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Abstract 

 Development of the Finite Block Method (FBM) is presented, with the introduction of 

infinite elements for the first time, for predicting stationary and transient heat conduction in 

cutting/grinding processes. Utilizing the Lagrange series the first order partial differential 

matrix is derived, adopting a mapping technique, followed by the construction of the higher 

order derivative matrix. For linear stationary heat conductivity three free parameters including 

the velocity of the workpiece, the cooling coefficient and the inclined angle of the contact zone, 

together with their effects on temperature, are observed. For the transient heat conduction study, 

the Laplace transformation method and Durbin's inverse technique are employed. Numerical 

solutions are discussed and comparisons made with the finite element method and analytical 

solutions, demonstrating the accuracy and convergence of the finite block method. 
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1. Introduction 

In the past forty years, many cutting/grinding heat models have been proposed and 

investigated [1-3]. Accurate prediction of heat transfer is important since high temperatures can 

lead to surface thermal damage during the cutting/grinding process. Most of the heat is 

generated at the interface during the grinding process due to friction [4], which can dissipate in 

four ways; by transferring heat to the workpiece, grinding wheel, coolant and chips. In 1942 

Jaeger [5] systematically studied, for the first time, the temperature distribution between sliding 

contacts observing the movement of heat. Different heat source distribution (the band heat 

source and the rectangular heat source) and different moving times (a finite time and an infinite 

time) were investigated by Jaeger and analytical models developed.  Until recently, most of the 

thermal models are based on Jaeger's original moving heat source theory [1].   However, due to 

the complex nature of most grinding techniques, numerical simulation becomes more important 

and effective. Shen et al. [7] developed a two-dimensional heat transfer model to investigate 

the grinding process based on the Finite Difference Method (FDM) and compared their results 

with previous traditional models for validation. By using FDM, a three-dimensional grinding 

model was proposed by Wang et al. [8] in order to determine the temperature field. The Finite 

Element Method (FEM) by Dawson and Malkin [9] was applied with a moving heat source in 

order to discretize the differential equation. The contact area between the wheel and the 

workpiece (or shear plane) is considered as the location of the heat source, which moves along 

the surface of a semi-infinite solid. The numerical results can be used to predict the grinding 

zone or shear plane temperature.  Moulik et al. [10] conducted an analysis of temperature and 

thermal stress using a transient heat conduction model using FEM, which was validated using 

an analytical solution. Gu et al. [11] conducted the temperature numerical analysis in the 

workpiece and grinding wheel using the Petrov-Galerkin weighted residual FEM. In addition, 

the independent variable of time was discretized by applying an implicit integration scheme. 

Mahdi et al. [6] obtained the temperature distribution and phase transformation in a 

workpiece using the finite element software ADINA. Anderson et al. [12] applied ANSYS and 

results were compared with a simplified analytical solution. It was shown that the numerical 

model provided more accurate results compared to the simplified analytical models for the 

grinding process with a large depth of cut. Parente et al. [13] computed the temperature field of 

a workpiece using ABAQUS, taking the cooling effect of liquid into consideration, with the 
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numerical predictions comparing well with experiment results. The heat transfer problem with 

a moving heat source along the surface was studied analytically and numerically by Li and Li 

[14]. A series representation of the solution for creep-feed grinding was calculated numerically 

by Gonzalez-Santander [15].   

In recent years mesh reduction approaches, including the boundary element method and 

the meshless method, have become popular due to them being highly adaptable and low cost 

associated with preparing input data and analyzing output results within the numerical models 

[16,17,18]. Li et al [19] modeled the grinding wheel by the Discrete Element Method (DEM) 

and analyzed the effect of applied loads on the damage of the wheel. Experiments were 

conducted to validate the results of the simulation. Shimizu et al. [20] investigated the 

mechanism of material removal and material deformation in the grinding process by the 

Molecular Dynamics Method (MDM) for the aluminum atom and carbon atom. Two different 

Morse potentials are applied to describe the interaction between aluminum atoms, and between 

an aluminum atom and a carbon atom. By using FEM, Nguyen and Butler [21,22] modeled the 

grinding wheel and generated the processed workpiece surface. The data of the wheel 

topography was obtained in Gaussian field, and therefore the desired topography in non-

Gaussian field is obtained using the inverse technique. The model of wheel topography is 

described by topography height and summit curvature in every grid, rather than the shape or 

position of abrasive grains. An algorithm to establish the relationship between the summit 

curvature of the wheel topographical point and the workpiece material removal mode (rub, 

plough or cut) was proposed. The surface of the workpiece was updated according to the 

estimated material removal mode for every topographical point until the final processed surface 

was achieved. The simulated results were consistent with that of experiments. 

The finite block method–a meshless method–based on the point collocation method was 

developed firstly to solve the heat conduction problem in the functionally graded media and 

anisotropic materials by Li and Wen [23]. Recently, this method was developed to analyse 

nonlinear elasticity including frictionless/friction contact by Wen et al [24] and Li et al [25,26]. 

The essential characteristics of the FBM is that the domain is divided into a few blocks and the 

partial differential matrices are applied to each block. Therefore, the degree of accuracy should 

be higher than other meshless methods due to the fact that all stress components are continuous 

along the interface between two blocks. In the present paper, a heat conduction numerical 
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solution is presented for the problem of a moving band source of heat q0 on a semi-infinite 

solid, inclined at angle ϕ to its direction of motion, with material disappearing as the heat 

source passes. To demonstrate the accuracy and efficiency of the FBM, a numerical example is 

presented and comparisons are made with both finite element method [9] and analytical 

solution [5]. 

2. Two dimension differential matrices   

FBM is a meshless collocation method and well developed using the Lagrange interpolation 

and mapping technique [24]. Consider a set of nodes as shown in Figure 1(a) in the normalised 

domain with the nodes collocated at )(k

 , 2,1 , Nk ,...,2,1 , where N  is the number of 

node along axis  . By using Lagrange polynomials, a function ),( 21 u  can be interpolated 

by 
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)(ku is nodal value, iNjk  1)1( , as shown in Figure 1(a) and the number of node in total 

is 
21 NNM  . The partial differential is obtained straightaway 
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In order to derive the partial derivatives in physical domain, the mapping technique should 

be utilized. Two-dimensional area Ω in the Cartesian coordinate ),( 21 xx can be mapped into a 

square '  in the domain 1 ;1  ),( 2121    shown in Figure 1(b) using quadratic shape 

functions, same as the finite element method, as below   



The thermal analysis of cutting/grinding processes by meshless finite block method                                       Yang, Wang, Adetoro,Wen & Bailey 

 - 5 - 

 4,3,2,1for      )1)(1)(1(
4

1
),( 2

)(

21

)(

12

)(

21

)(

121  iN iiii

i        (5) 

 7,5for                                      )1)(1(
2

1
),( 2

)(

2

2

121  iN i

i         (6) 

 8,6for                                      )1)(1(
2

1
),( 1

)(

1

2

221  iN i

i         (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                              (b) 

Figure 1. Two-dimensional node distribution in mapping domain: (a) the local number 

system of node; (b) mapping domain with 8 seeds. 

 

Therefore, the mapping of the domain can be applied with shape functions used in FEM, i.e. the 

coordinate transformation is written as following 
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where  
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For the sake of analysis convenience, the nodal evaluate of the first order partial differentials 

can be written in the form of vector as 
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Therefore, the vectors of the higher order partial differential nodal value are interpolated, in 

terms of matrices 
1D  and 

2D , as  
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3. Two dimensional infinite elements 

The infinite element, which was introduced by Wood [27], Bettess and Zienkiewicz [28] 

and used in the finite element method, will be utilized in the meshless approach in this paper. 

For two-dimensional problems, two simplest infinite elements are utilised as following: 
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(1) Four-nodes infinite element 

In the normalised domain, the edge of right hand side 1)(   is mapped to infinite place as 

shown in Figure 2. The mapping functions are   
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     (a)            (b) 

Figure 2. Four nodes mapping: (a) normalized domain; (b) physical domain. 

 

The coordinate transform can be written as, 
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It is clear that the first derivative matrices for all collocation points in (12) are still valid for the 

infinite element except the nodes at 11  .  
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(2) Five-seeds mapping 

Same as four seed mapping, the edge of the right hand side 1)(   is mapped to an infinite 

place, as shown in Figure 3. The mapping functions are given as,  
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Then their partial differentials respect to   and   are given as, 
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 Two and three dimensional mapping and shape functions for different types of the infinite 

element used in the finite element method are catalogued in [14] by Marques.  Zienkiewicz [6] 

presented an extensive survey of procedures used for finite element unbounded domain analysis, 

grouping them in accordance with the nature of the algorithm. 
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 Figure 3. Five nodes mapping: (a) normalized domain; (b) physical domain. 
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4. Transient heat conduction in cutting/grinding process 

Consider a schematic representation of the surface grinding process, as shown in Figure 4. 

A workpiece of contact length 2l and depth of cut a is observed moving with constant speed V 

horizontally. The average heat flux 0q  into the workpiece in the grinding process can be 

determined from, 



Ua
q 0                          (23) 

where Vl /2  is interaction time, 2/dal  , where d is the wheel diameter, U is the 

specific grinding energy and   is the fraction of this energy which is conducted as heat 

transfers into the workpiece. The factor   can be obtained from a heat partition analysis 

proposed by Moulik et al. [10]. In the present paper, a moving band source of heat 0q  or linear 

variation of heat source is presented on a semi-infinite solid inclined at angle   to its direction 

of movement with material disappearing as the heat source passes. The thermal modeling is 

presented by considering the grinding zone as a continuous band source of heat moving at the 

workpiece velocity. However, with large depths of cut/grinding the grinding zone becomes 

more inclined, as shown in Figure 4, and the inclined angle should therefore be taken into 

account. The geometrical arc length of contact between the wheel and the workpiece can be 

treated as a straight line of length l2 , as shown in Figure 4. The inclination angle is given by, 

)/(sin 1 da .  
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with the initial condition in the domain   and boundary condition on   conditions as follows, 
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    Figure 4. Geometry of the wheel, workpiece and slant shear plane. 

 

where u is temperature,   is thermal conductivity, c is specific heat,   is mass density, t is 

time, ),( tf x is given function, x is coordinate ),( 21 xx , ),( 21 nn  is unit normal outwards,   and 

  are coefficients of the boundary. In a special case, the surface flux nq from convective 

cooling losses can be written as, 

 )(  uuhqn                         (26) 

where h is surface heat transfer coefficient and 
u is ambient temperature, which is specified as 

zero in this paper. 

 Unlike the traditional meshless method, the physical domain is divided into a few blocks by 

using FBM. For stationary heat conduction, the term on the right-hand side of (24) does not 

exist. By applying the mapping technique and differential matrices in (24) for each block, we 

obtain, 

    iV x0uDDD                                1

2

2

2

1                 (27) 

where )/( kc   is thermal diffusivity, temperature vector of nodal value T

Muuu },...,,{ 21u , 

)( NNM   is the number of nodes for each block. The boundary condition yields, 

   

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iji fundndu xx       )(
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11                (28) 

In this case with more than one block, the continuous conditions on the smooth interface except 

two ends (joints) between blocks I and II gives, 
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i

I qquu xxxx  int ix             (29) 

int indicates the interface. Furthermore, at the corner joint x, both the temperature continuity 

conditions and point heat equilibrium should be considered as, 

    ),(...)()( )()()(

Q
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Q

I uuu xxx                    (30) 

   )(]cos)[cos(]sin)[sin( )(

1

)(

2

)()(

1

)(

2

)(

Q

X

IQ

QQ

Q

Q

y

QQ

Q

Q

x pqq xxx 


          (31) 

where X indicates the number of blocks, )(

1

)(

2  and QQ   are the starting and ending angles at the 

joint for block Q and p(x) is the total heat into the joint from outer surfaces A and B, as shown 

in Figure 5. By solving a set of NNm   linear algebraic equations from (27) to (31), here m 

is the number of block, the numerical solutions of temperature at each node can be determined. 

 

 

 

 

 

 

 

 

 

 

  Figure 5. End of interface with starting and ending angles for each block, A and B are 

boundaries.   

 

 For transient heat conduction problems, there are two types of approaches, i.e. time domain 

and transform domain techniques. In general, by using the time domain technique, the finite 

difference method is applied. In this paper, the Laplace transformation is utilized due to the 

linearity of problem. Applying Laplace transform over both sides of (24) results in, 
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with the boundary condition, 
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  xx                                                      ),,(
~~~ sfqu n             (33) 

where the Laplace transform is defined as following,  

dtetFsF st




0

)()(
~

,                      (34) 

where s is Laplace transform parameter. Following the same numerical procedure for stationary 

problem by using the mapping technique in (32) results in, 

     xuuDDDI                                ~
01

2

2

2

1  Vs             (35) 

for each block, where I is the unit diagonal matrix. The boundary conditions yield, 
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By changing u in the stationary case with u~ , one can obtain continuous conditions between 

two blocks at the interface including corner joints in the transformed domain for specified 

Laplace parameter s. A simple and accurate method proposed by Durbin [29] is adopted in this 

paper following two steps: (1) selecting (K+1) samples in the transformation space 

Kksk ,...,1,0 ,  , the transformed variables ),(~
ki su x  should be determined by FBM; (2) 

computing temperature ),( tu ix in the time domain by, 
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12
)( 



 ,                          (37) 

where the Laplace parameter is selected ,/2 Tiksk   in which 1i . Obviously, there 

are two free normalised parameters in ks :   and T. The selection of parameters T depends on 

the observing period in the time domain. In the following examples, all variables are 

normalised with dimensions of unit for the convenience of analysis. 

 

5. Numerical analysis 

A two-dimensional heat transfer model is considered with its boundary conditions 

schematically illustrated in Figure 4. For the sake of analysis convenience, three free 

dimensionless parameters are introduced; dimensionless heat source half-width 2/VlL  , the 

dimensionless convective cooling coefficient VhH  /2  and inclination angle  . In general, 
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the normalized temperature 02/ qVuu   in the field depends on the three dimensionless 

parameters, i.e. HL, and  . The dimensionless temperature u is used primarily for ease of 

comparison with other solutions [5,9] and all lengths are normalized to the half length of 

contact zone l . From the geometry shown in Figure 4, the depth and width of the workpiece are 

selected as 311 wwh  , and ,sin212 lhh   cos22 lw  . Same conclusion [9] has been 

found that the distances of 4/1 lh  and 5/1 lh  did not show any appreciable difference in 

computed temperatures. Therefore, the depth of the region was chosen as lh 41  in this 

numerical modelling. The spacing of nodal points along the surface is varied in order to give 

higher resolution near the trailing edge of the heat source as Chebyshev's roots, as 

)1(,...,2,1   ,
)1(

cos)( 


 






 Nk

N

kk                  (38) 

 

 

 

 

 

 

 

  

  

 

     

Figure 6. Model of cutting/grinding process using three blocks and boundary conditions.  

 

and the node number 2021  NN , as it is observed that the difference is ignorable for 

1021  NN . All computations are performed with double precision on a Lenovo-PC. The 

numerical solutions of the normalized temperature on the top surface of the workpiece versus 

l/'  when 0H  by the finite block method are smooth for different dimensionless 

parameter L shown in Figure 7. Contact zone is 6/'4  l . Comparison with the Jaeger's 
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analytical solution [5] and the Finite Element Analysis (FEA) [14] shows excellent agreement 

for these solutions of normalized temperature. Furthermore, no oscillation (instability) is 

observed by using FBM at all. However, the oscillations phenomenon using FEM was reported 

by Dawson and Malkin [9] and therefore many more elements would be required in his work. 

 

 

 

 

 

                      

 Figure 7. Temperature distribution on the top surface of the workpiece with different 

dimensionless parameter L. 
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 Figure 8. Temperature distribution on the shear plane with different inclind angle. 

                                

   Figure 9. Temperature distribution on the shear plane for different inclind angle. 
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Figure 10. Temperature distribution on the shear plane with different cooling parameters, L=4.5. 

 

 The effect of the inclination angle   on the temperature distribution is observed in the 

example. The temperature in the contact zone is shown in Figures 8 and 9 for a large and a 

small value of L (L=30 and L=1.125) respectively. In addition, the combined influence of the 

inclination angle   and surface cooling (H) on the surface temperature distribution within the 

band source is observed. Figure 10 shows the distribution of surface temperature versus the 

location l/  for different cooling parameter H and an intermediate value of L=4.5 when   is 

chosen as 00 and 450 respectively. It is clear that the surface cooling parameter H has much 

bigger influence at   = 00 than at  =450. Contours of the normalized temperature around the 

contact zone are plotted in Figure 11 for different free parameter L and inclined angle ϕ and 

other two free parameters including: (1) H=0.1, ϕ=0 in Figures 11(a)-(d); and (2) H=0.1, L=4.5 

in Figures 11(e)-(h). It is apperent that at low values of L, conduction carries heat well into the 

workpiece. As L increases, heat does not propagate before it is swept away by the increased 

velocity of the workpiece. Similarly, with increase of the inclind angle ϕ, the heat does not 

propogate into the workpiece.  In addition, a linear variation model of heat flux across the 
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contact zone (shear plane) is shown in Figure 4 with a dashline, in which the heat source starts 

from zero on the bottom of the shear plane to maximum value of 2q0 on the top surface. The 

temperature distribution is shown in Figure 12 for a different inclination angle  , when L=30 

and H=0 respectively. To demonstrate the difference between these two models of heat source 

distribution (uniform and linear distributions of heat flux), the numerical results with uniform 

model are plotted in the same figure for comparison. It is very obvious that the differences 

between them are significant.  

  

  

  

  
  

Figure 11. Contours of the normalized temperature centred at the middle of contact zone for 

different parameter L and angles of the contact surface  , where (a)-(d): H=0.1,  =0; (e)-(h): 

H=0.1, L=4.5.   
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 Figure 12. Temperature distribution on the top of the workpiece with different inclination 

angle. 

 

 In order to observe the degrees of accuracy and convergence, the finite element analysis 

commercial software ABAQUS is employed. Same modelling as shown in Figure 13 is 

considered with the speed 0V  and inclination angle 015 . Fine mesh of FEM is shown in 

Figure 13. The results of temperature distribution lquu 0/  on the shear zoon are presented 

in Figure 14(a) for FEM and Figure 14(b) for FBM with different node densities. Element type 

DCD4 is used for ABAQUS. For FEM with coarse mesh, i.e. the total number of node 60N , 

the degree of accuracy is poor. Reasonable solutions can be obtained when 207N . Seeing 

from Figures 14(a)(b), it is clear that the results given by FBM is more accurate than those by 

FEM with same node number. When the node number 768N  for FBM, it is hard to see the 

difference between accurate solution by FEM with high density of node ( 12765N ). However, 

the CPU time used by ABAQUS is about 0.1 second and 5 second used by FBM with desktop 

PC Intel(R) Core(TM)i7-4770S. 
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Figure 13. Finite element mesh used in ABAQUS. 
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 Figure 14. Distribution of temperature along the shear zoon: (a) numerical results by 

ABAQUS; (b) nmerical results by FBM. 

 

 In order to consider the accuracy of the FBM, comparison has been made with numerical 

solution by Gonzalez-Santander [15] for different flux densities on the cutting surface. Three 

flex modes are considered as 

(1) Linear profile. The linear heat flux profile is given by 

 )/1()( 0 lqq   .                      (39) 

(2) Triangular profile. The triangular heat flux profile is given by 
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(3) Parabolic profile. The parabolic heat flux profile is given be 
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where the normalised coordinate ( 1/1  l ) is established on the cutting surface. The 

temperature distribution on the cutting surface for linear, triangular and parabolic heat flux 

profiles are plotted in Figure 15 respectively. The dimensionless parameter L=10 for all graphs 
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and dimensionless parameter 6.0 . The excellent agreement with the results in [15] are 

achieved obviously. 

 

              

Figure 15. Temperature distribution on the top of the workpiece with different heat flux profiles. 

 

 For transient heat conductions, the time t is normalized to )/( 2

0 clt  . Two free 

parameters are chosen as T/5 . The maximum number of sample points in the Laplace 

transform domain is selected as 200K  in this example. The heat flux on shear plane is time 

dependent as )()( 0 tHqtq  , here )(tH is the Heaviside function. The variation of normalized 

temperature at the middle of the shear plane (contact zone) with uniform heat source and zero 

initial condition ( 0u 0 ) versus the normalized time )/( 0ttt   for various of parameter L is 

shown in Figure 16, here 0H . In this case, the observing time is 60T  in the Durbin 

inversion method. It is clear that the temperature is convergent to the stationary value in a short 

time. However, the time of convergence depends on the dimensionless parameter L 

significantly, i.e. the smaller of the parameter L, is the much shorter of the time to the 

stationary state would be. Furthermore, Figure 17 sketches the distribution of surface 

temperature for different normalized time intervals of 0.5 with 125.1L , 0H  and 
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observing time 10T . Apparently, the convergence to the stationary state can be achieved 

when 3t .   

 

 

 

 

             

 Figure 16. Normalized temperature variation versus the normalized time at the middle of 

contact zone with different parameter L of velocity. 
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 Figure 17. Temperature distribution on the top of the workpiece with normalized time 

intervals. 

 

 The same problem shown in Figure 6 is reanalyzed by the use of infinite element. In this 

modeling, block III is replaced with an infinite element as shown in Figure 16. To observe the 

convergence of the temperature on the surface of the workpiece, the boundary condition is 

changed on the bottom and on the right-hand side ( 0u ). The node distribution is shown in 

Figure 19 with an infinite element III, where the node number 1021  NN  for each block. 

The numerical solution of the normalized temperature on the top surface of the workpiece 

versus l/'  )50/'0(  l  is shown in Figure 18, when 0H  for different dimensionless 

parameter L, where the node number 3021  NN . The grinding zone is located in the region 

of 6/'4  l . By observing the results in Figure 20, the excellent agreement with three 

normal blocks is achieved apparently for the temperature in the region 9/'0  l  apart from 

a small region near the end of block III, i.e. 10/' l  (truncation of the domain). However, by 

using the infinite element, the temperature can be obtained for an unbounded domain.  
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Figurer 18. Model of cutting/grinding process with two blocks, an infinite element and 

boundary conditions  

 

 

 

 

 

                    

 

Figure 19. Nodal distribution in the physical domain: two blocks and one infinite element. 
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Figure 20. Temperature distributions on the surface both for truncated domain and unbounded  

domain. 

 Finally one more complicated problem is considered, i.e. the influence on the temperature 

distribution from the chip in the cutting procedure is observed. The geometry of modeling is 

shown in Figure 21. A workpiece with chip ABCD moves with constant speed V horizontally. 

The heat source density 0q  is uniformly distributed along the shear zoon AB. The node number 

1621  NN  for each block, the slant angle 015 and all other dimensions are specified in 

the beginning of this section. When the speed 0V , the distribution of temperature along the 

shear zoon AB by FBM is presented in Figure 22 and comparison with FEM is shown in the 

same figure, where  the temperature is normalized lquu 0/  (node number is 3072). To 

verify the convergence of this method, the relative average error is found less than 0.01% with 

higher density of node. With non-zero velocity of motion, the numerical solutions of the 

normalized temperature 02/ qVuu   and flux density 0/ qqq II

n of block II on the shear 

zoon AB versus l/  are shown in Figures 23 and 24 for different of dimensionless parameter 

0.2 

L=10 

2 

5 

0.5 
1 

λ'/l 

ū
 

0 H  



The thermal analysis of cutting/grinding processes by meshless finite block method                                       Yang, Wang, Adetoro,Wen & Bailey 

 - 26 - 

L respectively. It is evident that the flux densities of q  along the shear zoon AB are more than 

80%  for all cases.  

 

 

 

 

 

  

 

 

 

       Figure 21. Finite block modelling of workpiece with chip and heat source along AB. 

                 

  Figure 22. Distributions of temperature along the shear zoon by FBM and FEM. 
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 Figure 22. Temperature distribution versus the local coordinate l/ and different 

dimensionless parameter L. 

                    

 

Figure 22. Flux density of block II versus the local coordinate l/ and different dimensionless 

parameter L. 
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6. Conclusion 

 A meshless method, called the finite block method, was developed to study the heat transfer 

problem for metal cutting/grinding thermal modelling of an inclined band source of heat 

moving along the surface of a semi-infinite solid. The finite block method was proposed for 

general heat transfer problems generated from the metal cutting/grinding process. This method 

considered the governing equations in the strong form and the system equations are formulated 

with partial differential matrices from the equilibrium equations, boundary conditions and 

continuous conditions for all blocks. As the higher order of the partial differentials are 

evaluated by the Lagrange series with an easy mapping technique, the computational effort is 

reduced significantly compared to other meshless methods. In addition, using the mapping 

technique with infinite elements the system equations in strong form were formulated with the 

first order partial differential matrices from the equilibrium equations and boundary conditions 

for the unbounded domain. The stationary and transient temperature field were obtained by 

solving a set of linear algebraic equations. The results of this analysis were presented in terms 

of three dimensionless parameters including HL, and  , and these results can be applied to 

compute the temperatures on the shear plane and the grinding surface. This method can be 

extended easily to any type of partial differential equations, including stress analysis of metal 

cutting/grinding problems.  
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