simulation. ACM
Trans Graph 2014;33(4):154:1–154:11. URL: http://doi.acm.org/
10.1145/2601097.2601116. doi:10.1145/2601097.2601116.

[84] Abu Rumman, N, Fratarcangeli, M. Position-based skinning for soft
articulated characters. Computer Graphics Forum 2015;34(2):240–250.
URL: http://dx.doi.org/10.1111/cgf.12533. doi:10.1111/cgf.
12533; proceedings of Eurographics.

[85] Wyvill, B, Guy, A, Galin, E. Extending the CSG tree: Warping, blending
and boolean operations in an implicit surface modeling system. Computer
Graphics Forum 1999;18(2):149–158. URL: http://dx.doi.org/10.
1111/1467-8659.00365. doi:10.1111/1467-8659.00365.

Appendix A. Muscle volume derivation

The volume enclosed by the muscle’s surface is given by
Equation 3

V = πw2l

Proof.

V =

∫ 1

s=0

∫ 2π

θ=0

∫ wΦ(s)r(θ)

ρ=0
ρdρ dθ lds

Preprint / Computers & Graphics (2019) 15

2

1

0

β=2 β=3 β=4 β=5 β=6 β=7 β=8 β=9

α
=

2
α

=
3

α
=

4
α

=
6

α
=

6
α

=
7

α
=

8
α

=
9

2

1

0
2

1

0

2

1

0
2

1

0
2

1

0

2

1

0
2

1

0
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 1 1 1 1 1 1 10 0 0 0 0 0 0 0

Figure A.16. Profiles of the ϕ function for values of α and β.

Integrating in ρ yields:

V = l
∫ 1

s=0

∫ 2π

θ=0

(wΦ(s)r(θ))2

2
dθds

= w2l
∫ 1

s=0
(Φ(s))2 ds

∫ 2π

θ=0

(r(θ))2

2
dθ

The integral in θ is the area of an ellipse of semi-axis length u
and v (see Equation 5)

V = w2l
∫ 1

s=0
(Φ(s))2 ds πuv

Since we enforce uv = 1, it yields

V = πw2l
∫ 1

s=0
(Φ(s))2 ds

We also constrain
∫

Φ2 = 1, thus we have

V = πw2l

Appendix B. Derivation of function K

The Euler beta function B is defined as

B(α, β) =

∫ 1

0
uα−1(1 − u)β−1du

Let us define

I(α, β) =

∫ 1

0
u2(α−1)(1 − u)2(β−1)du = B(2α − 1, 2β − 1)

which appears in the denominator of Equation 4.
We define the linear interpolation Φ(s) between ϕ(α0, β0; s)

and ϕ(α1, β1; s), governed by the activation parameter a, such
that∫ 1

0 (Φ(s))2 ds = 1,∀a ∈ [0, 1] as:

Φ(s) =
(1 − a)ϕ(α0, β0; s) + aϕ(α1, β1; s)

√
F(a)

where
√

F(a) is the L2-norm of the numerator, i,e

F(a) =

∫ 1

0

(
(1 − a)ϕ(α0, β0; s) + aϕ(α1, β1; s)

)2ds

We show that F(a) can be expressed as a second-order poly-
nomial in a whose coefficients depend only on the chosen values
for α1, α2, β1 and β2.

Proof.

F(a) =

∫ 1

0
((1 − a)ϕ(α0, β0; s) + aϕ(α1, β1; s))2 ds

=(1 − a)2
∫ 1

0
(ϕ(α0, β0; s))2 ds

+ a2
∫ 1

0
(ϕ(α1, β1; s))2 ds

+ 2a(1 − a)
∫ 1

0
ϕ(α0, β0; s)ϕ(α1, β1; s)ds

=(1 − a)2 + a2 + 2a(1 − a)K(α0, α1, β0, β1),

16 Preprint / Computers & Graphics (2019)

where K(α0, α1, β0, β1) is the constant term equal to:∫ 1
0 sα0+α1−2(1 − s)β0+β1−1ds√∫ 1

0 y2(α0−1)(1 − y)2(β0−1)dy
∫ 1

0 y2(α1−1)(1 − y)2(β1−1)dy
,

which can be expressed in terms of the beta function B as:

K(α0, α1, β0, β1) =
B(α0 + α1 − 1, β0 + β1 − 1)√

B(2α0 − 1, 2β0 − 1)B(2α1 − 1, 2β1 − 1)
.

