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Preface

My main scientific contributions in this work comprise:

• The development of a model that predicts the effect of surface contamination

by immiscible surfactants on interfacial gas transfer based on the clean surface

fraction and characteristics of the turbulence in the water phase. To achieve

this I worked in close cooperation with my supervisor and Dr Herlina from KIT

in Karlsruhe.

• Another major result was the recognition that the surface divergence model

breaks down in the presence of significant contamination because surfactants

force the surface divergence to become virtually zero.

• The investigations into the effect of slip length on interfacial gas transfer resulted

in a model that allows the pollution level to be expressed by a limited slip length.

This work was mainly carried out by myself with guidance from my supervisor.

• The study of the applicability of the WENO-Z scheme for the convection of the

2D surfactant. This work (comparing the correctness of the implementation

of the WENO-Z scheme and comparing its accuracy with that of the classical

WENO scheme), I also carried out with a high degree of independency and

some guidance from my supervisor.
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Abstract

In this thesis, the effect of various levels of contamination on the interfacial

air–water mass transfer of low diffusivity gasses is studied by Direct Numerical Simu-

lation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced

at the bottom of the computational domain, diffusing upwards. The isotropic turbu-

lence is generated in a separate large-eddy simulation (LES) that runs concurrently

with the DNS.

Similar to Shen et al. [1], the damping effect of the surfactant contamination

on the near surface (horizontal) velocities is modelled using horizontal gradients of

the surfactant concentration. Important parameters in this model are the level of

contamination and the turbulent Reynolds number. A large range of surfactant levels

is studied including clean and fully contaminated surface condition. In the presence of

surface contamination, the gas transfer velocity (KL) was scaled as a power of Schmidt

number (Sc−q). The exponent q depends on the level of surface contamination. For

instance, the gas transfer velocity KL for a clean surface scales with Sc−1/2, while for

very dirty surfaces at scales with Sc−2/3. For relatively low levels of contamination,

parts of the surface area become nearly surfactant-free. Based on this observation a

model is proposed for the prediction of KL as a power of the Schmidt number. Where

both the power and the constant of proportionality are functions of the average clean

surface fraction α.

The effect of slip-length on interfacial gas transfer of atmospheric gasses into water

was also investigated performing direct numerical simulations A model was proposed

that expresses Ma/CaT in terms of slip length. The expression obtained was found

to be dependent on Sc. This dependency was observed to be especially strong for low

Schmidt numbers.

To perform the computational study, the convection of scalar concentration was

solved by employing the weighted essentially non-oscillatory (WENO) scheme of Liu
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et al. [2] with a fourth-order central discretization for diffusion in the 3D DNS. For

the 2D surfactant convection, the WENO-Z (W5-Z) scheme was used, which was

developed by Borges et al. [3]. In all simulations, a fourth-order central discretization

was used for diffusion and the time integration of the convection-diffusion equation

was executed by employing a third-order Runge-Kutta method .

In the flow solver, the convection of the velocity field is solved using a fourth-order

unconditionally kinetic energy conserving method, while the diffusion was discretised

using a fourth-order accurate central method.
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Chapter 1: Introduction

1.1 Background and motivation

Air-water gas exchange is of fundamental concern in various environmental sys-

tems and industrial applications in a range of engineering disciplines. In a dynamic

sense, the atmosphere and oceans are essentially linked. For instance, at the air-water

interface, significant amounts of heat and atmospheric gases are exchanged between

the oceans (and other water bodies) and the atmosphere. In fact, the oceans form

a huge buffer for green house gases and heat. As a result, oceans tend to reduce

the increase in the amount of CO2 in the atmosphere which (these days) is mainly

produced by human activity. Unfortunately, this leads to an increased acidification,

resulting in the destruction of coral reefs and other aquatic life. Note that about 40%

of the produced CO2 is diffused into the ocean and the acidification of oceans is a

result of the resulting increase of the amount of carbonic acid [4]. The production of

carbonic acid reduces the CO2 gas pressure which increases the capacity of oceans to

absorb CO2 from the atmosphere [5].

Also, as the oceans heat up, their capacity to store gases is reduced, which could

result in the expulsion of large amounts of methane gas, which is a powerful green-

house gas [6], [7]. Air-water heat exchange is an important driver of weather [8]

(Kraus and Businger). The reduction in O2 solubility is reduced and less O2 is car-

ried from the water surface to the deeper regions leading to an O2 depletion [9]. The

gas exchange process is not only important in relation with global warming but also

with the re-aeration of lakes and rivers.
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Climate change affects the balance between gases in the atmosphere and those

absorbed in water bodies. A good understanding of the air-water gas transfer mech-

anisms helps to improve models used for the prediction of climate change. The re-

search presented here mainly focuses on the effects of contamination on air-water gas

exchange. Contamination does not only result from human activity but also from

natural sources like excretions by bacteria and other life-forms.

Most flows that are found in nature are turbulent. A turbulent flow is charac-

terised by seemingly random motions with many different scales. The largest scales

(macro scales) in a turbulent flow are basically determined by the macro scales that

characterise the geometry. Dissipation of turbulent kinetic energy mainly happens at

the smallest relevant scales which can be several orders of magnitude smaller than

the macro scales. In between the macro and micro scales a large range of scales exist

at which turbulent kinetic energy is conserved (the so-called inertial range). Energy

is exchanged between these scales in two directions (from large to small and from

small to large). On average, however, the transport is from large to small scales. Kol-

mogorov discovered that the turbulent energy spectrum in the inertial range typically

has a κ−5/3 scaling.

The rate of air-water gas transfer is limited by resistance on the water side [10].

When approaching the water surface turbulence is increasingly damped. As a result,

at the water surface itself gas transfer is fully dominated by diffusion. If no tur-

bulence is present in the water body the diffusion of atmospheric gases towards the

water bulk becomes extremely slow. If turbulence is introduced (for instance by wind

shear, bottom shear or buoyancy), this process is significantly enhanced. Basically,

turbulence acts to reduce the thickness of the diffusive concentration boundary layer

adjacent to the surface allowing the diffusion at the surface to become more effective.

The typical concentration boundary layer thickness for atmospheric gases such

as O2 is about δ ≈ 10 − 1000μm [11]. So the measurement of this thin concentra-

tion boundary layer profile is extremely challenging. Therefore, in the past, many

researchers used conceptual models to try and explain the gas transfer mechanism
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using observable parameters. The film model is the simplest and oldest model devel-

oped by Lewis et al. [12]. In this model it is assumed that both sides of the interface

are covered with a stagnant film between which molecular diffusion takes the place.

Hence, gas transfer was assumed to be fully controlled by molecular diffusion and the

gas transfer velocity KL is related to the film thickness δ (m) by

KL =
D

δ
(m/s), (1.1)

where D (m2/s) is the molecular diffusion. The film thickness model is in fact a

huge oversimplification of reality [13]. An improved model that takes surface renewal

events into account was produced by Higbie [14] (penetration model). He recognised

that turbulence plays an important role by periodically bringing fresh packages of

unsaturated fluid from the bulk region to the surface, thereby replacing the saturated

fluid at the surface by unsaturated fluid. The typical time Δt between two renewal

events is referred to as the surface renewal time. Higbie assumed the surface renewal

time Δt to be constant. Danckwerts [15] improved Higbie’s model by no longer

assuming a constant surface renewal time. Instead, he used a surface renewal rate r

that is exponentially distributed, thereby obtaining the model

KL ≈
√
Dr (m/s), (1.2)

where r should be determined experimentally (or numerically).

Many researchers tried to to find expressions for the renewal rate r. For lower

turbulent Reynolds numbers, Fortescue & Pearson [16] based their approximation of

r on the typical time-scale associated with the large eddies in a turbulent flow, giving

r = u∞/Λ, where u∞ is the root-mean-square of the velocity fluctuations and Λ is

the typical length scale of the large eddies. In this case the gas transfer velocity is

KL = α
√
Du∞/Λ (m/s), (1.3)

where α is a constant of proportionality. For higher levels of turbulence, however,

Banerjee [17] and Lamont [18] discovered that the characteristic time scales of the
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small turbulent motions (small eddies) determined the renewal rate, and r was deter-

mined by r =
√
ε/ν, where ε is the turbulent dissipation rate at the interface and ν

(m2/s) is the kinematic viscosity. In this case, the gas transfer velocity is determined

by

KL = b
√
D[ε/ν]1/4 (m/s), (1.4)

where b is the constant of proportionality.

Alternatively those two models can also be defined using u∞ and Λ, in which case

the large-eddy model reads

KLSc
1/2/u∞ ∝ Re

−1/2
T , (1.5)

and the small-eddy model is given by

KLSc
1/2/u∞ ∝ Re

−1/4
T (1.6)

After studying the results of various experiments and measurements, Theofanous

et al. [19] proposed the two regimes model, which combines the large- and small-

eddy models. He recognised that the large-eddy model is valid for small turbulent

Reynolds numbers ReT , while the small-eddy model should be used for large ReT and

the critical value of ReT separating both regimes is approximately ReT = 500. An

alternative model for r, proposed by McCready et al. [13] is the surface divergence

model. In this model, the two-dimensional divergence of the velocity at the surface

(surface divergence β (1/s)) is used as a measure of the surface renewal rate. Using

this model, the gas transfer velocity is given by

KL ∝
√
Dβrms (m/s), (1.7)

More detailed information on the gas transfer velocity models is given in Sections 2.2

and 5.5.3.

1.2 Objectives

In order to sustain aquatic life, the transfer of atmospheric gases from the air

into water bodies, such as oceans, lakes, seas, rivers is very important. The transfer
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of such low soluble gases across the air-water interface is controlled by resistance at

the liquid side. At the water surface, the gas flux into the water is fully determined

by molecular diffusion, The actual gas transfer velocity is closely related to the gas

flux. The amount of diffusion is determined by the thickness of the concentration

boundary layer underneath the surface. The thinner this concentration boundary

layer is, the more diffusion of atmospheric gases will take place. Deeper down into

the bulk, turbulent convection takes care of the transport of gases further down

into the bulk, while the contribution of diffusion becomes negligible. In nature, the

turbulence, that plays a very important role in promoting interfacial gas transfer can

be introduced into the water by three distinct mechanisms. The first mechanism

is surface-shear-induced turbulence (e.g. wind shear on open waters), the second

bottom-shear-induced turbulence (e.g. in rivers) and the third buoyant-convective

induced turbulence (e.g. in lakes due to surface cooling) [20]. Figure 1.1 shows a

schematic illustration of the aforementioned turbulence sources. Note that in nature

Fig. 1.1. Schematic illustration of the turbulence generating mecha-
nisms and promoting gas transfer [20]

the turbulence generated by wind or bottom shear is typically anisotropic.
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Many researchers focused on the gas transfer mechanism promoted by wind-shear-

induced turbulence. Such turbulence is introduced directly at the water surface. This

mechanism is very important as long as the wind speed is sufficiently high to produce

sufficient shear. At low wind speeds (one or both of) the other mechanisms described

above may become more important. In rivers and other water streams bottom shear-

induced turbulence may be the most important turbulence source for the promotion

of interfacial gas transfer. In sheltered lakes, on the other hand, buoyancy-driven gas

transfer is often the dominant mechanism.

A major problem in nature is that water surfaces are not always clean. There

are many ways in which the water surface can become polluted. An example is oil-

spill or leakage of other chemical substances. This is especially problematic if these

substances do not mix with water and remain floating at the surface. In the present

work the focus is mainly on the gas transfer related to the reaeration of water in the

presence of surface contaminations by surfactants. The gas transfer is assumed to be

promoted by bottom-shear-induced turbulence. The following assumptions are made:

1. The surfactant is lighter than water.

2. Surfactant and water are immiscible.

3. The surface tension of water reduces linearly with increasing surfactant concen-

tration

An example of a surfactant with the correct properties is oleyl alcohol.

The above assumptions are also mentioned in Section 5.1

Pollution by surfactants affects gas transfer across the air–water interface. Sur-

face divergence typically leads to non-uniform surfactant concentrations, resulting

in a local reduction of the surface stress of the water. Such a non uniform surface

stress distribution induces Marangoni forces that effectively try to force the surface

divergence to zero.

As mentioned in Section 1.1 The surface divergence model [13] relates the horizon-

tally averaged gas transfer velocity to the horizontal velocity field at the surface. The
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divergence of this horizontal velocity β = ∂u
∂x

∣∣
i
+ ∂v

∂y

∣∣∣
i
= − ∂w

∂z

∣∣
i
can be used to estimate

the surface renewal rate. It is known that this model KL ≈ √
Dβrms works well for

low levels of contamination but what happens at higher levels of contamination ?

Even low levels of surface contamination can significantly affect interfacial gas

transfer [1]. Though the physical mechanism has been partially identified in the

past, a predictive model of surfactant contamination effects was missing. Using DNS

(Direct Numerical Simulations) a parametric study was performed to assess the effects

of contamination on gas transfer. Numerical data were analysed to develop and

verify new models that can predict gas transfer in the presence of contamination. To

investigate the above mentioned effects on the air-water gas transfer velocity, it was

needed to perform a series of simulations covering a broad range of pollution levels

of the water surface.

The research objectives are:

• Performing DNS calculations to understand the effect of surfactants on the

interfacial gas transfer.

• Find a model for the gas transfer velocity given a known level of surface pollution

with a immiscible surfactant such as Oleyl oil.

• To investigate the applicability of the surface divergence model in the presence

of pollution by surfactants.

• Performing DNS calculations using various limited surface slip lengths to inves-

tigate the influence of slip length on interfacial gas transfer.

• To use both surfactant simulation results and slip-length simulation results to

produce a model that connects the surface slip-length to the surfactant contam-

ination level.
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1.3 Methodology

In the present study, Direct Numerical Simulations (DNS) were employed to study

the effect of contamination on interfacial gas transfer driven by isotropic turbulence

that was introduced at the bottom of the computational domain. The bottom turbu-

lence was generated in a separate large-eddy simulation(LES) of isotropic turbulence

in a periodic box that ran in parallel with the main DNS.

The dimensionless Navier-Stokes equations are discretized on a non-uniform, stag-

gered mesh, as explained in Section 3.2, and a second-order accurate Adams-Bashforth

was used for the time integration. The convection of scalar concentration was solved

by employing a weighted essentially non-oscillatory (WENO) scheme. This scheme

was originally designed for shock capturing and was chosen because the aforemen-

tioned property makes it very suited to resolve accurately the steep concentration

gradients that typically occur due to the very low diffusivity of atmospheric gases in

water. The WENO scheme was developed by Liu et al. [2] as an improvement on

the existing essentially non-oscillatory (ENO) schemes. As part of this research, the

numerical code was extended in order to model 2D scalar transport of the surfactant

at the air-water interface. The convection-diffusion equation for the surfactant was

solved using a 2D version of the 3D scalar solver as implemented in the DNS. This

2D solver combines the WENO-Z scheme for surfactant convection with a fourth-

order central discretization for diffusion, while the time integration of the convection-

diffusion equation was carried out by employing a third-order Runge-Kutta method.

For the 2D surfactant convection, the WENO-Z (W5-Z) scheme, developed by

Borges et al. [3], replaced the original WENO (W5) scheme of [2] (as used for solving

the scalar convection in the main 3D DNS calculations). Compared to the original

W5 scheme the W5-Z scheme was found to only need half the grid points in one

direction in order to achieve the same resolution. This improvement in accuracy was

achieved by an improved smoothness indicator in the determination of the weights.
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In the flow solver, the convection of the velocity field is solved using a fourth-order

unconditionally kinetic energy conserving method, while the diffusion was discretised

using a fourth-order accurate central method. A detailed explanation of the compu-

tational method is presented in Chapter 3.

1.4 Outline

The introduction of the background and the motivation for the present research

into the effects of contamination on the air-water gas transfer is presented in Chapter

1. This Chapter also presents the objectives and a brief overview of the methodol-

ogy, which are more extensively presented in further chapters. Chapter 2 focuses on

the review of relevant literature related to the air-water gas transfer mechanism. It

presents existing conceptual models including their theoretical background as well as

previously obtained results related to the effect of surfactant contamination on the

near-surface properties of a turbulent flow. In Chapter 3 the methodology followed in

the modelling of surface contamination by surfactants and the numerical techniques

used in the the flow solver are detailed. Chapter 4 presents a comparison of the

classical W5 scheme and the W5-Z scheme that was carried out by performing one-

and two-dimensional test simulations and includes an order-of-accuracy determina-

tion and a comparison of the schemes on relatively coarse meshes. Chapter 5 presents

the results obtained in the numerical simulations studying the effects of surfactant

pollution on interfacial gas transfer. Here a model is presented that can be used to

predict the actual gas transfer velocity based on the clean (uncontaminated) surface

fraction and information on the turbulence in the water. In Chapter 6, it is investi-

gated whether it is possible to model surfactant contamination by using a limited slip

boundary condition at the surface. For relatively low Schmidt numbers (Sc) a model

is presented that relates slip length to pollution level. Chapter 7, finally, presents the

conclusions of the present work and also an outlook on further research.
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Chapter 2: Literature review

Many environmentally important atmospheric gasses such as oxygen O2, carbon diox-

ide CO2, nitrous oxide NO, ozone O3 and methane CH4 have a very low diffusivity

in water, which results in a high Schmidt number, Sc, which is defined by

Sc =
ν

D
, (2.1)

where D is the molecular diffusivity of the gas in water and ν is kinematic viscosity of

the water. The transfer of atmospheric gases across the air-water interface is mainly

restricted by the low diffusivity of these gases in water, which is significantly smaller

than the diffusivity in the air phase, see e.g. Matthess [21].

Gas Mass in ρw in water ρa in dry air

dry air (%) (saturated) (g/m3) at sea level (g/m3)

O2 23.2 9.1 278.4

CO2 0.046 0.799 0.552

Ne 0.0012 0.000112 0.0144

He 0.00007 0.000001 0.00084

Ar 1.28 0.77 15.36

N2 75.47 14.94 905.64

Table 2.1
Density (in air and water) of various atmospheric gases at 20oC
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Gas concentration boundary layers are formed at both sides of the air-water in-

terface. The density of specific gases in air, (ρa), and in water, (ρw), usually differ

significantly (see Table 2.1). The concentration on both sides is related by the di-

mensionless Ostwald coefficient of solubility αo.

ρw = αo × ρa,

Where αo usually is significantly smaller than one, see Jaehne & Haubecker [22] and

Liss [23].

Above we have seen that typically the concentration in air, the concentration

of atmospheric gasses in the water phase under saturated conditions decreases. In

other words, the density of atmospheric gasses reduces in the water phase [24]. For

example, the density of air is ρa = 1200g/m3 and air contains 23.2% by weight of O2.

Dissolved O2 has a density of 9.1g/m3 (fully saturated) in the water phase, given a

specific density of ρO2,a = 278.4g/m3 for O2 in the air at sea level. An overview of

the density of several atmospheric gasses in water and air phases at 20oC is shown in

Table 2.1 A schematic of the resulting concentration boundary layers (for oxygen) on

both of the air-water interface is shown in Figure 2.1 Schmidt numbers of atmospheric

Fig. 2.1. Schematic of the gas concentration boundary layers on both
sides of air-water interface

gases in water are typically quite high. Which corresponds to a very low diffusivity

of these gases in water. Suppose diffusion were the only mechanism for re-aeration
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of a body of oxygen-depleted water of d = 1m depth. The corresponding diffusion

time is given by tdiff = d2/(2D), which corresponds to the time it would take for the

water to be aerated. Given that the Schmidt number for O2 is Sc = 500, while the

kinematic viscosity of water is 10−6m2/s, the diffusivity of O2 in water would become

D = 0.2× 10−8 m2/s. So that at d = 1m

tdiff ≈ 12

0.4× 10−8
= 2.5× 108 s, (2.2)

which corresponds to almost 8 years.

2.1 Fundamental Equations

The gas transfer rate is related to the gas flux at the water surface which is

fully controlled by molecular diffusion. Slightly further below in the water, turbulent

mass flux (while transporting dissolved gases towards the bulk region of the water)

acts to reduce the thickness of the diffusive concentration boundary layer. This

interplay between diffusion and turbulent mass flux, resulting in a gas concentration

boundary layer of limited thickness, plays an essential role in the air-water gas transfer

mechanism.

In practice, the thickness of the concentration boundary layer is very small. It is

restricted to about δ = 10− 1000μm [11]. This limited concentration boundary layer

thickness at the interface indicates that below the water surface molecular diffusive

processes are quickly replaced completely by turbulent convection processes. The gas

transfer process is characterized by the gas flux (�j) and the molecular diffusion is

defined by Fick’s law. The gas flux is proportional to the gas concentration gradient

and the coefficient of molecular diffusion D (m2/s) so that

�j = −D∇c, (2.3)
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where c is the transferred gas concentration. In the present study, the (downward)

gas flux takes place across a horizontal homogeneous, perfectly flat plane and the gas

transfer is given by

j = −D
∂c

∂z

∣∣∣∣
i

,

where the subscript i denotes the interface (surface) and z corresponds to the vertical

direction.

Note that the positive z-direction is upwards and the positive j direction is downward.

Deeper down in the body of water the turbulent mass flux will takes over, so that the

above equation for the averaged gas flux becomes

j = −D
∂c

∂z
+ c′w′, (2.4)

where c is the mean concentration and the c′w′ represents turbulent mass transfer,

in which c′ and w′ are the concentration and z-velocity fluctuations and (.) denotes

averaging. The first term at the right-hand-side of Eq. (2.4) identifies molecular

diffusion transport.

Gas transfer flux is mostly expressed in terms of the so-called gas transfer velocity

KL, which is the quantity that one usually needs to determine in both experiments

and numerical simulations. The gas transfer velocity is defined by rescaling the gas

flux j and is determined by

KL =
j

Δc
=

j

cs − cb
, (2.5)

where cb is defined dissolved gas concentration in bulk region of the water and cs is

the gas concentration at the surface, which can be obtained from Henry’s law. The

transfer of low solubility gases is largely controlled by resistance at the liquid side.

The actual mass transfer velocity (KL) is related to the gas transfer coefficients for

the liquid (water) phase kl and the gas (air) phase kg, respectively. The relation is

defined by
1

KL

=
1

kl
+

1

Hckg
(2.6)

withHc denoting Henry’s constant, which plays a vital role to determine the resistance

of the water side of the interface. So if the ratio of kl/Hckg is large, the gas (air) side
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resistance takes control of the transfer mechanism, whereas the liquid side resistance

governs the transfer process when the ratio has a small value.

The value of Henry’s constant is inversely related to the gasses that are of envi-

ronmental interest such as O2, N2, CO2, CO. Those gasses have very low solubility

and, consequently, they have a very high Henry’s constant. From this, it can be con-

cluded that the transfer of atmospheric gasses across the air-water interface is mainly

governed by the dynamics at the liquid side of the flow [25].

As mentioned earlier, for very low-diffusivity atmospheric gasses, the transfer

process is controlled by a very thin aqueous concentration boundary layer with a

typical thickness of δ ∼ 10− 1000μm. This thickness is directly affected by the mass

diffusivity D, and the time scale and intensity of turbulence level.

2.2 Gas Transfer Model

The importance of gas transfer across the air-water interface is explained in the

previous pages. In order to obtain a better understanding of the actual gas trans-

fer velocity KL, it is necessary to elucidate the composition (terms) of the total

mass flux. Because of the difficulites encountered performing measurements inside

the ultra-thin concentration boundarylayer, in the past many researchers Oconnor &

Dobbins [26], Churchill et al. [27], Thackston & Krenkel [28], Plate & Friedrich [29],

Gulliver & Halverson [30], Moog & Jirka [31], Turney et al. [32], focussed their efforts

to establish statistical relations between the actual gas transfer velocity and (a few)

observable flow parameters. To achieve this, researchers developed and improved

theoretical models for the gas transfer velocity KL that take some of the most im-

portant physics into account. Indeed, the gas transfer velocity KL is associated with

certain flow parameters, but to understand the actual gas transfer mechanism, the

mere quantification of KL is not sufficient.

Models for the gas transfer velocity can be divided into three groups which will

be discussed below:
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1. Theoretical or Conceptual Models;

2. Eddy Diffusivity Models;

3. Hydrodynamic Models.

2.2.1 Theoretical Models

”Conceptual models are simple solution of the vertically one-dimensional diffusion

equation without any explicit advective flow field. The effect of turbulence is incor-

porated through initial condition and boundary condition. Which are characterized

by time and spatial scales” Brumley & Jirka [33]

2.2.1.1 Film theory

This is the simplest and oldest model that describes the gas transfer process.

It was introduced by Lewis et al. [12] and assumes that each side of the air-water

interface is covered with a stagnant film, where the molecular diffusion takes place.

Transport was determined by the thickness of the stagnant film and the bulk region

of the water was assumed to be fully mixed [12]. They actually tried to find a reliable

relation between resistances of the liquid phase and the gas phase for a variety of

atmospheric gasses with different solubilities in water.

The film theory predicts a relation between KL and the thickness δ of the film,

thus

KL =
D

δ
(m/s), (2.7)

where D (m2/s) is the molecular diffusivity and δ (m) is the thickness of the stagnant

film.
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2.2.1.2 Penetration theory

An improved model that takes surface renewal events into account, was developed

by Higbie [14] (penetration model). He recognised that turbulence plays an important

role by periodically bringing fresh packages of unsaturated fluid from the bulk region

to the surface, therefore replacing the saturated fluid at the surface by unsaturated

fluid. The typical time Δt between two renewal events is referred to as the surface

renewal time. Higbie assumed the surface renewal time Δt to be constant. The

penetration model is given by

KL ≈
√

D

πΔt
(m/s) (2.8)

2.2.1.3 Surface renewal theory

Danckwerts [15] improved Higbie’s model by no longer assuming a constant sur-

face renewal time. Instead, he used a surface renewal rate r that is exponentially

distributed, therefore obtaining the model

KL ≈
√
Dr (m/s), (2.9)

where the renewal rate r has to be determined by performing experiments. The

prediction of gas transfer rate across the interface between the gas phase and the

liquid phase is improved through both these theories. Following that the relation

between KL and D was built by using penetration and surface renewal theories and

modelled by

KL ≈ Dn (m/s), (2.10)

where n is power of the diffusivity, with can assume any value between n = 1/2 and

n = 2/3, depending on surface hydrodynamics conditions, see e.g, Jähne et al. [34].

According to the experiment and studies of Jähne et al. [35] and Upstill et al. [36],

the surface renewal theory was found to be a significant improvement compared to

the film theory.
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2.2.1.4 Random eddy theory

A problem related to the surface renewal theory is that the eddies do not renew the

interfacial layer completely. This is proven by laboratory experiments. The thermal

boundary layer (TBL) is not renewed by a fraction of the renewal events Jessup et

al. [37]. The random eddy model proposed by Harriott [38] addressed this issue.

He stated that eddies that approach the surface at random times play a significant

role in promoting the gas transfer process by improving the gas flux. Due to the

random life span of eddies, they only reach up to a certain random distance from the

interface. Closer to the interface, molecular diffusion fully dominates, resulting in a

finite variable thickness of the concentration boundary layer. This finding gives an

opportunity to propose a relation between the random eddy life time and its random

minimum distance to the surface (depth).

2.2.1.5 Surface divergence theory

McCready et al. [13] proposed the surface diverge model. It relates the horizontally

averaged gas transfer velocity KL to the horizontal velocity field observed at the

surface. The divergence of this horizontal velocity field at the surface is given by

β =

(
∂u

∂x
+

∂v

∂y

)∣∣∣∣
i

= − ∂w

∂z

∣∣∣∣
i

, (2.11)

where β is the surface divergence, which can be used as a measure of the surface

renewal rate r. When using r = βrms (1/s), the surface renewal model becomes

KL ∝
√
Dβrms (2.12)

2.2.2 Eddy Diffusivity Models

Possibly with the exception of Harriott’s random eddy model, the models dis-

cussed above did not take into account many of the turbulent characteristics of the

background turbulence that usually drives interfacial gas transfer. Eddy diffusivity
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models, on the other hand, employ multiple scales that vary with depth. The eddy

diffusivity models are generally defined by

ET = D +DT , (2.13)

where ET is the total diffusivity, D is the molecular diffusivity, andDT is the turbulent

(or eddy) diffusivity. Based on this, the z-component of the mass flux is given by

JE = −(D +DT )
∂c

∂z
(2.14)

The turbulent diffusivity DT is determined as a function of depth using a power

dependency given by DT = ωzn, where n > 0 and ω (1/s/mn−2) is a constant. Hence

the gas transfer velocity becomes KL ∼ Dm where 0 < m < 1 depends on the

magnitude of n. So that for a free-slip surface

DT = ωz2 and KL ∼ Sc−1/2, (2.15)

while for a smooth solid (no-slip) surface

DT = ωz3 and KL ∼ Sc−2/3. (2.16)

2.2.3 Hydrodynamic Models

A lot of effort has been made to verify and further improve the gas transfer models

and a number of researchers tested and developed various theories in order to elucidate

the renewal rate term r for a range of measurable turbulent scales.

2.2.3.1 Large eddy model

A further improvement to the surface renewal model was suggested by proposing

the large-eddy model. This approach was introduced by Fortescue & Pearson [16].

They assumed that the largest eddies take control of surface renewal events responsi-

ble for the interfacial gas transfer mechanism. They suggested that r is related to the

typical time-scale associated with the large eddies in a turbulent flow. Hence, they
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proposed the relation r = u∞/Λ, where u∞ is the root-mean-square of the velocity

fluctuations and Λ is the typical length scale of the large eddies. As a result, the gas

transfer velocity is given by

KL = α

√
Du∞
Λ

(m/s), (2.17)

where α is a constant proportionality.

2.2.3.2 Small-eddy model

Moreover, Banerjee [17] and Lamont [18] suggested, as an alternative to the large-

eddy model, the so-called small-eddy model. They suggested that it was the time-

scale related to the small-eddies that was most important and, hence, dominates

the gas transfer process. In this model, the renewal rate (r) is estimated using the

Kolmogorov time-scale
√

ε
ν
, where ε is the turbulent energy dissipation rate at the

interface, ν is the kinematic viscosity, so that

KL = b
√
D(

ε

ν
)
1
4
(m/s), (2.18)

where b is a constant of proportionality. After substituting the renewal rate into the

transfer velocity, KL can be written as [39]

KL ∼ Sc
−1/2u∞ReT

−1/2 (m/s) (2.19)

for the large-eddy model and

KL ∼ Sc
−1/2u∞ReT

−1/4 (m/s) (2.20)

for the small-eddy model. Where Sc is Schmidt number defined in Eq. (2.1) and ReT

is the turbulent Reynolds number defined by

ReT =
u∞Λ
ν

(2.21)

Note that the dissipation rate of the small-eddy ε scale is estimated on the large-eddy

scale as ε = u∞3/Λ.
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Based on results from various experiments, Theofanous et al. [19] proposed the two

regimes model. This model is associated with both eddies models. Which of the two

models is valid was found to depend on the actual intensity of the turbulence, which

is proportional to ReT . Therefore, the large-eddy model is valid for low turbulence

intensity with ReT < ReT,crit and the small-eddy model is valid for high turbulence

intensity with ReT > ReT,crit, with ReT,crit ≈ 500. This dual regime proposal is

supported by many experimental results, see e.g, Theofanous [40], Chu et al. [41],

and Asher & Pankow [42].

2.3 Gas transfer into a turbulent water body

Gas transfer mechanism across the air-water interface plays an important role

into the re-aeration of oceans. The gas transport process is controlled by interaction

of molecular diffusion and turbulent convection near the water surface. Diffusion

processes are mainly only important in a very thin aqueous boundary layer close to

the surface, while further down turbulent gas transfer processes became (fully) dom-

inant. High gas concentration fluid is transferred by turbulent motions across the

concentration boundary layer into regions with low concentration, resulting in steep

concentration gradients. Furthermore, the turbulent gas transfer significantly affects

the diffusive concentration boundary layer thickness. Upwelling motions locally sup-

press (reduce the thickness of) the concentration boundary layer while downwelling

motions tend to thicken the boundary layer. These constant instantaneous changes

in local boundary layer thickness have the time-averaged effect of reducing the over-

all thickness of the concentration boundary layer resulting in a steeper concentration

gradient at the surface. This steeper concentration gradient (∂c/∂z)|i, in turn, results

in an increased diffusive gas transfer velocity.

As mentioned earlier, as there are no velocity fluctuations at the surface itself,

the local contribution of the vertical turbulent gas transfer (flux) to the total gas

flux will be zero at the surface. In other words, the vertical gas transfer is fully
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dominated by molecular diffusion. Deeper down into the water body the importance

of the diffusive gas transfer term quickly reduces and the turbulent gas transfer takes

over the vertical transport of gases further down into the bulk. Increased levels of

turbulence in the water will result in thinner diffusive concentration boundary layers

leading to a larger diffusive mass transfer, and hence larger gas transfer velocities. In

natural water bodies turbulence is ubiquitous, and most flows will be turbulent rather

than laminar. Over the years turbulent flows have been quite widely studied and a

significant amount of theoretical knowledge has been developed, see e.g., Tennekes et

al. [43], Pope [44] and Pozrikidis [45].

Above, it was mentioned that the turbulence intensity is an important factor that

influences the thickness mass boundary layer δ. Another parameter that directly

affects the thickness of the concentration boundary layer is the Schmidt number Sc.

Herlina & Wissink [11] made a direct comparison between simulation results obtained

at different Sc number and found that the concentration (diffusive) boundary layer

becomes thinner with increasing Schmidt number. In fact, in the absence of shear

stress (free slip surface) the thickness of concentration boundary layer δDBL was found

to scale with Sc as

δDBL ∝ S(−1/2)
c . (2.22)

Many researchers investigated the gas exchange mechanism in the presence of tur-

bulent flow, see e.g., [46], [47], [48], [20], [10], and [49]. In the environment, turbu-

lent(vertical) mass flux can be generated by various distinct sources, namely buoyant

convection, bottom shear and wind shear. These sources will be discussed in more

detail below.

2.3.1 Buoyant convective turbulence

The oxygen transfer that occurs due to gravitational instability is especially im-

portant under low wind-speed conditions. The water surface cools down at night

and a layer of relatively heavy cold water forms on top of the lighter, warmer bulk.
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Because of this unstable stratification cold, atmospheric gas-saturated water from the

surface will eventually begin to sink and is replaced by warmer, unsaturated water

from the bulk. Buoyant convective instability-induced turbulent mass transfer was

investigated, for instance, by Deardorff et al. [50] using laboratory experiments. Also,

Katsaros et al. [51] carried out experiments in the laboratory with tanks placed in a

controlled environment to be able to investigate convective instability.

Turbulence was measured in an oceanic convective mixed layer during a cold-air

outbreak by Shay & Gregg [52] in the upper ocean. They established a relationship

between the turbulent dissipation rate and the surface buoyancy flux. Subsequently,

Shay & Gregg [53] studied a buoyant convective instability near the Bahamas that

was generated by daytime heating and evaporative cooling at night. The plumes

generated by the convective instability were observed to penetrate up to 100m deep.

The relation between buoyancy induced turbulence and sea surface temperature was

studied by Graham & Barnett [54]. They found that for large scale deep penetrative

(buoyant) convection to take place in the Indian and Pacific oceans, it is needed

that the water surface temperature exceeds 27.5oC. Further increases in sea surface

temperature, however, did not produce any additional effect. Sea surface temperature

was associated between convection and surface wind divergence, this study [54] was

conducted and according to their results, sea surface temperature is not necessary

to be over 27.5oC for very effective convection although wind divergence is quite

related with deep convection. Similar studies were performed in a lake environment

by Imberger [55]. Other researchers studying buoyancy convective instability driven

turbulent convection in lakes were Brubaker [56], Sander et al. [57] and Jonas et al.

[58]. The turbulent transport model of Zeman & Lumley [59] was also concerned with

buoyancy instability effects on the vertical flux through the mixed layer. However,

none of the above works really addresses the convective transfer of atmospheric gases

by the buoyant convective instability. Macintyre et al. [60] expanded the scope of

the research into penetrative (buoyant) convection by including investigation into

the gas transfer coefficients due to wind shear and penetrative convection through
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the mixed layer. Subsequently, Eugster et al. [61] investigated CO2 gas exchange

across the atmosphere and the surface of lakes via a buoyant convective instability

by using the eddy covariance method and the surface renewal model to calculate the

gas transfer velocity. Their data showed the importance of periods of heat loss and

convective mixing to the gas transfer process. Lee [62] studied the transport of O2

from teh atmosphere into the water driven by a convection instability. The oxygen

mixing in the water body was visualised by using a fluorescence oxygen visualization

technique. Schladow et al. [63] examined the gas transfer process driven by natural

convection in reservoirs and lakes. A cool surface layer was created in the laboratory

experiments to create a gravitational instability and the oxygen transfer fluorescence

imaging technique was used measure the evolution of the O2 concentration in the

water. Their results confirm that the buoyancy-driven vertical flux of cold water is

an important source for the vertical transfer of O2 towards the bulk of the water.

At low wind speeds, the gas transfer will be dominated by buoyancy and driven

by temperature differences between the (cool) surface and the (relatively warm) bulk.

To investigate the effectiveness of this process in more detail, Direct numerical simu-

lations (DNS) were performed by Wissink & Herlina [64] who calculated heat and gas

transfer into the water body driven by a buoyant-convective instability. They used

a Prandtl number of (Pr = 6) and performed simulations for a range of Sc num-

bers (Sc = 20 to 500). Plumes of cold, saturated fluid were found to penetrate deep

into the water bulk causing an effective mixing of unsaturated warm water with the

saturated cold water. Another study related to the determination of the surface age

given a buoyant convective instability was reported by Ali et al. [65]. DNS calculation

results were used in conjunction with Danckwerts et al. [15] model to determine the

heat transfer velocity. The surface age was determined using a Lagrangian particle

tracking method.



24

2.3.2 Wind shear induced turbulence

Wind shear-induced turbulence an important mechanism for the promotion of air-

water gas transfer. For sufficiently strong winds, the turbulence produced by wind

shear causes quick mixing and enhances the heat and gas transfer. Wind shear is

produced at the water surface. When the wind speed is above 3m/s, considerable

wave growth is generated which may result in wave breaking. Jähne et al. [66] studied

the gas exchange in a circular wind/water tunnel. The gas transfer velocity was found

to linearly increase with increasing wind speed up to about 8m/s. Jähne et al. [34] also

performed experiments in circular and linear wind/wave tunnels where they carried

out gas transfer measurements. The results indicate that the gas transfer across the

wavy surface of the water was best represented by the mean square of the slope

of the waves. Merlivat & Memery [67] found that the gas transfer velocity linearly

changes with friction velocity uτ when the uτ increases from 3m/s to 9m/s. Jähne &

Haußecker [68] found similar results, which confirmed that the gas transfer velocity

is also a function of the surface friction velocity and not just only wind speed.

The effect of various wind speeds (< 10m/s) on the gas transfer velocity in the

presence of surface films was studied by Frew et al. [69]. Again, it was found that the

gas transfer velocity is stronger correlated with the mean square slope of the waves

than with the speed of wind. Lee & Saylor [70] conducted experiments in a wind tun-

nel to study the O2 transfer across a contaminated surface under mixed convection

conditions. The effect of wind shear induced turbulence on the formation of a con-

centration boundary layer at the water surface was studied by Wolff & Hanratty [71],

Woodrow & Duke [72], Munsterer et al. [73], Munsterer [74], Munsterer & Jähne [75]

and Peirson [76]. They attempted to predict the thickness of the (extremely thin)

concentration boundary layer and reported significant difficulties to obtain results of

reasonable quality. Measurements of the instantaneous concentration profiles on the

water side were reported by Wolff & Hanratty [71] and Peirson [76]. They used the

PIV technique to estimate the concentrated boundary layer thickness within the aque-
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ous surface viscous sub-layer. Munsterer & Jähne [75] used laser-induced fluorescence

(LIF) to approximate the concentration boundary layer thickness. Oconner [77] es-

tablished a relation between the gas transfer velocity and the wind velocity for smooth

surface conditions with low wind speeds and for rough surface conditions with high

wind speeds. Kitaigorodskii [78] used the analogy with turbulence over rigid-wall

surface to estimate the gas transfer velocity (KL). Chu & Jirka [79] experimentally

studied interfacial gas transfer (oxygen) in the presence of wind shear in wind/water

tunnel. Gas transfer rates were investigated for various wind speeds in the presence

of bottom-shear (water stream). It was found that the air shear velocity is an ef-

fective parameter to describe the gas transfer mechanism in the absence of bottom

shear. The relation between KL and wind speed was also investigated by Crusius &

Wanninkhof [80] who performed measurements at various wind speeds.

Kunugiet al. [81] performed a Direct Numerical Simulation for turbulent flow with

wind shear to study carbon-dioxide gas transfer at the interface. The results obtained

from the simulation were compared to experimental data. It was found that the

exchange coefficient of carbon-dioxide gas at the free surface, as found in their study,

was in good agreement with existing experimental data. Direct Numerical Simulation

was also performed by Kurose et al. [82] for two phase turbulent flows with wind-

induced shear without breaking waves. The arbitrary Lagrangian-Eulerian method

was used to capture the wind-driven waviness at the interface. It was found that the

surface divergence was a suitable parameter for the estimation of the heat transfer

coefficients on both the gas and liquid sides.

Finally, a direct numerical simulation of turbulent heat transfer across a de-

formable, sheared gas-liquid interface was carried out by Lakehal et al. [83], where

the flow velocity was defined in the opposite direction of the air velocity.
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2.3.3 Bottom shear induced turbulence

Shear generated at the bottom is the source of turbulence in flowing streams. If

wind speeds are quite weak in a stream environment, bottom-shear-induced turbu-

lence become dominant and drives the gas transfer mechanism. Many researchers

attempted to build relations between gas transfer velocity and various flow proper-

ties. These relations are usually experimental or based on computational analyses,

see e.g., Churchill et al. [27], Thackston & Krenkel [28] and Gulliver & Halverson [30].

The aforementioned researchers used entirely empirical methods to obtain gas trans-

fer models, while s semi-empirical method was emplyed by O’Conner & Dobbins [26].

The re-aeration coefficient was fitted to the vertical gas transfer coefficient and the

square of the average depth by Thackston & Krenkel [28]. A vortex model for gas

transfer in open channels was derived from the gas transfer model by Gulliver &

Halverson [30].

Plate & Friedrick [29] studied the re-aeration of open channel flow and evaluated

various turbulent cases. The first case evaluated concerned bottom-shear induced

turbulence, the second case concerned wind-shear induced turbulence while in the

last case these two sources of turbulence were combined. They were able to relate the

gas transfer velocity (KL) to root mean square of the horizontal component of the

velocity near the surface. Further experiments were conducted by J̈ırka & Ho [84],

Moog & J̈ırka [85], Moog & J̈ırka [86] and Moog & J̈ırka [31]. Their experiments were

performed in an open channel and the effect of surface roughness on interfacial gas

transfer was studied. They found that gas transfer rates agreed with macro roughness

and showed the validity of the small eddy model.

Atmane & George [87] also performed research in bottom-shear-induced turbu-

lence flow. They tried to quantify turbulent mass flux using the eddy-correlation

method. Mckenna & McGillis [46] performed measurements of gas transfer in a tank

with grid-stirred turbulence. Their experiments were carried out with various levels

of contamination at the interface. They proposed that the turbulence in the bulk, is
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not as effective as expected due to presence of surface films. The relation between

surface divergence and gas transfer velocity was determined for the case of interfacial

contamination. It appeared that the surface divergence is an important parameter for

interfacial gas transfer, see also Brumley [88]. Tamburrino & Gulliver [89] also studied

the relation between mass transfer in an open channel flow and free surface turbu-

lence. Studies at various Re numbers were performed in the range 8, 500 − 45, 000,

while in the Mckenna & McGillis [46] study they ranged from ReT = 282 to 974.

Based on their experiments, combined with the study of Gulliver & Halverson [30]

who used the same facility, and with the study of Lau [90] (performed in a different fa-

cility), they derived the relation K+
√
Sc = 0.24

√
S+

βmax where K+ is the liquid-film

coefficient and S+
βmax is the maximum value of the surface divergence β spectrum.

These are dimensionless values which are normalised by the kinematic viscosity and

shear velocity.

Suga and Kubo [91] used an extended version of the analytical wall-function

(AWF) which was designed for Reynolds-averaged Navier Stokes simulations (RANS)

to prescribe surface mass transfer rates and turbulent concentration fields across un-

deformable air-water interfaces at Sc numbers ranging from 1 ≤ Sc ≤ 1000

The results of near-surface hydrodynamic measurements in a grid stirred tank

were reported by Brumley & Jirka [92]. A rotating split-film velocimeter was used to

produce a detailed mapping of vertical and horizontal turbulence structures. From

their measurements and by employing Hunt & Graham [93] theory, they were able to

identify different near-surface hydrodynamic layers. A schematic of these hydrody-

namic layers is shown in Figure 2.2.

It was suggested that kinematic effects related to the presence of the surface

are expected to extend up to one integral length scale from the surface, therefore

identifying the so-called surface influenced layer. The viscous sub-layer is the thin

layer next to the surface where viscous effects dominate (and the flow is basically

always laminar). The thickness of this layer is of the order of L∞ReT
−1/2 [94], where

L∞ is the integral length scale and ReT is the turbulent Reynolds number.
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Fig. 2.2. Schematic illustration showing estimation of hydrodynamic
layers (Brumley&Jirka) [88]

The thickness of the Kolmogorov sub-layer, which is on the order of η = 2L∞ReT
−3/4,

identifies the scale of the smallest eddies in isotropic turbulence. The outer diffusivity

layer, with a thickness scaling with the size of the largest eddies, is estimated to be

of the order of 2L∞ReT
−1/2Sc−1/2. The thickness of the Batchelor sub-layer, finally,

is again related to the smallest eddies and is of the order of 2L∞ReT
−3/4Sc−1/2.

2.4 Surface Film Effects

2.4.1 Surface tension

Surface tension is one of the most important properties of the fluid surface. The

existence of such a large inward attraction between fluid molecules is related to co-

hesive forces between water molecules which causes a surface tension at the air-water

interface. Compared to many other fluids, the surface tension of water is especially

large, e.g., for water at 20oC a value of 72.8−3 N/m is obtained. These strong forces

work to e.g. counteract any deformation applied to water surfaces. Surface tension

is also responsible for the spherical shape of water droplets and bubbles (because for
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spherical shapes surface tension is identical at every surface location). Surface tension

is usually denoted by the symbol σ and its dimension is force per unit length, i.e.

σ = Fs/L, (2.23)

where Fs is the stretching force (in Newton) and L is defined unit length (in metre).

Surface tension depends on the physical properties of the fluid and is function of tem-

perature and pressure, see e.g., Sabersky et al. [95]. Several experimental methods

for the determination of surface tension were assessed by Lapham et al. [96]. The situ

tensiometry technique, for instance, determines surface tension from the retraction of

a thin-walled tube from the liquid interface. Repeatable results were obtained mea-

suring the surface tensions of an alcohol-in-water solution, tap water and a surfactant

water solution.

2.4.2 Surfactants

It is known that the presence of surfactants have considerable effect on gas transfer

across the air-water interface [97]. The gas transfer velocity KL is affected by the

cleanliness of the surface, and turbulent velocity fluctuations are more or less strongly

damped depending on the level of surfactant pollution. When the surface is covered by

surfactants, greater tangential stress occur due to local variations in surface elasticity

due to the dependency of surface tension on the surfactant concentration. As will

be explained later, surfactant-induced local variations in the surface tension result in

the damping of near-surface turbulence. The laboratory experiments of Broecker [98]

showed that the gas transfer velocity reduced in the presence of surfactants.

When a surface is covered with active agents, the surface free energy will reduce.

On the other hand, surface tension is decreased with increasing levels of surface

active agents or surfactants. Experimental determination of the influence of surfactant

concentration on surface tension for soluble and insoluable surfactants was attempted

by Rideal & Robb [99]. Furthermore, several experimental studies were carried out

on the effect of surfactants on gas transfer processes, see e.g., in Asher & Pankow
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[42], Mckenna & McGillis [47], Saylor et al. [100], Tsai & Liu [101] and Tsai &

Yue [102]. Surfactants are either soluble or insoluble. The insoluble surfactants may

form something like a barrier film at the water surface. The thickness of these surface

films, however, is severely affected by the effect of waves and winds condition and

other sources of turbulence. Soluble surfactants tend to dominate the gas transfer

process even in breaking wave conditions that occur in the presence of very strong

winds, see e.g., Goldman et al. [103], Bock et al. [104]. An insoluble surfactant that

is relevant to the present study is Oleyl alcohol. This is an unsaturated fatty alcohol

and the molecular formula is C18H36O with a condensed structural formula given by

CH3(CH2)7 − CH = CH − (CH2)8OH. (2.24)

Surfactants can affect a wide variety of free surface processes. One of these ef-

fects concerns capillary waves which can be reduced by a range of surfactants [105].

Horizontal gradients in the surfactant concentration at the interface tend to gener-

ate surface tension gradients that damp turbulent motion. This was confirmed by

Tsai [106] who studied the effect of contamination on turbulent and laminar flow and

also by Lee & Saylor [70] who also found that the presence of surfactants resulted in a

noticeable reduction of the effect of subsurface turbulence. Zhang et al. [107] investi-

gated the effect of insoluble surfactants in the presence of zero mean surface stress by

performing a numerical simulation for interfacial gas transfer driven by buoyant con-

vection induced turbulence. A Direct Numerical Simulation was also performed for

an open channel by Handler et al. [108]. Their works were related to the influence of

surfactants on heat transfer. The intensity of the turbulence was reduced significantly

with increasing surfactant elasticity and Handler et al. [108] found that the turbu-

lent velocity fluctuations were significantly reduced. Also, a significant reduction was

found of the average temperature at the free surface.

Recently, Khakpour et al. [97] and Hasegawa & Kasagi [48] compared the ef-

fect of clean and surfactant-contaminated surfaces on interfacial gas transfer using

a numerical simulation for the transfer mechanism driven by surface-shear-induced

turbulence. It was found that the presence of surfactants made the surface behave
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like a solid wall. Khakpour et al. [97] also found that the transport of the surfactants

at the surface did not depend on the actual surfactant Schmidt number. Shenet al. [1]

investigated the effect of surfactants on free surface turbulent flow in the presence of

mean surface shear by performing various DNS with Reynolds numbers Re = 700,

1000, and 1400, a Marangoni number of Ma = 0.1 and a Weber number of We = 10.

They observed a noticeable reduction in the surface divergence even for very small

levels of contamination. Herlina & Wissink [10] performed a series of DNS of inter-

facial gas transfer driven by isotropic turbulence diffusing from below. The severely

contaminated surface was modelled by no-slip boundary conditions and contrasted

to clean surface results [11], where KL was found to scale with Sc−1/2. The simula-

tions were performed for a range of Schmidt numbers from Sc = 2 up to Sc = 500

and turbulence Reynolds numbers up to ReT = 865. From the results, it was found

that KL scales with Sc−2/3. For the smaller ReT < 500 a modified large-eddy model

(KLSc
2/3/u∞ ∼ Re

−1/2
T ) was found to be valid, while for ReT > 500 a modified

small-eddy model (KLSc
2/3/u∞ ∼ Re

−1/4
T ) was found to apply. This confirms that

Theofanous’ assumption [19] of a dual regime depending on the turbulent Reynolds

number is also valid for a heavily contaminated surface.

2.4.3 Marangoni effect and surface elasticity

Marangoni effects are driven by surface tension gradients. In general, surface ten-

sion (σ) depends on the distribution of the surfactant contamination at the surface.

Consequently, the Marangoni effect is generated by gradients of the surfactant con-

centration at the interface. Surfactant concentration gradients result in gradients of

the surface tension. Surfactants thus indirectly produce forces at the interface. Their

effects were detected by Marangoni (1871) and are commonly referred as Marangoni

effect or forces. For example, when turbulence diffuses towards the surface from

the bottom, the (initially uniform) surfactant concentration at the surface becomes

non-uniform and upwelling motions will push surfactants to the sides where they ac-
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cumulate. As a result, certain areas will become virtually surfactant-free while others

will be quite heavily contaminated. This uneven surfactant distribution at the surface

results in the generation of Marangoni forces that tend to damp the turbulent motion

that initially caused this uneven surfactant distribution. This process typically leads

to a significant reduction in the surface divergence.

Local variations in surfactant concentration generates variations in surface tension

(which reduces with increasing surfactant concentration). As a result, the generated

Marangoni forces will affect the near-surface (turbulent) flow. The interaction of

surfactants and turbulent flows was investigated by Bernal et al. [109], Anthony et

al. [110], Tsai & Yue [102], Willert & Gharib [111], Flack et al. [112] and Khakpour

et al. [97].

At a fixed temperature, the surface tension (σ) is constant in the absence of

surfactants. The surfactant concentration (γ) is related to the surface tension (σ) by

σ∗ − 1 = Ma(1− γ∗). (2.25)

This linear approximation is given in [97] and [1]. The Marangoni number Ma is

defined by Ma = −∂σ∗
∂γ∗ |γ∗=1 where

σ∗ = σ
σ0

γ∗ = γ
γ0

⎫⎬
⎭ , (2.26)

and where the subscript zero refers to the equilibrium values of σ and γ. The sur-

factant concentration is normalised by dividing it by its equilibrium concentration

in Eq. (2.26). This linearized approximation is only valid for small variations of

γ∗ = γ
γ0

≈ 1. The surface tension is a function of the surfactant contamination level

such that ∂σ∗
∂γ∗ < 0. More information on the modelling of the Marangoni effects can

be found in Chapter 3.
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Chapter 3: METHODOLOGY

It is generally accepted that both laminar and turbulent incompressible flow of a

Newtonian fluid is described by the Navier-Stokes equations, which consist of the

continuity equation
∂ui

∂xi

=
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

= 0, (3.1)

and the scalar momentum equations

∂ui

∂t
+

∂(uiuj)

∂xj

= −∂P

∂xi

+ ν
∂2ui

∂xj∂xj

i = (1, 2, 3), (3.2)

where (u1, u2, u3) = (u, v, w) are the velocity components in the (x1, x2, x3) = (x, y, z)

directions, t is time, P = p/rho is the generalised pressure (the static pressure divided

by the constant density) and ν is the kinematic viscosity. Summation, as illustrated

in (3.1), is indicated by repeated indices. In the coordinate system employed here,

x and y are in the horizontal directions, while z corresponds to the vertical direc-

tion. For convenience, the Navier-Stokes equations were non-dimensionalised using a

characteristic length scale L and a characteristic velocity scale U , with xi
∗ = xi/L,

ui
∗ = ui/U , t∗ = tU/L, and p∗ = P/U2 and (.∗) identifying non-dimensional quan-

tities. The subsequent substitution of these rescaled variables in the momentum

equations (3.2) gives

U2

L

∂ui
∗

∂t∗
+

U2

L

∂(ui
∗uj

∗)
∂xj

∗ = −U2

L

∂p∗

∂xi
∗ + ν

U

L2

∂2ui
∗

∂xj
∗∂xj

∗ i = (1, 2, 3), (3.3)

By dividing both sides of (3.3) by U2

L
we finally obtain the dimensionless Navier-Stokes

equations

∂ui
∗

∂t∗
+

∂(ui
∗uj

∗)
∂xj

∗ = − ∂p∗

∂xi
∗ +

1

Re

∂2ui
∗

∂xj
∗∂xj

∗ i = (1, 2, 3), (3.4)
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where

Re =
UL

ν
(3.5)

is the Reynolds number, which is a dimensionless quantity corresponding to the ratio

of the inertial forces to the viscous forces. Generally, the larger the Reynolds number

is the more important the inertial forces are and the more likely it is that the flow is

turbulent.

The transport of a dissolved scalar concentration c in a fluid flow is described by

the convection-diffusion equation

∂c

∂t
+∇ (c�u) = D∇2c (3.6)

where

∇ =

⎛
⎜⎜⎜⎝

∂
∂x1

∂
∂x2

∂
∂x3

⎞
⎟⎟⎟⎠ , �u =

⎛
⎜⎜⎜⎝

u1

u2

u3

⎞
⎟⎟⎟⎠ ,

and D is the scalar diffusivity. Using Einstein’s notation, with summation over re-

peated indices, (3.6) can be rewritten as

∂c

∂t
+

∂cuj

∂xj

= D
∂2c

∂xj∂xj

j = (1, 2, 3). (3.7)

The scalar concentration c was subsequently non-dimensionalised by

c∗ =
c− cb,0
cs − cb,0

, (3.8)

where c∗ is the non-dimensional scalar concentration, cs is saturation concentration

at the surface and cb,0 is the initial concentration in the bulk. Using L and U to

non-dimensionalise t, xj and uj we obtain

∂c∗

∂t∗
+

∂c∗u∗j
∂x∗j

=
D

UL

∂2c∗

∂x∗j∂x
∗
j

j = (1, 2, 3). (3.9)

Note that D
UL

= D
ν

ν
UL

= 1
ScRe

, where Sc = ν
D

is the Schmidt number, so that finally

the non-dimensional scalar transport equation

∂c∗

∂t∗
+

∂c∗u∗j
∂x∗j

=
1

ReSc

∂2c∗

∂x∗j∂x
∗
j

j = (1, 2, 3) (3.10)
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is obtained. In the remainder, the star notation will be dropped and non-dimensionality

will be implicitly assumed. Convenient characteristic length and velocity scales ap-

plicable in the present simulations would be U = 0.06m/s and L = 0.01m.

3.1 Modelling of surface contamination

The surface boundary condition for the velocity to be employed is affected by the

level of contaminations and hence depends on the condition of the surface. For a

clean surface, for instance, the free-slip boundary condition given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂z

∣∣
surface

= 0,

∂v
∂z

∣∣
surface

= 0,

w|surface = 0,

(3.11)

would be valid, while for a heavily contaminated surface the no-slip boundary con-

dition with u|surface = v|surface = w|surface = 0 would be a good approximation

because it has the same scaling KL ∝ Sc−2/3 of the transfer velocity KL with the

Schmidt number Sc. However, if the water surface is contaminated with surfactants

the boundary condition will vary locally and instantaneously depending on the level

of contamination. This dynamic boundary condition for the velocity was first mod-

elled by Sheen (2004) [1]. According to this model, the stress balance is expressed by

the dynamic boundary condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Re

∂u
∂z

∣∣
surface

= 1
We

∂σ
∂x
,

1
Re

∂v
∂z

∣∣
surface

= 1
We

∂σ
∂y
,

w|surface = 0,

(3.12)

where We (the ratio of the inertial and surface tension forces) is the so-called Weber

number, which is defined by We = ρU2L2

σ0
, where σ0 is the characteristic surface

tension. By assuming a linear relationship between the normalised surface tension,

σ, and the normalised surfactant concentration, γ, we obtain σ − 1 = Ma(1 − γ),

with Ma = ∂σ
∂γ

which is explained in detail in Section 2.4.3 The evolution of the
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surfactant concentration (γ) at the water surface is given by the two-dimensional

convection-diffusion equation

∂γ

∂t
+

∂γuj

∂xj

=
1

ReSc

∂2γ

∂xj∂xj

j = (1, 2), (3.13)

where γ is the dimensionless surfactant concentration, obtained by dividing the sur-

factant concentration by its equilibrium value γ0, while xj, uj and t are made non-

dimensional using L,U and L/U . In the simulations, the water surface was assumed

to remain flat at all times (rigid lid assumption) and the total surfactant concentration

〈γ〉 =
∫
surface

γdA

was assumed to be constant. Similarly to γ, also the surface tension was made

dimensionless by dividing it by its equilibrium value σ0. Based on the Sheen’s model,

the effect of surface contamination on the near surface velocity fluctuation is modeled

by relating the normal gradient of the horizontal velocities at the surface to the

horizontal gradients of the surfactant concentration. By taking the derivative of

(2.25) and substituting this into (3.12), we obtain⎧⎨
⎩

∂σ
∂x

= −Ma∂γ
∂x
,

∂σ
∂y

= −Ma∂γ
∂y
,

(3.14)

which when substituted in (3.14) gives the relations⎧⎨
⎩

1
Re

∂u
∂z

∣∣
surface

= −Ma
We

∂γ
∂x
,

1
Re

∂v
∂z

∣∣
surface

= −Ma
We

∂γ
∂y
,

(3.15)

between the horizontal gradients of the surfactant concentration and the normal gra-

dients of the horizontal velocity components at the surface. Note that if the ratio

Ma/We > 1, the water surface is regarded to be highly contaminated [97]. Sum-

marising, the model for the surface boundary conditions of the horizontal velocity

reads
∂ui

∂z

∣∣∣∣
surface

= −ReMa

We

∂γ

∂xi

, i = (1, 2). (3.16)

In this equation, the nondimensional number (ReMa/We) determines the effect of

the contamination level on the near surface velocity field.



37

3.1.1 Rescaling of (Re Ma/We)

As mentioned in the previous section, the Reynolds number represents the ratio

of the intertial forces to the viscous forces, while the Weber number is the ratio of

intertial forces to the surface tension forces. Hence, the ratio Re/We corresponds

to the ratio of the surface tension forces to the viscous forces, thus corresponding to

the inverse of the capillary number Ca. In the original context of open channel flow,

the definition of the Weber number We uses the mean shear strength. In the present

simulations, however, such a mean shear is absent and it would make sense to replace

ReMa/We in (3.16) by its equivalent Ma/Ca. Because the relevant characteristic

scales are turbulent, it is better to use an alternative definition based on the turbulent

length and velocity scales L∞ and u∞, respectively. As a result, a turbulent Weber

number WeT = 2ρu∞2L∞
σ0

is obtained. Similarly, the Reynolds number is replaced by

a turbulent Reynolds number ReT = 2ρu∞L∞
μ

, where μ is the dynamic viscosity, so

that the ratio of turbulent Reynolds and Weber numbers becomes

ReT
WeT

=
σ

μu∞
=

1

CaT
, (3.17)

where

CaT =
μu∞
σ

(3.18)

is the turbulent capillary number.

3.2 Flow Solver

An in-house flow solver used in the present simulations has been extensively tested

in the past, where it was used to study e.g. the growth and limiting behaviour of waves

in Poisseuille flows [113], the effect of isotropic turbulence on interfacial mass transfer

for various turbulent Reynolds numbers in [11]. The double diffusive instability driven

occurring when an unstable salinity gradient is stabilised by a temperature gradient

[114]. In the present simulations of isotropic turbulence induced air-water mass and

heat transfer it is used to study the effect of insoluble surfactants and a finite-slip
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boundary conditions on both the near surface flow field and the interfacial mass and

heat transfer. The flow solver uses high-order discretisations of the incompressible

Navier Stokes equations and the scalar convection-diffusion equation. The purpose

of these discretisations is to replace the original differential equations by a (usually

large) number of relatively simple equations that can be solved numerically. It is

known that discretisations of the Navier-Stokes equation on a collocated mesh can

cause a decoupling of the pressure and velocity fields. To avoid such a decoupling, for

the present simulations the discretisation is performed using a Cartesian staggered

mesh consisting of rectangular grid cells. The scalars (like pressure p, temperature

T and concentration C) are defined in the middle of the cells, while the velocity is

defined at the centre of the cell faces.

Below, first the discretisations used in the flow solver will be discussed in depth,

followed by the discretisation used for the scalar transport equations and a detailed

description of the way in which boundary conditions are implemented.

Note that the Kinetic energy Conserving Flow solver KCFlo code was parallelised

for usage on large scale massively parallel computers. For this purpose the computa-

tional domain was divided into several blocks of equal size. Computations related to

each block were carried out on separate, especially allocated processing cores. Com-

munication between blocks (cores) was performed by using the standard Message

Passing Interface (MPI) library.

3.2.1 Time integration

The discretisation method employed uses separate discretisations in space and

time. Because the flow solver is incompressible, pressure waves travel at infinite speed.

To deal with this, both the continuity equation (3.1) and the pressure term in (3.4)

will need to be treated implicitly to ensure that the flow field remains divergence-free.

The technique described here is based on the Marker and Cell method of Harlow and

Welch [115]
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First only the discretisation in time is considered and the continuity equation (3.1)

is rewritten as (
∂ui

∂xi

)(n+1)

= 0, (3.19)

where the superscript (n+1) denotes the number of time-steps δt that the simulation

has progressed, i.e., u(n× δt) = u(t(n)) = u(n).

Next, the momentum equations are rewritten as

(
∂ui

∂t

)(n+1/2)

= −
(

∂p

∂xi

)(n+1/2)

+
3

2
a
(n)
i − 1

2
a
(n−1)
i i = (1, 2, 3), (3.20)

where 3
2
a
(n)
i − 1

2
a
(n−1)
i is a second-order-accurate extrapolation of a

(n+1/2)
i and the

convective-diffusive contributions a
(n)
1 = a(n), a

(n)
2 = b(n), a

(n)
3 = c(n) are defined by

a
(n)
i = −

[
∂(uiuj)

∂xj

](n)
+

1

Re

(
∂2ui

∂xj∂xj

)(n)

i = (1, 2, 3). (3.21)

By discretising (3.20) in time using the second-order-accurate central method

(
∂ui

∂t

)(n+1/2)

=
u
(n+1)
i − u

(n)
i

δt

centred about t(n+1/2), we subsequently obtain

u
(n+1)
i = u

(n)
i − δt

(
∂p

∂xi

)(n+1/2)

+
δt

2

[
3a

(n)
i − a

(n−1)
i

]
i = (1, 2, 3), (3.22)

where the contributions of the convective and diffusive terms to the new velocity field

are treated according to the second-order accurate Adams-Bashforth method.

Finally, (3.22) is substituted in (3.19)

(
∂ui

∂xi

)(n)

− δt

(
∂2p

∂xi∂xi

)(n+1/2)

+
δt

2

⎡
⎣∂

(
3a

(n)
i − a

(n−1)
i

)
∂xi

⎤
⎦ = 0 (3.23)

resulting in the so-called Poisson equation for the pressure

(
∂2p

∂xi∂xi

)(n+1/2)

=
1

δt

(
∂ui

∂xi

)(n)

+
1

2

⎡
⎣∂

(
3a

(n)
i − a

(n−1)
i

)
∂xi

⎤
⎦ = 0. (3.24)
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All discretisations ∂
∂xi

in (3.24) are second-order accurate central. This Poisson

equation is solved using the iterative conjugate gradient method with diagonal pre-

conditioning. Once the pressure field p(n+1/2) is obtained, the new divergence-free

velocity field u
(n+1)
i is calculated from (3.22). For further discussions see Roche [116]

Note that the pressure and velocity fields are strongly coupled in this discreti-

sation. As opposed to the a collocated mesh, where the discretisation of the second

derivative of the pressure (for example on a uniform mesh with mesh size h in each di-

rection), reads∇2pi,j,k =
pi−2,j,k−2pi,j,k+pi+2,j,k

h2 +
pi,j−2,k−2pi,j,k+pi,j+2,k

h2 +
pi,j,k−2−2pi,j,k+pi,j,k+2

h2 ,

while for a staggered mesh it reads∇2pi,j,k =
pi−1,j,k−2pi,j,k+pi+1,j,k

h2 +
pi,j−1,k−2pi,j,k+pi,j+1,k

h2 +

pi,j,k−1−2pi,j,k+pi,j,k+1

h2 . The latter expression provides a strong coupling between the

pressures in all neighbouring grid cells and, hence, avoids the decoupling of pressure

and velocity.

3.2.2 Discretisation of convective and diffusive terms

As mentioned in the previous section, the discretisations in time and space are

carried out separately. The convective and diffusive terms in (3.22) are contained in

a
(n)
i , which is defined in (3.21). For the convective terms

[
∂(uiuj)

∂xj

](n)
, a fourth-order

accurate kinetic energy conserving discretisation [114], [117], defined by e.g.

(
∂u2

∂x

)
i

=
−ui+2

(ui+ui+2

2

)
+ 8ui+1

(ui+ui+1

2

)− 8ui−1
(ui+ui−1

2

)
+ ui−2

(ui+ui−2

2

)
−xi+2 + 8xi+1 − 8xi−1 + xi−2

,

(3.25)

is employed, where the subscript i denotes the x-location (xi) of the coordinate at

which the derivative is evaluated.

The second derivatives in the diffusive terms 1
Re

(
∂2ui

∂xj∂xj

)(n)

are discretised using

a fourth-order-accurate central discretisation(
∂2u

∂x2

)
i

=
ui+2 − 16ui+1 + 30ui − 16ui−1 + ui−2

12(δx)2
, (3.26)

where δx is the size of grid cell in the uniform x-direction and the subscript i again

indicates the x-location (xi) where the respective variables are evaluated.
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3.2.3 Discretisation of the scalar convection-diffusion equation

Extra care is needed when choosing methods for the discretisation of the scalar

convection-diffusion equation (3.10). In the past, various methods were employed to

resolve low-diffusivity scalar transport problems, for instance, Hasegawa and Kasagi [118]

used a pseudo-spectral method to analyse interfacial mass transfer driven by wind-

shear driven turbulence using a Schimidt number of Sc=100. Schwertfirm and Man-

hart [119], on the other hand, used second-order central differences for both fluid and

scalar but employed a finer mesh for the discretisation of the scalar to calculate its

mass transfer at a Schmidt number of Sc = 49.

While the scalar diffusion was calculated using the same fourth-order accurate

central discretisation (3.26) as used in the flow solver, the very steep scalar gradi-

ents that occur instantaneously for very low scalar diffusivities make it necessary

to employ a special numerical scheme for the convection that is capable of properly

capturing such gradients without adding too much artificial scalar diffusion. Hence,

it was decided to adapt a fifth-order accurate Weighted Essentially Non-Oscillatory

(WENO) scheme known for its capability capturing shocks and steep gradients that

may occur in various flow simulations. This WENO scheme was developed by Liu et

al. [2] and adapted for the discretisation of scalar convection on a staggered mesh

in [120]. The WENO scheme assembles mass fluxes by taking convex combinations

of lower order polynomial interpolations in which the weights are determined by the

local smoothness of the scalar distribution. In the neighbourhood of steep gradients,

the local order of accuracy of the approximation is reduced in order to capture the

gradient as well as possible. In the areas where the scalar distribution is smooth, the

WENO scheme will reach its highest order of accuracy. By varying the way in which

the weights are calculated, many variants of WENO schemes have been developed,

for example [121], [2], [122], [123]. Compared to the original WENO scheme of [2],

in the newer schemes, the calculation of the weights is optimised in order to increase

the local accuracy in the presence of steep gradents. An increase in local accuracy in
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areas where the scalar distribution is smooth was achieved by increasing the size of

stencil [122]. Henrick et al. [123] showed that when using weights generated by the

classical smoothness indicator of [121], the maximum order of accuracy of the WENO

scheme could not be recovered. To overcome this problem the Mapped Weighted Es-

sentially Non-Oscillatory WENOMmethod was developed, which was able to produce

accurate results close to discontinuities (steep gradients or shocks). Borges et al. [3]

developed the fifth-order accurate WENO-Z (W5-Z) scheme as an improvement to

the WENO-5 (W5) scheme of Jiang [121] by creating a new smoothness indicator.

In [120] it was shown that for scalar transport calculations on relatively coarse

staggered meshes the original fifth-order-accurate WENO scheme of [2], compared to

the variant introduced in [121], gave slightly better results. As a result, the original

W5 scheme [2] was adopted for the calculation of scalar transport equation (3.10)

in the in-house flow solver. The workings of the scheme is illustrated below for the

one-dimensional scalar surfactant convection problem described by

∂γ

∂t
= −∂γu

∂x
, (3.27)

where the surfactant concentration is located in the middle of the cell and the velocity

is defined at the borders of each cell (see Figure 3.1). Like the velocity, also the mass

Fig. 3.1. Grid cell

flux (γu) of the surfactant is calculated at borders between cells and the increase in

the surfactant concentration inside the grid cell over a time interval δt is given by

[γ|t+δt − γ|t] δx = [(γu)|x − (γu)|x+δx] δt. (3.28)
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The surfactant concentration Ri(x) at the border x of two adjacent grid cells is

calculated by

Ri(x) =
a0

a0 + a1 + a2
Pi−1(x) +

a1
a0 + a1 + a2

Pi(x) +
a2

a0 + a1 + a2
Pi+1(x), (3.29)

where ak
a0+a1+a2

for k = 0, 1, 2 are the normalised weights defined further below and

Pi(x) is a third-order-accurate polynomial interpolation of the surfactant concentra-

tion γ defined by

Pi(x) =
(x−xi)(x−xi+1)

(xi−1−xi)(xi−1−xi)
γi−1 +

(x−xi−1)(x−xi+1)
(xi−xi−1)(xi−xi+1)

γi +
(x−xi−1)(x−xi)

(xi+1−xi−1)(xi+1−xi)
γi+1

− (xi−xi−1)γi+1−(xi+1−xi−1)γi+(xi+1−xi)γi−1

12(xi+1−xi−1)

(3.30)

Depending on the direction of the flow, the scalar concentration is defined using either

R+
i or R−i , which are related to Ri by⎧⎨

⎩ R+
i = Ri(xi+ 1

2
),

R−i = Ri(xi− 1
2
).

(3.31)

The normalised flux (γu)i− 1
2
at xi− 1

2
is subsequently defined by

(γu)i− 1
2
=

⎧⎨
⎩ ui− 1

2
R+

i−1 if ui− 1
2
≥ 0,

ui− 1
2
R−i if ui− 1

2
< 0,

(3.32)

while the normalised flux (γu)i+ 1
2
at xi+ 1

2
is determined by

(γu)i+ 1
2
=

⎧⎨
⎩ ui+ 1

2
R+

i if ui+ 1
2
≥ 0,

ui+ 1
2
R−i+1 if ui+ 1

2
< 0.

(3.33)

Both (3.32) and (3.33) are then used to calculate the scalar convection

Li(γ) = −
(γu)i+ 1

2
− (γu)i− 1

2

xi+ 1
2
− xi− 1

2

. (3.34)

As mentioned above, the fifth-order WENO scheme variants basically use a combi-

nation of three quadratic polynomial interpolations, see Eq. (3.30). The weights ak
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(k = 0, 1, 2) depend on the smoothness of the local interpolating polynomial and are

defined by

ak =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dk for C5

dk

(
1

(ε+ISk)3

)
for W5

dk

(
1 + τ

(ε+βk)

)
for W5-Z

k = 0, 1, 2, (3.35)

where d0 = 1
10
, d1 = 6

10
and d2 = 3

10
for R+ and d0 = 3

10
, d1 = 6

10
and d2 = 1

10
for

R−, ε > 0 is a small number (ε ∼ 10−6), τ =| β0 − β2 | and ISk, βk (k = 0, 1, 2) are

smoothness indicators for W5 and W5-Z, respectively, defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IS0 =
1
2
((γi−1 − γi−2)

2 + (γi − γi−1)
2 + (γi − 2γi−1 + γi−2)

2,

IS1 =
1
2
((γi − γi−1)

2 + (γi+1 − γi)
2) + (γi+1 − 2γi + γi−1)

2,

IS2 =
1
2
((γi+1 − γi)

2 + (γi+2 − γi+1)
2) + (γi+2 − 2γi+1 + γi)

2.

(3.36)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 =
13
12
(γi−2 − 2γi−1 + γi)

2 + 1
4
(γi−2 − 4γi−1 + 3γi)

2,

β1 =
13
12
(γi−1 − 2γi+ γi+1)

2 + 1
4
(γi−1 − γi+1)

2,

β2 =
13
12
(γi − 2γi+1 + γi+2)

2 + 1
4
(3γi − 4γi+1 + γi+2)

2.

(3.37)

Apart from the fifth-order WENO schemes W5 and W5-Z, in Eq. (3.35) also the

weights for the fifth order upwind central scheme C5 were added. The latter scheme

is obtained when the weights a0 = d0, a1 = d1, a2 = d2 are made independent of the

smoothness of the scalar distribution.

The time integration of the convection-diffusion equation is finally carried out by

employing the Total Variation Diminishing (TVD) third-order Runge-Kutta method

of [124]. At the start the scalar concentration γ(n) at time t = t(n) is copied to γ0,

then the following sequence of steps is carried out

γ1 = γ0 + δtL0(i) (3.38)
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γ2 =
3

4
γ0 +

1

4
γ1 +

1

4
δtL1(i) (3.39)

until finally in the third step the scalar concentration

γ(n+1) =
1

3
γ0 +

2

3
γ2 +

2

3
δtL2(i) (3.40)

at t = t(n+1) is obtained.

3.3 An Overview of Computational Approaches

3.3.1 Direct Numerical Simulation (DNS)

“Direct Numerical Simulation” (DNS) is the most accurate computational tool

to simulate flow problems. DNS involves solving the Navier–Stokes equations by

resolving all scales of flow motion explicitly, including the smallest relevant scales

(the so-called Kolomogorov scales) so there is no need to use a model that accounts

of unresolved turbulent motions [125], [126], [127], [128]. As turbulence is a proper

solution to the Navier-Stokes equations, DNS can in principle be used to simulate any

kind of turbulent flow. It allows for a detailed study of instantaneous flow patterns,

mechanisms for the transition to turbulence, the effects of turbulence in heat and

mass transfer problems etc. DNS results are fully defined by the boundary and initial

conditions that are applied. In the present work, we use periodic boundary conditions

in the horizontal directions in an attempt to represent the much larger extent of

the physical domain in a relatively small computational domain. The turbulence

generated in the LES is initially seeded by a random 2D field and then allowed to

develop for about 300 time-units until a fully developed (statistically steady) turbulent

flow field is obtained and the actual initial conditions used are no longer relevant.

In a DNS, the nonlinear Navier-Stokes equations (i.e. the convective terms are

nonlinear) are discretised and replaced by a set of linear algebraic equations that

can be solved computationally. Usually, to save computational effort, higher-order

discretisations are employed that need fewer nodes to achieve a good accuracy. For

each of the three spatial directions, the increase in computational effort with in-



46

creasing macroscale Reynolds number Re scales with Re3/4, where Re is defined

in (3.5). For all three spatial dimensions together this results in a computational

effort scaling with Re9/4. For explicit time-integration methods, like the third-order

Runge-Kutta method used for the integration of the scalars and the second-order

Adams-Bashforth method used for the integration of the Navier-Stokes equations,

the size of the timestep scales with the size of the smallest spatial step in either the

x, y or z direction. Hence, in three dimensions the total computational effort us-

ing such an explicit time-integration method scales with Re3. When using implicit

time-integration, the Kolmogorov timescale is the limiting factor and the total com-

putational cost for a 3D calculation would be reduced to Re11/4. Because of the huge

computational effort, for many engineering problems DNS is far too expensive. To

calculate the flow using DNS, usually large, massively parallel super computers are

required and even then there is a severe restriction regarding the magnitude of the

Reynolds number and/or the complexity of the computational domain.

3.3.2 Large Eddy Simulation (LES)

A Large-Eddy Simulations (LES) is a numerical approach that is less computa-

tionally demanding than a DNS. Only the larger scale of motion are resolved, while

the smaller ones (the subfilter or subgrid scales) are modelled, usually with a simple

eddy viscosity model. The cut off length-scale is somewhere in the inertial range. This

is the range in a turbulent energy spectrum where the kinetic energy is approximately

conserved. Usually, in LES the computational mesh is used as an implicit filter. The

subgrid scales are assumed to be isotropic which would make them relatively easy

to model. The main purpose of the model is to remove excess kinetic energy from

the flow, which would normally be dissipated at the smallest scales (which are not

resolved in LES calculations). Some LES models allow for backscatter of kinetic en-

ergy from subgrid scales to larger scales. In the present simulations, however, only

isotropic turbulence is simulated with LES which is something that can be done quite
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accurately by using the purely dissipative traditional Smagorinsky model described

below, using a Smagorinsky constant of CSmag = 0.22. The isotropic turbulence itself

is generated in a cubic box with periodic boundary conditions. The spatial discreti-

sation as well as the time-intergration are performed using the same methods as in

the DNS. The only difference is the addition of a dissipative term (LES model) to the

Navier-Stokes equations. The turbulent kinetic energy of the isotropic turbulence in

the periodic box is defined by

k =
1

2
(〈u′u′〉3 + 〈v′v′〉3 + 〈w′w′〉3) = 3

2
〈u′u′〉3, (3.41)

while the turbulence level is defined by

Tu =

√
1

3
(〈u′u′〉3 + 〈v′v′〉3 + 〈w′w′〉3) =

√
2

3
k, (3.42)

where 〈·〉3 represents averaging in the three homogeneous directions.

When allowed to freely develop without the addition of energy, (isotropic) tur-

bulence tends to decay because of the transfer of kinetic energy (effectively) from

larger to smaller and smaller scales until it reaches the dissipative scales where it is

transformed into heat [44]. To avoid the isotropic turbulence to decay and/or become

anisotropic, every time step the fluctuations are rescaled such that k is conserved and

〈u′u′〉3 = 〈v′v′〉3 = 〈w′w′〉3.
The reason for using LES to calculate the isotropic turbulence that is used as

an instantaneous boundary condition at the bottom of the computational domain is

to save computing time. It is expected (and later verified) that the missing small

scales in the isotropic turbulence, once introduced in the DNS domain, are quickly

re-established. Note that the numerical scheme employed to discretise the convective

terms in the Navier-Stokes equations is unconditionally kinetic energy conserving and,

hence, there is no numerical dissipation. Also, the spatial and temporal resolution

used om the DNS was very fine in order to avoid having to use large refinement factors

to resolve the high Schmidt number scalars.

Note that generally in LES, it is usually assumed that small scales of motion are

independent of the computational geometry and can usually be ignored (i.e. replaced
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by a simple dissipative model). However, there are situations where the the geometry

does affect small scales. This is the case in boundary layer flows, where small scales

motions become important and need to be modelled. A more detailed description of

various modelling options is outside the scope of this thesis. More detailed information

on modelling can be found in e.g. Sagaut [129].

3.3.3 The Smagorinsky model

The Smagorinsky model, proposed by Smagorinsky in (1963) [130], is the tradi-

tional subgrid scale model and still widely used. It is basically a simple eddy-viscosity

model that calculates the eddy viscosity νT based on the resolved scales. To calculate

the eddy viscosity, a length scale and a velocity scale are needed. Usually the grid

size Δ is used as the length scale while the velocity scale is given by Δ‖S‖, where

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (3.43)

is the (filtered) strain rate tensor, where ui for i = 1, 2, 3 are the resolved velocities,

and

‖S‖ =
√
2〈SijSij〉3 (3.44)

is the magnitude of the rate-of-strain tensor Sij. The Smagorinsky constant is used

to pre-multiply the length-scale Δ so that the eddy viscosity is given by

νT = (CsΔ)2‖S‖. (3.45)

The total viscosity in the Navier-Stokes equations is then determined by the sum of

the kinematic viscosity and the eddy viscosity.

Note that the standard Smagorinsky model works very well for isotropic turbulence

simulations with periodic boundary conditions. In the presence of real boundaries,

however, it generated too much eddy-viscosity because of the presence of laminar

shear. To resolve this, the value of CS needs to be reduced from 0.22 to around 0.065,

which can be done, for instance, by applying ”van Driest damping” [131].
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3.3.3.1 Isotropic turbulence

In experiments, isotropic turbulent flow is typically generated by imposing ar-

tificial oscillating forces, for instance induced by an oscillating grid in a volume of

fluid. By maintaining the amplitude and frequency of the oscillation, the turbulence

becomes statistically steady. This means that the level of fluctuations (or turbulent

kinetic energy) becomes close to constant in time. In experiments it is very difficult

to achieve such turbulence as it requires a zero mean flow and zero mean shear at all

locations. Note that this does not imply that there is no instantaneous shear.

Studies involving isotropic turbulent flows were performed by various researchers,

such as e.g. [132], [10], [133]

3.3.4 Summary of the Computational Work

The flow solver KCFlo is an in-house developed code which combines an incom-

pressible Navier-Stokes solver (with a fourth-order accurate kinetic energy conserving

discretisation of the convective terms) with a special solver for the scalar convection-

diffusion equation that employs a fifth-order accurate WENO scheme for scalar con-

vection and a fourth-order accurate central discretisation for scalar diffusion. KCFlo

allows the usage of a dual mesh, where the scalar is solved on a finer mesh than the

flow. When needed to generate a turbulent boundary condition at the bottom of

the domain, KCFlo runs a separate large-eddy simulation of isotropic turbulence in

a periodic box in parallel with the main DNS.

It is known that an extremely fine grid resolution is needed to capture the dynam-

ics of the turbulent mass transfer at high Schmidt numbers [134]. The grid spacing

used in the upper part of the computational domain in all simulations is such that it

fulfils the so-called ”Grötzbach criterion” [134]. This criterion is fulfilled as the ver-

tical grid resolution near the interface Δz has at least 7 points within the Batchelor

sublayer of size LB (also referred to as the Batchelor scale) and the geometric mean of

the grid cells (Δ = (Δx×Δy×Δz)1/3) ≤ πLB in the upper part of the computational
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domain, a detailed grid refinement study, including the most challenging case with

a free-slip boundary condition at the surface as used here in Chapters 5 and 6, was

presented in [11].

Recently, KCFlo was extended by a 2D solver for surfactant transport at the air-

water interface. The convection-diffusion equation for the surfactant is solved every

time step on separate computing cores using an adapted 2D version of the scalar

solver that is implemented in the DNS, in which the WENO-Z scheme replaces the

classical WENO-5 discretisation, which (as shown earlier in this chapter) provides the

same accuracy as the WENO-5 scheme using only half the number of grid points in

each direction. In summary, the following solvers were combined in KCFlo to perform

the surfactant simulations:

1. 2D solver for the surfactant transport equation at the surface (using a fifth-

order-accurate WENO-Z scheme).

2. 3D DNS flow solver.

3. Up to five 3D DNS transport equations for the scalar transport (using the fifth-

order-accurate WENO-5 scheme).

4. 3D LES flow solver to generate isotropic turbulence using the Smagorinsky

model.

Simulation Domain Mesh Δt

2D DNS (surfactant) 5L× 5L 128× 128 300L/U

3D DNS (dissolved scalar) 5L× 5L× 3L up to 256× 256× 424 300L/U

3D DNS 5L× 5L× 3L 128× 128× 212 300L/U

LES 5L× 5L× 5L 64× 64× 64 300L/U

Table 3.1
Overview of the computations
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An overview of the simulations is provided in Table ?? and the implementation

of the top boundary condition is explained in Section 3.4. Figure 3.2 shows a cross

section at y/L = 2.5 through the 3D DNS mesh as used in some visualisations shown

in Chapters 5 and 6. It can be seen that a uniform mesh is employed in the x direction

Fig. 3.2. Cross section of computational domain at y = 2.5, showing
every 8th grid line

(as well as in the y-direction), while the mesh in the z-direction is stretched such that

the very thin concentration boundary layer at the surface becomes sufficiently well

resolved.

3.4 Implementation of Top Boundary Condition

There are three concurrently running solvers used in each simulation, which are the

3D DNS (flow solver including up to five scalar transport equations for the dissolved

gas using the W5 scheme for the convection), the 3D LES (flow solver) and a 2D

DNS to simulate the surfactant transport at the surface using the W5-Z scheme for

the scalar convection.
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As mentioned earlier, the flow field in the LES calculations was initialised by using

a random velocity field. After allowing this field to develop for 300 time-units, the

DNS was started. Every time step, a turbulent flow field from a horizontal cross

section of the LES was introduced as boundary condition at the bottom of 3D DNS.

After the turbulent flow in the DNS became fully developed, the actual surfactant

calculations were started. THE DNS solver and the surfactant solver were coupled by

transferring every time step the latest horizontal velocity field from the top of DNS

to the surfactant solver, where it was used to calculate the scalar convection of the

surfactant. The newly calculated surfactants concentration was subsequently copied

back to the DNS where it was used to set the correct top boundary condition for

the horizontal velocities u and v in order to proceed the DNS calculation for another

time-step.

Khakpour et al. [97] showed that the actual Schmidt number Sc of the surfactant

has negligible effect on the evolution of the surfactant distribution. Because of this

the surfactants can be calculated on the same mesh as the fluid and a mesh refinement

because of a possible low diffusivity of the surfactant is not required. We were able to

confirm the above independence of the surfactant distribution on Sc (as mentioned

previously by [97]) and decided to use Scs = 2 in all our simulations. The surfactant

itself was initialised using its equilibrium value of γ = 1 at the entire surface. As

mentioned earlier in Chapter 3.1, the model used to implement the surface boundary

conditions for the horizontal velocities relates the horizontal gradients of the surfac-

tant concentration with the normal gradients of the horizontal velocities. see also

Figure 3.1.

To determine the velocity field at the surface
(
u
(n)

i+ 1
2
,j,mxz+ 1

2

, v
(n)

i,j+ 1
2
,mxz+ 1

2

)
, the

horizontal velocity field located at the grid plane immediately below the surface(
u
(n)

i+ 1
2
,j,mxz

, v
(n)

i,j+ 1
2
,mxz

)
and the surfactant concentration gradients γ(n) were used. To
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explain this, we first write the model in discretised form, using the superscript (n) to

denote the n-th time-step,

u
(n)

i+ 1
2
,j,mxz+ 1

2

− u
(n)

i+ 1
2
,j,mxz

zmxz+ 1
2
− zmxz

= −Ma

Ca

γ
(n)
i+1,j − γ

(n)
i,j

Δx
,

v
(n)

i,j+ 1
2
,mxz+ 1

2

− v
(n)

i,j+ 1
2
,mxz

zmxz+ 1
2
− zmxz

= −Ma

Ca

γ
(n)
i,j+1 − γ

(n)
i,j

Δy
,

(3.46)

where the subscripts i, j, k denote the location (xi, yj, zk) of the respective velocity

components.

The velocity field at the surface,
(
u
(n+1)

i+ 1
2
,j,mxz+ 1

2

, v
(n+1)

i,j+ 1
2
,mxz+ 1

2

)
, used in the WENO-

Z calculation to obtain the surfactant distribution at the new time step t(n+1), is

estimated by

u
(n+1)

i+ 1
2
,j,mxz+ 1

2

≈ u
(n)

i+ 1
2
,j,mxz

− Ma

Ca

γ
(n)
i+1,j − γ

(n)
i,j

xi+1 − xi

(
zi,j,mxz+ 1

2
− zmxz

)
,

v
(n+1)

i,j+ 1
2
,mxz+ 1

2

≈ v
(n)

i,j+ 1
2
,mxz

− Ma

Ca

γ
(n)
i,j+1 − γ

(n)
i,j

yi+1 − yi

(
zi,j,mxz+ 1

2
− zmxz

)
,

(3.47)

and subsequently used in the convection-diffusion equation of the surfactant to evalu-

ate the surfactant concentration for the new time step t(n+1) in the convection-diffusion

Eq. (3.13) for the surfactant calculation, the time integration of the convection-

diffusion equation was performed using a third-order Runge-Kutta method as given

in Section 3.2.3.

The surfactant distribution obtained at the latest time step, is transferred to the

3D DNS to determine the surface boundary conditions for the horizontal velocities,

which are implemented by changing the velocity in the ghost cells outside of the

computational domain. By using ghost cells there is no need to change the numerical

stencils near the boundaries.

Figure 3.3 shows a flow chart to explain the sequence of the calculations that are

carried out in the simulation. The right-hand-side of Figure 3.3 shows the calculations

related to the surfactant and the left-hand-side shows the calculations performed in

the 3D DNS flow which is updated based on the new boundary condition.
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Fig. 3.3. Schematic illustration of flow wok process
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Chapter 4: Comparison of WENO

schemes

4.1 Introduction

In both laboratory and nature water surfaces are often contaminated by various

substances which adversely affects interfacial mass transfer. Hence, identifying the

correct boundary conditions at the air-water interface is a crucial step in order to

obtain accurate simulation results. An important source of contamination are surfac-

tants which locally reduce the surface tension therefore inducing Marangoni forces.

To properly model the effects of surfactant contamination it is needed to accurately

calculate changes in the surfactant concentration at the free surface. This can be done

by solving the two-dimensional (2D) convection-diffusion Eq. (3.13). Convection is

responsible for the transport of the surfactant by fluid flow, while diffusion models

the spreading of the surfactant owing to molecular motion. The main aim here was

to determine which of the two WENO schemes (W5 or W5-Z) will produce the most

accurate results on a relatively coarse uniform mesh.

4.2 Verification of the order of accuracy

To facilitate the comparison of the results obtained on the staggered mesh, as

explained below the number of grid points in each refinement step is increased by a

factor of 3. Consequently, for the grid-refinement study a sequence of grid points 10,
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30, 90 and 270 was used. Using this strategy the locations where γ is defined on the

coarsest mesh will overlap with locations on the refined meshes.

At the beginning of the comparison, one of the main focuses will be on the order

of accuracy that can be achieved. As mentioned earlier, if the distribution of the

scalar γ is sufficiently smooth a fifth-order of accuracy should be obtained. One of the

parameters used in the calculation of the weights for the WENO schemes in (3.35) is ε.

Theoretically, after one time-unit for each simulation the calculated scalar distribution

should perfectly overlap with its initial distribution (at time zero). This property

makes it easy to calculate the error in the next part and also to study the spatial

order of accuracy for both the W5 and W5-Z. Note that the time-step has to be chosen

sufficiently small (se below) so that the numerical error is dominated by the spatial

discretisation. The transport of the surfactant is represented by the convection-

diffusion Eq. (3.13). In the in-house flow solver the fifth-order accurate Weighted

Essentially Non-Oscillatory WENO scheme (W5) of Liu et al. [2] is employed to

discretise scalar convection. In order to assess the accuracy of the implementation,

the diffusion term in (3.13) is ignored so that

∂γ

∂t
= −∂γuj

∂xj

(4.1)

was obtained. For a detailed overview of the discretisations used here see Chapter

3. To begin with the implementation of W5-Z scheme for the discretisation of (4.1)

was verified by setting the surfactant concentration γ equal to one, combined with

velocities (i) u = 1 and (ii) u = −1. The results confirmed that in both cases the

distribution of the surfactant concentration remained the same for all time. In all

tests the time step (δt) was chosen to be sufficiently small (δt ∼ 0.0002) to make

sure that the time-integration error was at least an order of magnitude smaller than

the smallest spatial error. A separate time step study was not performed as in all

simulations reported the time-step was chosen small enough for the spatial error to

fully dominate.
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4.2.1 One dimensional test problem

A 1D test problem was selected in order to assess the accuracy of the WENO

discretisations, W5 and W5-Z in space using a wave moving with constant velocity

either to the right (u = 1) or to the left (u = −1). By varying the number of grid

points, the order of accuracy of the W5 and W5-Z implementations was assessed.

In the test problem, the initial surfactant concentration on the periodic interval

0 ≤ x ≤ 1 was defined by

γ0 = (1 + sin(2πx)) /2, (4.2)

while the velocity was held constant (u = 1 and u = −1). A uniform staggered mesh

was employed comprising 10, 30, 90, and 270 grid points.

4.2.2 Results

Four different grids were considered in the 1D test cases used to compare the

order of accuracy of the W5 and W5-Z implementations. Four different values for the

parameter ε in (3.35) were used (ε = 10−2, ε = 10−4, ε = 10−6, 10−8, 10−12, ε = 10−16,

ε = 1.0 and ε = 100). The absolute error, calculated at the location x0 = 0.25, is

given by

E =| γT (x0)− γ0(x0) |, (4.3)

where T corresponds to one flow-through-time (1 time-unit), while the initial condi-

tion, γ0, is defined in (4.2).

Tables 4.1 and 4.2 show the effect of the parameter ε, used in (4.3) to obtain

the weights for the WENO5 and WENO-Z schemes, on the error obtained when

approximating the convection of the function defined in (4.2). It can be seen that for

for small ε in both cases (W5 and W5-Z) the error E(N) is virtually independent of

ε. In the W5-Z case, also for larger values of ε the error hardly changes. In contrast,

the error in the W5 approximation changes significantly. For N ≥ 30 at first the

error E grows, then reaches a maximum near ε = 10−6 and subsequently decreases
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E(N)

ε N=10 N=30 N=90 N=270

10−16 8.07× 10−3 2.87× 10−4 6.47× 10−6 1.29× 10−7

10−12 8.07× 10−3 2.87× 10−4 6.47× 10−6 1.29× 10−7

10−8 8.07× 10−3 2.87× 10−4 6.47× 10−6 1.35× 10−7

10−6 8.07× 10−3 2.88× 10−4 6.81× 10−6 3.28× 10−7

10−4 8.07× 10−3 3.03× 10−4 1.12× 10−5 1.21× 10−8

10−2 8.23× 10−3 2.92× 10−4 3.29× 10−7 9.78× 10−10

1.0 5.18× 10−3 2.54× 10−5 8.97× 10−8 8.66× 10−10

100.0 4.63× 10−3 2.09× 10−5 8.73× 10−8 8.65× 10−10

Table 4.1
Errors in W5 obtained using various values of ε

and appears to become independent of ε for ε → ∞. Generally, errors in the W5-Z

E(N)

ε N=10 N=30 N=90 N=270

10−16 5.02× 10−3 2.06× 10−5 8.74× 10−8 8.65× 10−10

10−12 5.02× 10−3 2.06× 10−5 8.74× 10−8 8.65× 10−10

10−8 5.02× 10−3 2.06× 10−5 8.74× 10−8 8.65× 10−10

10−6 5.02× 10−3 2.06× 10−5 8.74× 10−8 8.65× 10−10

10−4 5.03× 10−3 2.08× 10−5 8.72× 10−8 8.65× 10−10

10−2 5.07× 10−3 2.09× 10−5 8.72× 10−8 8.65× 10−10

1.0 4.63× 10−3 2.09× 10−5 8.72× 10−8 8.65× 10−10

100.0 4.62× 10−3 2.08× 10−5 8.72× 10−8 8.65× 10−10

Table 4.2
Errors in W5-Z obtained using various values of ε

approximation appear to be smaller than in the W5 approximation.
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N=10 N=30 N=90 N=270

E(N) 5.02× 10−3 2.06× 10−5 8.74× 10−8 8.65× 10−10

Table 4.3
Errors in C5

The upwind central scheme does not depend of ε. The errors obtained when

approximating the convection of (4.2) are shown in Table 4.3. It can be seen that

for all N the magnitude of the errors are compatible with the errors produced in the

W5-Z scheme approximations.

The order of accuracy O(N) of the implementation obtained using (N) grid points

is estimated by considering the reduction in error achieved when refining the mesh by

a factor of three. The ratio of errors achieved on the coarser and finer mesh is given

by E(N/3)/E(N). For a nth-order scheme, in the limit for very large N , this ratio

would become 3n, so that

E(N/3)/E(N) = 3n. (4.4)

The order of accuracy can then be calculated by taking the logarithm left and right,

so after some algebra we obtain

O(N) =
ln (E(N/3)/E(N))

ln 3
. (4.5)

To establish the order of accuracy obtained using either W5, W5-Z or the upwind

central scheme C5, in Tables 4.4 and 4.5, the orders of accuracy are displayed that

were obtained for very low and relatively large values of ε, respectively. Note that

Tables 4.1 and 4.2 show that ε-independent errors were obtained at ε = 10−12 and

at ε = 100 for both W5 and W5-Z. Note that according to Eq. (3.35) ε needs to be

larger than zero. It can be seen that the achieved order of accuracy of the W5 scheme

is not as high as that of the W5-Z and C5 schemes. The latter two are quite close to

the theoretical value of 5, with the exception of the finest mesh, which shows a drop

in the accuracy that is likely due to macine accuracy (truncation errors).
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O(N)

N W5 W5-Z C5

10 − − −
30 3.04 5.00 4.92

90 3.45 4.97 4.99

270 3.56 4.20 4.20

Table 4.4
Order of accuracy as a function of the number of grid points N , ob-
tained using ε = 10−12 in the calculation of the weights in W5 and
W5-Z, while estimating the convection of (4.2) using u = 1.

For very large ε, the order of accuracy of both the W5 and W5-Z schemes becomes

identical to that of the C5 scheme. This is directly related with the definition of the

weights for the WENO scheme, which for ε → ∞ become the same as the weights

used in the C5 scheme. Note that as a result also the approximation errors will

become similar to those of the C5 scheme. Above it was noted that the maximum

O(N)

N W5 W5-Z

10 − −
30 4.92 4.92

90 4.99 4.99

270 4.20 4.20

Table 4.5
Order of accuracy as a function of the number of grid points N , ob-
tained using ε = 100 in the calculation of the weights in W5 and
W5-Z, while estimating the convection of (4.2) using u = 1.

errors achieved for larger N in the W5 and W5-Z schemes were obtained for ε ≈ 10−6.

Contrasting the ε = 10−6 results shown in Table 4.6 to the results shown in Tables
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O(N)

N W5 W5-Z

10 − −
30 3.03 5.00

90 3.41 4.97

270 2.76 4.20

Table 4.6
Order of accuracy as a function of the number of grid points N , ob-
tained using ε = 10−6 in the calculation of the weights in W5 and
W5-Z, while estimating the convection of (4.2) using u = 1.

4.4 and 4.5 shows how much this effects the order of accuracy achieved. As also

mentioned earlier, the order of accuracy of the W5-Z scheme is hardly effected by ε.

However, the order of accuracy of the W5 scheme is somewhat effected, especially at

N = 270, where it reduces from 3.56 (obtained at ε = 10−12) to 2.76.

Note that the errors E obtained in the approximations of the convection of (4.2) were

found to be the same for u = −1 as for u = −1.

In general we can draw the conclusion that for convection of the smooth 1D test

function, the W5-Z scheme tends to produce more accurate results than the W5

scheme. The accuracy of the former is similar to the accuracy of the C5 scheme.

Especially for larger N , when extremely small errors are required, it is best to use the

W5-Z scheme. This, however, does not mean that the W5-Z scheme is also preferable

if maximum errors are of 1% can be tolerated. Later we will present a second 1D test

case that deals with the accuracy achieved when resolving a very steep gradient.

4.3 Approximation of steep gradients

After having verified the order of accuracy of the WENO schemes and the C5

schemes in the previous section, here we will focus on the accuracy approximating a
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steep gradient using a relatively coarse mesh. The aim is to find out which of the two

WENO methods, W5 and W5-Z, needs the fewest grid points to resolve the gradients

with an error E less than 1%. To test this, a one-dimensional periodic function, γ,

was defined containing two equally steep gradients:

γ(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < 11/24

1 + sin(12πx) if 11/24 ≤ x < 13/24

2 if 13/24 ≤ x < 17/24

1 + sin(12πx) if 17/24 ≤ x < 19/24

0 if 19/24 ≤ x ≤ 24/24

(4.6)

As can be seen in Figure 4.1, the periodic test function has a minimum of γ = 0 and

a maximum of γ = 2. At t = 0, the two gradients with dγ
dx

= ±12π can be found near

x = 1/2 and x = 3/4.

Fig. 4.1. Schematic of the periodic test function with steep gradients

In the test, the scalar γ is convected to the right with a constant velocity of

u = 1m/s over one flow-through time (equalling one second). As previously, the

1D convection Eq. (4.1) was discretised using both the WENO and the WENO-

Z schemes for scalar convection with a three-stage Runge-Kutta method for time

integration. For both the W5 and W5-Z schemes the accuracy of approximation of

the convective test problem is assessed for a range of grid points N = 40, 80, 160 and

320. Note that the aim of this study was to identify a suitable WENO scheme to
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explicitly resolve steep gradients on relatively coarse meshes. The results obtained

on the coarsest meshes could possibly be improved by using a Riemann solver.

4.3.1 Results

Figure 4.2a shows the results obtained for the W5 method. It can be seen that

the exact solution (which is obtained after one flow-through time and should be the

same as the scalar distribution at t = 0) was not matched on any of the meshes

even though, with increasing N the approximation was found to drastically improve.

For the W5-Z scheme, shown in Figure 4.2b, the approximation using N = 320 grid

points was found to be in very good agreement with the exact results. Compared to

the W5 scheme, the W5-Z scheme generally only needs about 50% of the grid points

in order to obtain results of similar quality as the W5 scheme. Both methods show

an overestimation when the mesh is too coarse (N = 40). In both schemes, some

Fig. 4.2. Detailed view of the approximations of (4.1) obtained on
various meshes after 1 s. of simulation (corresponding to one flow-
through time) using (a) WENO and (b) WENO-Z

numerical diffusion is introduced to deal with steep gradients without too much (or

any) under or overestimation. From the results presented so far, we can see that
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compared to the W5 scheme, the numerical diffusion added by the W5-Z scheme is

significantly less.

4.3.1.1 Optimization of the parameter ε

In Section 4.2.2, we validated the effect of changes in ε, used in (3.35) to determine

the weights, on the order of accuracy of the WENO schemes. It was found that for

W5-Z the choice of ε did not make much difference. For the W5 scheme, on the other

hand, the resulting order of accuracy was found to be significantly effected by the value

of ε. Usually, in combination with the W5 scheme ε = 10−6 is selected [120], [3]. To

determine the optimum value of ε when estimating a steep gradient on a coarse mesh,

for both W5 and W5-Z the test problem was run using ε = 10−2, 10−3, 10−4 and 10−6.

The steep gradients of (4.1) were approximated for the four values of ε using N = 80

grid points.

The results of this ε test for W5, W5-Z are shown in Figure 4.3a and b, respectively.

It can be seen that both WENO schemes generate overshoots for the larger values of

ε. In W5, this overshoot virtually disappears for ε ≤ 10−4. In contrast, for the W5-Z

scheme a value of ε ≤ 10−6 was found to be needed. Despite this, the accuracy on

the N = 80 point mesh of the W5-Z scheme, that was reached using ε = 10−6, was

still found to be significantly better then the accuracy of the W5 scheme reached with

ε = 10−4. Note that previously it was observed that for large values of (ε), both the

W5 and the W5-Z schemes approach the fifth-order accurate upwind central scheme

C5 that is independent of ε. Here is is seen that near steep gradients, for the larger

values of ε over- and underestimation occurs which would also be found when using

the C5 method.

For each method, W5 and W5-Z, we aim to asses how many points would need to

be placed within the steep shear layer for an accurate approximation. Above it was

shown that for both the W5 and the W5-Z schemes the approximation significantly

improves with increasing number of grid pointsN . To avoid any under/overestimation
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Fig. 4.3. Approximation of test function for various ε using (a) W5 and (b) W5-Z

ε was chosen to be 10−6. At first, for both methods, the local solution near the steep

gradient was assessed using N = 40 and 80 grid points. The results, shown in

Fig. 4.4. Resolution of the gradient with WENO and WENO − Z
using N = 40 grid points

Figure 4.4, indicate that with N = 40 grid points the approximation using the W5

method is worse than the W5-Z approximation which can be seen to somewhat better

resolve the gradient. The W5-Z scheme smears out the gradient over about 8 grid

points, while the W5 scheme uses about 11 grid points. The approximation of the

gradient using N = 80 points is shown in Figure 4.5. For the W5-Z method the

approximation in almost all points coincides with the exact solution, only in four of
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the points a slight error can be seen. For the W5 method, on the other hand, at least

in 11 of the grid points a deviation from the exact solution can be observed. From

the Figures 4.4 and 4.5 it can be concluded that both methods converge to the exact

solution for increasing N and that the results obtained using the W5-Z scheme are

more accurate to the results obtained using the W5 scheme without using a Riemann

solver.

Fig. 4.5. Resolution of the gradient with WENO and WENO − Z
using N = 80 grid points

4.4 Two dimensional test

As the surfactant calculations are carried out in two dimensions, the final test of

the implementation comprises a 2D problem defined on a 1m× 1m interval. Periodic

boundary conditions were used in both x and y. In this simulation, the initial scalar

concentration γ was defined by

γ(x, y, 0) = (2 + sin(2πx) + cos(2πy)) /4, (4.7)

while the velocity components were again chosen to be constant with values of (u =

1m/s, v ± 1m/s) and (v = 1m/s, u ± 1m/s), resulting in four different velocity

directions. Note that Eq. (4.7) was selected to provide a non-constant, simple periodic

initial condition so that for u = v = ±1m/s γ(x, y, 1) = γ(x, y, 0) is obtained, which
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Fig. 4.6. surface plot of γ

makes it convenient to compare results and determine errors. Figure 4.6 shows a

surface plot of the scalar distribution γ(x, y, 0) at t = 0 s.

As in the 1D test for the determination of the order of accuracy in Section 4.2.1,

seven different values for the parameter ε in (3.35) were used (ε = 100, 1.0, 10−2,

10−4, 10−6, 10−8, 10−12 and 10−16) used in 1D test. Also, (4.5) is used to calculate

the order of accuracy O(N) of the 2D approximation obtained on 10 × 10, 30 × 30,

90×90 and 270×270 meshes. The error is obtained by comparing the approximation

obtained after one flow-through time (1 second) to the initial scalar distribution at

t = 0s at the location (x, y) = (0.25, 0.05).

4.4.1 Results of the 2D test

The investigation of correctness of both the 2D WENO implementations for W5

and W5-Z is investigated by calculating the achieved order of accuracy on an N ×N

mesh. For completeness, also the results obtained using the fifth-order central upwind

scheme are added. As observed earlier in the 1D test, also in Table 4.7, a fifth-order

accuracy is indeed obtained for both the W5-Z and C5 schemes irrespective of the
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Order

N ε W5 W5-Z C5

10 10−12 − − −
10 10−6 − − −
10 100 − − −
30 10−12 1.72 5.02 4.94

30 10−6 1.73 5.02 4.94

30 100 4.94 4.95 4.94

90 10−12 2.90 5.02 4.99

90 10−6 2.98 5.01 4.99

90 100 4.99 4.99 4.99

270 10−12 6.66 4.21 4.20

270 10−6 5.02 4.20 4.20

270 100 4.20 4.21 4.20

Table 4.7
Order of accuracy O(N) obtained in the approximation of the convec-
tion of (4.7) with W5, W5-Z and C5 using u = 1 v = 1. Simulations
are performed using ε = 10−12, ε = 10−6 and ε = 100 in the calcula-
tion of the weights for W5, and W5-Z.

value of ε. For the W5 scheme results, however, on coarser meshed the order of

accuracy is relatively low for ε ≤ 10−6 and N ≤ 90. For the finest mesh with

N = 270 the order of accuracy achieved in W5 exceeds or is close to the theoretical

value of five. The same is true for all grids if ε = 100. This is because (as mentioned

earlier) got large values of ε all WENO schemes begin to resemble the C5 scheme.

Note that the accuracy of the results obtained using the three discretisations of

the scalar convection with convection velocities u = −1m/s, v = −1, 0, 1 (m/s)

and u = 1m/s, v = −1, 0 (m/s) were consistent with the results presented for
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u = v = 1m/s in Table 4.7 and were therefore omitted.

Fig. 4.7. Cross section at y = of the 2D periodic scalar distribution
defined in (4.7), after it was convected to the right during 1 second at
a velocity u = 1m/s and v = 0m/s. Results achieved using the W5,
W5-Z and C5 methods employing 40 grid points are compared.

Figure 4.7 shows approximations of W5, W5-Z and C5, obtained at t = 1 s of a

cross-section at y = 0.5 of the 2D scalar distribution defined at t = 0 s in Eq. (4.7).

The scalar is convected to the right with a velocity u = 1m/s and v = 0m/s. It can

be seen that all three methods used for the discretisation of the convection term give

a very good approximation of the scalar distribution obtained after one second.

From the tests carried out in this chapter we can conclude that the WENO schemes

were discretised correctly. Also, it was shown that, without using a Riemann solver,

the W5-Z scheme gives more accurate results than the traditional fifth-order-accurate

WENO scheme of Liu et al. [2].
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Chapter 5: Influence of surfactants

on low diffusion mass

transfer

Direct Numerical Simulations (DNS) were used to study the influence of surface

contamination on the interfacial mass transfer of low Schmidt number gases. The

gas transfer was promoted by isotropic turbulence, generated in a separate large-

eddy simulation, that was introduced as the bottom boundary condition in the DNS.

A variety of contamination levels were considered ranging from clean to severely

contaminated. Before starting the study of the effects of surfactants on interfacial gas

transfer, the flow in the DNS was allowed to become fully developed for 300L/U time-

units. At t = 0L/U , the surfactant concentration was initialised to γ/γ0 = 0. After

the initial 300L/U time-units, the dissolved gas concentrations were subsequently

reinitialised using the exact solution for pure scalar diffusion

c(x, y, ζ) = erfc

(
ζ

√
ScRe

4 t0

)
, (5.1)

obtained after t0 = 7L/U time-units (and the time was reset to t = t0L/U time-

units). In the presence of surface contamination, the mass transfer velocity (KL)

was found to scale as a power of the Schmidt number, i.e Sc−q where q smoothly

transitions from q = 1/2 for clean surfaces to q = 2/3 for very dirty interfaces. A

power law KL ∝ Sc−q is proposed in which both the exponent q and the constant of

the proportionality become functions of the clean surface fraction.
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5.1 Introduction

The presence of surfactants show a huge effect on mass transfer across the air

water interface. Some general information about surfactants was given already in

Chapter 2. Direct Numerical Simulations were applied to study the influence of sur-

face contamination on mass transfer at low gas diffusivity across a flat surface. A local

reductions in surface tension occur when the local contamination level is increased.

This reduction in surface tension induces Marangoni forces that act to reduce the

uneven distribution of surface tension therefore damping near-surface turbulence and

forcing the 2D flow at the surface to become more divergence-free. The reduction

in surface-tension with increasing surfactant concentration is assumed to be linear,

resulting in the model detailed in Section 3.1 that relates horizontal gradients of the

surfactant concentration to vertical gradients of the horizontal velocity through a

model parameter Ma/Ca that depends on the actual contamination and turbulence

level. For the research into mass transfer across a surfactant-contaminated air-water

interface some assumptions were made about the surfactant. As mentioned in Chap-

ter 1, the surfactants are assumed to be lighter than water and that they do not mix

with water so that the total surfactant concentration at the surface will be conserved.

As mentioned in Chapter 2, oleyl alcohol (C18H36O) is considered as an example of

a surfactant with the desired properties.

The effect on interfacial gas transfer of a wide range of surfactant contamination

levels was investigated and compared to so-called clean conditions, corresponding

to a free-slip surface-boundary-condition and severely contaminated (dirty) condi-

tions which are approximately represented by no-slip boundary conditions. Asher &

Pankow [42] and McKenna & McGillis [47] compared clean and contaminated sur-

face boundary conditions and found a reduction in gas transfer velocity up to 80%.

Herlina & Wissink [10] used DNS to study the limiting case of tehe severe con-

tamination condition, modelled using no-slip boundary conditions at the surface, at

Schmidt numbers up to Sc = 500, which is representative for oxygen in water. The
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effect of surface contamination on surface-shear-driven gas transfer was investigated

at Schmidt numbers of Sc = 1 and Sc = 100 in the hybrid DNS and LES study

by Hasegawa et al. [135]. They found a reduction in the gas transfer velocity KL of

about 65% compared to clean condition for the higher Sc number.

5.2 Surfactant diffusivity

As previously shown by e.g. Kharpour et al. [97], the presence of surfactant

contamination has a significant effect on gas transfer across the air-water interface

caused by a local decrease in surface tension as explained above.

Khakpour et al. [97] simulated surfactants for a range of Schmidt numbers from

0.5 to 8. They found that the surfactant Schmidt number Scs did not affect the

evolution of the surfactant concentration at the flow surface and, hence, they used

Scs = 1. Other researchers used various Scs in their research. Tsai & Yue [102] chose

Scs = 0.83 number as 0.83, while Tsai [106] [136] used a value of Scs = 2. Handler et

al. [108] used values of Scs = 0.056 and 5.6, while Hasegawa & Kasagi [135], finally,

assumed Scs = 1 for their experimental study.

To confirm that the Schmidt number independency reported previously by Khakpour

et al. also holds in the present simulations, surfactant transport was simulated for a

range of Schmidt numbers from 0.5 to 8.

5.2.1 Test for surfactant Schmidt number independency

Direct Numerical Simulations (DNS) were employed here to obtain highly re-

solved solutions of the flow field and the surfactant concentration. To investigate the

influence of surfactant Schmidt number (Scs) on the evolution of the surfactant simu-

lations were carried out for t = 40 time units using exactly the same initial conditions

with a fully developed flow field. At t = 0, the surfactant was given a value of one

(meaning one times the equilibrium value) everywhere at the surface and Ma/Ca was

set to Ma/Ca = 600. The Re number was Re = 600, based on artificially chosen



73

characteristic scales that are more or less typical for lab-based experiments. The

characteristic length scale was L = 0.01m, the kinematic viscosity ν = 10−6m2/s and

the velocity scale U was U = 600 ∗ ν
L
. The surfactant Schmidt numbers used in the

simulations were Scs = 0.5, 1, 2 and 8.

Being able to perform simulations at a relatively low surfactant Schmidt number

Scs (which could be much lower than the real one) is beneficial as otherwise a very

fine mesh would be needed at the surface to properly resolve the surfactant.

5.2.2 Results

Using the test problem described above, the effect of various Schmidt numbers

on the surfactant distribution at the flow surface was investigated Snapshots of the

Fig. 5.1. Comparison of the surfactant distribution obtained for
Schmidt numbers Scs = 1 and Scs = 8 at t = 40L/U

surfactant distribution obtained after 40 time-units of simulation at Sc = 8 and

Sc = 1 are compared in Figure 5.1. It can be seen that the colour contours of

the surfactant distribution are in very good agreement. Note that because of the

relatively large Ma/Ca, this simulation would represent a very dirty interface. In

order to further verify the Scs independency of the surfactant concentration γ/γ0 in

Figure 5.2 profiles of γ/γ0 obtained at Sc = 0.5, 1, 2, 8 along y/L = 2.5 and x/L = 2.5

are compared. The profiles are in excellent agreement, so that it can be concluded
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Fig. 5.2. Distribution of surfactant concentration on the flow surface
at a certain location for range of Sc numbers

that the distribution of γ is indeed independent on Scs at least for Sc = 0.5 to

Scs = 8. It is assumed that this independency will also hold for larger Scs. The

latter could be verified by performing simulations of the surfactant distribution at

higher Scs, or perhaps simulations using zero diffusivity, which was not within the

scope of the present research.

The final part of the test is to find out whether the surface-velocities (which are

affected by the surfactant distribution) are also independent of the Scs.

Fig. 5.3. Interfacial velocities for Sc = 1, 2 and 8 showing (a) u at the
centre line y/L = 2.5 and (b) v at x/L = 2.5
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Figure 5.3 shows that the centre line velocities are also in very good agreement

for Scs = 1 − 8. Again, we assume that this will also be the case for larger Scs. In

fact, the largest differences between the velocity profiles was less than 10−7, which is

negligibly small.

5.3 Overview of the simulations

A computational domain of size Lx × Ly × Lz = 5L × 5L × 3L was used in the

present DNS direct numerical simulations (see Section 3.3.4). In all simulations, a

Reynolds numbers of Re = UL/ν = 600 was chosen based on a characteristic length

scale L of 0.01 m, with a kinematic viscosity of ν = 10−6 m2/s and a characteristic

velocity scale of U = 0.06 m/s. Note that the characteristic scales are of the same

order of magnitude as the scales used in the experiments of [20]. In fact, they are

just place holders as the relevant turbulent length and viscosity scales will only be

known after the calculations. These turbulent scales will then be used to calculate the

turbulent Reynolds number ReT . In all simulations (apart from the surfactant) five

scalar equations for gas transfer are simultaneously solved using Schmidt numbers of

Sc = 2, 4, 8, 16, 32 in order to establish the scaling of the gas transfer velocity with

Sc. The scalars with the smallest two Sc were resolved on the baseline-mesh, while

the rest of the scalars were solved on the refined mesh with a refinement factor of 2.

As can be seen in Figure 5.4, the simulation uses three computational domains which

are mentioned in Section 3.3.4. The main computational domain (the DNS domain)

was based on the experiments of Herlina et al. [137] The studies of Herlina & Wissink

[11], [64] also considered the experiments performed by Jirka et al. [137]. The flow

was solved using a 128×128×212 baseline mesh (see Table ??). Note that ζ = Lz−z

is used in some of the figures, where Lz is the height of the computational domain

and ζ is the distance to the surface. Note that the parameter Ma/Ca corresponds to

ReMa/We as used by e.g. Khakpour et al. [97], as explained in Section 3.1.1.
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Fig. 5.4. Computational domain

Run Ma/Ca u∞/U L∞/L ReT Ma/CaT

S0 0.0 0.1130 1.0333 141 0

S1 0.12 0.1119 0.9579 128 1

S2 0.6 0.1169 0.9935 139 5

S3 1.2 0.1085 0.9835 131 11

S4 6 0.1104 0.9273 125 54

S5 30 0.1114 1.0209 138 269

SN No-slip 0.1073 0.8984 117 No-slip

Table 5.1
Overview of the simulations

Because of the isotopic turbulence that is introduced at the bottom of the com-

putational domain at the surface, the mean shear (∂u
∂z

= ∂v
∂z
) = 0. The instanta-

neous or turbulent shear, however, is usually not zero and is heavily dependent on

the isotropic turbulence diffusing from below. This importance of this turbulence is

measured by the turbulent Reynolds number ReT which requires knowledge on the

integral length scale and the rms of the horizontal velocity urms. Because of that

ReT could only be determined after the simulation was performed. The size of com-
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putational domains used in the DNS [(Lx × Ly × Lz) = (5L × 5L × 3L)] and the

LES [(Lx × Ly × Lz) = (5L × 5L × 5L)] are quite small. Even though the isotropic

turbulence introduced at the bottom of the DNS domain was of quite high intensity,

the restriction on the integral length scale due to the small DNS domain resulted in

relatively small turbulent Reynolds numbers.

The isotropic turbulence is generated in a separate, concurrently running large-

eddy simulation (LES). A 64× 64× 64 mesh was used to discretize the periodic box.

At the bottom of all DNS calculations exactly the same sequence of turbulent flow

fields (a horizontal cross-section of the turbulent flow field generated in the LES) was

introduced. Because the DNS mesh was much finer than the LES mesh, a fourth-order

interpolation of the LES flow field from the horizontal cross-section was carried out

to obtain the bottom DNS boundary condition. Because of the absence of mean flow,

u′i = ui, where the prime identifies the fluctuation velocity. The Turbulence level and

turbulent kinetic energy were defined in Section 3.3.2 as Tu =
√
2 < k > /3 = 0.4

and k = ui
′ui
′/2 = u′u′/2. Note that both in the LES and at the bottom of the DNS,

due to the presence of isotropic turbulent flow, all components of the Reynolds’ stress

are the same e.g. u′u′ = v′v′ = w′w′. where 〈·〉 corresponds to averaging homogeneous

directions and (·) corresponds to averaging in time.

TheMa/Ca numbers employed in the simulations ranged from (free-slip)Ma/Ca =

0 to Ma/Ca = 30, to complete the series, the no-slip case was also included. This

latter case corresponds to the severely contaminated surface condition, typical for

very large Ma/Ca. The top boundary condition depends on the choice for Ma/Ca.

which affects the near surface turbulence and increasingly damps (with increasing

Ma/Ca) near surface turbulent fluctuations.

The rms of the horizontal velocity reads

urms(ζ) =

√
〈u′u′〉 (5.2)

and the longitudinal integral length scale L11 is defined

L11(ζ) =

∫ Lx/2

0

R11(r, ζ)dr, (5.3)
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where the two point correlation R11 is defined by

R11(r, ζ) =

∫ Lx/2

x=0

∫ Ly

y=0
u′(x, y, ζ)u′(x+ r, y, ζ)dydx∫ Lx/2

x=0

∫ Ly

y=0
u′2(x, y, ζ)dydx

, (5.4)

The integral length scale and the characteristic turbulent velocity were assessed based

at ζ = L, consequently;

u∞ = urms|ζ=L,

L∞ = L11|ζ=L.
(5.5)

Following the experiments for grid-stirred turbulence by [138], [92], the turbulent

length scale, Λ, used in ReT was defined by Λ = 2L∞, so that turbulent Reynolds

number reads

ReT =
u∞Λ
μ

(5.6)

The turbulent capillary number CaT was defined in Section 3.1.1 by

CaT =
μu∞
σ

(5.7)

Most of the analysis was carried out by time averaging the results from t = 150 to

t = 300, which coincides with nearly seven eddy turnover times (2L∞/u∞). Because

in this time-interval the gas concentration distribution became quasi-steady (i.e. de

average values changed only very slowly in time). Note that the parameter Ma/CaT

was characterised by the surfactant contamination level.

As explained in Section 5.2 the exact surfactant Schmidt number is not important

for the calculation of the surfactant concentration. Therefore all simulations were

performed using a surfactant Schmidt number of Scs = 2.

It is accepted that, according to works of Coantic [139] and Ledwell [140], the

gas transfer velocity (KL) scales as Sc
−1/2 for clean surface conditions (free-surface),

while the transfer velocity (KL) scales as Sc
−2/3 for dirty surface (no-slip) conditions.

Furthermore, based on the numerical investigation of Hasegawa & Kasagi [135], Shen

et al. [1] and Khakpour et al. [97], it can be concluded that severely contaminated

water surfaces could be estimated by a no-slip surface boundary condition. However,
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according to Hasegawa & Kasagi [135], who observed that for higher levels of con-

tamination the interfacial mass transfer scaling, as a power of the Schmidt number,

‘switches’ from Sc−0.5 to Sc−0.7 for clean and severely contaminated surfaces, respec-

tively. A modified version of Theofanous’ et al. [19] dual-regime model, proposed by

Herlina & Wissink [10] for no-slip surface boundary conditions, is given by

KL

u∞
∝ Sc−2/3ReT

−1/2, (5.8)

KL

u∞
∝ Sc−2/3ReT

−1/4. (5.9)

The RT < RT,crit and RT > RT,crit conditions correspond to Theafanous’ large-eddy

(5.8) and small-eddy (5.9) model respectively.

In order to investigate which scaling would be applicable for a range of contami-

nation levels, it is assumed that the gas transfer velocity is a function of the Schmidt

number and the turbulent Reynolds number and can be estimated by

KL

u∞
= cSc

−qReT
−r. (5.10)

Here, the high and low RT regimes correspond to the powers r = 1/2 and r = 1/4

respectively. Based on this approximate expression (5.10), the dependency of the

power q on the contamination level at the water surface is determined.

Note that in the DNS calculations, surface waves are assumed to be very shallow so

that the interface can be modelled using a rigid lid assumption.

In order to obtain the actual power (q) that corresponds to certain contamination

levels and to determine c (the constant of proportionality) the least squares method

was employed using the DNS results obtained at various Sc.

The bulk concentration cb was evaluated at the location zb in the upper bulk where

crms(zb) =
1
2
maxz crms(z) holds. Using cb, the instantaneous gas transfer velocity

kL(t) =

〈
− cs
cs − cb

1

ReSc

∂c

∂z

∣∣∣∣
z=Lz

〉
(5.11)

is determined, which is used to calculate the mean gas transfer velocity KL = kL.
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The analyses were performed using time-averaging over the interval from t = 150

to t = 300. The behaviour of the S5 and S1 cases are close to no-slip and free-slip

boundary conditions, respectively. In other words, the power of the Schmidt number

in the S1 (Ma/CaT = 1) case was found to be close to the one achieved in the clean

surface condition (Sc−1/2), while for S5 (Ma/CaT = 269) the power is similar to the

one for severely contaminated conditions (Sc−2/3) as obtained in case SN see Figure

5.5.

Fig. 5.5. Variation of power (q) with Ma/CaT

The scaling of the normalised gas transfer velocity (KL) as a power, q, of the

Schmidt number Sc was determined for a range ofMa/CaT . It can be seen that in Fig-

ure 5.5, the power q decreases from −1/2 forMa/CaT = 1 to −2/3 forMa/CaT = 54.

For even higher Ma/CaT the power remains virtually constant. Thus the lowest con-

tamination level considered, whereMa/CaT = 1, very nearly scales with Sc−1/2 (clean

case condition), while the highest level of contamination considered (Ma/CaT = 54)

scales similar as the severely contaminated surface condition where Sc−2/3.

5.4 Turbulent Flow Statistics

The effect of surface contamination on the turbulent flow statistics was evaluated

for range of surfactants level. The same turbulent (isotropic) flow-field is presented

at z = 0, whilst at the surface (z = Lz) the flow is completely homogeneous in the
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horizontal directions and the effects of different levels of surfactants were introduced

through changing the surface boundary conditions for the horizontal velocities in the

Direct Numerical Simulations (DNS) as described earlier.

Fig. 5.6. Effect of Ma/CaT on the near surface turbulent flow statis-
tics: (a) urms (b) wrms

The turbulent velocity fluctuations are damped with increasing distance from

the turbulence source at the bottom (z = 0). The horizontal velocity fluctuation,

displayed in Figure 5.6a, were obtained by averaging the horizontal velocities com-

ponents of urms and vrms in time. Both horizontal and vertical velocity fluctuations

show noticeable differences when approaching the surface due to the specific bound-

ary condition at the surface. It can be seen that at the surface, the horizontal velocity

fluctuation level changes dependent on the magnitude of Ma/CaT , while the rigid

lid assumption caused the vertical velocity fluctuations to become zero for all cases.

Note that in the lower part of the computational domain up to ≈ 1.5L, the horizontal

and vertical fluctuations show a very similar behaviour for all cases. (see Figure5.6a,

b)

The detailed plots of the urms profiles close to the surface are shown in Figure 5.7.

In all simulations, the horizontal velocity fluctuations (urms) profiles were found to be

very similar up ζ ≈ 2.8L, with the exception of the SN simulation which shows quite a
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Fig. 5.7. effect of Ma/CaT on the near surface turbulent flow statis-
tics detail plotted of urms in logarithmic scale and using the inverse
coordinate ζ = Lz−z. Shown in time averaged (t = 150−300) results.

different result due to the no-slip boundary condition at the surface. As opposed to the

high Ma/CaT simulations, where the Marangoni forces push the surface divergence

to zero so that the 2D surface velocity field becomes almost divergence-free (but not

necessarily zero), in SN the horizontal velocity is forced to become zero. Apart from

S0 and S1, in all simulations urms was found to decrease in the near surface region

where z > 2.8L. In S0 and S1, however, urms was found to increase. Note that

very similar results were obtained for S0 and S1 as well as for S4 and S5. The urms

levels obtained were found decrease with with increasing levels of pollution ranging

from S0 (free-slip) to S5. The decrease in urms illustrates that rising levels of surface

contamination tend to increase near-surface turbulence damping. The increase in urms

observed in S0 and S1 is caused by the redistribution of turbulent kinetic energy: close

to the surface, the vertical velocity fluctuations decline and as a result the horizontal

fluctuations are enlarged (see also Perot & Moin [141]). The aforementioned rising

levels of surface contamination result in increased instantaneous shear and, hence, in

increased damping of urms as can be seen in Figure 5.7 for S2–S5.

Figure 5.8 shows detailed profiles of wrms. It is observed that the wrms profiles

exhibit a similar decreasing trend with Ma/CaT as obtained for urms. The wrms

profiles obtained in S0 and S1 and in SN and S5 almost coincide.
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Fig. 5.8. effect of Ma/CaT on the near surface turbulent flow statis-
tics. Detailed plot of wrms with logarithmic scale, using the inverse
coordinate ζ = Lz − z. Shown are time averaged (t = 150 − 300)
results.

With the exception of the no-slip simulation SN , all cases have a non-zero two-

dimensional (2D) velocity field at the surface. While in the free-slip simulation the

velocity field quickly becomes three-dimensional with increasing depth as w ∝ ζ, in

cases with large Ma/CaT this takes much longer as w ∝ ζ2. The latter is a result

of the Marangoni effect caused by horizontal gradients in the surfactant concentra-

tion inducing a force counteracting the aforementioned surfactant gradients there-

fore effectively forcing the 2-D flow at the surface to become almost divergence free

∂u
∂x

+ ∂v
∂y

≈ 0. The turbulent integral length scale and the Kolmogorov length scale

are shown in Figure 5.9(a) and (b), respectively, for all simulations. The L11 results

shown were time-averaged from t = 150 to 300, while the Kolmogorov length scale (η)

profiles represent instantaneous results obtained at the final time step t = 300. L11

is first observed to increase with distance from the turbulent source until it reaches

a local maximum at ζ ≈ 0.5L. After reaching the local maximum, L11 reduces to 0

towards the surface for the no-slip case (S0). However, for moderate to large levels

of contamination (Ma/CaT ), as in simulations S2 to S5, L11 increase again when

approaching the surface. The increase in L11 is attributed to the presence of instan-

taneous shear which becomes stronger with increasing Ma/CaT such that for S2 to

S5 an increased horizontal integral length scale is obtained. For zero or very low levels
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Fig. 5.9. Vertical variation of (a) turbulent integral length scale L11

(time averaged from t = 150− 300) and (b) Kolmogorov length scale
η at t = 300.

of contamination (S0 and S1), due to the reduction in instantaneous shear, L11 again

reduces towards the surface and reaches levels of about 0.87 and 0.80, respectively.

The range of Kolmogorov length scales obtained at t = 300L/U for various sim-

ulations is shown in Figure 5.9 (b). The Kolmogorov length scale η = (ν3/ε)
1/4

is

calculated using the dissipation ε of turbulent kinetic energy calculated by

ε = 〈2νSijSij〉 (5.12)

where Sij =
1
2
(∂u

′
i

∂xj
+

∂u′
j

∂xi
). It can be seen that because of the dissipation of turbulent

kinetic energy η increases from the bulk region until a maximum is obtained approx-

imately between ζ = 0.1L and ζ = 0.2L. With the exception of S0, η is observed

to increase from the lower bulk upwards and reaches a maximum between ζ = 0.1L

and 0.2L. Closer to the surface for S0 η becomes constant while for the other sim-
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ulations η reduces. The latter might indicate vortex stretching due to the presence

of instantaneous shear resulting from either no-slip boundary conditions (in SN) or

Marangoni forces.

The effect of shearing on the interfacial integral length scale L11 is demonstrated

by visualising the vortical structures close to the surface in Figure 5.10. To identify

these structures, the λ2 criterion of Jeong& Hussain [142] was employed, where λ2 is

the second eigenvalue of the sum of the squares of the symmetric and antisymmetric

parts of the velocity gradient tensor. The near-surface vortical structures obtained in

simulations S4, S5 and S0 were found to be quite different. In S0, fewer structures

were found to reach the surface than in S5 and S5. Also, while in S0 all structures

that reach the surface are orthogonal and have constant diameter to the surface, in

S4 and S5, they typically are non-orthogonal. The latter implies that their cross

sectional area with the surface is increased (even though the diameter of the tubes is

actually smaller). Note that the diameter of the vortex tubes typically scale with the

Kolmogorov length scale [143]. The fact that the orthogonal tubes at the surface in S0

have constant diameter is in agreement with the constant value of η observed in Fig-

ure 5.9b. The observation that the vortex tubes in S4 and S5 are non-perpendicular

to the surface (resulting in the aforementioned larger cross-sectional area) while at

the same time the tube-diameter becomes wider when approaching to the surface may

explain the larger L11 obtained at the surface. The non-perpendicular tubes at the

surface are due to Marangoni forces inducing instantaneous shear.

The turbulent Reynolds number ReT profiles obtained in the simulations S0, S2,

S4, SN are shown in Figure 5.11. In all simulations, ReT was found to be approx-

imately constant between z = 1.5L to z = 2.25L. This is in agreement with the

observation made earlier by Wissink & Herlina [10], where the horizontal velocity

fluctuations urms decayed when approaching the surface (in the z direction) while si-

multaneously L11 increased such that ReT was observed to remain constant, see also

in [92].
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Fig. 5.10. Vortical structure identified using the isosurface of λ2 =
−0.001 from simulations (a) S0 , (b) S4 and (c), S5 The isosurfaces
are coloured by the distance ζ from the surface

5.5 Effect of Ma/CaT

5.5.1 Qualitative observations

The near surface horizontal velocity fluctuations, generated by the isotropic tur-

bulence diffusing from below, was found to be significantly influenced by the level
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Fig. 5.11. Effect of Ma/CaT on ReT . Shown are time-averaged (t =
150− 300) results

of contamination. In particular, the upwelling and downwelling motion of the water

was found to reduce with increasing contamination level, as measured by the param-

eter Ma/CaT . Figure 5.12 shows snapshots of the horizontal velocity field combined

with colour contours of the velocity magnitude. It can be seen that the slightly con-

taminated case S1 shows significant horizontal velocity fluctuations which gradually

reduce for S3 and S5 with increasing Ma/CaT . Also, the vector field in S1 shows

relatively strong upwelling and downwelling motions, which in S3 and S5 become in-

creasingly weak. These upwelling and downwelling motions are especially important

for the promotion of gas-exchange. While at the air-water interface the gas transfer is

fully dominated by diffusion, at lower levels, vertical velocity fluctuations become the

main responsible for the transport of gases deeper down into the bulk. A damping

of these vertical fluctuations will result in a reduction of atmospheric gas transfer.

Hence, Figure 5.12 indirectly shows that the interfacial gas transfer will reduce with

increasing levels of contamination. Note that for the vertical velocity fluctuations

close to the surface to be reduced, it is not necessary that the horizontal velocity at

the surface is reduced to zero.
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Fig. 5.12. Velocity vectors and magnitude (contours) at the interface
of (a) S1, (b) S3 and (c) S5

Instantaneous concentration isosurfaces for cSc=4 = 0.5 are shown in Figure 5.13

for simulations S1, S2 and S4. The surfactant concentration was normalised with

the maximum instantaneous surfactant concentration γmax, and the colours represent

the normalised surfactant concentration at the corresponding (x, y) coordinates. The

thickness of dynamic concentration boundary layer is affected by the isotropic tur-

bulence diffusing from below. In general, strong upwelling and downwelling motions

cause variation of the surfactant concentration at the water surface. The surfactants

accumulate in the downwelling regions which can be identified by the increased thick-

ness of concentration boundary layer. At the locations where the boundary layer

is thin, surfactants are pushed to the side by strong upwelling motions. This is in

agreement with what is shown in Figure 5.6, where the near surface turbulence (and

hence the upwelling and downwelling motions) are damped with increasing levels of

Ma/CaT .
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Fig. 5.13. Instantaneous isosurfaces of concentration at cSc=4 = 0.5
from (a) S1, (b) S2 and (c) S4 t = 300L/U . The colour represent the
normalised surfactant concentration at the corresponding interfacial
(x, y) coordinates

Strong downwelling motions can penetrate deep inside the bulk, corresponding to

the anti-splats observed for S1 in Figure 5.13 (a). Also, as a consequence of strong

upwelling motions (splats) for low level Ma/CaT , large areas at the surface become

virtually surfactant free. However, such surfactant-free areas quickly become smaller

as the level of Ma/CaT increases, and finally completely disappear in simulation S4.

Figure 5.14 contrasts the correlation between the instantaneous concentration

(colour contours) and the surface divergence (isolines), defined by

β =

(
∂u

∂x
+

∂v

∂y

)
|z=Lz (5.13)

in the grid plane adjacent to the surface of simulations S1 and S5. In S1, areas of
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Fig. 5.14. Effect of increasing Ma/CaT on the correlation between
the dissolved gas concentration (colour contours) and surface diver-
gence (isolines). The solid and dotted lines correspond to positive and
negative surface divergence, respectively. Snapshots are from (a) S1
and (b) S5.

low concentration coincide with strong positive surface divergence due to upwelling,

while negative surface divergence (downwelling) is observed in areas with high con-

centration.

In contrast to this, in S5, the correlation between surface divergence and con-

centration levels is worse. Areas with strong positive surface divergence not always

coincide with low concentration levels and vice versa. The reason for this is that in

the simulations with large Ma/CaT (as in S5), strong Marangoni forces are generated

that tend to reduce surface divergence and, hence, the correlation between β and c

becomes worse than in simulations with low Ma/CaT , such as S1. Also, instanta-

neous shear stress is generated near the surface as can be seen in Figure 5.10 (see

also Handler et al. [108]; Khakpour et al. [97]). Note that apparently the effects of

instantaneous shear stresses in the high Ma/CaT simulations S4 and S5 resembles

the effect of instantaneous shear in he no-slip case SN .

Figure 5.15 shows the effect of surfactant level on the surface divergence β =

(∂u/∂x+ ∂v/∂y)|i, which is related to 2D incompressibility of the interfacial velocity
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Fig. 5.15. Surface divergence for (a) S1, (b) S3 and (c) S5 at t = 237L/U

field. All three cases were evaluated at t = 237.0L/U . The red areas have positive

surface divergence and coincide with up-welling of unsaturated fluid from the bulk

towards the surface and the blue areas have negative β and correspond to the down

welling of saturated fluid from the surface towards the bulk. Large values of |β|
indicate strong up and down-welling motions which typically correspond to high levels

of gas transfer.

It can be seen that for S1, a relatively large variation in β is obtained which sub-

sequently reduces with increasing Ma/CaT . Consequently, also βrms will reduce and

the vertical velocity immediately below the surface becomes progressively damped,

because β → 0 ⇒ ∂w
∂z

∣∣
i
−→ 0. This leads to a significant reduction of the interfacial

gas transfer.
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5.5.2 Effect of Ma/CaT on vertical mass transfer

To study the effect of Ma/CaT on mass transfer, vertical profiles of the average

concentration together with the rms of its fluctuations and the diffusive and turbu-

lent mass fluxes of simulations S0 - S3 and SN are shown in Figure 5.16. Note

that the profiles for S4 and S5 are not plotted as they are very nearly the same

as the SN profiles, indicating that even moderate levels of Ma/CaT manage to re-

duce mass transfer nearly as much as SN. Figure 5.16a depicts the normalised mean

concentration profiles
〈c〉 − 〈cb〉
cs − 〈cb〉

, (5.14)

where cb is evaluated in the bulk at z = zb, chosen such that

crms(zb) = 0.5 max
0≤z≤lz

(crms).

Increases in the contamination level were observed to lead to a thickening of the

mean concentration boundary layer. The thickness δ of this layer can be identified

by the depth where crms reaches its maximum. Figure 5.16b confirms that the peak

in crms indeed moves further away from the surface with increasing Ma/CaT and

the concentration boundary layer thickness δ gradually increases from 0.0239, 0.0273,

0.0345, 0.0424, 0.0487 for S0, S1, S2, S3, and SN , respectively. Furthermore, in

general, the peaks in crms decrease with increasing surface contamination level with

the exception of the peak in simulation S0. The comparatively large peak in S1

(compared to S0) is associated with increased vertical motions related to growing

fluctuations in the surface divergence (βrms) which is explained in more detail in

Section 5.5.3

The total mass flux in the vertical direction is composed of the sum of the vertical

diffusive and turbulent mass fluxes, 〈D ∂c
∂z
〉 and 〈c′w′〉, respectively. Because at the

surface the vertical velocity is zero, diffusion fully dominates the vertical mass transfer

at the surface. A decreasing concentration boundary layer thickness, associated with

a reduction in Ma/CaT , results in steeper gradients of ∂c
∂z

and, hence, an increased
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Fig. 5.16. Effect of Ma/CaT on the horizontally and time-averaged
profiles of (a) normalised concentration, (b) normalised concentration
fluctuations, (c) vertical scalar diffusion, (d) vertical turbulent scalar
flux. In (c, d) the depth ζ is normalised using the boundary layer
thickness. Note that the molecular diffusion coefficient D is defined
by D = 1/ReSc

interfacial diffusive mass flux (see Figure 5.16c). Note that for the present no-slip

simulation with ReT = 117 this gradient (obtained at the surface) remains constant

up to ζ/δ ≈ 0.2. Hence, diffusion fully dominates mass flux not only at the surface

but also immediately beneath. This observation is collaborated by the vanishing

normal gradient of the scalar flux 〈c′w′〉 shown Figure 5.16d. This results is a direct

consequence of the fact that (1) w′ = 0 at the surface and (2) the conservation of

mass requirement for the no-slip simulation implies that ∂w′
∂z

= 0.
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Because of the increased mixing due to turbulence, the diffusive mass flux can

be seen to rapidly reduce with increasing distance from the surface. This decrease

is balanced out be a simultaneous increase in the convective mass flux such that the

total mass flux remains constant (see Figures 5.16c,d). The turbulent mass flux can

be seen to virtually completely dominate the total mass flux at a depth of 3δ. In

Figure 5.16d it can be seen that with increasing pollution levels, the turbulent mass

flux tends to reduce.
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Fig. 5.17. Variation of KL with Ma/CaT for Sc = 32

Figure 5.17 shows the effects of pollution, measured by Ma/CaT , on the mean

gas transfer velocity KL, as defined in Eq. (5.11). The figure shows that in the

interval Ma/CaT = 0–11, the mean transfer velocity reduces very rapidly. As soon

as Ma/CaT ≥ 54, KL becomes almost identical to the value obtained in the no-slip

simulation S0. Note that because all ReT are less than ReT,crit = 500 (Theofanous

et al. [19] ;Herlina & Wissink [10]) , the large-eddy regime rules apply and the KL

results, normalised by ReT
−1/2, can be directly compared.

Figure 5.18 shows the evolution of the horizontally-averaged interfacial gas transfer

velocity kL(t) for S1, S3 and S5 starting at t = 200 L/U until t = 300 L/U . kL

was obtained using a Schmidt number of Sc = 32 and subsequently normalized by

u∞ReT
−1/2 and the bulk concentrations were assumed to be zero, see Eq. (5.11).
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Fig. 5.18. Normalized horizontally-averaged gas transfer velocity kL
for Sc = 32 profiles (a) S1, (b) S3 and (c) S5

The horizontally-averaged gas transfer velocity was found to strongly depend on the

contamination level. In S1, kL was found to be significantly larger than in the other

two cases with higher Ma/CaT . Contrasting the results obtained in S3 and S5 shows

that at certain time-periods an almost identical transfer velocity was obtained while

during other periods simulation S3 shows a significantly stronger increase in (kL)

than S5 .

Fig. 5.19. Colour contours of surfactant concentration for S3 (a) for
t = 260L/U , (b) t = 276L/U
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This is further explored for case S3 (Ma/CaT = 11) in Figure 5.19 which shows

snapshots of the surfactant concentration at the surface for t = 260L/U and t =

276L/U , corresponding to a local minimum and maximum in kL, respectively. It can

clearly be seen that the larger value of kL obtained at t = 276L/U coincides with

a relatively large area with a very low surfactant concentration (which is effectively

clean). The low kL obtained at t = 260L/U , on the other hand, corresponds to a

very small clean area. Hence, we found evidence that the size of the clean area can

be correlated with the horizontally-averaged gas transfer velocity.
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Fig. 5.20. KL versus Sc for a range of Ma/CaT (see Table 5.1).
HW14 and HW16 are taken from Herlina & Wissink [11] and Herlina
& Wissink [10], respectively.

Figure 5.20 shows how KL/KL,Sc=2 changes with Schmidt number. The normal-

isation with KL,Sc=2 was performed to ensure that both lines would fit nicely in the

figure, it does not affect the scaling of KL ∝ Sc−q with Sc discussed here. It can be

seen that, with increasing contamination level from Ma/CaT = 0 to 54, the power q

gradually increases from 1/2 to 2/3, while beyond Ma/CaT = 54, q remains constant

at 2/3 Herlina & Wissink (2014) [11] (HW14) and Herlina & Wissink (2016) [10]

(HW16). In the aforementioned publications, the above scaling of the transfer ve-
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locity with Sc−1/2 and Sc−2/3 for the free-slip and no-slip cases, respectively, was

confirmed for Sc up to 500. Therefore, it is expected that also for cases Ma/CaT > 0

the obtained exponent q in KL ∝ Sc−q remains valid up to at least Sc = 500.

5.5.3 Surface divergence

An important model for the surface renewal rate r, is the so-called surface di-

vergence model proposed by McCready et al. [13], which was discussed previously in

Section 2.2.1.5. The model used the rms of the divergence of the horizontal velocity

at the surface, see (2.11) and is defined by

KL = cβ
√
Dβrms. (5.15)

The importance of surface divergence model for interfacial gas transfer was shown

in the study of McCready et al. [13]. Apart from this, the model was further verified

using both experimental and numerical data e.g. McKenna & McGillis [47], Turney

et al. [144], Magnaudet & Calmet [145], Kermani et al. [146], Wissink & Herlina [64]

Herlina & Wissink [11]. These studies showed that the surface divergence model can

produce high quality predictions ofKL. Unfortunately, the constant of proportionality

cβ needed to be changed depending on the flow situation. In the numerical results

obtained by Shen et al. [1], Khakpour et al. [97] and Hasegawa & Kasagi [135], it was

found that increasing contamination levels cause a reduction in βrms.

5.5.3.1 Qualitative observation of the relation between surface divergence

beta and mass transfer velocity for various pollution levels

Here it is investigated for which level of surface pollution the surface divergence

model for KL begins to break down due to the increased damping of the surface

divergence βrms. Especially for large levels of contamination, this damping effect

reaches to severe levels so that βrms becomes virtually zero.
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Colour contours of the instantaneous surface divergence were shown for the cases

S1, S3 and S5 in Figure 5.15. Note that relatively large fluctuations in β were

obtained in S1. However, with increasing Ma/CaT these fluctuations drastically

reduce. Based on this it is save to assume that also βrms will reduce. The latter is

confirmed in Figure 5.21 where βrms with increasing Ma/CaT can be seen to reduce
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Fig. 5.21. Effect of increasing Ma/CaT on βrms

to zero for large levels of pollution. Above it was shown that the surface divergence

model can produce high quality predictions for KL indicating that in the absence of

pollution KL is sensitively dependent on βrms. As can be seen in Figure 5.21, βrms

reduces sharply towards zero within a very small Ma/CaT range. So that we can

conclude that the surface divergence model may only be useful for surfaces with low

to moderate levels of Ma/CaT . However, it will break down for βrms close to the

zero. This effect of contamination on βrms was also studied previously by Shen et

al. [1]

Note that βrms in S1 is larger than in S0 (Figure 5.21) this unexpected result is

likely related to over and underestimations in the surface divergence that are a result

of large Marangoni forces suppressing strong up and downwellings. Because of the

increased over and underestimations in S1 results in a slightly larger value for βrms

in S1 than in S0, one might expect that also KL in S1 would be larger than in S0.
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This, however, is not true. (see Figure 5.17). A likely explanation for this could

be the presence of high intensity (but very localised) small scale structures in the β

distribution of S1.

Fig. 5.22. Colour contours of kl/(u∞ReT
−1/2) combined with line

contours of β , (a) S1, (b) S3, (c) S5

Contours of the local gas transfer velocity, kl, combined with isolines of the surface

divergence are shown for Sc = 32 in Figure 5.22. In the absence of surface shear

(free-slip surface conditions), high values of kl coincide with unsaturated flow washed

up from the bulk, while low values of kl correspond with saturated flow areas. How-

ever, the presence of surfactants induces instantaneous shear (∂u
∂z
, ∂v
∂z
) near the surface

causing a differential horizontal velocity between the surface and the flow immedi-

ately underneath. This leads to a non-uniform horizontal transport and explains the

imperfect correlation between the instantaneous kl and β as observed in Figure 5.22

(c), which shows that in the presence of surfactants high values of kl do not always

coincide with positive values of β and vice versa.

Figure 5.23 shows the evolution of the correlation ρ(β, kl) in time. It can be seen

that for S1 the correlation is fluctuating about a value of 0.6, for S3 the correlation

fluctuates about 0.2 and for S5 about 0. This result implies that the spatial correlation
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Fig. 5.23. Correlation of the instantaneous kl and β in time

between the local instantaneous β and kl deteriorates with increasingMa/CaT . While

for S1 the correlation is still quite strong, it is basically non-existent (zero) for S5.

The latter implies that the surface divergence model is not so suitable to predict gas

transfer in the presence of significant surface contamination.

Simulation ρ(kl, β) ρ(kL, βrms)

S1 0.60 0.78

S3 0.21 0.93

S5 -0.02 0.30

Table 5.2
Correlation of the horizontally averaged kL which is obtined for Sc =
32 and β over the final 100 time of the simulations

Table 5.2 shows the mean spatial correlation ρ(kl, β) for S1 S3, S5 confirming

the observations made in Figure 5.23. The temporal correlations ρ(kL, βrms) between

the spatial fluctuations in surface divergence and the spatial average of kl show a

somewhat better correlation ranging from values of about 0.9 for S1 and S3 (which

is very good) to a value of only 0.3 for S5, which confirms that the surface divergence
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model (which uses βrms to predict KL ) breaks down when the surface is severely

contaminated.
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Fig. 5.24. Effect of increasing Ma/CaT on the correlation coefficient
of KL and

√
Dβrms

The validity of the surface divergence model for a shear free-surface boundary con-

dition was checked by Herlina & Wissink [11], Wissink & Herlina [64] and Magnaudet

& Calmet [145]. Furthermore, several researchers also determined the gas transfer

velocity by using the surface divergence model for situations with surface shear (Law

& Khoo [147], Banerjee & MacIntyre [49], Turney et al. [32])
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Fig. 5.25. Effect of increasing Ma/CaT on cβ
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The variation of cβ with Ma/CaT is shown in Figure 5.25. The constant of

proportionality cβ of the surface divergence model, defined in Eq. (5.15), needed to

be reduced in order to represent the damping effect on KL due to the presence of

surfactants. For the cases with Ma/CaT ≤ 1 the constant of proportionality was

about 0.5 to about 0.58. For case S2 (Ma/CaT ≈ 5), cβ decreases to 0.35 at Sc = 32.

Hence, it can be concluded that for a prediction of KL with the surface divergence

model, each surface condition needs their constant of proportionality. Similar results

were obtained in [47].

In agreement with Figure 5.20, Figure 5.25 also shows that a collapse of data

points only occurs for very small values of surface contamination (Ma/CaT ). This

provides even more evidence that the surface divergence model is valid only for low

to moderate levels of contamination and cannot be used to estimate KL for higher

levels of contamination.

5.5.4 Clean surface fraction (α)

The pollution parameter Ma/CaT was used to characterise the level of contami-

nation at the water surface. The results indicated that for small levels of surfactants,

large parts of the surface area become virtually surfactant-free. A model is proposed

that predicts KL from the surfactant-free (clean) fraction of the surface area α. Both

the exponent (q) and the constant of proportionality c in (5.10), depend on the level

of surface contamination and derivations are for both parameters are produced below.

First we assume that

KL = cSc−q = αcfSc
−qf + (1− α)cnSc

−qn , (5.16)

with qf ≤ q ≤ qn, where qf , cf and qn, cn correspond to the exponents of Sc and the

constant of proportionality for the free-slip and no-slip cases, respectively.

After substituting the Taylor expansions

Sc−qf = Sc−(q−h1) ≈ Sc−q + h1(lnSc)Sc
−q +©(h1

2), (5.17)
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Sc−qn = Sc−(q−h2) ≈ Sc−q − h1(lnSc)Sc
−q +©(h2

2). (5.18)

After substituting the latter two expressions in Eq. (5.16), while ignoring second and

higher order terms, we obtain

cSc−q = [αcf (1 + h1 lnSc) + (1− α)cn(1− h2 lnSc)]Sc
−q (5.19)

and

c = αcf (1 + h1 lnSc) + (1− α)cn(1− h2 lnSc) (5.20)

because c is supposed to be independent of Sc, the non-constant lnSc needs to be

eliminated from this expression; by using h1 + h2 =
1
6
or h1 =

1
6
− h2 we obtain

αcf (
1

6
− h2) lnSc− (1− α)cnh2 lnSc = 0 ⇐⇒ αcf (

1

6
− h2) = (1− α)cnh2, (5.21)

and finally

h2 =
1
6
αcf

(1− α)cn + αcf
, (5.22)

q =
2

3
− h2 ↔ q(α, cf , cn) =

2

3
− h2(α, cf , cn), (5.23)

c = αcf + (1− α)cn, , (5.24)

where the exponents qf and qn are determined to be 1/2 and 2/3, respectively. The

constants of proportionality cf and cn need be determined for free-slip and no-slip

cases, respectively. Following that, the normalised gas transfer velocityKL/(u∞ReT
−r)

can be calculated as a function of α.

5.5.4.1 Clean surface area

The flow near the contaminated surface is affected by horizontal gradients in the

surfactant concentration as can be seen from

∂ui

∂z

∣∣∣∣
z=Lz

= −Ma

Ca

∂γ

∂xi

i = (1, 2).

These gradients generate Marangoni forces, of which the strength depends onMa/CaT .

The regions where the surfactant concentration is small are observed to reduce in size
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with increasing Marangoni forces as can be seen in the instantaneous visualisations

shown in Figure 5.26.

To establish whether part of a surface is clean or dirty, a threshold is defined for

the surfactant concentration. The surfactant concentration was normalised by using

the maximum instantaneous concentration of the surfactant γmax. Hence, the clean

surface fraction 0 ≤ α ≤ 1 is defined by the fraction of the total area where

γ/γmax < γth. (5.25)

The threshold of the surfactant concentration is represented by γth. The size of the

Fig. 5.26. Effect of increasing Ma/CaT on the ‘surfactant-free’ frac-
tion of the total surface area. (a) S1, (b) S2, (c) S3. The solid black
lines identify γ/γmax = 0.45. Note that the purpose of these snap-
shots is only to give an impression of the effect of Ma/CaT on the
surfactant-free area, the actual times are not important.

area where the surfactant concentration is reduced with increasing Ma/CaT can be

seen in Figure 5.26. The figure also shows isolines of he threshold defined as γth = 0.45.

In S1 the clean and dirty surface regions are separated clearly by steep gradients of

the surfactant concentration. However, the separation of the clean and dirty surface

regions is not very clear in S2 and S3, as the gradient becomes more diffuse with

increasing contamination level (Ma/CaT ). Simultaneously, the clean surface fraction

α also steadily reduces in size.
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Various thresholds γth = 0.1, 0.3, 0.45 and 0.70 were used to establish the rela-

tion between the time-averaged clean surface faction α and Ma/CaT in Figure 5.27.

For cases S0 to S3 with Ma/CaT < 11, a sharp reduction is obtained in α with a

Ma/CaT
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Fig. 5.27. Variation of clean surface fraction α with Ma/CaT

only slight increase in contamination level. However, for severely contaminated cases

(Ma/CaT ≥ 54) the clean surface fraction α was found to be virtually zero. Fur-

thermore, the variation of α with Ma/CaT can be reasonably well represented by an

exponential relationship. Using the least squares method, for γth = 0.45 the best fit

was found to be

αγth = α0.45 = e−0.163Ma/CaT (5.26)

5.5.4.2 Correlation between clean surface fraction α and gas transfer ve-

locity kL

In the absence of pollution (Ma/CaT = 0), the clean boundary at the surface is

modelled using a free-slip boundary condition, corresponding to α = 1 (simulation

S0). For an extremely polluted surface, the covering with surfactants will be complete

at all times so that the clean surface fraction becomes α = 0. Even for moderate values
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of Ma/CaT , as in simulations S5 and also S4, α was found to be almost zero when

using a surfactant threshold of γth ≤ 0.5. Consequently, the instantaneous transfer

velocity in S5 and S4 is likely to scale the same as when using the no-slip boundary

conditions, where KL ∝ Sc−2/3. This is in agreement with the scaling of the time-

average KL values shown in Figure 5.20.

ρ(kL, αγth)

Run Ma/CaT γ0.1 γ0.2 γ0.3 γ0.4 γ0.5 γ0.6

S1 1 0.7543 0.7391 0.6802 0.6060 0.5030 0.4151

S2 5 0.8466 0.7795 0.6864 0.5808 0.4707 0.4089

S3 11 0.9568 0.9497 0.9045 0.7738 0.4182 0.0696

Table 5.3
Correlation coefficients at Sc = 32 for various thresholds αγth

The instantaneous clean surface fraction (α) was found to have a significant effect

on the instantaneous gas transfer velocity (kL) for cases S1, S2 and S3. Table 5.3

shows the correlation coefficient ρ(kL, αγth) of the instantaneous gas transfer velocity

kL and the instantaneous clean surface fraction α obtained at Sc = 32 for γth =

0.1 − 0.6. It can be seen in Table 5.3 that the instantaneous transfer velocity is

very strongly correlated with αγth for γth = 0.1. In general, it was found that the

correlation decreases with increasing γth. Furthermore, it can be seen that for γth <

0.4, the correlation increases with the level of contamination, while for γth > 0.4 the

correlation decreases with the level of contamination.

The time-evolution of αγth , kL and −q obtained using the horizontally averaged

instantaneous concentration profiles from simulation S2 are shown in Figure 5.28. In

general, it can be seen that when α decreases (small clean surface fraction so that

almost the entire interface is covered with surfactant), the power q gets larger and

approaches a value of 2/3, that corresponds to very high levels of surfactant pollution.

In contrast, q generally decreases and moves towards the clean surface value q = 1/2
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Fig. 5.28. Time series of the clean surface fraction (upper pane), the
instantaneous gas transfer velocity kl (middle pane) and the power
coefficient −q (lower pane)

when the clean surface fraction (α) increases. Also, it can be seen that a (positive)

correlation exists between αγth and kL which becomes slightly worse with increasing

threshold (because for increasing threshold the clean surface area becomes less and

less ”clean”), which is in agreement with the results presented in Table 5.3.



108

5.5.4.3 Comparison between observed mean q, c and KL with their pre-

diction based on α

Table 5.3, displays the temporal correlation between various αγth and kL for the

cases S1, S2 and S3 obtained at Sc = 32. The very good correlation obtained for

α0.1, however, does not necessarily mean that the actual prediction of the magnitude

of the normalised gas transfer velocity

KL

u∞ReT
−1/2 (α) = c(α)Sc

−q(α), (5.27)

where c(α), −q(α) are defined in Eq. (5.24) and (5.23), is correct using the DNS

results (obtained at various Sc numbers simultaneously), for each Ma/CaT case the

power q and the constant of proportionality c in the equation above can be estimated

using the least squares method. The results obtained estimating −q and c are shown

in Figures 5.29a) and b), respectively, for a range of (Ma/CaT ). Smooth variations

are observed for both parameters. The exponent −q reduces from −1/2 to −2/3 with

increasing (Ma/CaT ). Simultaneously, c reduces from c ≈ 1.55 to c ≈ 0.94 when

(Ma/CaT ) increases from 0 to beyond 50. To determine the clean surface fraction α

in Eqs: (5.23) and (5.24) from the numerical results, first the optimum threshold γth

needs to be determined. To achieve this, we need to minimize the sum of the squared

errors

SSE(αγth) =
SN∑
S0

[KL −KL(αγth)]
2 , (5.28)

where KL is the reference value calculated directly from the numerical results and

the predicted gas transfer velocity, KL(αγth) is calculated by using Eqs: (5.23), (5.24)

and (5.10). The parameters of cf = 1.55 and cn = 0.94 were determined from the

results of S0 (free-slip) and SN (no-slip) in [11] and [10], respectively. r = 1/2 in Eq.

(5.10) was assumed due to the low to moderate intensity levels of the turbulence in

the simulations.

Figure 5.30 shows the effect of the threshold γth on the sum of squared errors, SSE.

The threshold was varied from γth = 0.1 to 0.5 in order to estimate the minimum SSE.
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Fig. 5.29. Variation of (a) the exponent −q and (b) the constant
of proportionality c with (Ma/CaT ). The results are averaged from
t = 150 to t = 300.

While for small threshold values the temporal correlation ρ(kL, α0.1γth) was relatively

high, the smallest SSE was obtained for a larger γth between 0.4 and 0.5. Note that

for smaller γth, KL = kL was significantly underestimated. In the remainder, unless

specified differently, a threshold of γth = 0.45 was used for the determination of α.

To test the quality of our predictions for q and c, using α0.45, in Figure 5.29 the

predicted data points are shown alongside the numerical results. It can be seen that

a reasonably good agreement was obtained (error in |q| less than 0.025 and the error

in |c| less than 0.1). In addition, the dashed line, which was produced using the
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exponential relationship (5.26) between Ma/CaT and α0.45, which provides a good

interpolation between the data points.

Finally, the prediction given above for q and c, leads us to expect that the proposed

model based on the clean surface fraction also provides a reasonable prediction of at

least similar quality for the transfer velocity. This is indeed confirmed in Figure 5.31,

illustrating that the calculation of the normalised transfer velocity from Eq. (5.27)

both (i) directly by employing the observed α0.45 so that

KL

u∞Re
−1/2
T

(α0.45), (5.29)

and (ii) indirectly by using (5.26), where α0.45 is estimated as a function of Ma/CaT ,

giving
KL

u∞Re
−1/2
T

(Ma/CaT ) =
KL

u∞Re
−1/2
T

(α0.45(Ma/CaT )), (5.30)

agree well with the normalised transfer velocity KL that was directly calculated from

the numerical data. In particular, the rapid reduction in KL for small values of

Ma/CaT is reproduced as is the smooth transition from KL values that are typical

for clean conditions to those typical for very dirty conditions.
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Fig. 5.31. Comparison of the predicted KL with the KL calculated
directly from the numerical results for various levels of contamination
Ma/CaT . (a) Results obtained for Sc = 2, 8, 32, (b) close up of
Sc = 32 results for low to moderate Ma/CaT .
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Chapter 6: Effect of slip-length on

the interfacial mass trans-

fer

6.1 Introduction

The transfer velocity, KL, of atmospheric gasses towards the bulk of the water

is largely controlled by the hydrodynamic condition at the water side, where it may

be affected by a wide range of environmental variables. For a fluid flowing parallel

to a boundary, the viscous boundary layer is a thin layer in which the velocity of

the fluid rapidly adjusts to the velocity of the wall (boundary) therefore generating

mean shear. In our case, the isotropic turbulence has zero mean shear but is damped

towards the surface. Hence, a viscous boundary layer would only be visible in the rms

(root-mean-square) plot of the horizontal velocity. A very important boundary layer

in our simulation is the concentration boundary layer in which the concentration of

dissolved atmospheric gases changes from its bulk value to the fully saturated state

reached at the surface. The surface hydrodynamic condition is affected, for instance,

by cleanliness of the water (e.g. presence of surfactants).

If the water surface is completely clean, the tangential stress vanishes due to the

absence of forces at the surface. Hence, the normal gradient of the horizontal velocity

components becomes zero (free-slip condition). That is: ∂u
∂z

= ∂v
∂z

= 0, while the

vertical velocity w becomes virtually zero because of surface tension. Hence, both
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the bottom and the top boundary have zero mass flux [97]. However, if contamina-

tion is present tangential stresses will occur because of the generation of Marangoni

forces due to variations in surfactant concentrations. The reason for this is that

surface tension reduces with increasing surfactant concentrations. As a result, near

surface turbulent velocity fluctuations are damped [148]. As shown in Chapter 5,

the surfactant contamination of the water surface is measured by the ratio between

Marangoni number and turbulent capillary number, Ma
CaT

[149]. We aim to model this

near-surface-turbulence damping by surfactants by prescribing a finite slip-length λ,

ranging from no-slip conditions (λ = 0) to free-slip conditions (corresponding to

λ = ∞).

The effect of slip-length on the interfacial gas transfer of atmospheric gasses into

water was investigated performing Direct Numerical Simulations. The interfacial

gas transfer mechanism is driven by isotropic turbulence diffusing from below. The

model proposed here aims to relate the slip-length surface boundary condition to the

surfactant contamination level. In other words, we aim to find a relation between

λ and Ma/CaT for a range of Schmidt numbers Sc. Simulations were performed

at various slip-lengths, including the free-slip and no-slip boundary conditions. For

Sc = 4, 8, 32, the gas transfer velocity KL was determined as a function of slip length

and subsequently compared to previous DNS results in which KL was determined as

a function of Ma/CaT .

When using a finite slip length, the turbulence damping near the surface differs

from the damping owing to surfactant-induced Marangoni forces. IncreasingMa/CaT

will progressively reduce the horizontal divergence of the near surface flow, but will

still allow the horizontal velocities to remain non-zero. Decreasing the slip-length at

the surface, however, progressively reduces the actual magnitude of the horizontal

velocities. Still, the scaling of KL with Sc−2/3, which is typical for heavily contam-

inated surfaces, is found both at very large Ma/CaT and at λ = 0. Also, for clean

surface conditions (free-slip boundary conditions) where Ma/CaT = 0 and λ = ∞,

KL scales with Sc−1/2. Previously, when studying the effects of surfactants, a smooth
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transition of the power q in the scaling KL ∝ Scq was found from q = −1/2 for clean

conditions to q = −2/3 for very dirty conditions [149]. Here it is investigated whether

a similar smooth transition of q can be found when reducing the slip length λ from

∞ to 0.

The purpose of finding this correlation between pollution level and slip-length is

mainly to facilitate modelling. By replacing surface pollution by a simpler boundary

condition, computational time can be saved as there is no need to explicitly solve

an additional 2D convection-diffusion equation for the surfactant every time step.

A finite slip length is used as a modelling tool by various researchers who need a

boundary condition ”between no-slip and free-slip”. For instance, when modelling the

flow of liquid on superhydrophobic surfaces. Philip & John [150], [151] investigated

the flow in a pipe of radius R with stripes (grooves) parallel to the flow. Here, the

pipe surface was modelled by identifying no-slip and free-slip regions modelled by a

slip-length of

λ =
L

π
ln

[
1

cos(αg
π
2
)

]
(6.1)

for Re → ∞, where αg is the gas (free-slip) fraction area and L is the size of the

surface structure. Lauga & Stone [152] proposed a slip-length model for a smooth

hydrophobic surfaces in a pressure-driven Stokes flow with grooves perpendicular to

the flow direction, where

λ =
L

2π
ln

[
1

cos(αg
π
2
)

]
. (6.2)

A semi-analytical calculation was also used by Ybert et al. [153] to find the effective

slip-length. They calculated the effective slip-length using the proportion of the

surface area with zero slip-length, which they referred to as the solid fraction αs.

Their model reads

λeff =

(
δv
�2

+
1

λideal

)−1
, (6.3)

where λideal = �(0.325√
αs

− 0.44), δv is the viscous penetration depth and � is the typical

length scale of the gas area. Davis et al. [154] performed an analytical calculation to

express the effective slip-length on a superhydrophobic surface by introducing strong
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drag reduction terms. Various experimental techniques were used to measure slip-

length on a superhydrophobic surface. Particle image velocimetry (PIV ), Pressure-

drop, Surface force apparatus (SFA), atomic force microscope (AFM) measurements

are some of the measurements techniques used. Choi & Kim [155] used a cone and

plate rheometer system to work with a superhydrophobic surface, where they min-

imised the contact area of the liquid and the solid. Slip-lengths of the surface were

obtained around 20 and 30 μm for water and glycerine, respectively. However Boc-

quet et al. [156] found that the experiments of Choi & Kim [155] contained significant

uncertainty regarding the slip-length of the superhydrophobic surface, which had a

magnitude ranging from 20− 100 micrometers.

Priezjev & Nikolai [157] studied the slip-length between a fluid surface and a

solid wall by performing molecular dynamics simulations of micro- and nano-channel

flows confined between atomically smooth surfaces. They investigated the influence

of shear rate and surface energy on the slip-length. They found that when the shear

rate increased the slip-length did not increase in a linear way. They modelled the

slip-velocity and slip-length as a function of the shear rate by ∂v
∂z
(−h) = VS

λ
, where

VS is the slip velocity at the wall and v is the wall-parallel velocity.

6.2 Overview of the simulations

The problem under consideration is the effect of limited slip-length on the inter-

facial gas transfer in a turbulent water environment driven by isotropic turbulence

diffusing from below. DNS calculations were employed to study the effect of such a

boundary condition for the velocity on the interfacial mass transfer. The isotropic

turbulence was generated in a separate large-eddy simulation in a cubic domain with

periodic (cyclic) boundary conditions in each direction. The LES was run in parallel

with the DNS using the same time step. Every time step instantaneous flow in an

(x, y) cross-section of the LES domain is used as a boundary condition at the bottom

of the DNS calculation. The periodic boundary conditions used in the LES are needed
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to obtain a isotropic flow used as a computationally inexpensive model for ”real-life”

turbulence. In the DNS periodic conditions were only employed in the horizontal

directions.

As can be seen in Figure 6.1, the computational domain consists of two parts. The

upper part shows the computational domain of the DNS, while the LES is calculated in

the lower (cubic) domain. The sizes of the 3D LES and DNS computational domains

are the same as the ones employed in the simulations presented in Chapter 5.1. The

Fig. 6.1. Computational domain

2D numerical simulation, used to calculate the evolution of the surfactant at the

surface in Chapter 5, is absent from the present set-up because of the change in

upper boundary condition where the influence of surfactants is modelled by a finite

slip-length at the surface.

In the DNS calculations the mesh was stretched in the z-direction to achieve a

finer mesh towards the surface and a total of 128× 128× 212 grid points was used to

resolve the flow inside the Lx×Ly×Lz = 5L×5L×3L domain. For the LES a coarser

64× 64× 64 mesh with a domain size of Lx ×Ly ×Lz = 5L× 5L× 5L was used. To

model the subgrid scale stresses, the standard Smagorinsky model was employed with

a Smagorinsky constant of CS = 0.22. In the LES, both the isotropy and a turbulence
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level of Tu = 0.40U were maintained by rescaling the velocity fluctuations each time

step.

After a transient period starting from t = 0 to t = 300L/U the turbulence in the

DNS (and LES) calculations was found to be fully developed. All simulations were

subsequently run for a further 300 time-units to gather turbulence statistics. In both

DNS and LES, a Reynolds number of Re = UL
ν

= 600 - based on a characteristic

length-scale of L = 0.01 m, a kinematic viscosity of ν = 10−6m2/s and a velocity

scale of U = 0.06 m/s - was employed. The mass transfer calculation in the DNS was

performed for Schmidt numbers Sc = 4, 8 and 32.

The vertical z coordinate points upwards with z = 0 corresponding to the bottom

of the computational domain. At times it is more convenient, however, to plot quan-

tities against the distance to the surface defined by ζ = Lz − z, where Lz = 3“L is

the height of the computational domain. Note that the integral length scale L∞ and

characteristic turbulent velocity scale u∞ are assessed at the same location ζ = L,

while the turbulent Reynolds number is defined by Eq. (5.6).

The DNS and LES meshes were the same as those used in previous simulations

[11], [149]. The mesh density was shown to provide a good resolution of both the

turbulent flow and the mass transfer.

Ten simulations were performed with varying slip-lengths λ = 0, 0.001, 0.01, . . . ,

0.5, 2.0,∞ (see Table 6.1). Note that the free-slip and no-slip simulations are identical

to the ones presented in [149]. The turbulent velocity and length scales, reported in

Table 6.1, are extracted at a distance of one-L from the surface.

The concept of finite slip-length is explained in Figure 6.2, showing a grooved

surface. The lower part of the surface shown shows ridges of width a that are in

direct contact with water. The grooves of width b, on the other hand, are filled

with air and provide an almost stress-free interface. The combined area of the ridges

can be modelled using a no-slip interface, whilst the combined area of the grooves

corresponds to a free-slip interface.
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Run λ/L u∞/U L∞/L ReT

S0 0.0 0.107 0.898 117

S1 0.001 0.104 0.940 118

S2 0.01 0.111 0.911 121

S3 0.02 0.111 0.894 119

S4 0.05 0.111 0.929 124

S5 0.1 0.114 1.002 137

S6 0.2 0.113 1.004 136

S7 0.5 0.116 1.026 143

S8 2.0 0.113 1.076 163

SN ∞ 0.113 1.033 141

Table 6.1
Overview of the simulations, L∞, u∞ are the turbulent length and
velocity scales defined by Eq. (5.5), λ is the slip-length and ReT is
the turbulent Reynolds number defined by Eq. (5.6).

Fig. 6.2. Schematic of surface structure showing ridges and grooves to
represent areas of the surface which are (ridges) and are not (grooves)
in direct contact with water

The ratio of the total area accupied by grooves b to the entire surface area of the

plate corresponds to the clean surface fraction (α) which is mentioned in the previous

work [149] and Section 5.5.4.1. Two extreme cases can be identified:
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1. α = 0 corresponding to all the grooves having zero width (b = 0), modelled

using a no-slip interface, λ = 0.

2. α = 1 corresponding to all the ridges having zero width (a = 0), modelled using

a free-slip interface, corresponding to λ = ∞

Based on this the clean surface fraction α is defined by (α = b
a+b

).

6.2.1 Slip-length boundary condition

As mentioned in the introduction, the focus of this chapter is to try and use a finite

slip-length boundary condition as a model for surface contamination. The slip-length

is defined as the distance to the surface where the extrapolated horizontal velocity

becomes zero. The horizontal velocities at the surface are subsequently determined

by using linear extrapolation of the corresponding velocities adjacent to the surface

inside the computational domain, (see Figure 6.3).

Fig. 6.3. Schematic of the slip-length definition, δz is the distance to
the surface of the locations where the upper horizontal velocities are
defined, λ is slip-length.

Figure 6.3 shows how the boundary condition for the horizontal velocities at the

surface is determined. Using the distance δz between the surface and the surface-
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nearest grid-plane where the upper horizontal velocities uup are defined, the corre-

sponding surface-boundary-condition ub is obtained from

ub =
λ

λ+ δz
uup. (6.4)

The vertical velocity at the surface is set to w = 0 and (as mentioned earlier) periodic

boundary conditions were used in the horizontal directions of the DNS domain to

reflect a much larger size that is generally used in experiments. At the bottom of

the DNS, the isotropic turbulence that was introduced was generated in a separate

LES of isotropic turbulence in a periodic box. To allow a time-accurate turbulent

boundary condition for the DNS.

6.3 Results

6.3.1 Effect of slip-length on the near-surface turbulent flow

Figure 6.4 shows the root-mean-square of the horizontal and vertical velocities

Fig. 6.4. Effect of limited slip-length on the near surface turbulent
flow statistics for S0, S2, S4, S6, SN based on a combination of
horizontal and time averaging from t = 150− 300 (a) urms (b) wrms.

close to the surface for simulations S0, S2, S4, S6 and SN . In this region the
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isotropic turbulence, introduced at the bottom, is affected by the presence of the

rigid lid and loses its isotropy. The rms values were obtained by averaging in the

homogeneous horizontal directions as well as in time (from t = 150 to t = 300, during

which the results were found to have become quasi-steady). Generally, with increasing

slip-length the velocity fluctuations at the surface also tend to increase. Because of

the rigid lid assumption, the vertical velocity fluctuations all reduce to zero when

approaching the surface. As can be seen in Figure 6.5, the gradient dwrms/dζ becomes

zero at the surface only for the no-slip case S0, while for the other cases it gradually

increases with increasing slip-length until it reaches a maximum for the free-slip case

SN (see also below). Figure 6.6 shows the time-averaged vertical gradient dwrms/dζ

Fig. 6.5. Detail plot of wrms for S0, S2, S4, S6, SN based on a
combination of horizontal and time averaging from t = 150− 300

at the surface, normalised using u∞ and L∞. As already indicated in Figure 6.5,

the zero slip-length simulation, S0, has indeed zero normal gradient for wrms. For

increasing slip-lengths, this gradient is confirmed to gradually increases to a value of

0.0023 for the free-slip case.

The near-surface variation of the horizontal integral length scale, L11, see (5.3)

with the ζ-location (distance to the surface) is shown in Figure 6.7 for simulations

S0, S2, S4, S6, SN . It can be seen that in all simulations the horizontal integral
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Fig. 6.6. Vertical gradient of wrms at the surface versus slip-length

length scale reaches a clear maximum, while closer to the surface the integral length

scale tends to reduce with decreasing slip length. This is probably directly related

Fig. 6.7. Vertical variation of turbulent integral length scale L11 for
S0, S2, S4, S6, SN (results are time-averaged from t = 150 to 300).

to the present of instantaneous shear at the surface in all slip length cases where

λ < ∞. Instantaneous surface shear may reduce the two point correlation, resulting

in a reduction of the horizontal integral length scale L11. In the free-slip case, SN ,
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there is no instantaneous surface shear resulting in a better horizontal correlation

and, hence, a larger integral length-scale.

Fig. 6.8. vertical variation of the Kolmogorov length scale η at t =
300, simulations (a) S0, S1, S2, S3 and (b) S6, S7, S8, SN

The variation of the Kolmogorov length scale (η) with distance to the surface is

shown in Figure 6.8 at t = 300. It can be seen that close to the surface (η) becomes

constant for SN , while it tends to decrease towards the surface for cases with small

slip lengths (S0, S1, S2 and S3), see Figure 6.8 (a). The latter is likely a consequence

of vortex stretching by instantaneous shear forces that experience little to no damping.

Please note that the diameter of these vortex tubes typically scales with η, see Jimenez

et al. [143]. In the cases with large slip lengths, see figure 6.8 (b), such stretching is

absent because the near surface horizontal velocity is (nearly) constant close to the

surface. Hence, vorticity tubes are not stretched but just convected along the surface

by the velocity. as a result η does not reduce significantly when approaching the

surface.

Using snapshots with isosurfaces of λ2 = −0.09 (corresponding to the second

eigenvalue of the sum of the squares of the symmetric and anti-symmetric part of the

velocity gradient tensor, see Jeong & Hussain [142]) vortical structures present in the

free-slip (SN) and no-slip (S0) cases are visualised in Figures 6.9a and 6.9b, respec-
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Fig. 6.9. Vortical structures identified using the λ2 iso-surface at
λ2 = −0.09 (a) SN , (b) top surface for SN and (c) S0, (d) top
surface for S0, see [142]

tively. The effect of the limiting free-slip case SN on the Kolmogorov length-scale,

measured by the width of the vortex tubes, is illustrated clearly. In this simulation,

the vortex tubes tend to be either orthogonal or parallel to the surface and those that

are parallel do not show much reduction in diameter when approaching the surface.

In the no-slip case, there is much more damping close to the surface, but it is very
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difficult to identify the vortex stretching due to instantaneous shear. This would

require a more detailed study.

Fig. 6.10. Effect of limited slip-Length on the ReT (z). Results are
obtained by averaging over the interval t = 150− 300.

Figure 6.10 shows the turbulent Reynolds number profiles for various limited slip-

length cases obtained after time-averaging the results from t = 150 to 300L/U . Please

note that here

ReT (z) =
2urms(z)L11(z)

ν
, (6.5)

using urms(z) and L11(z) to replace U∞ and L∞ in order to obtain a turbulent

Reynolds number that is a function of z. While the horizontal velocity fluctuations

urms reduce when approaching the surface, the integral length scale L11 generally

increases with the exception of the upper bulk (corresponding to surface-influenced

layer). In Figure 6.10, ReT was found to be approximately constant between z = 2.0L

and z = 2.5L. This constant ReT is typical for decaying isotropic turbulence, where

the decrease in urms towards the surface is balanced by the increase in L11, see [92].

The region at the bottom of the computational domain where ReT is not constant is

probably related to the LES-generated isotropic turbulence needing space and time

to complete the turbulent spectrum by the generation of small scales that were un-

resolved in the LES (subgrid-scales). Close to the surface, with the exception of the
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free-slip simulation SN , ReT is generally found to decrease with reducing distance to

the surface. In fact, it can be seen that at the surface ReT reduces with decreasing

slip length, (see Figure 6.10).

To illustrate the effects of ReT , horizontal and vertical velocity fluctuations were

compared for the free-slip and no-slip surface boundary conditions, in Figures 6.11

and 6.12, respectively, contrasting the present results to results obtained at various

other turbulent Reynolds numbers, as presented in [11] and [10]. To facilitate the

Fig. 6.11. The effect of various turbulent Reynolds numbers on the
velocity fluctuations in the presence of the free-slip surface boundary
condition. (DNS results from Herlina & Wissink 2014) and Wissink
et. al. [149] (a) urms (b) wrms

analysis, we focussed on the middle to upper bulk area. The root-mean-square (rms)

of the horizontal and vertical velocity fluctuations for the free-slip case are shown in

Figures 6.11a and 6.11b, respectively. It can be seen that the presence of the surface

causes the velocity fluctuations to lose their isotropy in the upper bulk region even

though at the bottom of the domain isotropic turbulence was introduced. When

approaching the surface, the vertical fluctuations are strongly damped, and reduced

to zero at the surface, while at the same time kinetic energy is transferred from the

vertical to the horizontal fluctuations (which is a result of the conservation of kinetic
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energy). The latter explains the increase in the horizontal fluctuations close to the

surface.

Fig. 6.12. The effect of various turbulent Reynolds numbers on the
velocity fluctuations in the presence of a no-slip surface boundary
condition. (DNS results from Herlina Wissink 2016) (a) urms (b) wrms

The effect of no-slip surface boundary conditions for various ReT is shown in

Figure 6.12. It can be seen that both the horizontal and vertical fluctuations reduce

to zero when approaching the surface. Compared to the free-slip simulations, where

∂wrms/∂ζ �= 0 (in general), for the no-slip simulations ∂wrms/∂ζ = 0. Because of

this, towards the surface the vertical fluctuations are damped much stronger than

the horizontal ones. As a result, as in the free-slip simulations, kinetic energy is

transferred from the vertical fluctuations to the horizontal fluctuations. In Figure

6.12a this is clearly evidenced by the local maximum in the horizontal fluctuations

at ReT = 865. For the two lower ReT , the kinetic energy transfer from vertical to

horizontal fluctuations is much smaller and hardly (if at all) visible.

The near surface horizontal velocity fluctuations, generated by the initially isotropic

turbulence diffusing from below, was found to be significantly influenced by the slip-

length. This is illustrated in Figure 6.13, which shows snapshots of the horizontal
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Fig. 6.13. Velocity vectors and magnitude (contours) at the surface
of SN , S7, S5 and S2, respectively. Snapshots were taken at t =
290.0L/U(see also Table 6.1).

velocity field combined with colour contours of the velocity magnitude. It can be

seen that in the largest slip-length case (SN) significant horizontal velocity fluctu-

ations are generated at the surface which gradually reduce for (S7), (S5) and (S2)

with decreasing slip-length. Also, the vector field in (SN) indicates the presence of

relatively strong up- and down-welling motions. For smaller slip-lengths, e.g. in (S7),

(S5) and (S2), these vertical motions become increasingly weaker because of the in-

creased damping of the horizontal velocities at the surface. These vertical up- and

down-welling motions are vital for the promotion of interfacial gas exchange between

the air and the water. The gas transfer is govern by diffusion at the water surface.

However, deeper down, vertical velocity fluctuation tend to exchange gas-saturated

water from the surface with unsaturated water from the bulk. Therefore, reducing

the thickness of the concentration boundary layer which, in turn, promotes the gas
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diffusion at the water surface. As a result, the damping of these vertical fluctuations

will cause reduction in the air-water atmospheric gas transfer.

Fig. 6.14. Time-averaged surface divergence βrmsL∞/u∞ as a function
of slip-length.

The root-mean-square of the surface divergence, βrms, was normalised by multi-

plying it with L∞/u∞. The result was subsequently averaged from t = 150L/U to

t = 300L/U . βrms was calculated for all cases S0− SN and the results are shown in

Figure 6.14. It can be seen that the case with infinite slip-length (the free-slip case)

has the largest surface divergence. The surface divergence subsequently smoothly

reduces with decreasing slip-length from S8 to S7, · · · , to S1 and S0. The observed

smooth reduction in β with decreasing slip-length resembles the smooth reduction

in β observed with increasing surfactant pollution level measured by Ma/CaT (see

Chapter 5). As can be seen below, this observed similarity correctly indicates that it

is possible to model the reduction in gas transfer due to Marangoni effects by using

limited slip-length as a surface boundary condition.

Figure 6.15 shows the effect of surface slip-length on the surface divergence β.

Three slip-length cases are compared, SN , S7 and S2. The red areas corresponds to

positive surface divergence and indicates the upwelling of unsaturated fluid from the

bulk. Negative surface divergence is indicated by blue areas and corresponds to the



130

Fig. 6.15. Instantaneous surface divergence (β) contours for SN , S7
and S4 respectively, snapshots taken at t = 290.0L/U

down-welling of saturated fluid from the surface towards the bulk. Large values of

β indicate strong up and down-welling motions. It can be seen that for case SN a

relatively large variation in β is obtained. This variation in β subsequently reduces

with decreasing slip-length.

6.3.2 The effect of slip-length (λ) on the interfacial gas transfer

As shown in Chapter 2, the gas transfer velocity is defined by

KL =
cs

cs − cb
j̄, (6.6)
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Fig. 6.16. Variation of mass fluxes with depth ζ/L. The total mass
flux −(D∂c/∂z + c′w′) in time is averged from t = 150 to t = 300 (a)
case S0, (b) case S2, (c) case S6, (d) case SN

where j is the total mass flux component in the z-direction, defined by

j̄ = c′w′ − 1

ScRe

∂c̄

∂z

∣∣∣∣
i

, (6.7)

where − 1
ScRe

∂c̄
∂z

∣∣
i
is the diffusive mass flux and c′w′ is the turbulent mass flux. It

can be seen that very close to the water surface, the mass flux is fully dominated by

diffusion. Further down, turbulent convection begins to take over to eventually fully

dominate the gas transfer towards the deeper bulk. With increasing slip length, the

location of the intersection of the diffusive and turbulent (or convective) contribution

to the mass fluxes moves closer to the surface (ζ/L = 0.0431, 0.0382, 0.0174, 0.0141 for

S0, S2, S6 and SN , respectively) indicating that the diffusive concentration boundary

layer thickness decreases in size. This is explained by the damping of turbulence when

decreasing the slip length as also seen in Figure 6.4.
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Using 〈c〉 to denote the horizontally averaged concentration, we can differentiate

four cases;

1. c− 〈c〉 > 0 and w > 0: downward flux of high gas concentration fluid,

2. c− 〈c〉 < 0 and w < 0: upward flux of low gas concentration fluid,

3. c− 〈c〉 > 0 and w < 0: upward flux of high gas concentration fluid,

4. c− 〈c〉 < 0 and w > 0: downward flux of low gas concentration fluid.

If high gas concentration fluid moves downwards (case 1) and is being replaced by

low gas concentration fluid moving upwards (case 2) we obtain a positive contribution

to the vertical mixing process. If, however, a relatively high gas concentration fluid

moves up (case 3) and/or a low gas concentration moves down (case 4), the vertical

mixing is reduced.

Figure 6.17 shows the effect of slip length on the normalised instantaneous in-

terfacial gas transfer velocity kl for two Schmidt numbers Sc = 8, 32. For clarity

of illustration, two cases (S2 and S7) with significantly different slip-lengths were

selected. It can be seen that with increasing slip length from 0.01 (for S2) to 0.50

(for S7), kl significantly increases. This is not only the case for the two selected cases

S2 and S7 which are the closest to the no-slip and free-slip conditions, respectively,

but was also found to be a general trend. As well as this, the effect of increasing the

Schmidt number Sc is shown in Figure 6.17. In both cases, an increase in Sc from

Sc = 8 to Sc = 32 was found to result in both a reduction in the normalised gas

transfer velocity kl and finer structures appearing in the kl contours.

Figure 6.18a shows gas transfer velocities obtained for three Schmidt numbers

Sc = 4, 8 and 32, against L∞/λ. Figure 6.18b shows gas transfer velocities, obtained

for four Schmidt numbers, Sc = 4 ,8, 16 and 32, against Ma/CaT . The solid lines

interpolating the data points were produced by assuming exponential relationships

defined below by Eq. (6.8). It can be seen that in both the surfactant simulations

and the slip length simulations, the KL results can be interpolated very accurately
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Fig. 6.17. Instantaneous interfacial gas transfer velocity
kl/u∞ReT

−1/2 for (a) S7 with Sc = 8, (b) S7 with Sc = 32, (c)
S2 with Sc = 8 and (d) S2 with Sc = 32. Snapshots were taken at
t = 290.0L/U .

using similar exponential functions. Note that the data points in Figure 6.18b were

obtained using the model of Wissink et al. [149] (see also Chapter 5).

Figure 6.19 shows colour contours of the instantaneous gas concentration in the

horizontal plane where the concentration fluctuation is maximum. (Note that this

location is sometimes used to identify the thickness of the concentration boundary

layer.) In all three cases, S1, S6, and SN , the gas concentration was obtained using

a Schmidt number of Sc = 8, which provides results that are qualitatively typical of

the result obtained at other Sc. The high gas concentration areas (in red) identify
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Fig. 6.18. The comparison of KL for (a) L∞/λ, (b) Ma/CaT

high concentration fluid that was transported downward from the surface, while the

low concentration areas (in blue) identify fluid that originates from the bulk. In SN

large areas with low gas concentration can be seen. This is a result of the increased

turbulence level transporting low concentration fluid from the bulk upwards. For

smaller slip lengths, for S6 and especially for S1, the amount of low concentration

fluid reduces because of the decreasing near surface turbulence level with decreasing

slip-length.

In Figure 6.4b it was shown that wrms becomes larger with increasing slip length.

Hence, it is expected that also the maximum concentration fluctuation crms obtained

at ζ = δ would show a similar behaviour and becomes larger with increasing slip

length. As can be seen in Figure 6.20, however, this is only true for the smallest slip-

lengths (for example for S0 - S3, as shown in Figure 6.20a). For large slip lengths it

was found that the maximum crms behaves differently and reduces with slip length

(for S6 - SN , as shown in Figure 6.20b). A possible explanation of this is that

increasing wrms causes an increased vertical mixing of the dissolved gases. Such an

increased mixing eventually results in smaller variations in concentration (well-mixed

region) and hence in a reduced crms, In other words, what we observed is that if the

gas concentration is not yet well mixed, increasing wrms will increase crms. If wrms



135

Fig. 6.19. Horizontal cross section through the computational domain
at the location where where crms is maximum. (a) SN , (b) S6, (c) S1
respectively, snapshots were taken at t = 300.0L/U

becomes even larger, the concentration becomes so well-mixed that crms begins to

reduce with slip-length.

6.3.3 Modeling of surfactant pollution effects on gas transfer using slip-

length

The normalised gas transfer velocity K�
L is obtained by dividing KL by u∞Re

−1/2
T

(see Eq. 5.10). Using the numerical results obtained in the present simulations and

in the surfactant simulations [149], presented in Chapter 5, normalised gas transfer
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Fig. 6.20. The evaluation of rms of gas concentrations along with the
normalised depth by delta δ for various Slip-Length cases (a) S0, S1,
S2, S3 (b) SN , S8, S70, S6

velocitiesK�
L(L∞/λ) andK�

L(Ma/CaT ) are obtained. To find the connection between

λ and Ma/CaT , the following expressions are used as an ansatz⎧⎨
⎩

K�
L(

L∞
λ
) = (K�

L(∞)−K�
L(0)) es(

L∞
λ ) +K�

L(0)

K�
L

(
Ma
CaT

)
= (K�

L(∞)−K�
L(0)) e

r
(

Ma
CaT

)
+K�

L(0)
, (6.8)

where s and r need to be fitted using the least squares method is, while K�
L(∞)

and K�
L(0) are the normalised transfer velocities for free-slip (clean) and no-slip (very

dirty) boundary conditions at the interface. Note that for s, r < 0 this ansatz provides

a smooth transition between the free-slip boundary condition (corresponding to λ =

∞ and Ma/CaT = 0) and the no-slip boundary condition (corresponding to λ = 0

and Ma/CaT = ∞).

Figure 6.21 shows that for both slip-length and surfactant, the powers s and r

in Eq. (6.8) depend on the Schmidt number Sc. To approximate these powers as a

function of Sc, we assume that they can be represented by power laws⎧⎨
⎩ s(Sc) = a1 Sc

b1 ,

r(Sc) = a2 Sc
b2 .

(6.9)
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Fig. 6.21. The effect of Schmidt number on the powers s and r in Eq. (6.8)

Because of the limited range of Schmidt numbers employed (especially in the slip-

length simulations), the range of Sc over which the approximations are valid is rather

limited. It can be seen in Figure 6.21 that the behaviour of s and r is very different.

While r tends to increase with decreasing Sc, s tends to decrease. The surfactant

simulations show that for large Sc the power r tends to become almost constant.

Using the least squares method to approximate the powers in Eq. (6.9), for the slip-

length simulation results the best fit was found to be a1 = −0.1658 and b1 = −0.2416,

while for the surfactant simulation the best fit was a2 = −0.1523 and b2 = 0.0403.

By equating K�
L(

L∞
b
) and K�

L

(
Ma
CaT

)
from (6.9), we obtain the simple expression

es(
L∞
λ ) = e

r
(

Ma
CaT

)
⇒ s

(
L∞
λ

)
= r

(
Ma

CaT

)
(6.10)

so that explicitly writing s and r as functions of the Schmidt number as

λ

L∞
=

s(Sc)

r(Sc) Ma
CaT

. (6.11)

After substituting (6.9) into (6.11) we finally obtain

λ

L∞
=

1.089Sc−0.2819
Ma
CaT

. (6.12)
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Fig. 6.22. The effect of Sc numbers on the relation between λ/L∞
and Ma/CaT see Eq. (6.12)

Fig. 6.23. Relation between Ma/CaT and λ/L∞ for various Sc numbers.

It can be seen that the model that was obtained for the slip-length as a function of

Ma
CaT

indeed depends on the Sc number. However, the model is valid for a large range

of slip-lengths λ as indicted in Table 6.1. Because the concentration boundary layer

becomes extremely thin for very high Sc numbers. There is a indication that in this

regime any Sc effects would become negligible. To evaluate the validity of the results

for larger Sc, however, is beyond the scope of this chapter.
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Figure 6.22 shows the effect of varying Sc with (a) varying λ/L∞ and fixed

Ma/CaT and (b) varying Ma/CaT and fixed λ/L∞. The curves shown are solutions

of (6.12) and indicate that for large Sc the relation between λ/L∞ and Ma/CaT

may become independent on the Schmidt number. For small Sc, however, the re-

lation between λ/L∞ and Ma/CaT begins to heavily depend on Sc. Figure 6.23

shows the relation between Ma/CaT and λ/L∞ obtained when keeping Sc fixed at

Sc = 4, 8, 16, 32. It can be seen that increases in pollution level correspond to de-

creases in slip-length. On the other hand, Ma/CaT approaches zero, when λ goes to

∞, corresponding to the free-slip condition as explained in Section 6.3.3. Also the

distance between subsequent curves tends to become increasingly small, again indi-

cating that for the large Sc the relation between λ/L∞ and Ma/CaT will be virtually

Sc independent.

6.4 Conclusion

The aim of the research presented in this chapter was to investigate whether

surface contamination by immiscible (with water) surfactants can be modelled by a

limited slip boundary condition. It was found that a similar exponential relationship

between the surfactant contamination (measured by Ma/CaT ) and the slip length

simulations (as a function of L∞/λ) exists. Unfortunately, the parameters needed to

obtain a good approximation were found to depend on the Schmidt number. However,

it appears that for larger Schmidt numbers this dependency on Sc becomes much less

important. The latter might be related to the concentration boundary layer becoming

exceedingly thin with increasing Sc. Further investigations at higher Sc are needed

to confirm this reduced dependency of the parameters on Sc.
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Chapter 7: Conclusions and recom-

mendations for future

work.

7.1 Conclusions

To study and model the influence of surface contamination on interfacial gas trans-

fer, various Direct Numerical Simulations (DNS) with different levels of contamination

were performed. For simplicity, the water surface is assumed to remain perfectly flat

(rigid lid assumption) at all times. The gas transfer at the water surface is promoted

by isotropic turbulence that is introduced at the bottom of the computational domain.

The isotropic turbulence is generated in a large-eddy simulation (LES) that runs con-

currently with the DNS. In all gas transfer simulations, up to 5 scalar equations were

solved simultaneously. The latter allowed an unbiased comparison of instantaneous

results obtained at various Schmidt numbers. In the scalar equations for the dissolved

gases, the classical WENO scheme of Liu et al. [2] was used to discretise the convec-

tion. Diffusive terms in both the scalar equations and the Navier-Stokes equations

were discretised using fourth-order central schemes. Time integration was done us-

ing a three-stage Runge-Kutta method for the scalars and the second-order-accurate

Adams-Bashforth method for the flow solver.

The pollution considered in this work consists of immiscible surfactants like oleyl

alcohol. In the surfactant simulations, at the surface, the convection-diffusion equa-
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tion for the surfactant was solved using the WENO-Z scheme of Borges et al. [3]

for convection. Using one-dimensional and two-dimensional test cases the classi-

cal WENO scheme was compared to the WENO-Z scheme. It was found that the

WENO-Z scheme was able to reach the correct (fifth) order convergence already using

relatively coarse meshes, while the original WENO scheme needed much finer meshes

to exhibit the theoretical (fifth) order convergence. Also on coarse meshed the results

obtained using the WENO-Z scheme significantly more accurate than the the results

obtained on the same mesh with the classical WENO scheme. Furthermore, the in-

fluence of the parameter ε in the weights of the WENO schemes was investigated.

For large values of ε, both WENO schemes converted to the upwind central scheme.

In the end it was decided to employ the WENO-Z scheme for the discretisation of

the surfactant as it was more accurate than the classical WENO scheme on uniform,

coarse meshes. The actual Schmidt number of the surfactant was confirmed not to

influence the surfactant distribution at the surface for Sc ≥ 0.5. Based on the results

obtained in the DNS of interfacial gas transfer affected by the presence of surfactants,

a model for the mean (normalised) gas transfer velocity

KL

u∞Re
−1/2
T

= c Sc−q (7.1)

was proposed, where the constant of proportionality is given by

c = 1.55α + 0.94 (1− α), (7.2)

and the power coefficient is given by

q = 2/3− 0.258α/c. (7.3)

This model was found to produce a reasonably good prediction of the gas transfer

velocity (with a maximum error of about 10%) for a range of Schmidt numbers and

a range of pollution levels. While for low levels of contamination, the instantaneous

clean surface fraction was well defined with steep gradients between the clean and

dirty areas, with increasing levels of contamination these gradients become less and
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less steep. Hence, it became much more difficult to differentiate between dirty and

clean areas. To still obtain a good quantitative approximation of the mean gas transfer

velocity it was needed to introduce a threshold vale to determine which areas of a

surface where deemed to be clean and which were dirty.

In principle, the model above, that predicts the mean gas transfer velocity based

on α, can be used to determine KL by remotely determining the clean surface fraction

of water combined with measurements of the turbulence length and velocity scales.

Furthermore, it was found that the well-known surface divergence model com-

pletely breaks down in the presence of surfactant pollution. Even relatively small

levels of pollution have a significant effect on the gas transfer velocity due to the

the Marangoni forces’ damping of near surface turbulence. This damping involves a

reduction of the surface divergence to zero for larger levels of pollution, making the

surface divergence model unusable.

To model the effect of surfactant pollution on the mean gas transfer velocity using

finite slip lengths, further DNS were performed. In these DNS a limited slip length

λ was introduced at the surface to determine its effect on the gas transfer velocity.

In these simulations, clean conditions correspond to an infinite slip-length which was

represented by a free-slip surface boundary condition. To model very dirty conditions

a zero slip-length was used. With decreasing slip length, a smooth transition was

found for the mean gas transfer velocity between the value typical for clean conditions

and the value typical for very dirty conditions. Using a similar smooth transition

(with increased level od pollution) obtained in the surfactant simulation a model was

derived that relates Ma/CaT to λ as

λ

�L∞
=

1.089Sc−0.2819

Ma/CaT
, (7.4)

where L∞ is the integral length. It can be seen that this relation is not Schmidt

number independent. As it was derived only for rather small Schmidt numbers (up to

Sc = 32). The Schmidt number dependency was found to be quite strong, especially

for the lower Schmidt numbers. For larger Schmidt numbers, however, it appeared

that the Schmidt number dependency became much less pronounced.
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7.2 Recommendations for future work

Various surfactants may have non-zero solubility in water. It is interesting to

perform further simulations in order to study how these surfactants affect gas transfer

and how their concentration at the surface reduces in time.

Also, the limited slip-length simulations only gave a prediction for the effect of λ

on the mean gas transfer velocity KL for relatively small Schmidt numbers. Further

simulations, preformed at larger Sc are needed to improve or confirm the relation

between λ and Ma/CaT (see in Section 7.1).

It would be recommendable to replace the classical WENO scheme for the scalar

convection calculations in the DNS by the WENO-Z scheme when calculating on

a uniform mesh. If needed a mixture of classical (for non-uniform directions) and

WENO-Z (for uniform directions) schemes could be used.
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Appendix A
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Fig. 7.1. Definition file of S0 free-slip simulation
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Fig. 7.2. Typical definition file used in the surfactant simulations.
The parameter KC Ma/Ca (corresponding to Ma/Ca) is varied from
Ma/Ca = 0.12 for S1 to Ma/Ca = 30 for S5
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Fig. 7.3. Definition file of SN , no-slip simulation
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Appendix B
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Fig. 7.4. Typical definition file used in the slip length simulations.
The parameter KC SlipLength is varied from λ/L = 0.01 for S1 to
λ/L = 2.0 for S8.
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Fig. 7.5. Fortran code of WENO5 (W5) scheme for one dimensional simulation
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Fig. 7.6. Fortran code of WENO-Z (W5-Z) scheme for one dimensional simulation




