
Locating Bug IDs and Development Logs in Open
Source Software Projects (OSS):

An Experience Report
Bilyaminu Auwal Romo

Digital Technology
Coventry University, Coventry, UK

Email: bilyaminu.auwalromo@coventry.ac.uk

Andrea Capiluppi
Department of Computer Science
Brunel University London, UK

Email: andrea.capiluppi@brunel.ac.uk

Ajaz Ali
Digital Technology

Coventry University, Coventry, UK
Email: ajaz.ali@coventry.ac.uk

Abstract—The development logs of software projects, con-
tained in Version Control (VC) systems can be severely incom-
plete when tracking bugs, especially in open source projects,
resulting in a reduced traceability of defects. Other times,
such logs can contain bug information that is not available in
bug tracking system (BT system) repositories, and vice-versa:
if development logs and BT system data were used together,
researchers and practitioners often would have a larger set of
bug IDs for a software project, and a better picture of a bug life
cycle, its evolution and maintenance.

Considering a sample of 10 OSS projects and their devel-
opment logs and BT systems data, the two objectives of this
paper are (i) to determine which of the keywords ‘Fix’, ‘Bug’ or
the ‘#’ identifier provide the better precision; and (ii) to analyse
their respective precision and recall at locating the larger amount
possible of bug IDs manually.

Overall, our results suggest that the use of the ‘#’ identifier in
conjunction with the bug ID digits (e.g., #1234) is more precise
for locating bugs in development logs, than the use of the ‘Bug’
and ‘Fix’ keywords. Such keywords are indeed present in the
development logs, but they are less useful when trying to connect
the development actions with the bug traces in software project.

Index Terms—Bug traceability, Bug-fixing commits, SZZ algo-
rithm, Development logs, Bug data.

I. INTRODUCTION

This work is focused on the relevance of development logs
as referrals of bug information. In an ideal world, a bug
being ‘opened’ in a BT system should log its status onto the
respective development log too. The eventual fix should be
detailed in the development logs, and by the steps made by
the developers in its solving. Finally, its status should change
into ‘Fixed’ on the BT system, once the development logs
confirmed the correct working of the snippet of code that
caused the issue in the first place. The traceability of bugs
would require to collect the same number of bug IDs from
both development logs and BT systems. However, this does
not seem to be the case and this forms the motivation for this
study.

Traceability links are needed to perform various software
evolutionary activities, for instance to design and build de-
fect prediction models [21]. However, the available tools to
document development logs lack integration [7] with the bug

tracking systems: thus, two independent sets of bug-related
data are produced, filling different databases [17]. It has been
suggested that using the bug IDs from development logs could
help to identify and recover missing traceability links [10] [13]
[2]. These logs need to be manually or semi-automatically
analysed and compared, to determine if development logs and
IDs from BT systems are referring to the same set of bug IDs,
or if they refer to disjoint sets.

So far, development logs have been mostly searched for
bugs in basically two ways: (i) by using keywords such as
‘Fixed’ or ‘Bug’ [14]; and (ii) by searching for references to
bug reports, for instance the use of the “#” sign and various
numeric values (e.g., #1234), which are linked to the ID of
a bug [5] [7] [12]. The SZZ algorithm is an example of an
approach that combines keywords and proxies to detect bug-
fixing commits [19].

In this research, 10 Open Source Software (OSS) projects
from GitHub were analysed to pilot and demonstrate an
approach to recover the union of sets of bug IDs, from
their development logs and BT systems. Therefore, the main
objective of this paper is, practically, to locate as many bug
IDs as possible, using both development logs and BT data.
The approach is based on two basic steps, for each analysed
project: first, to implement the SZZ algorithm, and use its basic
components, to analyse their respective precision and recall in
isolating bug IDs from the development logs. Second, to use
the BT data as a baseline, to detect how many of its bug IDs are
effectively found in the development logs, if any. It is impera-
tive to analyse individual keywords or components in locating
bug IDs in OSS development logs and evaluate the most
precise keywords or components. The study of Casalnuovo et
al. [4] demonstrates that researchers in software engineering
have difficulty in deciding the right keywords for locating bugs
in development log. Thus, the researchers have applied nine
(9) keywords in retrieving project evolution history related
to development logs: ‘error’, ‘bug‘, ‘fix’, ‘issue’, ‘mistake’,
‘incorrect’, ‘fault’, ‘defect’ and ‘flaw’. Previous studies have
used mainly two keywords that is ‘bug’ and ‘fix’ to identify
bugs in development logs. Although, one can argue that the
convention used by software developers in detailing their

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

actions in the source code may differ from one project to
another especially in OSS projects. Thus to foster and re-
enforce the number of keywords or components researchers
might deliberate in code manipulation and analysis, it is vital
to measure each component or keywords precision in locating
bug IDs in OSS projects. In this way, the rationale of this
work is to determine which components or keywords of the
SZZ algorithm provide the better precision in identifying bugs
from development logs; and to determine if, for instance, the
keyword ‘fix’ is more often found in the proximity of a bug ID
than the ‘bug’ keyword or ‘# + digit’. Our basic hypothesis is
that, in development logs, none of the keywords (‘fix’ or ‘bug’)
are to be preferred to the ‘# + digit’ identifier approach when
locating bug IDs, and they all equally contribute in finding the
set of bug IDs.

The rest of the paper is organised as follows: Section II
illustrates the related work and the novelty of our work.
Section III discusses the methodology to retrieve the bug IDs
of OSS projects sampled in this paper. We also illustrate the
definitions of precision and recall, and how they evaluate in
the context of the set of bug IDs within the development logs.
Section IV presents a worked example, where the approach is
illustrated step-by-step. We replicate the steps and evaluate the
proposed approach in all the 10 OSS projects and highlighted
the results in section V. In addition, we discuss the threats
to validity in this research in Section VI. Finally, Section VII
discusses the findings and present the conclusion of the work.

II. RELATED WORK

In this section, we report the related work that was carried
out for developement of methods to retrieve bug-related data.
We also report the tools that were used to trace the bug-fixing
commits to the bug traces in the issue trackers.

A comparison of instantiation of the full SZZ algorithm in
tracings development logs and bugs of issues data has been
implemented. These researchers [5][8][12][19], attempted to
integrate and identify missing links between development logs
and bugs related data into Issues Tracking Systems (i.e., BT
system) and Version Control System.

In addition, the studies of Kim et al. and Sliwerski et al.
[12] [19] have demonstrated and validated manually that the
development logs and Bug related data are actually referring
and pointing to actual fixes using this algorithm (SZZ) as
well as automatically and accurately identify bug-introducing
changes.

Similarly, Alencar da Costa et al. [6] evaluates five SZZ
implementations using 10 OSS projects and provides a sys-
tematic mean for evaluating the data that is generated by a
given SZZ implementation.

The novelty of this paper lies with an attempt to synchronise
either the missing development logs or bug issues data of
software projects retrieved by these tools (CVSAnalY1 and
Bicho2) and stored into their respective databases for posterior
analysis.

1https://github.com/MetricsGrimoire/CVSAnalY
2https://github.com/MetricsGrimoire/Bicho

CVSAnalY retrieves information from Control Version sys-
tem, Subversion or Git repository logs and transforms it
in a SQL database format. It also retrieves meta-data from
concurrent versioning systems (CVS) including commmitter’s
name, lines added, lines removed, commited messages, etc.
[15]. Bicho stores information from a given bug tracking
system (BTS) to a database format. So far, it only works
with the SourceForge.nets BTS [11], both tools require large
amount of interaction to locate bug IDs but they recover
missing logs and bugs accurately.

However, Kim et al. and Sliwerski et al. [12] [19] have
demonstrated and validated manually that the development
logs and Bug related data are actually referring and pointing to
actual fixes using this algorithm (SZZ) as well as automatically
and accurately identifying bug-introducing changes.

III. METHODOLOGY

The analysis performed in this section is an attempt to
evaluate the precision and recall of the various components
of the SZZ algorithm when detecting bug-fixing commits. In
particular, the implementation of the SZZ algorithm uses (i)
the ‘Fixed’ term, (ii) the ‘Bug’ term, and (iii) the ‘#’ identifier
(with digits, say #12345). Each of these components need to
be checked in terms of their precision and recall when isolating
the bug IDs in the development logs.

In this paper, we partially implement the SZZ algorithm [19]
to trace bugs and logs within the OSS projects sample we
obtained from GitHub. In our formulation, we only look for
bugs described by the ‘#’ sign and numeric values (e.g.,
#1234), that are linked to the ID of a bug. In its original
formulation, the SZZ algorithm also searches for keywords
like ‘Bug’, ‘Fixed’ and others. A tool was developed to search
for these IDs within the two databases, and to combine the
results into intersection and union of sets.

We illustrate the definitions in sub-section (III-A) and the
criteria in sub-section (III-B). The inclusion of the sampling
is reported in sub-section (III-C) as well as the steps from raw
data to sets of bug IDs in sub-section (III-D).

A. Definitions

In the context of this study, and using the standard terms
used in the information and retrieval terminology, the terms
true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) are defined as follows (and relatively to
the # identifier):

• TP#,p = number of # identifiers that refer to a bug ID
(in project p);

• FP#,p = number of # identifiers that do not refer to a
bug ID (in project p);

• FN#,p = number of bug IDs that are not identified by a
sign in development logs (in project p)

• TN#,p = number of development logs that do not refer
to bug IDs and not considered as referring to bug IDs (in
project p);

As illustrated above (i.e. in section III-A) we partitioned the
SZZ algorithm in three components, based on the keywords

used. Therefore, given each keyword or identifier, its relative
precision is defined as

Precision#,p =
TP#,p

TP#,p + FP#,p
(1)

Precisionbug,p =
TPbug,p

TPbug,p + FPbug,p
(2)

Precisionfix,p =
TPfix,p

TPfix,p + FPfix,p
(3)

Similarly, the recall (or true positive rate) of using one or the
other component of the SZZ algorithm is defined as follows:

Recall#,p =
TP#,p

TP#,p + FN#,p
(4)

Recallbug,p =
TPbug,p

TPbug,p + FNbug,p
(5)

Recallfix,p =
TPfix,p

TPfix,p + FNfix,p
(6)

When considering the ‘Fix’ and ‘Bug’ keywords, similar
definitions to the ones above (i.e.,in section (III-A) apply.
All the development logs and BT system data were manually
checked for the projects composing the sample, and the
precision and recall of each project are summarised in Table
VI (in Section V-A).

B. Criteria for Selection

We impose certain requirements and criteria in sampling the
OSS forge. The requirements and criteria itemised below are
fundamental in sampling the required number of OSS projects
needed for this research:

• The OSS project must be maintained and remain under
active development. This ensures the analysed develop-
ment logs and BT data will not be obsolete or irrelevant to
our approach. Following this methodology, only reposito-
ries that can be processed by CVSAnalY and Bicho have
been considered.

• The OSS project must have at least two accessible repos-
itories: (i) a code repository and (ii) a bug repository.
This is to facilitate a joint and automatic synchronisation
of missing data. Data from these repositories will be
extracted by the tool chain developed for this research
using CVSAnalY and Bicho. This criteria has an impact
on the OSS projects selected in this research, because the
repositories should have a format that can be processed
by Bicho and CVSAnalY. In particular:

1) The development logs must be based on Subver-
sion, VC system or Git, therefore any VC system
supported by CVSAnalY.

2) The OSS project BT system repository must be
either Bugzilla (> 4), Sourceforge.net (abandoned),
Jira (unstable), Launchpad, Allura (unstable) and
Github (unstable), therefore any tracker supported
by the Bicho tool.

C. Project Sampling

The FLOSSmole project contains the population of GitHub
projects as of February 20133. The population on that data
dump is 3,640,870 projects. Formula 7 below was applied in
sampling the required number of OSS projects and deliberated
for inclusion in the study:

Sample size =
Z2 ∗ (p)∗(1− p)

c2
(7)

Where:
Z = confidence level
p = percentage picking a choice
c = confidence interval (or merging error)

The result of the sizing is 384 projects: a randomiser
retrieved 384 random numbers between 1 and 3,640,870,
corresponding to the project IDs to be considered for inclusion
in the study. After manual inspection, we found that 40 of the
sampled OSS projects were empty. Hence giving an overall
number of ‘alive’ projects of 344 in which we analysed their
development logs and bug data automatically using our ap-
proach and the proposed tool-chain developed for this research
[16]. The data sets (i.e., 344 OSS projects repositories) can be
found on Figshare.4

However, the essence of the study is to determine which
keywords such as ‘Fix’, ‘Bug’ or whether the ‘#’ identifier
provide a better precision; as well as analysing their respective
precision and recall in locating bug IDs in the development
logs or version control system manually. In this way, we
identified only a subset of 10 OSS projects randomly extracted
from this larger data sets (i.e., the 344 OSS project that we
sampled in order to improve the bug data in their respective
repositories). Table I summarises the metrics and key values
of the 10 OSS projects we sample for the study in this paper.

D. Bug ID Data Extraction

The extraction of bug IDs from raw data is comprised of
two parts: one is the storage of each project’s metadata in the
CVSAnalY and Bicho databases; the second is the extraction
of the bug-related IDs that appear in either database. After
the raw data extraction, it is necessary to determine how the
two sources were aligned, in terms of contained bug IDs; also,
each of the SZZ component needs to be evaluated against the
data obtained in the development logs.

Incisively, the steps are detailed as follows:

• Identifying bugs in development logs: the first step
is to store the development logs via the CVSAnalY
tool set. Among the tables generated by CVSAnalY, we
specifically queried the SCMlog table, which holds the
number and unique IDs of changes in the development
log or version control system. The identity of developers
who perform these changes and the comment message

3As found in http://flossdata.syr.edu/data/gh/2013/
4https://figshare.com/s/be471b90e70865db6a30

TABLE I
ATTRIBUTES OF THE PROJECTS SELECTED

S/N Project Name URL Dev. logs kLOC No. Devs
1 Brackets github.com/adobe/brackets 16,665 300k 285
2 Leaflet github.com/Leaflet 3,677 6.89 194
3 Reddit github.com/reddit 6,000 200 140
4 CocoaPods github.com/CocoaPods 4,800 22.2 160
5 Puma github.com/puma 1000 8.39 30
6 AutoMapper github.com/AutoMapper 700 2.78 50
7 MonoDevelop github.com/mono/monodevelop 30,000 900 170
8 CodeHub github.com/thedillonb/CodeHub 305 12 2
9 Manos github.com/jacksonh/manos 1,113 66.4K 27
10 puppet github.com/puppetlabs/puppet 20,256 379 337

describing the changes applied to the code. The right-
hand side of table 1 depicts the composition of the CVS-
AnalY table that was used for retrieval of the information
referring to bugs. In order to identify or locate the bugs
in development logs, we used the SCMlog table, which
mentions the number and unique IDs of changes in the
VC system. In the presence of a bug ID, the development
logs also mentioned the bug ID with the ‘#1234’ format.
For the purpose of this research, we are only interested
in bug IDs that are being mentioned by developers: bug
IDs do not necessarily need to be ”fixed” or ”resolved”.

• Identifying bugs in BT System data: to locate or
identify bugs in BT system, we used the Bicho tool to
obtain and store all the information contained in the bug
tracking system of the OSS projects we sampled; as well
as all the issues or bugs reported by the users of the
software and confirmed as such by developers on bug
tracking system. Two of the tables created by Bicho are
the issues and issues ext bugzilla table, where the status
(open or closed) or the message accompanying the entry
is stored and imported for publication by the relative
GitHub tracker. In this way, we queried specifically the
issues ext bugzilla table to obtain the set of unique
numbers and IDs of bugs reported and confirmed by
developers.
Note: it is worth mentioning that both CVSAnalY and
Bicho encountered downloading issues during the mining
the development logs and bug data (i.e., BT system data).
The tool chain developed for this research imposed a
delay of 15 seconds before sending each request from
the server when mining development logs and bug data,
which made the process of obtaining all the raw data
slightly longer.

• Obtaining the complete set of bug IDs: in this step,
it is necessary to combine the two sets of bug IDs from
the development logs and the BT system data, in order to
determine the intersection and the union of the two sets.
The intersection contains the common subset of bug IDs,
as found in both development logs and BT system data of
all the projects. On the other hand, the union of the sets

is useful to obtain the overall number of bug IDs found
in the two databases, and to identify how many bug IDs
are actually missing from each database.

• Evaluating the precisions of each SZZ component: the
final step of the data extraction is to evaluate the formu-
las [(1) − (6)] as defined above. Since the uncertainty
of the SZZ algorithm is based on the free text of the
development logs, we evaluated the TP , TN, FP and FN
terms only considering the entries of the development
logs, for each of the analysed software project.

In the next section IV, we implement the steps for one of
the projects, as a worked example.

IV. WORKED EXAMPLE: BRACKET PROJECT

In this section, we analyse the steps that were performed to
produce the TP, TN, FP and FN terms from an exemplar case
study. The precision and recall are also evaluated to exemplify
the approach. The project that we use for such exemplification
is the Brackets5 project. Brackets is described as a “code editor
for the web”: it is a large JavaScript project, with around
300kLOC of source code in the main development trunk. In
this project, there are over 180 contributors to the code. The
overall number of commits exceeds 10,000, and 88 releases
have been published.

A. Identifying bugs in Development logs and BT data

This step involved the cleaning of raw data and the storage
of bug IDs for both CVSAnalY and Bicho for the Brackets
project. The query for the ‘#’ sign, followed by numeric values
in the development log imported with CVSAnalY, produces
a large number of false positives. Therefore we manually
checked whether the message field in the SCMlog table of
CVSAnalY contains a reference with a ‘#’ sign. As a way of
an example, a false positive is found with the #3057 bug ID
(as found in the Bug Tracker) of the Brackets project. The
information relative to the #3057 ID, as found in the SCMlog
table, reads as Merge pull request #3507 from
adobe/jasonsanjose/getting-started-fr. The
ID of this bug should return the development information in

5https://github.com/adobe/brackets

Figure 1. Corresponding fields linked in Bicho and CVSAnalY adapted from [17]

SCMlog referring to the actual #3507 bug in the BT system.
Instead, the information refers to a request to merge some
changes in the distributed VC system. We marked these
occurrences as ‘false positives’ and excluded them from the
pilot study as well as the extended study [17],[16].

In the case of the Brackets project, over 2,000 messages
refer to the pattern searched for using the ‘#’ sign, but they
are all linked to a request of pulling a merge from another
distributed repository into the original one under GitHub.
These were filtered out automatically. After discarding these
false positives, we obtained a set of 366 bug IDs that were
mentioned in the CVSAnalY log messages and another set of
349 bug IDs that were mentioned in the issue tracker (i.e., BT
system) in Bicho.

In addition, the traditional heuristic developers leave hints
or links about bug fixes in change logs was used to produce
a link between bugs/issues and logs in both tools, as this
is widely used to mark bug fixes [20]. In this paper, we
specifically focused on quantifying the bugs, and the logs
in Bicho and CVSAnalY that are not linked to bug fixes.
Figure 1 shows how the two databases are linked: bug IDs
were searched and compared in the summary field of the
Issues table of Bicho, and in the message field of the SCMlog
table in CVSAnalY.

Finally, we manually analysed each of the remaining bugs
in both databases, to make sure that each of the remaining IDs
pointed to real bugs.

B. Obtaining the complete set of bug IDs

At first, we retrieved all the bug IDs contained in the BT
system of Bracket project, and then created the first set (S1),
containing over 4,000 bug IDs; afterwards, we produced a
query to mimic the SZZ algorithm in order to retrieve all the
logs containing either the ‘#’ symbol or the ‘Fix’ or ‘Bug’
keywords from the development logs. In this regards, only
3,117 logs were obtained when queried the development logs,
and 1,865 logs contained unique bug identifiers: this list of

bug IDs created the second set of bug IDs (S2), as found in
the VC system.

Below, the results of basic operations on S1 and S2 are
provided when considering the “#” identifier:

• S1 = 4,634
• S2 = 3,117
• S1 ∩ S2 (Common bugs) = 267
• S1 - S2 (only in the BT system) = 4,367
• S2 - S1 (only in the Dev.logs) = 1,865
From the list above, we observed that the bug-tracking

system of Brackets contains 4,634 bug IDs, but this is not
the overall set. Using the ‘# with digits’ proxy, 267 more bug
IDs were found in the development logs that were not reported
in the BT system. On the other hand, the development logs are
much more incomplete, since only 3,117 bugs are reported in
the commits. The set of common bugs i.e., those appearing in
both the BT system and the development logs is 267. Using
the ‘Bug’ and ‘Fixed’ keywords also produces further results,
as summarised in Table II below.

By combining all the lists of bug IDs found with the
various proxies (i.e., the SZZ components), it is possible
to obtain a complete set of bug IDs contained in the two
information sources, i.e. the BT system and the VC system.
More importantly, it is evident that bug IDs are missing
from either source, so it is fundamental to analyse each for
completeness.

The second study that needs to be performed is an analysis
of what is found in the unstructured development logs, to make
sure that what is retrieved is a bug ID and not a false positive.
This analysis is performed in the next subsection of this paper.

C. Evaluating the precision of each SZZ component

In this part of our evaluation, we performed a manual analy-
sis of a random sample of 100 development logs to determine
the precision and recall of each of the SZZ components.
Since the logs are unstructured, we need to analyse each
one manually to determine whether ‘Fix’ or ‘Bug’ or the ‘#’

TABLE II
BUG IDS AND SOURCES OF INFORMATION

BT system Dev logs
SZZ part S1 S2 S1 ∩ S2 S1 - S2 S2 - S1
4,634 3,117 267 4,367 1,865
Fix 4,634 63 31 4,603 32
Bug 4,634 154 79 4,555 75

identifier are referring to a bug. Regarding the # symbol, we
found 58 development logs (out of 100) that mentioned #: after
a close inspection, we realised that 57 of these development
logs were actually referring to a bug ID (i.e., the true positive,
TP), while only one of those logs did not refer to a bug ID
(i.e., the false positives, FP). Furthermore, there are 42 logs
that mention either ‘Fix’ or ‘Bug’, but dont have a unique
ID attached (i.e., the false negatives). From Table III, IV-C
and V we present the number of development logs that were
referring to TP, FP, FN and TN for the Brackets project and the
remaining 9 OSS projects. Given the formulas above in section
III-A we evaluated the precision of ‘using the # symbol as a
predictor of the presence of the bug ID as equal to 0.983. The
recall of such an approach reached 0.576.

Similarly, regarding the ‘Bug’ keyword, we found that only
one development log mentioning ‘Bug’ also referred to a bug
ID (i.e., TP), while three development logs mentioning ‘Bug’
were not related to any bug ID (i.e., FP); the remainders of
the logs created the FN element. Using the “Bug” keyword as
a predictor of a bug ID had a precision of 0.25 and a recall of
0.01. Finally, for the ‘Fix’ keyword, we evaluated a precision
of 0.500 and a recall of 0.695. Based on the precision and
recall, we then computed the F-measure as detailed below:

TABLE III
NUMBER OF DEVELOPMENT LOGS THAT WERE REFERRING TO TP, FP, FN

AND TN FOR # SYMBOL

#number (e.g., #123)
S/N Project Name No. logs TP FP FN TN
1 Brackets 100 57 1 42 0
2 Leaflet 22 6 0 16 0
3 Reddit 74 40 12 22 0
4 CocoaPods 100 18 0 82 0
5 Puma 81 11 2 63 0
6 AutoMapper 68 19 6 43 0
7 MonoDevelop 100 19 3 78 0
8 CodeHub 42 0 0 42 0
9 Manos 100 1 3 46 0
10 puppet 100 0 22 92 0

TABLE IV
NUMBER OF LOGS THAT WERE REFERRING TO TP, FP, FN AND TN FOR

FIXED

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(8)

Fixed
S/N Project Name No. logs TP FP FN TN
1 Brackets 100 41 41 18 0
2 Leaflet 22 1 12 9 0
3 Reddit 74 14 21 39 0
4 CocoaPods 100 15 77 8 0
5 Puma 81 6 61 14 0
6 AutoMapper 68 8 29 31 0
7 MonoDevelop 100 14 55 31 0
8 CodeHub 42 0 35 7 0
9 Manos 100 0 63 37 0
10 puppet 100 0 58 17 0

TABLE V
NUMBER OF LOGS THAT WERE REFERRING TO TP, FP, FN AND TN FOR

BUG

Bug
S/N Project Name No. logs TP FP FN TN
1 Brackets 100 1 3 96 0
2 Leaflet 22 0 0 22 0
3 Reddit 74 1 1 72 0
4 CocoaPods 100 0 3 97 0
5 Puma 81 0 6 75 0
6 AutoMapper 68 0 1 67 0
7 MonoDevelop 100 29 8 63 0
8 CodeHub 42 0 8 34 0
9 Manos 100 0 2 98 0
10 puppet 100 0 18 82 0

The ‘#’ symbol gained an F-measure of 0.726, the ‘Fix’
keyword 0.582 and the ‘Bug’ keyword only 0.019. Since
the F-measure is often used, in the context of information
retrieval, to assess the performance of searches, this further test
confirms the earlier findings reported by [17], [16]. Analysing
the unstructured data of the development logs of the Brackets
project as a pilot study, we conclude that the most precise
proxy of bug IDs is the ‘#’ identifier, when considering the
free-text descriptions of changes written by developers as an
addendum to their commits to the VC systems. Comparatively,
the ‘Bug’ keyword performs very poorly: very often develop-
ers cite the keyword without attaching the correct bug ID for
future traceability.

These findings, if confirmed, will re-enforce that the trace-
ability of bug IDs from BT systems into VC systems and vice

versa can represent a real issue, at least for OSS projects. In the
next section, we repeat the analysis for nine further projects,
to check whether the results are confirmed in general.

V. REPLICATION AND RESULTS

In this section we report the analysis of the overall sample
projects from GitHub. In particular, we report on how many
bug IDs are mentioned in the two databases, per project.

A. Replicability and scability of the approach

After illustrating the approach used in the worked example
above, we replicated the study with a further set of nine
OSS projects, extracted from the same repository (GitHub).
This was done for two basic reasons: to replicate the manual
approach on a subset of the 344 OSS projects sampled; and to
report on the scalability of the approach, in order to give an
indication of the effort needed to replicate the experiment.
A brief analysis of the internal attributes of the projects
was conducted, which is summarised in Table I. The section
below presents the precision and recall results when using the
individual components of the SZZ algorithm.

The results of the replication of the worked example on
nine further software projects are shown in Table VI below. As
also performed in the worked example above, each component
of the SZZ algorithm (‘#’ identifier, ‘Fix’ and ‘Bug’) has its
own subsets of results for precision, recall and F-measure. For
longer sets of development logs, we randomly selected a subset
of 100 log entries per project depending on the total number
of logs in the project. For the projects that had fewer than 100
logs, all the logs were selected, while for the projects that had
100 logs and above we only took the top subset of 100 logs
randomly and analysed them manually, to detect the presence
of bug IDs.

Similarly to the Brackets project above, and for every
analysed project, we observed that the use of the ‘#’ identifier
outperformed both the ‘Fix’ and the ‘Bug’ keywords in the
identification of the bug IDs from the development logs. It
is an important finding: development logs are clearly lagging
behind in terms of completeness and traceability, as compared
to the BT data.

Thus, the scalability of the approach has to be considered
under two aspects: (i) size of the projects development logs;
and (ii) the time it took to analyse and detect the presence of
bug IDs of all the projects we sampled in this research.

In terms of the size of the projects development logs,
for the 10 OSS projects in the worked example it took a
significant amount of effort and time to manually evaluate
the precision of each SZZ component. For instance, for the
Brackets project we took 100 development logs. To manually
analyse each log three times (i.e., to determine if ‘Fix’ or
‘Bug’ and the ‘#’ identifier are referring to a bug) would
require a significant amount of effort and time considering
the size of the development logs for every project in the 10
OSS projects for this research. As a result, the replication of
large OSS projects was extended semi-automatically. This will
be detailed in the next section of this paper.

The process followed to extract the precision and recall data
was similar to the pilot study: the development logs of the
projects were analysed manually and a decision taken as to
whether the log was actually related to a bug description or
not. The process was repeated for the ‘#’ identifier and the
‘Bug’ and ‘Fix’ keywords (as well as their derivatives, like
‘Fixed’ or ‘Fixing’).

For all the analysed projects, the F-measure obtained when
using the ‘#’ identifier is always higher than for any of the
other proxies (‘Bug’ or ‘Fix’). In specific cases, the precision
of the ‘#’ identifier reaches maximum values (in Projects 1,
2 and 4); in other cases, such as Project 8, none of the SZZ
components achieve any result, which is particularly worrying
for the purpose of bug traceability.

B. Trade-off between recall and precision

The trade-off between precision and recall in the context of
this paper occurs with an increased proportion of ‘#’ symbol
precision leading to decreased proportion of ’Fixed’ and ’Bug’
precision. In addition, the Recall proportion of Fixed and Bug
component of the SZZ algorithm was high at the expense of
low proportion in the Recall of ‘#’ symbol. However, manually
evaluating the precision and recall of puppet and CodeHub
projects (i.e., project 8 and 10 as visible from the Precision
and Recall curve in Figure 2 below), the proportion of the
three main component of the SZZ algorithm (i.e., ‘#’ symbol,
fixed and bug) were zero (also visible in Table VI) because
none of the logs retrieved in that project referred to the TP and
FP as defined in Section III-A of this paper. Similarly, same
applies to the rest of the 10 OSS projects evaluated where the
proportion of both zero recall and zero precision were obtained
for the three main components of the SZZ algorithm.

Previous studies by Buckland et al [3] and Gordan et al
[9], regarding the origins of the recall and precision trade-off
assume knowledge of the size of the set of retrieved logs as a
fraction of the total number of logs in the database.

In addition, the trade-off between precision and recall can
be observed using the precision-recall curve in Figure 2, and
an appropriate balance between the precision and recall of the
three main components of the SZZ algorithm evaluated using
10 OSS projects.

Moreover, the box plot presented in Figure 3 summarises the
precision and recall of each component of the SZZ algorithm:
these results indicate that, for most of the OSS projects, using
the ‘#’ identifier their precision is higher than the recall. Using
the fixed keyword the majority of the OSS projects recall was
higher than the precision while the rest obtained zero precision
and recall as visible in Table VI, this is because none of the
bug IDs were detected in the version control logs in most of
the OSS projects using the fixed keywords. However, for the
Bug keyword as visible in the box plot in around 95% of
the OSS projects obtained zero precision and recall resulting
to many outliers in the box-plot. This means overall the ‘#’
identifier is more precise in terms of detecting and locating
bugs in version control logs.

TABLE VI
MANUAL EVALUATION OF 10 OSS PROJECTS PRECISION, RECALL AND F-MEASURE OF THE THREE MAIN COMPONENTS OF THE SZZ ALGORITHM

Manually analysed # symbol Fix Bug
S/N No. Logs P R F P R F P R F
1 100 0.983 0.576 0.726 0.500 0.695 0.582 0.250 0.010 0.020
2 22 1.000 0.273 0.429 0.077 0.100 0.087 0.000 0.000 0.000
3 74 0.769 0.645 0.702 0.400 0.264 0.318 0.500 0.014 0.027
4 100 1.000 0.180 0.305 0.163 0.652 0.261 0.000 0.000 0.000
5 81 0.846 0.149 0.253 0.090 0.300 0.138 0.000 0.000 0.000
6 68 0.760 0.306 0.437 0.216 0.205 0.211 0.000 0.000 0.000
7 100 0.864 0.196 0.319 0.203 0.311 0.246 0.784 0.315 0.450
8 42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 100 0.250 0.021 0.039 0.000 0.000 0.000 0.000 0.000 0.000
10 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 2. Precision and Recall curve of three main component of the SZZ algorithm

Figure 3. Box-plot: Precision and Recall of the three main component of the SZZ algorithm

Similarly, in most of the projects, we observed that the
use of the ‘#’ identifier outperformed both the ‘Fix’ and the
‘Bug’ keywords in the identification of the bug IDs from
the development logs. Iteratively, this is an important finding:
development logs are clearly lagging behind in terms of
completeness and traceability, as compared to the BT data.

The process followed to extract the precision and recall data
was similar to the pilot study: the development logs of the
projects were extracted semi-automatically using the tool chain
by issuing the following SQL query.

Code 1. SQL query to retrieve VC log

1 select message from scmlog where repository id= ? and
message NOT like ’%Merge pull request%’ and
message like ’%#%’

The same syntax for the SQL query was repeated for the ‘#’
identifier and the ‘Bug’ and ‘Fix’ keywords. When comparing
all the SZZ components, the ‘#’ identifier is always more
significant than any of the other proxies (‘Bug’ or ‘Fix’). In
some of the projects, the precision of the ‘#’ identifier reaches
maximum values as well. In other projects, none of the SZZ
components achieve a result, which is particularly concerning
for the purpose of bug traceability.

VI. THREATS TO VALIDITY

In this section, we will discuss the threats to validity that
are specific to our finding in this paper. The four main threats
to validity in this paper are internal, external, construct and
conclusion validity.

1) Internal validity: With respect to internal validity, the
evaluation was between development logs retrieved using
CVSAnalY, and BT data retrieved using Bicho. Both tools
are executed independently and produce independent results.
Similarly, the development logs and BT data are stored in dif-
ferent localised databases created by both tools automatically.
The extraction process that is to say, mining development
logs and BT data of each projects data set was carried out
simultaneously, to avoid any discrepancies or over-lagging
using the tool chain developed for this research. This allowed
us to evaluate and dissect each SZZ component in this study
to the best of our knowledge, and thus to minimise any other
external factors that might have had an effect on the results in
our empirical study.

2) Construct validity: With respect to construct validity,
which deals with the relationship between theory and obser-
vations, we sampled 10 OSS systems from GitHub in order
to pilot the dissection of the SZZ algorithm in its basic
components, or proxies, in terms of their precision at pointing
to bug IDs.

Also, we have evaluated the precision and recall of each
SZZ components at identifying or locating bug IDs. In order to
avoid errors or mistakes during our evaluation, we automated
the process using the tool chain developed for this research.
Moreover, we used the widely adopted metric F-measure to
assess the SZZ technique as well as its improvement. We
measured the performance of the existing techniques that is

to say, the SZZ algorithm on each basic component (i.e., the
use of ‘# 123’, ‘Fixed’ and ‘Bug’ via Precision-Recall and F-
Measure To mitigate such a threat, we began with a pilot study,
in which we studied 1 OSS projects and manually analysed
each development log to determine if ‘Fix’ or ‘Bug’ or the ‘#’
identifier were referring to a bug.

3) External validity: The results from this study are only
generalisable to Bicho and CVSAnalY tool sets and the
Brackets projects we sampled from GitHub via FlossMole.
In addition, we do not claim that these results would apply to
all MSR tools we mentioned in this study. Further empirical
studies are needed to validate this generalisation. We leave this
as future work too.

We welcome researchers in software engineering commu-
nity to build on the results in this paper and replicate our study
with different and larger OSS projects, and using the SZZ
algorithm (i.e., the approach) in order to advance this body
of knowledge. Replicating this study with different and large
OSS projects from different repositories could help reduce this
threat. We leave this as future work.

4) Conclusion validity: With respect to conclusion validity,
due to the number of OSS projects we sampled in this study,
as well as the non-normality of development logs and BT
data sets, we evaluate the performance of each SZZ algorithm
component using the measures of precision and recall [18] [1]
in detecting and locating bugs in version control logs of the
OSS projects.

VII. DISCUSSION AND CONCLUSION

This paper demonstrates that the process of locating bug
data in development logs, when using Open Source project, is
far from established or reputable. Developers in OSS project
tend to record their actions in different ways, and very often
the bug-fixing commits are not reflected onto, and from, the
corresponding Bug Tracking System. Often BT data, that
should be considered as the baseline for all the bugs in a
project, is found to be incomplete, and further IDs are found
when harvesting the development logs.

This work has two main contributions: the first is to show
an approach to build a (more) complete set of bug IDs that
were documented in the evolution of a software system. This
comprises the analysis and parsing of both the development
logs and the bug tracking systems: this is required because
we found that commonly OSS projects hold different sets of
bug IDs when interrogating their own BT system and the VC
system.

The second contribution is an in-depth analysis of the
SZZ algorithm, that has been used extensively by researchers
to track the bug fixing commits of software systems. We
partitioned the algorithm in its three basic components, and
with a manual check-up, we showed the precision and recall of
each component in detecting bug identifiers in the development
logs. We found that the guideline of using the ‘#’ symbol and
the bug ID largely outperforms the other proxies to detect
bug-fixing commits.

Furthermore, we demonstrated that the process of collecting
data related to bugs, when using open-source projects, is far
from established or standardised. Developers tend to record
their actions in different ways, and very often the bug-fixing
commits are not reflected onto and from the corresponding BT
system.

Manually inserting the references to bug IDs is clearly not
achieving the required traceability, and a better (automated)
approach should be designed to have the two sources of data
aligned and in sync. The possible way to do so would be to
generate an automatic commit into the development logs that
details the bug-fixing activity, as obtained by the BT system.
Likewise, when the BT system is not aligned to the VC system,
an entry could be automatically generated to insert the bug
development activity, as detailed in the development logs, into
the BT system.

The results in this paper are relevant to the research com-
munity: models, techniques and empirical approaches that use
defect data, would produce seemingly different (or comple-
mentary) results, when the complete set of bug data was to be
extracted and considered for study. Replication studies could
be performed to assess whether the results as proposed in past
papers could be complemented with further evidence of bug-
fixing activity. On the other hand, the use of the SZZ algorithm
shows that some keywords (‘Fix’ and ‘Bug’) are linked to less
precision and higher recall. This result reinforces the message
that practitioners should synchronise the development logs
with the BT data by using the standard ‘#’ notation for locating
development logs and bug IDs in OSS projects.

VIII. AKNOWLEDGMENTS

We would like to thank Dr Boyce Sigweni and Dr Nemitari
Ajienka for their constructive feedback on an earlier version
of this paper

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

[2] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats
on building models from cvs and bugzilla repositories: The mozilla
case study. In Proceedings of the 2007 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’07, pages 215–
228, Riverton, NJ, USA, 2007. IBM Corp.

[3] M. Buckland and F. Gey. The relationship between recall and precision.
J. Am. Soc. Inf. Sci., 45(1):12–19, Jan. 1994.

[4] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert
use in github projects. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 755–
766, Piscataway, NJ, USA, 2015. IEEE Press.

[5] D. Cubranic and G. Murphy. Hipikat: recommending pertinent software
development artifacts. In Software Engineering, 2003. Proceedings. 25th
International Conference on, pages 408–418, May 2003.

[6] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. Hassan. A framework for evaluating the results of the szz approach
for identifying bug-introducing changes. IEEE Transactions on Software
Engineering, 2016.

[7] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. International
Conference on Software Maintenance, 2003. ICSM 2003. Proceedings.,
pages 23–32, 2003.

[8] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 23–32, Sept 2003.

[9] M. Gordon and M. Kochen. Recall-precision trade-off: A derivation.
Journal of the American Society for Information Science, 40(3):145–
151, 1989.

[10] O. Gotel and A. Finkelstein. An analysis of the requirements traceability
problem. In Requirements Engineering, 1994., Proceedings of the First
International Conference on, pages 94–101, Apr 1994.

[11] I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernández, J. Gonzalez-
Barahona, G. Robles, S. Duenas-Dominguez, C. Garcia-Campos, J. F.
Gato, and L. Tovar. Flossmetrics: Free/libre/open source software
metrics. In Software Maintenance and Reengineering, 2009. CSMR’09.
13th European Conference on, pages 281–284. IEEE, 2009.

[12] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Automatic
identification of bug-introducing changes. In Automated Software
Engineering, 2006. ASE’06. 21st IEEE/ACM International Conference
on, pages 81–90. IEEE, 2006.

[13] M. Lormans and A. van Deursen. Can lsi help reconstructing require-
ments traceability in design and test? In Software Maintenance and
Reengineering, 2006. CSMR 2006. Proceedings of the 10th European
Conference on, pages 10 pp.–56, March 2006.

[14] A. Mockus and L. Votta. Identifying reasons for software changes
using historic databases. In Software Maintenance, 2000. Proceedings.
International Conference on, pages 120–130, 2000.

[15] G. Robles, S. Koch, J. M. Gonzlez-Barahona, and J. Carlos. Remote
analysis and measurement of libre software systems by means of the
cvsanaly tool. In In Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS), pages 51–55,
2004.

[16] B. A. Romo and A. Capiluppi. Towards an automation of the traceability
of bugs from development logs: A study based on open source software.
In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’15, pages 33:1–33:6, New
York, NY, USA, 2015. ACM.

[17] B. A. Romo, A. Capiluppi, and T. Hall. Filling the gaps of development
logs and bug issue data. In Proceedings of The International Symposium
on Open Collaboration, page 8. ACM, 2014.

[18] F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

[19] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? ACM SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

[20] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: Recovering links
between bugs and changes. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 15–25, New York, NY,
USA, 2011. ACM.

[21] H. Yang, C. Wang, Q. Shi, Y. Feng, and Z. Chen. Bug inducing analysis
to prevent fault prone bug fixes. 2014. Retrieved February 15, 2015 from

http://software.nju.edu.cn/zychen/paper/2014SEKE1.pdf.

