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Abstract 
 

 Recent developments in modern communication system have led to high 

demand in antenna as a transmitter and receiver in every electronic device. Antenna 

with high performance, low cost and multi-function is mostly desirable to fit into the 

system. Reconfigurable antenna has attained a lot of attention from antenna researchers 

with regards to its unique performance. Frequency, pattern and polarisation 

reconfigurable antenna has resolved many antenna problems in these recent years.  

The radiation pattern reconfigurable antenna has led to many novel designs of 

reconfigurable antennas using different techniques and have different phase covered. 

The objective of this thesis is to overcome the limitation of beam angle polarisation. A 

considerable amount of literature has been published on the radiation pattern 

reconfigurable antenna. However, most of the papers have a difficulty of covering all 

angles in a plane.  

Thus, the aim of this research is to design and develop a radiation pattern 

reconfigurable antenna with fine direction resolution ensuring full coverage extension 

on the plane. There are numerous researches conducted on pattern reconfigurable 

antenna showing the ability of the smart antenna to change its radiation pattern, but not 

many has cover the full plane.  

An antenna that has a radiation pattern with full coverage on azimuthal plane is 

beneficial for an application that would requires signal transmitted or received in all 

directions. In this thesis, the radiation pattern is configured by the insertion of metal 

rods around the patch antenna. The radiation pattern does change accordingly but with 

the cost of large size of the antenna build-up. 

 The complexity of the reconfigurable antenna design has also brought to more 

in-depth studies on the miniaturisation techniques. Modern communication technology 

demands a low cost and compact design to be fitted in the wireless devices. Most of the 

reconfigurable antennas available these days have a drawback of complicated design 

which is problematical to be applied into communication devices. The experiment is 

carried out to attain a design of low profile pattern reconfigurable antenna with least 

shortfall in the antenna performance.  
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Chapter 1 Introduction 
 

1.1 Antennas 
 

 An antenna is a transitional structure between free-space and a guiding device 

designed to radiate or receive electromagnetic waves, as shown in Figure 1.1. The IEEE 

Standard for Definitions of Terms for Antenna defines it as part of receiving and 

transmitting system which radiates or receives electromagnetic waves[1]. In the 

transmitting modes, an antenna is used to convert guided waves within the transmission 

line to radiated free-space waves, and  vice versa[2]. The device was known as areal or 

an elevated wire until the term antenna was first introduced by Guglielmo Marconi. In 

1895, Guglielmo Marconi had come out with a way to transmit and receive 

electromagnetic waves up to a distance of 1.5 km during his experiment using Hertz’ 

equipment. 

 

 
Figure 1.1 An example of wireless communication system. 
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1.2  General background 

There are different types of antennas for different applications. Some example of 

antenna types are wire and microstrip antenna. Wire antennas are they are made of 

conducting wire and mainly applied in cars and television. The production cost of wire 

antennas are low compared to other antennas and they are usually operated at low 

frequencies[3]. The fabrication of this type of antenna is simple and straightforward. 

The length of the antenna can be modified to resonate at the desired wavelength. Some 

example of wire antennas are dipole, helical and loop antenna. Half-wavelength dipole 

antenna is widely used in radio transmitting and receiving application as it is very 

simple model. It consists of two identical conductive elements with total length of half 

wavelength, connected and fed at the centre to an RF feed line.   

 

Figure 1.2 Example of dipole antenna prototype[4]. 

 

Another type of antenna is microstrip antenna. Microstrip antenna consists of 

mainly metallic structure on top of a grounded substrate. It is widely used because it is 

easy to fabricate and analyse on top of it low profile design.  Some examples of 

microstrip antennas are rectangular and circular patch antenna, depending on the shape 

of metallic structure. Microstrip antenna has the advantage of low cross Polarisation 

radiation and very flexible in terms of its radiation pattern, operating frequency and 

impedance[5]. 
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Figure 1.3 Microstrip antenna[5] 

.  

1.3  Main parameters of Antenna 

There are some important parameters that need to be considered for the antenna design. 

This parameter will have a huge impact on the antenna performance. The parameters are 

listed as below. 

1.3.1 S-parameter 

S-parameters measured in a Vector Network Analyser (VNA) signifies the input 

and output connection between ports in an electrical system. It is obtained by measuring 

the voltage travelling waves between the ports to determine the impedance of an 

antenna. Antenna impedance is crucial as it affects the amount of power delivered or 

received in an antenna. Antenna impedance is required to be close to transmission line 

impedance to ensure a good design. 

 The first number in the subscript of S-parameters is the output port and the 

input port is represented by the second number. For instance, if there are two ports 

called Port 1 and Port 2 respectively, S12 represents the power transferred from Port 2 

to Port 1. As a general rule, SNM represents the power transferred from Port M to Port N 

in a multi-port network. 

The most common parameter in regards to antenna is S11. S11 also known as 

reflection coefficient measures the amount of power reflected back when delivered from 

Port 1. It measures the amount of reflected power Port 1 trying to deliver to Port 1. S-

parameters are a function of frequency and it also represents at which frequency does 

the antenna radiates best. When S11 (dB) is equal to zero, it means all the power is 
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reflected back and nothing is radiated. When S11 is equal to -10 dB, only small amount 

of power is reflected and the rest is radiated+. At this point of frequency, the antenna 

radiates well.  

 

Figure 1.4  Two port network. 

 

1.3.2 Impedance bandwidth 

Impedance bandwidth is used to describe the bandwidth over where the antenna 

has acceptable losses due to mismatch. It can also be defined as the frequency range 

when the reflected power is less than -10 dB using S11 plot, as shown in Figure 1.5. In 

this range, the antenna radiates best as only small power is reflected back. The 

bandwidth can be calculated using the equation 

   Bandwidth =  
fH−fL

f0
 x 100% 

 

where   𝑓𝐻 : Higher frequency  

 𝑓𝐿 : Lower frequency 

 𝑓0 : Operating frequency 

 

 
Figure 1.5 Impedance bandwidth measurement[6]. 
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1.3.3 Directivity 

 

Directivity of an antenna, as defined by [1], is the ratio of the radiation intensity 

in a given direction from the antenna to the radiation intensity averaged over all 

directions. In other words, it measures the intensity of the radiation pattern direction. A 

patch antenna will have a high directivity as it is a directional antenna, while an antenna 

with omnidirectional radiation pattern will have a directivity of 1 or 0 dB. The higher 

the directivity means a more focused antenna, which is beneficial in some applications 

but often comes with a price of large dimensions[6]. Figure below demonstrates 

directivity in a clearer way. 

 

Figure 1.6 Radiation patterns for an antenna with (a) low directivity and (b) high directivity[7]. 

 

1.3.4 Radiation pattern 

Radiation pattern of an antenna can be defined as a mathematical function or a 

graphical representation of the radiation properties of the antennas as a function of 

space coordinates[1]. In other words, radiation pattern can be defined as the variation of 

the power radiated by an antenna as a function of the direction away from the antenna. 

Typically, radiation pattern is measured in far-field region and represented in two- or 

three- dimensional space. When plotting the radiation pattern, the units or magnitude of 

the pattern are mostly measured in antenna gain[7]. An antenna which transmits or 

receives signal equally on a single plane has an omnidirectional radiation pattern as 

shown in Figure 1.7. The radiation pattern analysis is more significant for directional 

antenna as it express the directive properties of the antenna. In general, an 
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omnidirectional antenna has a comparatively low gain compared to directional antennas 

as the power radiates in all directions. Monopole antenna is an example of antenna with 

omnidirectional radiation pattern, and horn antenna is a good example of directional 

antenna. 

 

Figure 1.7 Example of omnidirectional radiation pattern plotted in (a) 3-dimension[8] and (b) 

2-dimension[9]. 

 

 

Figure 1.8 Example of directional radiation pattern plotted in (a) 3-dimension[5] and (b) 2-

dimension. 
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1.3.5 Gain 

Gain of an antenna is the ratio of radiation intensity of an antenna in a given 

direction to the radiation intensity that would be obtained by an isotropic antenna fed by 

the same power and it is measured in dBi. A high gain antenna is beneficial in a 

directional antenna, but then it is not appropriate for an antenna that receives and 

transmit signal from different directions.  Gain of an antenna is closely related to the 

efficiency and directional capabilities of the antenna[8]. Therefore, gain of an antenna 

can be expressed as 

   Gain = ɳ . D   

 

 where ɳ is the efficiency and D is the directivity. 

 

  

1.4  Main objectives 
 

The demand in modern communication technology has been expanding rapidly, 

thus a smart antenna with the ability to change its parameter according to the system 

need is crucial and beneficial. Advanced wireless system necessitates an antenna with 

the ability to transmit and receive signal in all horizontal direction equally, and at the 

same time can be a directional antenna when preferred.  

Primarily, the first objective of this thesis is to design an antenna with full coverage 

extension. An antenna with omnidirectional radiation pattern is beneficial for an 

application that would requires signal transmitted or received in all directions, i.e. 

mobile base station. Therefore, a conventional patch antenna is modified to give an 

omnidirectional radiation pattern with insertion of shorting pin.  

After that, the radiation pattern is configured using the insertion of metal rods 

around the patch antenna. An antenna with a deviation in radiation pattern in all manner 

of angles in single plane is very beneficial for modern communication system. The 

addition of metal rods resulted in the antenna becoming a directional antenna according 

to which metal rod activated. The radiation pattern does change accordingly but with the 

cost of large size of the antenna build-up. 

 The radiation pattern reconfigurable antenna in the earlier part of this research 

has an extensive dimension. A compact design is more tempting for an application in 

modern communication technology. Patch antenna has been acknowledged to have low 

profile design and easy to fabricate, thus it is opted for this experiment. Thus, a 
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miniaturisation of the pattern reconfigurable antenna is an attempt in the later part of 

this research.  

1.5  Main Contribution 
 

All in all, the main contributions from this research are listed as below. 

1. A compact size patch antenna with omnidirectional radiation pattern is 

developed by the manipulation of shorting pin location and using air as a 

substrate.   

2. A reconfigurable antenna with radiation pattern agility incorporating fine 

direction resolution throughout azimuth plane is proposed. The pattern 

agility is acquired by the insertion of metal rods around the patch antenna. 

3. A miniaturise reconfigurable antenna is presented by employing inductive 

loading with specific value into the parasitic structure.  

 

First and foremost, a patch antenna with omnidirectional radiation pattern is 

designed. The full coverage of its radiation pattern is crucial before designing the 

reconfigurable antenna. A conventional patch antenna has a directional radiation 

pattern. A conventional patch antenna is modified to give an omnidirectional radiation 

pattern. Patch antenna is applied due to its lightweight, low profile, less cost, and its 

ease of fabrication. Furthermore, it is easier to integrate patch antenna with other radio 

frequency devices as compared to other antennas. In a conventional patch antenna, the 

low frequency of operation will result in large size of patch antenna. The introduction of 

shorted pin into the patch antenna design resulted in reduction of antenna size. There are 

other techniques available to reduce the antenna size yet resulted in high cost and 

degraded the performance of the antenna. 

There are many studies conducted on radiation pattern reconfigurable antenna. 

However, not many have a go on radiation pattern reconfigurable antenna comprising 

full angle coverage in a single plane.   In this research, the variation of radiation patterns 

comprises of whole angle on an azimuth plane of the antenna. This improvement 

improves the performance of telecommunication system that requires transmitting and 

receiving signals from all directions. In a mobile base station, for example, the signal 

transmissions are expected from all direction thus a good reconfigurable radiation 

pattern antenna covering the whole plane is desired. 



20 | P a g e  
 

The complexity of the reconfigurable antenna design has also brought to more in-

depth studies on the miniaturization techniques. Modern communication technology 

demanded a low cost and compact design to be fitted in the wireless devices. Most of 

the reconfigurable antennas available these days have a drawback of complicated design 

which is problematical to be applied into communication devices. The experiment is 

carried out to attain a design of low profile pattern reconfigurable antenna with least 

shortfall in the antenna performance.  

During the completion of this research, the author has successfully published: 

1. Nur Ab Aziz, Alaa H.Radhi and R. Nilavalan, “A reconfigurable radiation pattern 

annular slot antenna,” Loughborough Antenna and Propagation Conference, 

Loughborough, 2016 (IEEE Conference). 

 

2. Nur Farahwahida Ab Aziz ; R. Nilavalan, “Pattern reconfigurable using half-wave 

dipole antenna,” International Workshop on Electromagnetics: Applications and 

Student Innovation Competition, London, 2017 (IEEE Conference). 

1.6  Scope of Thesis 

The arrangement of this thesis is conducted as follow. The first part of the thesis is 

on the general knowledge of an antenna. Different type of antenna and all the important 

parameters for an antenna is described briefly. The following chapter described various 

types of reconfigurable antennas available in the present days. Different techniques in 

attempting the frequency, radiation pattern and Polarisation reconfigurable antennas are 

described concisely in this chapter. Different methods to do an analysis on antenna are 

also included in this chapter.  

Chapter 3 discussed the construction of a patch antenna with an omnidirectional 

radiation pattern. The miniaturisation of the antenna has also been discussed here. The 

construction of radiation pattern reconfigurable antenna is described comprehensively in 

chapter 4. The principle of operation to achieve variation in radiation pattern is justified 

in the former part of the chapter followed by the simulation and experiment results from 

the measurement. The miniaturisation of the reconfigurable antenna is conducted in 

chapter 5 of this thesis. The principle behind the operation is explained briefly and the 

proposed antenna is simulated using HFSS. Then, the proposed antenna is fabricated 

and put under test. The comparison results from simulation and experiment are 

presented comprehensively in this chapter.  
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Chapter 2 Reconfigurable 

antennas 
 

2.1 Introduction 
 

Reconfigurable antenna is fast becoming a key instrument in communication 

technology nowadays. Modern wireless communication devices require an antenna with 

a capability to work in more than one operational mode in a single structure. Thus, 

reconfigurable antennas are designed to resolve the problem as well as offer new 

capabilities to adapt in future wireless applications. In this chapter, the history of 

reconfigurable antenna is discussed in detail. Different types of reconfigurable antenna, 

such as frequency reconfigurable, pattern reconfigurable, and polarisation 

reconfigurable are presented in Section 2.2. In Section 2.3, multiple techniques in 

attaining reconfigurable characteristic are discussed and studied closely. The example 

for each technique is also presented in this section. The analysis of antenna performance 

can be conducted through various ways. The analysis method for antenna performance 

is discussed briefly in Section 2.4, which contributes to the introduction of Ansys 

HFSS. Ansys HFSS is applied vastly in the development of the antenna design in this 

study. The advantages of using the software are all presented in Section 2.5.  
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2.2 Type of reconfigurable antenna 
 

There are three types of reconfigurable antenna; frequency, polarisation and pattern 

reconfigurable antenna which will be discussed thoroughly in this chapter. In addition, 

due to rapid development in communication technology, an antenna that can achieve a 

combination of two or more reconfiguration characteristics in one structure is 

developed.   

2.2.1 Frequency reconfigurable antenna 

 

Frequency reconfigurable antenna has the ability to change its operating 

frequency without changing the radiation pattern and polarisation characteristic of the 

antenna. Currently, there are a large number of frequency reconfigurable antenna 

designs which comes in a wide arrangement of frequency band (broadband) or 

functioning among multiple frequency bands (multiband). In other words, frequency 

reconfigurable antenna is put into operation to replace multiple antennas switched into 

multiple transceivers to cover different frequency ranges, resulted in huge reduction of 

product size and complexity. The main advantage of reconfigurable antenna is that it 

provides efficient frequency usage in a limited spectrum with better noise rejection in 

the unused bands and dynamic spectral allocation. Furthermore, it is useful for reducing 

the adverse effects such as co-site interference and jamming.  

 The frequency reconfiguration can be achieved through numerous methods with 

regards to the extended literature review. The basic method to attain frequency 

reconfiguration in an antenna is by having variations of current distribution over the 

antenna geometry. For an instance, frequency reconfigurable antenna can be achieved 

by controlling the effective length of the radiator[10][11] or meandering with the 

radiator shape[12][13]. Operating frequency of an antenna is determined mainly from 

the effective length of the radiator. With the integration of switching system such as RF-

MEMS, PIN diodes or varactor diodes, the operating frequency of the antenna can be 

controlled. The antenna designed in [14] has six PIN diodes to achieve 36 frequency 

bands (2.35 GHz-3.43 GHz) while maintaining unidirectional radiation patterns. The 

diodes are positioned such that it controls the electrical length of the radiator. The 

antenna design uses a simple dc bias and single RF feed line which make it favourable 

for a small devices application.  
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Figure 2.1 Compact frequency reconfigurable antenna with 6 diodes for 36 states of frequency 

operating bands[15]. 

  

Multiband operation in printed antennas can be achieved by introducing slot in 

the radiating patch. With the insertion of slot into the antenna design, the current patch 

in the radiator is shifted, hence change the antenna performance. There are relatively a 

lot of studies on the introduction of slot and the impact on the antenna 

performance[16][17][18]. In [19], the Vivaldi antenna is designed to have  a three-

quarter free-space wavelength to cover all the operating frequencies. The manipulation 

of RF switches will determine the operating frequency band of the antenna. The antenna 

design provides high isolation by manipulating the length of open-circuit stub of the 

microstrip feed line.  
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Figure 2.2 The construction of the two-band frequency reconfigurable Vivaldi antenna [10]. 

  

Another method for frequency reconfigurable antenna is by applying multilayer 

substrates design with aperture-coupled feeding technique[20][21][22]. The aperture 

coupled feeding technique is applied into the antenna design to reduce the spurious 

radiations generated between the radiating patch and the feed line. The radiating patches 

are etched on different substrate layers and designed with their respective operating 

frequency. Switching mechanism, for instance PIN diode is integrated to activate the 

selected aperture slots to achieve frequency reconfigurability. In another design, 

varactor diode is introduced to allow for a continuous dual frequency-tunable 

characteristic[23]. Also, with the increased number of sub layers, the antenna array 

provides better isolation and the integration of the switches is less complicated 

compared to single substrate design. The stacked reconfigurable antenna fed by 

aperture-coupled feeding technique also has improved gain and bandwidth performance.  
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Figure 2.3 Geometry of frequency reconfigurable stacked patch antenna fed by aperture-

coupled feeding technique (a) side view and (b) 3D view [13]. 

2.2.2 Radiation pattern reconfigurable antenna 

 

Another category of reconfigurable antenna is radiation pattern reconfigurable 

antenna, where the antenna has the capability of changing the shape of radiation pattern 

and steer the direction of radiation to maximise the antenna gain while maintaining the 

frequency and polarisation of the antenna. Pattern reconfigurable antenna can provide 

diversity in the radiation pattern which leads to an increase of the number of users in 

wireless communication system without increasing the number of array elements[24]. 

Furthermore, the overall performance of modern wireless communication system is 

greatly improved as the antennas can be used to avoid inter-user interference, improve 

security as well as saving energy by directing the signal to the right direction[25].  

There is a growing body of literature that recognizes the importance of radiation 

pattern reconfigurable antenna, such as in [26] and [27]. Generally, the radiation pattern 

can be changed in two different ways subjected to system requirements: 1) shifting the 

main beam while maintain the beam shape or 2) shifting the main beam while changing 

the beam shape. The microstrip Yagi-Uda antenna design in [28] is a good example of 

the first case. The peak beam direction of the planar Yagi-Uda antenna switched in 

opposite direction (±180˚) while maintaining the beam shape and matching bandwidths 

at a fixed operating frequency. The maximum gain of the antenna is not significant; 

however more focus is given to the front-to-back ratio. For the latter case, a  simple 
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configuration of pattern reconfiguration antenna with three switches that control the 

radiation pattern from omnidirectional to directional pattern is presented in [29] [30]. 

A number of techniques have been developed to obtain radiation pattern 

reconfiguration characteristic. One of them is by inserting parasitic structures, such as 

reflector and director into the antenna design. A monopole antenna in [30][31][32] and 

Yagi antenna[33] attained multiple radiation pattern by the manipulation of switches 

which connect the antenna to either director or reflector to improve the gain. In [30], a 

quarter-wavelength monopole antenna mounted on an octagonal copper board and 

connected through switches to eight concentric parasitic elements. The parasitic element 

behaves as director and reflector with the manipulation of switches to give three 

different configurations. Another means of improving the gain in the right direction and 

reducing interference gain in the other direction is shown in [34]. The gain and front-to-

back ratio of the antenna design is improved significantly from 4.5 to 8.2 dB when 

reconfigurable artificial structures (RASs) are loaded on Vivaldi shape slot antenna. The 

antenna has a windmill-shaped reconfigurable feeding network with four switches 

embedded which gives four end-fire patterns on azimuth plane. 

 

Figure 2.4 The construction of Vivaldi antenna with improved gain (a)top layer and (b)bottom 

layer [25]. 

Radiation pattern agility characteristics can also be obtained through the 

adaptation of element shifting; i.e. reflector and director, or through implementation of 

different phase of signal in array of antennas. There are quite a numbers of academic 

journals wrote on the subject of using phased array for pattern reconfigurable antennas, 

which are fed by equal amplitude and proper phase signals [35][36][37]. Feeding 

network of the antenna could be a cascade of power dividers and phase shifters. The 

orientation of the radiated beam depends on the phase shifter values. As proposed in 
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[38], the output of the feed network made by three Wilkinson power dividers controls 

the two modes of operation for the antenna. When one mode is selected, the outputs 

from feed network are of equal magnitude and phase, thus conical pattern of a 

monopole antenna is produced. When another mode is selected, the outputs from feed 

network are equal but a 90° phase difference is introduced which leads to broadside 

beam radiation pattern.  

 

Figure 2.5 Geometry of pattern reconfigurable antenna (a) four radiating patches and (b) feed 

network made by three Wilkinson power dividers[38]. 

 

2.2.3 Polarisation reconfigurable antenna 

 

Polarisation reconfigurable antenna is another type of reconfigurable antenna 

where the antenna has the capability to change its polarisation while maintaining its 

frequency and pattern characteristics. Polarisation refers to the electric field vector as a 

function of time. The polarisation will also determine the orientation of the antenna. 

Therefore, it is most important that the polarisation of transmitter and receiver to have 

the same polarisation to avoid loss of signal. There are three forms of polarisation: 

linear, circular and elliptic. Polarisation reconfigurable antenna has the advantage of 

expending the capability of communication systems and reduce fading loss causes by 

multipath effects[38]. Furthermore, antenna designs with polarisation diversity can be 

used to filter in-band interference[39] and increase channel capacity[40]. 
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Extensive research has been conducted on antenna with polarisation agility 

techniques. A good example of polarisation reconfigurable antenna is by using annular 

ring slot as its circular polarisation can be easily reconfigured by loading different kinds 

of perturbation slots[41] or coupling strips (feeding lines) across the ring slot[42][43]. 

Due to extensive number of research, there are many antenna designs that have been 

successfully reconfigured to switch between a left-handed circularly polarized (LHCP) 

and right-handed circularly polarized (RHCP) using slot antennas. Monopole antenna 

[44] and patch antenna[45][46] have also offered a simple and low cost design for 

polarisation reconfigurable antenna. By adding two wide strips with specific distance 

from the top of the ground plane, the monopole antenna[44] can switch from linear 

polarisation to RHCP or LHCP using two PIN diodes. The wide strips are connected 

using two PIN diodes for different configurations. When none of the PIN diode is 

activated, the horizontal induced surface current on the ground plane and the strips will 

cancel each other and leave behind only the vertical surface current on monopole arm 

and ground plane. The antenna will have a linear polarisation. When one of the PIN 

diode is activated, the surface current on the ground plane and the strips are rearranged, 

resulted in horizontal component for either LHCP or RHCP. This antenna offers a less 

complex design by reducing number of diodes employed in the radiating element.  

 

Figure 2.6 Polarisation reconfigurable antenna using monopole antenna (a)front view and 

(b)back view[44]. 
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2.2.4 Combination of any reconfiguration characteristics 

Along with the rapid development in communication technology, more antenna 

design has been developed which incorporated two or three reconfigurable 

characteristics to fulfil the demand. In a recent research paper by  [47], the frequency 

and radiation pattern of the circular array antenna can be altered without adapting a 

switching mechanism into the design. The antenna features a power divider and eight 

horn antenna elements with respective band stop filters uniformly distributed around the 

circular ground plane. A directional radiation pattern can be generated at a particular 

frequency by controlling the band notch filters and the frequency is controlled by 

voltage applied to the varactor inside the filters. When none of the filters are activated, 

an omnidirectional radiation pattern on azimuth plane is produced. The antenna design 

successfully operating between 0.8 to 3 GHz with six different modes including 

omnidirectional radiation pattern. However, in this paper, the element is disconnected to 

represent when the filter is not activated.  

 

Figure 2.7 The arrangement of frequency and radiation pattern reconfigurable antenna 

(a)circular array antenna and (b)the whole antenna system[35]. 

 

Following high demand for low profile reconfigurable antenna, another antenna 

design with frequency reconfigurability and radiation pattern characteristics has been 

proposed in  [48][49][50]. The antenna in [48] operates in three frequency bands, 

depending on the length of the slot with the manipulation of two switches. The 

introduction of four slits in the ground plane of the slot antenna held many functions in 

the antenna design. Not only it serves as biasing circuit, it is also exploited to attain 

reconfigurability in radiation pattern of the antenna. Each slit is installed with three 
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switches to control the length as well as terminating it in each different configuration. In 

this design, the radiation pattern emitted is independent of the frequency band. By 

switching the upper and bottom part of the slits, the beam angle can be shifted into 

+15˚, 0˚ and -15˚.  Even though the antenna has a high efficiency in all frequency bands, 

the shifted angle introduced by the slits is not major and restricted on one direction only 

despite of the four slits fitted on the design. 

 

Figure 2.8 The construction of slot antenna with freqeuncy and pattern reconfigurable 

characteristics (a)front view, (b)back view and (c)side view[48]. 

 

2.3 Different techniques for reconfigurability 
 

In general, the techniques to attain reconfigurable antenna designs can be grouped into 

electrical, optical, physical and also through material change. By applying switching 

mechanism using electrical and optical controls, different arrangement of reconfigurable 

antennas can be achieved. The physical and material change is rarely used, but still 

efficient in antenna design.   
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2.3.1 Electrical 

There are extended literature research has been conducted on reconfigurable 

antennas by the adaptation of electronic switches such as PIN diodes, varactor and radio 

frequency microelectromechanical (RF-MEMS) switches. The frequency, pattern and 

polarisation agility characteristic of an antenna can be achieved by basically controlling 

the current distribution in the antenna with manipulation of the switches.  

 

Figure 2.9 The construction of PIN diode. 

 

Over the past decade, most research in reconfigurable antenna has emphasized 

the use of PIN diodes to attain diversity in radiation pattern[51][52] and 

frequency[53][54]. PIN diodes has been widely used in numbers of design due to its fast 

response, low resistance at high frequency and less susceptible to electrostatic discharge 

damage[55][56]. PIN diode has a heavily doped p-type and n-type regions, which are 

separated by a wide, lightly-doped intrinsic region as shown in the figure above. 

Forward biasing a PIN diode creates a very low resistance at high frequencies which 

constitute when the switch is ON, while reverse biasing results in an open circuit or 

OFF mode. Figure 2.10 shows an equivalent circuit of PIN diode during ON and OFF 

state. The advantage of PIN diode is that it can handle high current using much smaller 

levels of control power[57].   

 

Figure 2.10 Equivalent circuit of PIN diode switch (a) ON state and (b) OFF state. 
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Figure 2.11 Bow-tie antena with multiband frequency using PIN diodes at (a)2.4 GHz and (b) 

3.5 GHz [53]. 

 

Another popular RF switches is MEMS, which use mechanical movement to 

achieve a short circuit or an open circuit in RF transmission line. The forces required for 

the mechanical movement can be obtained using the electrostatic, magneto static, 

piezoelectric or thermal designs[58] according to their actuation mechanism. RF-

MEMS component has been applied as switches to reconfigure the radiation 

pattern[59][60], polarisation[61] and engage in multi-frequency application[62][63][64]. 

A functional multiband frequency with pattern and polarisation diversity system using 

MEMS switches is demonstrated in [65] to study the feasibility and impact of real 

MEMS switches during operation. Some tricky part of MEMS switches is due to the 

contact stiction [66] and the problematical protective package of the switch[67]. 

However, the switch has the advantage of low power consumption and low insertion 

loss with high isolation, but then again, it has a limited power handling capability and 

high-priced. Also, MEMS switches require high voltage for dc biasing and has slow 

speed switching compared to PIN diodes.  
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Figure 2.12 Polarisation reconfigurable E-shaped patch antenna using MEMS switches (a)top 

view, (b)MEMS switch ON state and (c)MEMS switch OFF state[59]. 

 

In overall, these two types of switching is bi-static switch, which does not allow 

for a continuous switching. Varactor has been effectively adopted in [68][33] to achieve 

a continuous frequency and null pattern scanning. Varactor consists of a small junction 

capacitance with varied voltage. The capacitance change when different bias voltage is 

applied to the diode. The capacitance of a varactor decreases when the voltage gets 

larger. A tuning varactor can be represented by the electrical equivalent circuit shown in 

Figure 2.13. However, varactor suffers from poor linearity[3]. 

 

Figure 2.13 Electrical circuit of varactor diode. 

 

  



 

34 | P a g e  
 

2.3.2 Optical 

Optical control has been employed as a switching mechanism for reconfigurable 

antenna design. The fundamental construction of optical control switch has been based 

on the manipulation of the electrons capability to move from valence band to 

conduction band when appropriately lit by certain wavelength of light. In other words, 

the optical switch will be activated when light of pertinent wavelength from a laser 

diode is given. The major advantage of using optically driven switches is that it 

eradicates the need of metallic biasing line which leads to interference in radiation 

pattern.  

The solution was then assayed for the frequency reconfiguration using optically 

control switch method as shown in [69]. By using three optical switches, the coplanar 

fed microstrip antenna is working on three different frequency bands: WiMAX (3.5 

GHz), WLAN (5.5 GHz) and X-band satellite communication (8.4 GHz). In [70], two 

different approaches of optical control are implemented as a switch in a planar antenna 

design with microstrip radiators to attain pattern reconfiguration. The p-i-n 

photodetector in the first approach allows a good insertion loss but has a poor isolation, 

while the second approach using optical illumination of a phototransistor exhibits a low 

loss, less cost and less affected by the noise in the laser source even though it has a quite 

complex design compared to the first approach. Thus, it is more favourable for the 

antenna design. The thermal and electrical isolation from the control circuitry make the 

photonic switching technique a very attractive solution relative to conventional dc 

control of lumped elements. 

 

Figure 2.14 Frequency reconfigurable ultra-wideband antenna design using optical switch[69]. 

 



 

35 | P a g e  
 

2.3.3 Physical 

Reconfigurable antenna using physical changes is an alternative to switching 

mechanism to achieve antenna reconfiguration. Commonly, the technique involves 

rotors, actuators, or other tools to move some part in the antenna structure to change the 

electrical properties of the antenna. Using this alternative configuration, even though the 

speed is definitely slower than any switching component, but it is enough for most 

application. The importance of this technique is that it does not rely on any switching 

mechanisms, biasing lines, or optical fibre/laser diode integration. On the other hand, 

this technique depends on the limitation of the device to be physically reconfigured[58]. 

The antenna in [71] has discussed the operation of the frequency reconfigurable 

antenna using physical controlled method. The operating frequency of the antenna is 

shifted by adjusting the degree of spiral tightness.  A step motor is installed to control 

the rolling mechanism in a shielded box below the ground plane. When the metal sheet 

is rolled, it stretches the radius between outermost and innermost cylinder. The rolled 

planar antenna introduces a parasitic capacitance due to strong mutual coupling between 

the adjacent layers and inductance due to the spiral cross section. Changing the 

configurations of the antenna changes the parasitic capacitances and inductance so that 

the resonance frequency varied. The antenna has a frequency range of 2.9 to 15 GHz.  

The radiation pattern of the antenna maintains an omnidirectional pattern in all 

frequency bands. The antenna has high efficiency throughout the spectrum and not 

affected by the dielectric loading of the mechanical parts. A physical control 

reconfigurable antenna has a robust antenna performance as no RF devices applied in 

the design. However, higher power handling is possible with high voltage requirements 

for the turning motor.  The slow tuning speed and small reconfiguration capabilities are 

another setback in the antenna design. 

 

Figure 2.15 Physical control frequency reconfigurable antenna[71]. 
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2.3.4 Material changes 

 

Another method to attain reconfigurable antenna is by adapting specific material 

properties into the antenna design such as grapheme plasmonics[72][73][74] and liquid 

crystals[75]. These materials have the ability to change the chemical potential by 

applying different voltage values. As can be seen in the figure below, when DC bias 

voltage is applied, the perpendicular orientation of liquid crystal transition into parallel 

orientation. The BL038 liquid crystal dielectric properties change when in perpendicular 

and parallel orientation. Thus, varying the DC voltage resulted in varying permittivity 

of the liquid crystals which can be manipulated in frequency tuning antenna. This 

design has it drawback since it requires a complicated feeding network for each patch. 

 

 

Figure 2.16 Illustration of liquid crystal as bias volatge applied[75]. 

 

 

Figure 2.17 Frequency reconfigurable patch array using liquid crystal (a) top section and (b) 

feeding network in the bottom section[75]. 
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Recently, pattern reconfigurable antenna by using metamaterial-inspired 

concept[76][77] has received much attention due to their feasible design. Metamaterials 

are materials engineered to have properties that are not naturally existed. Metamaterials 

derive their properties not from the properties of the base materials, but from their 

newly designed structures and appropriately designed metamaterials can affect waves of 

electromagnetic radiation. An example of antenna design with metamaterial 

manipulation is shown in beam tilting bow-tie antenna[78] where H-shaped unit-cell 

metamaterial structure with high refractive index is incorporated into the antenna 

design.  

2.4 Analysis method 
 

There are many method of analysis that has been developed by researchers up to this 

present day. These methods can be divided into two: 1) Time-domain analysis and 2) 

Frequency-domain analysis. Based on these two methods, many commercial software 

have been developed to help in analysis of radio frequency design. In this part of the 

chapter, the foundation principles for each technique are explained briefly. 

2.4.1 Finite Different Time Domain (FDTD) 

 

The Finite Different Time Domain (FDTD) is a widely used method to solve several 

electromagnetic problems. The literature on FDTD is extensive and has been used in 

various microwave analysis such as antenna designs, propagation, filter designs and 

many other microwave analysis. However, the shortcoming of FDTD comes as it is not 

suitable for electrically huge system but good for system involving pulses. This method 

did not gain considerable attention despite its usefulness to handle electromagnetic 

problems until the computing costs become affordable. The FDTD iteratively calculates 

the field values in the problem space that is discretised into unit cells. Each unit cell is 

assigned with three orthogonal electric and three orthogonal fields.  

2.4.2 Moment of Method (MoM) 

 

The Moment of Method (MoM) is a numerical method of solving 

electromagnetic problems or volume integral equation in the frequency domain. 

Numerical Electromagnetic Code (NEC) is the most well-known of the codes using 
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MoM to solve problems that can be defined as sets of one or more wires. The method is 

simple and adaptable to the problem. Furthermore, the MoM technique has been widely 

used to solve electromagnetic scattering and radiation problems based on reducing the 

operator equations to a system of linear equations written in matrix form. The result 

from the analysis is accurate as it uses exact equations and provides direct numerical 

solution for the equations.  However, the disadvantage of this technique lies in the large 

amount of computation it required.  

2.4.3 Finite Element Method (FEM) 

The finite element method (FEM) is a mathematical technique used for finding 

approximate solutions of partial equations as well as of integral equations. The solution 

is based on reducing the differential equations, and then integrated numerically using 

Euler’s method which is a standard technique such as the Runge-Kutta. FEM is a 

method used to solve frequency domain boundary valued electromagnetic problems 

using a variation form. There are generally two types of analysis that are used in FEM, 

which is 2-D and 3-D canonical elements of differing shape. Even though 2-D 

conserves simplicity and allow itself to be run from a normal computer, the results are 

less accurate compared to 3-D. The 3-D canonical element gives a more accurate result 

by working effectively on faster computer. The FEM is often used in frequency domain 

for computing the frequency distribution in complex, closed regions such as cavities and 

waveguides. 

 

2.5 Introduction to HFSS 

All the experiment and simulation to study the electromagnetic field of an antenna is 

conducted in ANSYS High Frequency Structural Simulator (HFSS). Ansys HFSS is 

graphic design software with industry standard for executing accurate and rapid designs 

in high frequency and high speed electronic devices. It takes some time to become 

proficient at HFSS including designing the antenna structure with precise dimension 

and element. HFSS plays a great role in analysing all the important parameters in 

antenna, such as antenna gain, bandwidth, radiation pattern, and reflection coefficient of 

an antenna. In this design, only cavity model and full-wave analysis can be conducted 

appropriately. High Frequency Simulation Software (HFSS) is used to conduct the full-

wave analysis by solving Maxwell’s Equation.  
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2.6 Summary 
 

Reconfigurable antennas can be divided into three categories: frequency, radiation 

pattern and polarisation. With the rapid growth of telecommunication technology 

nowadays, there are antenna designs that combine more than one category of 

reconfigurable antenna to feed users demand. Various techniques have been discovered 

to attain the idea, i.e. electrically, optically, physically and using material change. 

Different methods indicated different end results. Some are simple, but causes more loss 

to the signal, while others have low-priced but very complicated design. 
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Chapter 3 Patch antenna with an 

omnidirectional radiation 

pattern. 
 

3.1 Introduction 
 

At present, there is a high demand for antennas that have the capability of transmitting 

and receiving signal in all directions, covering 360° on a single plane. The uniform 

coverage of omnidirectional antennas makes it widely applied for wireless devices like 

cellular telephone and wireless routers. Thus, it is crucial to design a compact size 

omnidirectional antenna to combat the hidden node problem due to improper use of 

directional antennas for a low frequency application. In the first part of this chapter, the 

construction of standard conventional patch antenna is presented. The dimension and 

performance of patch antenna are discussed concisely in Section 3.2. The primary 

objective   of this part of the thesis is to design an antenna with omnidirectional 

radiation pattern at low frequency, precisely at 1 GHz. It is achieved by using air as a 

substrate, but with a cost of significant dimension of antenna design. The proposed 

antenna is designed in HFSS with a suspended ground plane to obtain omnidirectional 

radiation pattern and shorting pin is introduced to reduce the total size of the patch 

antenna.  The proposed antenna design is explained in details in Section 3.3 and all the 

analysis is conducted thoroughly. The affecting parameters in the antenna construction 

are investigated and discussed in Section 3.4 of this chapter.  The proposed antenna is 

fabricated and measurements on the antenna characteristics are conducted. The 

measurement result is compared with the simulation result. All the detailed results are 

presented in Section 3.5.              
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3.2 Patch antenna 
 

Nowadays, modern communication system requires a cost-efficient, compact 

size, easy to install and a good performance antenna to complement with rapid 

development in mobile radio and wireless communication. Patch antenna has emerged 

as a practical solution to the problem. Patch antenna   offers small size, light weight and 

low profile design, with less cost and less complicated to fabricate using modern 

printed-circuit technology[79]. Furthermore, the antenna design is versatile as the 

frequency, radiation pattern, polarisation and impedance of the antenna can be 

controlled by adding different loads between the patch and ground plane.   

By using cavity model for an antenna operated in dominant mode, the patch and 

ground plane are treated as perfect electric conductors on top and bottom of the cavity 

with cylindrical perfect magnetic conductor set as a boundary for the cavity[80]. 

Rectangular microstrip antenna design tends to be more concerned with the width to 

length ratio in determining the operating mode whereas in circular patch design, the key 

parameter of the model lies in the radius of the radiating patch. A design procedure for 

the circular patch antenna is set off by specifying the resonant frequency (fr), the 

dielectric constant (ϵr) and height of the substrate (h). In this dissertation, the frequency 

of operation for the circular patch antenna is set at a frequency  of 1 GHz to demonstrate 

the size of patch antenna at low operating frequency. The circular patch antenna is 

printed on an FR4 substrate with the dielectric constant of 4.4 and height is set at 1.6 

mm. It should be noted that throughout this thesis, the term standard patch antenna is 

used to describe a conventional quarter-wave circular patch antenna. 
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By referring to A.Balanis [5] in his book, the actual radius, 𝛼 of the radiating 

patch of a circular patch antenna operating in dominant mode with very small substrate 

height (h<<𝜆0) can be written as  

 
𝛼 =  

𝐹

{1 +  
2ℎ

𝜋𝜖𝑟𝐹 [ ln ( 
𝜋 𝐹
2ℎ

 ) + 1.7726 ]}

1
2⁄
 

(3.1) [5]  

where   

 
𝐹 =

8.791 ×  109

𝑓𝑟  √𝜖𝑟

 
(3.2) 

    

 𝛼 : Actual radius of radiating patch  

 fr : Resonant frequency  

 ϵr : Dielectric constant  

 h : Height of the substrate  

 

Take note that all the calculations are in cm. Fringing effect causes the patch antenna 

electrically larger than its physical dimension. Equation (3.1) does not take into account 

the fringing effect. Thus, the effective radius of patch taken into account the fringing 

effect is given by   

𝛼𝑒𝑓𝑓 = 𝛼 {1 +  
2ℎ

𝜋𝜖𝑟𝛼
[ ln ( 

𝜋𝛼

2ℎ
 ) + 1.7726 ]}

1
2⁄

 

 

(3.3)[5] 

   

 𝛼𝑒𝑓𝑓 : Radius of radiating patch with Fringing effect 

 𝛼 : Actual radius of radiating patch 

 fr : Resonant frequency 

 ϵr : Dielectric constant 

 h : Height of the substrate 
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Figure 3.1 Conventional circular patch antenna. 

The metal conductor is printed on one side of FR 4 substrate and the ground plane is 

printed on the other side of the substrate. A standard patch antenna has a configuration 

as shown in Figure 3.1. The specific dimension of the standard patch antenna is 

tabulated in Table 3.1 below. The ground plane length and width is given such that it 

should be greater than radiating patch by at least two or three times of substrate height, 

h for proper operation[81].  

 The calculation of antenna dimension as given in (3.1) has resulted in a standard 

patch antenna with frequency resonance at 1 GHz. The radiation pattern of the standard 

circular patch antenna is directional with low-level gain due to the surface wave losses 

in the dielectric substrate. In this study, an omnidirectional radiation pattern with 

appropriate gain level is anticipated. The omnidirectional radiation pattern is desirable 

as it permits the antenna to receive or transmit signals for any arbitrary angle over a full 

plane. The poor radiation performance can be improved by eliminating the surface wave 

losses in the dielectric substrate. For this purpose, air is used as substrate in the antenna 

design. The two resonators are separated by air with a specific distance resulted in 

omnidirectional radiation pattern with acceptable gain level. The distance between the 

ground plane and radiating patch is optimised using optimisation function in HFSS as 

well. Then again, the dimension of the antenna is modified and the optimal position for 

feeding point is located using parametric analysis so that the antenna has the best 

matching at 1 GHz. The detail dimensions and comparison for both circular patch with 

air substrate and standard patch antenna printed on FR 4 substrate are shown in Table 

3.1.   



 

44 | P a g e  
 

Parameters Patch antenna with FR 4 

substrate (mm) 

Patch antenna with air 

substrate (mm) 

𝛼𝑒𝑓𝑓 41.5 88 

L 90 180 

W 90 180 

h 1.6 3 

𝜖𝑟 4.4 1 

Table 3.1 The dimension of conventional patch antenna operating at 1 GHz. 

 

Figure 3.2 Conventional circular patch antenna with air substrate. 

 The configuration of patch antenna with air substrate is shown in Figure 3.2. The 

comparison for both antenna frequency responses is given in Figure 3.3. It is clear that 

both designs are operating at 1 GHz.  The low gain level of the radiation pattern for 

conventional circular patch antenna is improved when using air as a substrate. 

Furthermore, the omnidirectional pattern from the antenna is crucial for many radio 

applications, such as point-to-multipoint transmission, radio frequency identification 

detection or sensing. The best position of feeding point is required to obtain a good 

impedance match. In both designs, the best location for coaxial feed is determined using 

adaptive solutions in HFSS software to find low input impedance or good matches 

between the transmission line and the port[82]. The analysis and simulation step has 

been done for all the feeding location points on azimuthal plane (X-Y plane). 
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Figure 3.3 Comparison between frequency response of antenna with air substrate and dielectric 

substrate. 

 

Figure 3.4 Comparison between radiation pattern of antenna with air substrate and dielectric 

substrate on  azimuth plane. 
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3.3  Shorted circular patch antenna  

 A primary concern of standard circular patch antenna is the physically large 

dimension for an antenna operating at low frequency, for instance at 1 GHz frequency. 

The circular patch antenna design in Part 3.2 resulted in large physical dimension. With 

the insertion of shorting pin, the antenna dimension is reduced. The shorting pin causes 

the antenna to excite at lower frequency mode rather than the fundamental mode of the 

antenna. Using this approach, researchers have been able to reduce the overall length of 

resonating patch to less than half of free space wavelength[83][84][85]. 

The design procedure for the shorted circular patch antenna is similar in 

principle to the standard patch antenna. In the earlier design of microstrip patch 

antennas[86], the incorporation of shorting pin has been proven to result in electrically 

small printed antennas for mobile communications handset. The input impedance of the 

antenna depends on the position shorting pin and feed probe. The circular patch is 

designed to match for input impedance of 50 Ω at 1 GHz. In the proposed antenna 

design, fine adjustments were then made on the position of shorting pins with respect to 

the coaxial feed to achieve 50 Ω resonant. The radius of the radiating patch is also 

adjusted to give good impedance match and acceptable radiation characteristics. The 

spacing between the two resonators is increased to reduce the coupling of the probe 

feed. It should be noted that throughout this thesis, the term shorted patch is used to 

describe a patch antenna with shorting pins.  

 The formulation resonant length for shorted rectangular patch antenna is 

reported in [87], where the length and width of the rectangular are related to the modes 

index along the patch width.  However, the formulation of resonant length for shorted 

circular patch antenna at any modes is not reported. The fringing field extensions length 

on a shorted patch is also not reported.  Therefore, full-wave analysis on a shorted patch 

is the most accurate analysis for shorted patch antenna design. The electrical 

performance of the antenna can be studied using cavity model analysis. However, an 

analysis performed will be less accurate due to some approximation and assumption 

made in the calculation. Thus, a full wave analysis to obtain an accurate representation 

of electrical performance of the antenna is conducted.   
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3.3.1 Geometry of Circular Patch Antenna 

 

 

 

Figure 3.5 Dimensions of the proposed circular patch antenna. 

 The shorted circular patch antenna is constructed as shown in Figure 3.5 above. 

The patch antenna is designed to be located at origin coordinates x-y plane while the 

height of the substrate lies in z-direction in HFSS software. The radiating patch and 

ground plane are separated by air with a specific distance from each other.  The surface 

wave loss is eliminated, thus permitting the antenna to have better gain as no power 

extracted from the radiation. By using air as a substrate, this resulted in omnidirectional 

radiation pattern characteristics for the proposed antenna.  The distance between the two 

resonators is optimised to give the best gain level. 
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 The radius of circular patch and the position of shorting pin have a perceptible 

effect on the radiation performance of the antenna and frequency response of the 

antenna respectively.  Following the design procedure of standard patch antenna, an 

appropriate radius is selected then adjusted to give an acceptable radiation performance. 

A certain compromise is needed between finding a small size of printed antenna and a 

good performance of the antenna.  The shorted patch antenna gives another degree of 

freedom in antenna design, as the size of radiating conductor is maintained at 

electrically small size with a reasonable radiation performance. The position of shorting 

pin is related straightforwardly to the frequency response of the proposed antenna. An 

additional shorting pin asymmetrical to that is added to provide a low cross polarisation 

in the antenna performance[88]. Furthermore, it is noted that by symmetrically loading 

a pair of shorting pins offer a more stable antenna performance during the design   

process.   

Parameters Value (mm) 

Radius 38 

L 80 

W 80 

h 3 

d 4 

Diameter of inner coax 0.869 

Diameter of outer coax 2 

Table 3.2 Specific fimension for the shorted circular patch antenna. 

The feeding mechanism of the antenna is carried out using coaxial probe 

technique. A primary concern in conventional patch antenna design is the position of 

feeding point. The position of feed point is crucial during the design procedure in order 

to match 50 Ω  input impedance of a coaxial probe[5]. In [89], the shorting pin is 

positioned close to the feeding point of a microstrip feed line patch antenna to  match 

the input impedance of the antenna with its 50 Ω microstrip feeding line. The proposed 

antenna design is fed from the centre of ground plane throughout to the centre of 

radiating patch. The electrical performance of shorted patch antenna is dissimilar from 

conventional patch antenna. The coaxial feed probe is designed to feed the shorted patch 

antenna is represented by two conductors with a diameter of 0.869 mm and 2 mm 

respectively.  The inner conductor (0.869 mm) is coupled to the radiating patch while 
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the outer conductor (2 mm) is attached to the ground plane. This two stages probe is 

excited properly to realise a practical wire diameter   and obtain impedance matching of 

50 Ω over the entire bandwidth.         

The standard circular patch antenna gives a directional radiation pattern. By 

altering the position of ground plane, the omnidirectional radiation pattern is obtained at 

the expense of large dimension. However, with the insertion of shorting pin, the large 

size of patch antenna is reduced significantly. The comparison between the dimensions 

of three antenna designs is tabulated in Table 3.3 below. The operating frequency for all 

antennas is set at 1GHz. The radiation characteristics for each antenna at 1 GHz 

frequency is also shown below. 

 

Parameters 

Conventional 

patch antenna 

(mm) 

Patch antenna 

using air substrate 

(mm) 

Shorted patch 

antenna (mm) 

Radius 41.5 83.7 38 

L 90 181.5 80 

W 90 181.5 80 

The position of feeding 

point from the centre 
25.5 22 0 

 Table 3.3 The specific dimensions for three patch antenna designs.  

 

 
Figure 3.6 The comparison of return loss for three different patch antenna designs. 
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Figure 3.7 The comparison of radiation pattern in azimuth plane for three different patch 

antenna designs. 

 

3.3.2 Operating frequency and radiation mechanism  

 The shorted patch antenna is excited at lower frequency mode contrast from a 

conventional patch antenna operated in dominant mode, thus resulted in an electrically 

small antenna. The return loss of the proposed antenna is shown in Figure 3.8 below. 

The input impedance at resonance of the antenna design is determined by the location of 

shorting pin. The shorting pins are positioned such that the frequency response is at 1 

GHz.    

 The proposed circular patch antenna has radiation performance like a monopole 

antenna in regards to high gain level in all direction on azimuth plane. The 

omnidirectional radiation pattern is desirable in some application that requires uniform 

coverage such as, wireless access points and routers. Furthermore, as seen in Figure 3.9, 

the simulation result shows that the cross polarisation of the proposed antenna design is 

maintained at low level. The two identical pins with symmetric arrangement caused the  

surface current on the patch to be odd symmetric with respect to the H-plane and 

resulted in a low cross polarisation of the  proposed antenna design compared to single 

pin loaded patch antenna[88]. 
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Figure 3.8 Return loss of shorted circular patch antenna. 

 

 

 

Figure 3.9 Co-polar and cross-polar radiation pattern in azimuth plane (XY-plane) for shorted 

patch antenna at 1GHz. 
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Figure 3.10 Co-polar and cross-polar radiation pattern in elevation plane (XZ-plane) for shorted 

patch antenna at 1GHz. 

 

3.3.3 Current distribution of proposed antenna design  

 To understand the operation of a shorted patch antenna, the surface current 

distribution is plotted.  The introduction of shorting pin into the antenna design resulted 

in the antenna operating at low frequency. The surface current distribution for the 

shorted patch antenna operated at 1 GHz frequency is shown in Figure 3.10. On this 

operating mode, the proposed antenna has a uniform current distribution about the 

aperture, which is equivalent to a DC current path[90]. When current flow through the 

shorting pins, it will give rise to the magnetic field circulating around the wire and 

excite electric fields between the radiating patch and ground plane. In the current 

distribution plot below, there is only one major current path concentrated around the 

shorting pins on the radiator.  
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Figure 3.11 Current distribution for the shorted patch antenna. 

 

3.4 Parametric analysis 

Based on the construction of shorted patch antenna design, there are few parameters 

which cause a very noticeable effect on the antenna performance. The parametric 

studies on those parameters are conducted and the result is given in this section. The 

optimisation configuration for the proposed antenna design is simulated using HFSS 

software.   

 3.4.1 Effect of changing the radius   

 The frequency operating of an antenna is generally determined through the size 

of patch radiator. However, with the incorporation of shorting pins in shorted patch 

antenna, the radius of the circular patch is determined through full wave analysis 

conducted in HFSS. The size of the patch radiator in shorted patch antenna has been 

reduced significantly compared to standard patch antenna. The parametric analysis has 

been conducted on different radius of radiator patch. Even though the size of patch 

radiator is reduced, the effect of different radius on the patch is still considered as main 

parameter in the design. The operating frequency for each case has been maintained at 

1GHz. The size of the patch radiator can be reduced even smaller while maintaining the 

input impedance matched at 1 GHz by varying the position of shorting pin but limited to 

practicality.  
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 Table 3.4 shows the different radius and corresponding distance of shorting pins 

from the centre of the patch to obtain matching at 1 GHz frequency.  Figure 3.12 shows 

the return loss for each case. As can be seen, all the designs are maintained at 1 GHz 

with good impedance matching. The shorting pins in each design are modified to give 

the best possible matching at 1GHz.  

Case Radius (mm) 
Distance between shorting pins 

and centre patch (mm) 

Case A 35 2 

Case B 37 3.5 

Case C 38 4 

Case D 40 9 

Table 3.4 Different radius of patch radiator with corresponding position of shorting pins. 

 

Figure 3.12 Frequency operating bands for different radius of patch antenna. 

 

However, another aspect that needs consideration during the antenna design 

process is the antenna radiating performance. The radiation performance for each case is 

shown in Figure 3.13. As can be seen from Figure 3.13, the co-polar measurement taken 

for each cases show that the antenna are having an omnidirectional radiation pattern 

with around the same gain. However, the cross-polarisation measurement of Case C is 

lower compared to Case D with better matching. Thus, radius of 38 mm is selected for 

the proposed antenna design.  
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Since shorting pin can be used to shift frequency operating, thus the radius of the 

radiating patch can be minimised to get the best radiation performance. However, the 

dependency on the position of shorting pins need to be reduced as the practical 

realisation of the distance between shorting pin and feeding probe is very close. 

Furthermore, a smaller radius of patch antenna constitute to lower gain of co-polar 

measurement. Thus, proper size of the radiating patch is required to give the best 

radiation performance at the operating frequency desired.  

 

Figure 3.13 Co-polar and cross polar measurement on azimuth plane for each case simulated 

in HFSS. 

3.4.2 Effect of changing the position of shorting pins   

In the earlier design of microstrip patch antennas[86], the incorporation of 

shorting post has been proven to result in electrically small printed antennas for mobile 

communications handset. The patch size can be altered by varying the distance between 

the shorting pin from the feed while maintaining the exact operating frequency.  In other 

words, when the dimension of the shorted patch antenna is fixed, the positioning of the 

shorting pins will affect the operating frequency of the antenna. 

The impact of the shorting pin position can be seen on the frequency response of 

the shorted patch antenna after a parametric analysis on different positioning of shorting 

pins are conducted in HFSS. Following the design procedure of shorted patch antenna 

given earlier, the radius of circular patch radiator is set at 38 mm and the positioning of 

shorting pins is adjusted. The return loss or frequency response analysis of the antenna 
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is studied. Please note that d is the distance between the shorting pins and the centre of 

the patch. The practical size of feed point is also put into consideration. 

The input impedance and return loss of the antenna are shown in the Figure 3.14 

below. The match impedance obtained at 1 GHz frequency is dependent on the position 

of the shorting pins. Different shorting pin position impacted on the frequency response 

because of the variation in matching.  Fine adjustment on the position of shorting pins 

was then made to obtain the desired input impedance behaviour at 1 GHz frequency.  

 With a continuous increase in the distance between the feed point and shorting 

pin, the   operating frequency of the antenna is also shifted. This is beneficial in the 

design procedure of the shorted antenna compared to classic patch antenna, as the 

frequency operating of the antenna is independent of the patch size.  As a result, small 

size patch antenna operating in low frequency is obtained.    

 

Figure 3.14 Frequency responses for different position of shorting pins. D is the distance from the centre 

of the patch. 
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3.5 Simulation and Measurements 

3.5.1 Measurement setup 

The circular patch antenna as mentioned above is fabricated and constructed. 

The radiating patch antenna is fabricated on FR4 board and attached to the ground plane 

using coaxial cable. The return loss and radiation performance of the shorted circular 

patch antenna is measured and compared with the simulation result from HFSS.  

The measurement of the proposed antenna design is conducted using Power 

Network Analyser. The return loss value of the proposed antenna design is obtained by 

measuring the S11 using Network Analyser. The antenna measurement is optimally 

conducted in Anechoic Chamber. An anechoic chamber is a room that has a wall 

shielded with Radiation Absorbing Material (RAM) to ensure that all the radiation 

reflected from the measured antenna is totally absorbed. This is to ensure that no 

reflected radiation is disturbing the measurement conducted.  However, due to lack of 

facility in Brunel University, the measurement is conducted in a spacious room big 

enough to avoid multipath effect from surrounding. The power of -5 dBm from the 

Power Network Analyser is conveyed to the transmitting antenna. Horn antenna is 

operated as transmitter while shorted patch antenna is regarded as receiver antenna.  

3.5.2 Return loss and S11 

The S11 analysis represents the amount of power reflected from the antenna, 

hence known as the reflection coefficient. As can be seen from the Figure 3.15 below, 

the shorted circular patch antenna is working at 1 GHz with a good impedance matching 

of more than -10 dB. The return loss of the shorted patch antenna as given by the 

Network Analyser is -13.8 dB. The comparison of return loss between the simulated and 

measured shorted patch antenna is shown in the Figure 3.16 below. From the 

measurement, it can be seen that the return loss is reduced compared to simulated data. 

It might be due to the noise and multipath effect during the experiment.  
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Figure 3.15 Measured return loss (S11) for the shorted patch antenna as given by Network 

Analyser. 

 

Figure 3.16 Simulated and measured return lost for the shorted circular patch antenna. 
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3.5.3 Measured gain and radiation efficiency 

The radiation pattern measurement for the proposed antenna is obtained and 

presented in Figure 3.16 and Figure 3.17 below. Since the experiment is conducted 

manually, the gain of the shorted patch antenna is measured distinctly at each 10° angle 

position. After each measurement taken, the shorted patch antenna will be rotated 10° 

until all angles in the azimuthal plane are covered. The antenna under measurement is 

kept steady and maintained in equilibrium during the whole process. 

As seen in the graph below, the radiation pattern of the proposed antenna has an 

omnidirectional shape on an azimuth plane (XY-plane). The gain level is approximately 

equal in all directions suggesting that the proposed antenna can transmits and receives 

equal power from all direction on the azimuth plane. The introduction of two identical 

pins makes the surface current on the patch symmetric with respect to the H-plane, thus 

keeping low cross polarisation as expected. However, there are some irregularities in the 

shape of radiation pattern that might be resulting from the multipath effect from the 

surrounding.  The multipath effect still needs to be taken into consideration even though 

the experiment has been carried out in a large spacious room to minimise the impact. 

Another reason might be losses from cable, as both antennas are connected using 

coaxial cable approximately 5 meters from the Network Analyser.  
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Figure 3.17 Simulated and measured co-polar radiation pattern on azimuth plane for the 

shorted circular patch antenna. 

 

Figure 3.18 Simulated and measure cross-polar radiation pattern on elevation plane for the 

shorted circular patch antenna. 
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3.6 Summary 

In this chapter, a shorted circular patch antenna is designed and all the key parameters 

are tested using HFSS for optimal design. The hardware prototype of the antenna is 

fabricated. The frequency response and radiation performance of the antenna is 

measured and compared with simulation result. The antenna is operating at 1 GHz 

frequency with an omnidirectional radiation pattern. An acceptable good gain level is 

resulted from using air as substrate. The shorted patch antenna has an omnidirectional 

radiation pattern which is beneficial for achieving the goals of this thesis. 
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Chapter 4 Radiation pattern 

reconfigurable antenna with fine 

direction resolution. 
 

4.1 Introduction  

Pattern reconfigurable antenna is crucial in modern communication system due to its 

adaptable quality to the system requirement. This smart antenna can unravel the hidden 

nodes due to lack of coverage problem by directing the signal toward the right 

directions. It has previously been observed that most pattern reconfigurable antenna 

design are capable of having multiple radiation pattern in a single design and does not 

support full beam coverage in one single plane. Alternatively, in this chapter, the 

shorted patch antenna from previous chapter is configured to have multiple radiation 

pattern characteristics with fine direction resolution on single plane. The mechanism of 

operation for the proposed antenna design of radiation pattern reconfigurable antenna is 

explained in Section 4.2 of this chapter. Radiation pattern reconfigurable characteristic 

of the circular patch antenna is achieved by adding a parasitic element in the design.  

The radiation pattern of the antenna can be modulated to a fine direction resolution of 

10° when a single parasitic element is activated. The critical parameters of the proposed 

antenna are presented in Section 4.3. The return loss and radiation pattern of the 

proposed antenna are analysed and studied thoroughly. The parametric study on the 

proposed method is studied in Section 4.4. Then, the practical measurement of the 

antenna using proposed method is carried out. The result from the experiment is 

compared with the simulated data in Section 4.5.   

  



 

63 | P a g e  
 

4.2 Principle of Operation 

 The pattern reconfigurable manners of the proposed antenna design are 

constructed based on the operating principle of Yagi-Uda antenna, which was developed 

by H. Yagi and S. Uda at Tohoku Imperial University in Sendai, Japan[91][92]. The 

basic construction of Yagi –Uda antenna is comprised of a reflector, a driven element 

and a director.  These will cause phase distribution to occur, which leads to Yagi-Uda 

antenna to function as an end-fire beam. It has conclusively been shown that the total 

phase of currents in the radiators is determined by the length and spacing between the 

radiators.       

 By adopting this concept, a metal element is introduced into the shorted circular 

patch antenna.  An element which is physically longer than resonant length will become 

reflector. The impedance of reflector is inductive, and the induced currents lag in phase 

from the current induced by the driven element[93]. This causes phase distribution to 

occur. When the electric field from the metal rod met the electric field from the 

radiating patch, it will result in constructive wave collision in the opposite direction to 

the position of metal rod. Thus, it results in power reflected away from the parasitic 

element and the maximum power is in the opposite direction to the position of metal 

rod. Figure 4.1 and Figure 4.2 show the configuration of proposed antenna design and 

how the radiation pattern change respectively. The shorted circular patch antenna has a 

dimension as mentioned in Chapter 3 and the metal rod length is 150 mm, which is λ/2 

and placed 58mm from the centre of radiating patch. Other components of the antenna 

are also verified to find the most desirable gain. Each metal cylinder has a radius of 0.5 

mm to give maximum gain. 
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Figure 4.1 The construction of reconfigurable circular patch antenna using metal rod in HFSS. 

 
Figure 4.2 Radiation pattern change in 3D plot when metal rod is inserted. 
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Figure 4.3 Radiation pattern on azimuth plane when metal rod is inserted. 

 

Figure 4.4 Radiation pattern on elevation plane when metal rod is inserted. 

The reconfigurable characteristic of the antenna is controlled by having a 

different overall length of metal rod at one time. The length of metal rod is controlled 

using PIN diode as a switch. The PIN diode is located in the middle of the metal 

element. PIN diode serves to open or close a current path connecting the metal cylinder, 

which gives the total length of metal rod. PIN diodes are less susceptible to electrostatic 

discharge damage compared to other switches[57]. Forward biasing a PIN diode creates 

a very low resistance at high frequencies, while reverse biasing results in an open 
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circuit.  The different position of the activated metal cylinder around the circular patch 

antenna will determine the shape of the radiation pattern accordingly. When the PIN 

diode is triggered, the metal rod will act as a reflector where the gain of the radiation 

pattern is highest in the opposite direction compared to other direction. In this study, the 

application of PIN diode as a switch is not studied as the primary focus is on proving 

the main concept. The activated metal rod will have a full length, while non-activated 

metal rod will be shorter than a full-length metal rod.      

 The full wave analysis of the reconfigurable antenna is conducted in HFSS. For 

the purpose of simulation, the metal cylinder is divided into two and separated by an 

empty cylinder to signify when the switch is off. When the switch is activated, the two 

metal cylinders are united which gives a total length of λ/2. 

 

4.3  Performance analysis 
 

4.3.1 Radiation pattern 

 As shown in the previous section, the radiation pattern of the proposed antenna 

changes with the insertion of a metal rod.  When activated, the full-length metal rod 

operates as a reflector and the omnidirectional radiation pattern of the shorted patch 

antenna will change accordingly.   The reconfigurable characteristics of the proposed 

antenna are attained by activating different metal rod at one time. The direction of 

maximum gain changes as different metal rod is activated. In this study, the main goal is 

to have a reconfigurable antenna covering all beam direction in azimuth plane. 

Following this objective, metal rods are placed around the shorted circular patch 

antenna to contend with the whole azimuth plane.  The initial omnidirectional radiation 

pattern of shorted patch antenna allows more room in the radiation pattern 

reconfiguration.        

 The distance between the metal rods and the centre of radiating patch is 

maintained while the position of metal rod is varied. To see the changes in radiation 

pattern with the activation of different metal rod clearly, four metal rods are placed 

around the antenna. The metal rod is turn on individually and the changes in radiation 

pattern are observed.  The radiation pattern of the reconfigurable antenna is shown in 

the figure below. When Metal 1 is activated, the radiation pattern has a maximum gain 
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opposing to the position of Metal 1and so on. Figure 4.5 shows the radiation pattern in 

3D and 2D plane for each consecutive metal activated.   

  

(a) 

 
 

(b) 
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(c) 

 
 

(d) 

Figure 4.5 Radiation patterns on  azimuth plane when different metal is activated (a)Metal 1 

(b)Metal 2 (c)Metal 3 and (d)Metal 4 
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 Subsequently, the metal rods are placed carefully next to each other. The finest 

beam resolution with adjacent elements activated is investigated and the changes in the 

radiation pattern are recorded. The metal rods are placed at 10° angle adjacent to each 

other. Figure 4.4 presents the simulated data on fine resolution radiation pattern. As can 

be seen from the figure, the radiation patterns of the antenna change accordingly when 

the metal rod is activated individually. However, based on the simulated data, there are 

some discrepancies in the radiation pattern when Metal C is activated. This might be 

due to the mutual coupling occurs when more metal rods are located close to each other.   

 

 

 

Figure 4.6 Radiation pattern on azimuth plane when different metal is activated. 
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Figure 4.7 Vertical cut of the radiation pattern at their consecutive maximum direction. 

4.3.2 Return loss 

 Although more focused is laid on the radiation pattern in this research, return 

loss and frequency response of the reconfigurable antenna is still crucial in the antenna 

design. A reconfigurable radiation pattern has a capability of changing the radiation 

pattern without affecting the frequency response of the antenna. The proposed antenna 

design is operating at 1 GHz frequency. As can be seen from Figure 4.8, the return loss 

and frequency response of the reconfigurable antenna is maintained at 1 GHz despite 

the addition of metal rods to the shorted circular patch antenna.  However, there is some 

decrease in the antenna bandwidth when the metal rod is inserted.  

 

Figure 4.8 Simulated frequency response of the proposed antenna design with and without the 

insertion of metal rods. 
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4.4 Parametric analysis 

 Of all the investigated design parameters, two of them have a very noticeable 

effect in determining the performance of the antenna. The parameters that show the 

most effect are length and the distance between metal rod and centre of patch radiator. 

Length and position of metal rod have an impact on the maximum gain of radiation 

pattern.  In order to check the changes of the radiation pattern, parametric studies for 

each parameter have been carried out and obtained from iterative simulation with initial 

data. Optimisation function in HFSS is utilised to give the optimal result.  

 The total phase of currents in the antenna design is not determined exclusively 

on length but also by the spacing to the relating elements. It is crucial to have the metal 

element to be placed appropriately so that it will act as a reflector. Later in 1973, Cheng 

and Chen[94] has proven that the maximum forward gain is obtained by optimising the 

spacing between the parasitic elements before published another paper on optimum 

element lengths for Yagi-Uda arrays[95]. Taking this approach, the proposed antenna 

design also paid extra consideration into the spacing of metal element to obtain 

maximum directivity.   

 

4.4.1 Effect of changing the length of metal rod 

 The full length of metal rod when activated is around half free-space 

wavelength. In a configuration of Yagi-Uda antenna, the length of parasitic structure 

determines the behaviour of the element. A physical length of a reflector is slightly 

longer than resonant length and a director is typically shorter than resonant length[93]. 

The proposed antenna design applied the same concept; thus the length of metal rods is 

selected at half of free-space wavelength.   
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Figure 4.9 The relationship between length of metal rod and the maximum gain of antenna. 

  

The maximum gain of the radiation pattern is observed for different length of 

metal rod to give a maximum gain. The maximum gain is measured opposing to the 

position of metal rods, assuming the metal rod behaves as a reflector. The graph of 

correlational analysis is presented in Figure 4.9 above. Closer inspection of the graph 

shows that there is a small decline in the maximum gain with the length of metal rod 

closer to λ/2. Also, the sudden drop in maximum gain at that particular direction is 

because the metal rod started to act more as a director and less as a reflector. Even 

though the maximum gain for the last measurement is reduced, the front-to-back ratio of 

the measurement is more significant than the earlier case. The front-to-back ratio for 

each case is also crucial when deciding the length of the metal rod. In Figure 4.10, there 

is a clear trend of decreasing in the back gain when the length of metal rod closer to λ/2. 
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Figure 4.10 The comparison for different length of metal rods acting as a reflector. 

 Figure 4.11 depicted the radiation pattern for the proposed antenna when 

different length of metal rod is applied. When the length of metal is around λ/2, the 

metal rod acted as a reflector. When reducing the length even more, the metal rod 

started to serve as a director.   To distinguish between these two manners, the maximum 

gain for both director and reflector is given in the radiation pattern below. The 

maximum gain for both cases is in the opposite direction. In this   thesis, the length of 

metal rod is selected so as it acted as a reflector. This is due to a better front-to-back 

ratio presented by single metal rod in the radiation pattern report below.   

 

Figure 4.11 The gain comparison between director and reflector. 
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4.4.2 Effect of changing the distance  

 The distance between the metal elements and the centre of resonating conductor 

has minimal impact on the shape of radiation pattern. However, the impact is   observed 

on the maximum gain and front-to-back ratio of the radiation pattern. The result from 

the preliminary analysis of radiation pattern is summarised in the graph below.  The 

distance between the metal rod and the centre of resonating patch is varied and 

maximum gain for each case is obtained. From the graph, it can be seen that the 

maximum gain for the reconfigurable antenna is achieved when the metal rod is located 

58 mm or one-fifth of the free-space wavelength from the centre of patch antenna. The 

maximum gain of the radiation pattern is improved when the distance increases. 

However, the highest front-to-back ratio is achieved when the metal rods are placed 42 

mm from the centre patch. 

 

Figure 4.12 The impact of the distance of metal rod and resonating conductor to the maximum 

gain of proposed antenna design. 

4.4.3 Effect of increasing the number of metal rods 

The number of directions covered by the proposed antenna depends on the 

number of metal rods attached to the patch antenna.  As the shorted patch antenna has 

an omnidirectional radiation pattern, the reconfigured radiation patterns are covering the 

entire plane but limited to the complexity of the design. For instance, to have a large 

number of directions covered on single plane means the number of metal rods attached 

to the antenna is also increased. The position between the neighbouring metal rods will 
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be closer enough to introduce mutual coupling that will affect the fine beam resolution 

of the radiation pattern.  

Table 4.1 below shows the number of metal rods attached to the antenna for 

different direction tuning. The expected main beam direction correlated to metal rod 

activated is also listed. The distance between the centre of the patch and the metal rod is 

maintained. However, there is a direction error occurs in Case D, E and F, as more 

metal cylinders are attached around the patch antenna.  

 

Case 
Number of 

metal rods 

Expected 

beam direction 

Actual beam 

direction 

Reconfigurable 

direction 

Case A 0 360° 360° All direction 

Case B 2 180° 180° 2 

Case C 4 90° 90° 4 

Case D 8 45° 45° 8 

Case E 16 22.5° 25° 16 

Case F 32 11.25° 10° 32 

Table 4.1 The number of metal rods and its corresponding beam direction. 

 

 
Figure 4.13 Radiation patterns for different number of metal rods attached to the shorted patch 

antenna. 
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4.5 Simulation and measurement 

4.5.1 Return loss and S11  

 Simulations for the reconfigurable antenna were performed in HFSS to study the 

antenna performance. The measurement setup is conducted in a room big enough to 

reduce the multipath effect.  The environment is kept clear and maintained stable 

position of the antenna. To measure the reflected power, the reconfigurable antenna is 

connected to the Port 1 of the Network Analyser. The simulation result demonstrates the 

reconfigurable radiation pattern resonates at 1 GHz, while a small shift is observed in 

the measured result towards 0.996 GHz. The magnitude of the reflection coefficient at 

this resonance is -11.202 dB as seen in Figure 4.14. The comparison between simulated 

and measured data shows that the magnitude of reflection coefficient during the 

practical experiment has reduced quite considerably. Furthermore, the starting point of 

the measured data does not correlate with simulated data. The errors might be caused by 

surrounding noises.  

 

Figure 4.14 Measured return loss (S11) for the reconfigurable antenna as given by Network 

Analyser. 
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Figure 4.15  Simulated and measured return lost for the pattern reconfigurable antenna. 

4.5.2 Radiation pattern measurement 

 
Figure 4.16 Measurement setup for the pattern reconfigurable antenna. 
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 Figure 4.16 shows the setup of the pattern reconfigurable antenna during the 

measurement. Horn antenna is used as a reference antenna and positioned 5 metres from 

the antenna under investigation. For measuring the radiation pattern, reference antenna 

is connected to Port 1 as transmitter and antenna under investigation is connected to 

Port 2 as a receiver. 

 The result of radiation patterns for the different position of metal rods is shown 

below.   For comparison purpose, the simulated and measured radiation patterns in the 

XY-plane at 1 GHz for different positions of metal rods are presented in Figure 4.17, 

4.18, and 4.19. The comparison between the simulated and measured results shows a 

good agreement concerning the shape of radiation pattern. The maximum of radiation 

pattern is opposite to the position of metal rods, validating the proposed design. When 

the metal rod is activated at 0°, the maximum gain is at 180° as seen in Figure 4.17. In 

that order, when metal rod is activated at 10° and 20°, the maximum gain of radiation 

pattern can be seen at 190° and 200° respectively. However, the real antenna gain level 

for the measurement data is overlooked as more focused is put onto the shape of 

radiation pattern. 

 

Figure 4.17 Radiation pattern of the reconfigurable antenna for metal rod activated at 0° on 

azimuth plane. 
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Figure 4.18 Radiation pattern of the reconfigurable antenna for metal rod activated at 10° on 

azimuth plane 

 

Figure 4.19 Radiation pattern of the reconfigurable antenna for metal rod activated at 20° on 

elevation plane. 
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 To compare the changes in the direction of maximum gain clearly, the radiation 

pattern for different positions of metal rod is presented in a rectangular plot below. 

There are only small variations in the gain level of the reconfigurable antenna. In the 

case of metal rod positioned at 20°, there are some discrepancies in the measurement 

conducted. This might be due to the slight changing the environment of the experiment. 

Nevertheless, the measurement data analysis is consistent with the simulated data. 

 

Figure 4.20 The changes in measured radiation pattern with different position of metal 

rods activated. 

4.6 Summary 

In this chapter, a pattern reconfigurable antenna is designed and fabricated. The 

radiation performance of the antenna is studied and compared with the simulated result. 

The radiation pattern changes as a metal rod is inserted into the shorted patch antenna 

design. The direction of maximum radiation pattern changes with different position of 

metal rods activated. The metal rod acted as a reflector when it is activated. The 

measurement data shows a good agreement on the change of radiation pattern shape. 

Some inconsistency in the measurement might be due to the multipath losses as the 

experiment is taken not in optimal environment. The PIN diodes are simulated as ideal 

lumped components without considering the actual P-I-N junction and depletion region. 



 

81 | P a g e  
 

 

Chapter 5 Miniaturisation of the 

radiation pattern reconfigurable 

antenna. 

5.1 Introduction 

The pattern reconfigurable antenna with fine direction resolution as proposed in the 

previous chapter has a quite large dimension in whole. The metal element functions as 

reflector has a length of half free-space wavelength stick out from the antenna. 

Miniaturisation is intended to reduce the overall size of the reconfigurable antenna 

without significant performance degradation to fit the design into a practical application. 

In this chapter, a miniaturisation on the antenna size as a whole is attempted. The metal 

rod size of half free-space wavelength (λ/2) reduced to almost one sixth of free-space 

wavelength (λ/6). The theory behind the miniaturisation of the parasitic structure is 

explained in detail in Section 5.2 of this chapter. The length of the metal rod is reduced 

by adding inductor with specific value to the parasitic structure. The performance 

analysis of the antenna is conducted in Section 5.3. The radiation pattern and frequency 

response of the proposed antenna design is studied and presented here. The parameters 

that show the most effect on the antenna design are the inductor value as well as the 

length and distance of the parasitic structure from the centre of radiating conductor. The 

parametric analysis of the antenna design is described in Section 5.4. Subsequently, the 

measurement data of the reconfigurable antenna is compared with simulation result. 

Any discrepancies from the expected result are reported in Section 5.5 of this chapter. 

Conclusively, all the result for this chapter is summarised in Section 5.6. 
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5.2 Miniaturisation techniques 

Extensive research has shown that there a various techniques for antenna 

miniaturisation has been explored in the antenna designs up to this date. Large demand 

for a small and compact size of antenna with an acceptable degree of antenna 

performance has forced more antenna researchers to extend their designs. For a planar 

antenna, shorting and folding of the radiating patch has been a commonly used 

technique to reduce the size of the antenna[96][97]. This technique has been popular 

due to its cost efficient, but the shortcomings of the techniques come from the gain loss 

and low directivity[98].  

The engagement of dielectric substrate with high effective permeability and 

permittivity values also has been proven to reduce the size of microstrip antenna[99]. 

However, the high cost of fabrication for such dielectric limited the use of this 

technique. Another technique is by reshaping the patch[100] or introducing slots into 

the patch[101][102]. This will result in antenna diminishment while maintaining high 

bandwidth. It has also proven to improve the gain and efficiency of the antenna[98]. 

 Another interesting technique is by using metamaterial structure into the design 

which resulted in high degree of miniaturisation[103]. However, the technique has 

shortcomings of limited bandwidth and low efficiency. Due to the unnatural resources 

of metamaterial, the antenna geometry is complicated with no certain standard in 

antenna procedure. 

One more miniaturisation technique is by incorporating reactive load into the 

transmission line structure. The reactive loads, either inductive or capacitive, introduces 

time delay (phase shift) and slows the wave propagation[104]. Antenna design with 

inductive loadings in [105][106] and capacitive loadings in [107][108][109] have shown 

to be successful in reducing the antenna size. Then again, this method has high ohmic 

losses due to the additional series resistance, which further reduce the gain.  

  

file:///F:/antenna


 

83 | P a g e  
 

5.3 Principle of operation 

One of the major concerns in pattern reconfigurable antenna design in Part 4 is the 

length of metal rod. It is made longer than resonant length, so that the induced currents 

are in such a phase that it reflects the power away from the metal rod. In this chapter, 

miniaturisation of the metal rod is conducted by placing two inductors in series with 

parasitic structure. The main idea is to physically adding inductance to the parasitic 

structures as a replacement to the dimension. 

The purpose of this chapter is to conduct a miniaturisation on the antenna design 

while having the same antenna characteristic and performance. The metal rod addition 

to the shorted circular patch antenna has been a trigger to the changes in the radiation 

pattern of patch antenna. A full-length metal rod has a size of λ/2 to operate, which is 

impractical for mobile application and small communication devices. Thus, the 

measurement is reduced by physically adding inductance to an element. There are 

multiple methods for miniaturisation. However, in this case, adding a lump inductor to 

the element is the most relevant. The inductors with specific value can compensate the 

inductive impedance introduce by a longer metal rod.  

The full-length of metal rod is 150 mm, which is reduced to 45.5 mm which is three 

times smaller. The reduction is caused by the introduction of two inductors in series 

with the parasitic element. The value of the inductor is determined through optimisation 

function in HFSS. During the optimisation analysis, for every mesh point set, the value 

of appropriate inductor is selected to enable the parasitic to have a same behaviour as 

the full-length metal rod. Appropriate length of the parasitic element is also considered 

during the optimisation analysis.  

During initial analysis, the shape of parasitic element is different. However, due to 

the practicality and also the availability of inductor with certain values in the current 

market, the shape of metal element is altered. The shape of the parasitic element is as 

shown in Figure 5.1 below. 
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Figure 5.1 The build-up for the parasitic element with inductors in series for miniaturisation. 

 

Figure 5.2 The construction of proposed antenna design for miniaturisation. 

 

 

5.4 Performance analysis 

5.4.1 Radiation pattern 

The miniaturisation of full-length metal rod is conducted by the addition of two 

inductors in series to a parasitic element. The inductors with specific value of 53 nH are 

located at an equal distant from the middle of the parasitic element. The addition of real 

value inductors into the parasitic element has replaced the inductance introduced by the 

longer dimension of metal rod. Thus, the parasitic element with total length of 3/20 λ 

produces the same result as a full-length metal rod.   
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 Figure 5.3 provides the overview of the changes in radiation pattern with the 

addition of a single parasitic element replacing a full-length metal rod to the proposed 

antenna design. The parasitic element with inductors in series appeared as a reflector. 

The maximum gain is in the opposite direction to the parasitic element. As can be seen 

from the figure, the omnidirectional radiation pattern of shorted circular patch antenna 

has transform into a directional radiation pattern where the maximum gain is in opposite 

direction of the position of parasitic element. This has proven that the parasitic element 

has conducted the same performance as the metal rod in previous chapter. 

 

Figure 5.3 Radiation pattern with the insertion of single parasitic element. 

 

In the above figure, there is a clear trend of the changes in the radiation pattern. The 

addition of inductor with specific value in series to the element has demonstrated the 

same performance as a full-length metal rod. The reduction in length of the element is 

about three times of the initial size. The comparison of the maximum gain for both 

elements is shown in the Figure 5.4 below. The front-to-back ratios for both cases are 

also observed. It is clear that the maximum gain for metal rod is greater than the 

element with inductors. However, it is noteworthy to notice that the front-to-back ratio 

for element with inductor is more significant compared to metal rod.  
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Figure 5.4 Comparison of radiation patterns when using metal rod and parasitic element. 

To investigate the changes of radiation pattern, an element is placed at different 

position and activated individually. The individual parasitic element is placed at 0°, 10° 

or 20° from the centre of the antenna. It is important to investigate the changes in 

radiation pattern with regards to the slightest change in location of single element. Each 

of the elements is activated individually and the change in radiation pattern is observed. 

From the Figure 5.5, it is clear that the parasitic element with inductors inserted has the 

same capability as metal reflector in previous study. Furthermore, as seen from the 

figure, the antenna is quite sensitive as the radiation pattern changes accordingly with 

different position of activated element. 

 

Figure 5.5 Radiation patterns when single activated parasitic element is located at different 

location. 
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 Subsequently, the changes in the radiation pattern with the activation of parasitic 

element at different location are studied. Multiple parasitic elements are situated around 

the shorted circular patch antenna with 10° distance to each other. Each of the parasitic 

elements is activated individually. The changes in radiation pattern can be observed in 

Figure 5.6 below. As can be seen in the figure below, the maximum gain for each case 

has diminished drastically. In general, the direction of the maximum gain still present 

the parasitic element has been behaving as a reflector. However, the reduced in the 

maximum gain is possibly caused by the mutual coupling occurred when the parasitic 

elements are located adjacent to each other. 

 

Figure 5.6 Radiation patterns when multiple elements are placed around patch antenna with 

single activation. 
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5.4.2 Return loss 

Return loss or frequency response of the proposed antenna design is maintained 

at 1 GHz. The figure below depicted the S11 for the case where the metal rod is 

replaced by the parasitic element. When simulated in HFSS, the frequency response for 

the proposed antenna design is maintained at 1 GHz and only the radiation pattern of the 

antenna performance is change. In this way, the pattern reconfigurable antenna can be 

achieved. Figure 5.7 shows the return loss of the shorted patch antenna when the metal 

rod is replaced by the element with inductors. As seen in the figure, the S11 is 

maintained at 1 GHz, plus the amount of radiated power is increase when using parasitic 

element with inductors. 

 

Figure 5.7 Simulated return loss for the proposed antenna. 

5.5  Parametric analysis 

The real value inductors are placed into the element as a substitute to the inductance 

acquired from the longer length of metal rod. The configuration of the parasitic element 

using single inductor is studied in this part of the chapter. While the inductance value is 

crucial, the formation of parasitic element is equally important to ensure the same 

radiation performance as metal rod. Another aspect to be considered is the value of the 

inductors. The values of the inductors need to be practical and real-world value. The 

impact of the parameters on the radiation pattern is described concisely in this part of 

the chapter. The parametric analysis and optimisation function in HFSS is operated to 

give the best result.  
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5.5.1 Single inductor configuration 

 

 

Figure 5.8 Parasitic element configuration using single inductor. 

 

 

Figure 5.9 Radiation pattern for different values of inductor in a single inductor configuration. 

 

During the antenna design process, other configuration of the parasitic elements 

has also been considered. The figure above shows the configuration of metal strip with 

single inductor. The radiation performance of the antenna is plotted in rectangular graph 

for better understanding and given in the Figure 5.9. The size of inductor is maintained 

at 1 mm, the same size of practical inductor available in the market. Although the 

inductance values are varied, the parasitic element still failed to operate as a reflector. 

As can be seen in the graph, at some value of inductor, the parasitic element serves as a 

poor director. For that reason, the number and position of inductors, as well as the shape 
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of the metal strip are similarly crucial for the parasitic element to serve as a reflector 

and maintain the same radiation performance given by metal rod. Thus, the proposed 

antenna is designed using two inductors in the parasitic element to serve as a good 

reflector. 

5.5.2 Different values of inductors 

The reflector capabilities of metal rod is due to the element being inductive, 

which means the current induced lags the current induced by the radiating patches, thus 

causes phase distribution to occur. Two real value inductors are inserted into the design 

to replace the inductance coming from longer length of metal rod. Thus, the parasitic 

element can have a shorter dimension and at the same time behaving as equal as the full 

length metal rod. However, another aspect to be considered is the real world value of 

the inductor. The real value inductor has a fixed inductance which is available in the 

market. There are some values that are not available in the market as well. 

The parametric analysis conducted on different value of inductors placed in 

series with the metallic element to see the changes in the radiation pattern. As can be 

seen from the graph below, the radiation patterns show that at certain value of 

inductance the element does not behave as a reflector. When using 50nH inductor, the 

parasitic element has enough inductance to act like a reflector and thus, causes the 

radiation pattern to have a maximum gain in the opposite direction of the element. Other 

value of inductors does not provide sufficient inductance which indicates that the 

element fails to behave as a reflector.  

 

Figure 5.10 Radiation pattern in rectangular plot for different inductor values. 
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5.6 Simulation and Measurement 

5.6.1 Return loss and S11  

The measurement for pattern reconfigurable antenna using miniaturise element 

to replace the metal rod is conducted in a capacious room. The experiment area is kept 

clear from any devices that can cause multipath effect. The measurement of S11 for the 

reconfigurable antenna is repeated using miniaturised reflector. The pattern 

reconfigurable antenna is connected to Port 1 of the Network Analyser. Simulation data 

obtained from HFSS is compared to the measurement data from the experiment. As 

seen from the Figure 5.12 below, the antenna resonates at 1 GHz during the simulation 

whilst the frequency shifted a bit during the experiment.  

 

 

Figure 5.11 Measured return loss (S11) for the reconfigurable antenna with miniaturised 

reflector as given by Network Analyser. 
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Figure 5.12 Simulated and measured return lost for the reconfigurable antenna with 

miniaturised reflector. 

 

5.6.2 Radiation pattern measurement 

During the measurement of radiation pattern, the horn antenna is connected to 

Port 1 of the Network Analyser while the proposed antenna is connected to Port 2. Both 

antennas are elevated far above the ground to reduce reflection from floor. Figure 5.13 

shows the arrangement for the measurement of radiation pattern. As seen in Figure 5.9, 

two inductors are soldered to Element 1 which signifies the element is activated. 

Element 1 is positioned at 20° from the centre of radiating patch. The parasitic element 

is positioned in 0°, 10° and 20° from the centre of radiating patch. During the 

preparation of the experiment, inductors value of 53 nH is chosen as it gives the best 

result for practical measurement. 
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Figure 5.13 Measurement setup for the pattern reconfigurable antenna using parasitic element 

with inductors. 

 

 

The purpose of this chapter is to miniaturise the size of metal rod while 

maintaining the same behaviour of the reflector. The result of comparison between the 

simulation conducted in HFSS and experimental results are presented below. When the 

element at 0° is activated, the radiation pattern is shown in Figure 5.14. The radiation 

patterns when single element activated at 10° and 20° are presented in Figure 5.15 and 

5.16 respectively. The results comprises of radiation pattern on azimuth plane at 1 GHz 

for different position of element activated around the patch antenna. From the results 

presented, the shape of radiation pattern did change accordingly when different position 

of element is activated. However, the maximum beam direction is not exactly according 

to the position of the element. There are some discrepancies in the direction of 

maximum gain when individual element is activated. The maximum gain is at 210° 

when element at 0° is activated and the maximum gain occurs at 220° for both cases 

where the element at 10° and 20° is activated. The inconsistencies might be due to the 

mutual coupling occurred between the elements positioned close to each other.  
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Figure 5.14 Radiation pattern of the reconfigurable antenna for element activated at 0°. 

 

Figure 5.15 Radiation pattern of the reconfigurable antenna for element activated at 10°. 
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Figure 5.16 Radiation pattern of the reconfigurable antenna for element activated at 20°. 

The comparison for each case where different elements is activated at different 

position is well presented in a rectangular plot below. From the graph, it is clearly 

shown that the direction of maximum gain for each case is not in consequences to the 

location of reflector. The inconsistencies of the maximum gain direction may perhaps 

influence by the close position of the elements. The elements are located close enough 

to each other to initiate a mutual coupling which affected the direction of maximum 

gain. Also, the multipath effect as well as power reflection from the ground might 

impact the measurement results. Even though the noises are kept at minimum and the 

surrounding area is kept clear of any electromagnetic devices, without the Anechoic 

chamber, the environment is still not optimum for the experiment.  
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Figure 5.17 Rectangular plot for radiation patterns activated at different positions. 

5.7 Summary 

In this chapter, a miniaturisation on the pattern reconfigurable antenna is accomplished 

by exercising reactive loading (inductive) into the antenna design. The radiation 

performance of the miniaturised antenna is compared with the full-size reconfigurable 

antenna. There is a clear pattern of changes in direction of radiation pattern. However, 

the gain has reduced significantly. The simulation and measurement results are 

compared and show good agreement until the parasitic element are placed 10° apart 

from each other. When the parasitic element is position too close between each other, 

mutual coupling arises which affected the result. Another factor might be due to the 

multipath losses from the surrounding. 

  

  



 

97 | P a g e  
 

Chapter 6 Conclusion 
 

6.1 Discussion 

Advanced wireless system necessitate an antenna with the ability to transmit and 

receive signal in all horizontal direction equally, and at the same time can be a 

directional antenna when preferred. Therefore, the construction of radiation pattern 

antenna is crucial to feed the demand. Reconfigurable antenna has a capability to 

change its parameter; i.e. frequency, radiation pattern and polarisation, without 

significant change in antenna structure. 

Throughout this thesis, a patch antenna with an omnidirectional radiation pattern is 

designed and tested. A patch antenna is widely used because of its low profile design. A 

standard patch antenna has a directional radiation pattern. In the proposed antenna 

design, air dielectric is utilised to give the omnidirectional radiation pattern. By having 

an omnidirectional radiation pattern, it will be beneficial to incorporate the shorted 

patch antenna for an application that transmit or receive signal from wide variety of 

directions. The proposed antenna design also allows a full coverage of transmission in 

horizontal direction. Furthermore, the incorporation of shorting pin resulted in a size 

reduction of the patch antenna. Integrating more than one shorted pin into the patch 

antenna ensure a more stable design.  

The antenna in aforementioned chapter is modified, so that its radiation properties 

change by insertion of metal rod. The metal rod with full length of λ/2 acted as a 

reflector, thus gives significant change in the direction of radiation pattern. The optimal 

length and distance of the metal cylinder is acquired through parametric analysis in 

HFSS. The hardware prototype of the antenna is fabricated. The frequency response and 

radiation performance of the antenna is measured and compared with simulation result. 

The measurement data shows a good agreement on the change of radiation pattern 

shape. Some inconsistency in the measurement might be due to the multipath losses as 

the experiment is taken not in optimal environment. The PIN diodes are simulated as 

ideal lumped components without considering the actual PIN junction and depletion 

region. 
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The problem with radiation pattern reconfigurable antenna in the previous chapter is 

the large dimension of the whole antenna. The size of metal rod affected the size of 

whole antenna design. Thus, a miniaturisation of the metal rod is attempted in the 

subsequent chapter. The miniaturisation of the antenna is accomplished by exercising 

reactive loading (inductive) into the antenna design. The metal rod is reduced to one 

third of its initial half-wavelength size by integrating two equivalent inductors on each 

side of the parasitic element. The shape as well as the best inductor value is obtained 

through parametric analysis conducted in HFSS. The comparison between the 

miniaturised antenna and full-size reconfigurable antenna shows a good agreement in 

terms of the direction of radiation pattern. The simulation and measurement results are 

compared and show good agreement until the parasitic element are placed 10° apart 

from each other. When the parasitic element is positioned too close between each other, 

mutual coupling arises which affected the result. Another factor might be due to the 

multipath losses from the surrounding.  

6.2 Future works 
 

 The experiments are all conducted in a huge-spaced room to ensure minimal 

multipath effect. All preventive measures are taken into considerations. However, the 

experiment should be conducted in Anechoic chamber for a more accurate result. All 

the noises and losses can be eliminated. The orientation of the reference antenna and 

antenna-under-test must be aligned as well, which is the trickiest part of the experiment.  

During this study, the application of PIN diode as a switch is not studied. The PIN 

diode has specific value of resistance during ON state. Even though the value is small, 

the effect it has on the signal should be investigated. Furthermore, the incorporation of 

PIN diode would require dc bias for activation, thus might affecting the signal as well. 

In the upcoming study, the impact of PIN diode should be highlighted to extensively 

comprehend the antenna design. 
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