ROYAL SOCIETY
OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

L)

Research

updates

Cite this article: Luo L, Wu X, Li Z, Zhou Y,
Chen T, Fan M, Zhao W. 2019 Synthesis of
activated carbon from biowaste of fir bark for
methylene blue removal. R. Soc. open sci. 6:
190523.

http://dx.doi.org/10.1098/rs0s.190523

Received: 24 May 2019
Accepted: 5 August 2019

Subject Category:
Chemistry

Subject Areas:
environmental chemistry

Keywords:
fir bark, activated carbon, adsorption,
methylene blue

Author for correspondence:
Weigang Zhao
e-mail: weigang-zhao@hotmail.com

This article has been edited by the Royal Society
of Chemistry, including the commissioning, peer
review process and editorial aspects up to the
point of acceptance.

[

ROYAL SOCIETY
OF CHEMISTRY

THE ROYAL SOCIETY

PUBLISHING

Synthesis of activated carbon
from biowaste of fir bark for
methylene blue removal

Lu Luo', Xi Wu', Zeliang Li', Yalan Zhou',
Tingting Chen', Mizi Fan'2 and Weigang Zhao'

LCollege of Material Engineering, Fujian Agriculture and Forestry University,
63 Xiyuangong Road, Fuzhou 350002, People’s Republic of China

Z(ollege of Engineering Design and Physical Sciences, Brunel University,
Uxbridge UB8 3PH, UK

WZ, 0000-0003-1804-6552

Activated carbon (AC) was successfully prepared from low-cost
forestry fir bark (FB) waste using KOH activation method.
Morphology and texture properties of ACFB were studied
by scanning and high-resolution transmission electron
microscopies (SEM and HRTEM), respectively. The resulting fir
bark-based activated carbon (ACFB) demonstrated high surface
area (1552m”g™") and pore volume (0.84 cm®g™"), both of
which reflect excellent potential adsorption properties of ACFB
towards methylene blue (MB). The effect of various factors,
such as pH, initial concentration, adsorbent content as well as
adsorption duration, was studied individually. Adsorption
isotherms of MB were fitted using all three nonlinear models
(Freundlich, Langmuir and Tempkin). The best fitting of MB
adsorption results was obtained using Freundlich and Temkin.
Experimental results showed that kinetics of MB adsorption by
our ACFB adsorbent followed pseudo-second-order model. The
maximum adsorption capacity obtained was 330 mg g™, which
indicated that FB is an excellent raw material for low-cost
production of AC suitable for cationic dye removal.

1. Introduction

As urbanization and industrialization advance, the environmental
problem has become increasingly prominent, especially the
pollution of water resources, which seriously affects water quality
[1]. Among the pollutants, synthetic dyes (i.e. methylene blue
(MB)) have drawn much attention because of their wide
application in dyeing, textiles, printing, leather as well as in the
coating industries, which causes water contamination [2,3].
Meanwhile, coloured dye wastewater is complex in nature, most of
which is toxic, mutagenic and carcinogenic to aquatic organisms,
causing some health problems [4,5]. MB is a very commonly used
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synthetic dye (in wood, silk, leather and cotton processing) and, as a result, is often found in industrial n
wastewater. It belongs to the group of cationic dyes. The ingestion of water with MB into the human
body can lead to health problems such as shock, diarrhoea, jaundice, etc. [5,6].

Based on the problems, several technologies, including flotation [7], aerobic and anaerobic treatment [8],
micro-and ultra-filtration [9], ion exchange [10], microbial electrochemical technologies [11], oxidation
[12,13] and adsorption, have been employed for wastewater treatment [14-18]. Among these methods,
adsorption has received extensive attention since it is easier, cheaper, more efficient and economical than
others. Thus, different adsorbents have been developed and applied to neutralize dyes and other organics
in wastewater. Nguyyen & Juang [19] prepared graphene oxide/titanate nanotube compound and when
applied for adsorption of MB, the adsorption capacity was low, only 26 mgg™". Yang et al. [20]
synthesized the graphite oxide using a kitchen microwave oven and the adsorption capacity of MB was
170 mg g~". Dehghani et al. [21] used a new composite made up of shrimp waste chitosan and zeolite as
adsorbent to remove MB, and the adsorption capacity was 24.5mgg™". Fu et al. [22] synthesized
polydopamine (PDA) microspheres by oxidative polymerization method and used them as an adsorbent
for the removal of MB, with the adsorption capacity reaching 90.7 mg g~'. Auta & Hameed [23] reported
that Chitosan—clay composite was prepared and applied to remove MB, and the adsorption capacity was
142 mg g~". Therefore, it is necessary to develop an efficient and environmentally-friendly adsorbent.

Activated carbon (AC) is one of the best adsorbents which is widely used because of its large surface area,
excellent porosity, low density as well as high adsorption capacity towards various organic compounds [1,24—
26]. ACs can be obtained from various agricultural waste- and by-products, which have received significant
attention as they are low-cost, renewable and environmentally friendly [25,27]. Recently, several types of ACs
were obtained using bamboo [28], palm shells [29], coconut shell [30,31], rich husk [32], sawdust [33], apricot
stones [34], seeds [27], etc. as raw materials. The fir tree is one of the fastest-growing trees to be planted in large
numbers throughout the world. As a common forestry waste, the tree bark is a low added value product,
which is often burned as a fuel or treated as waste material [33]. In the course of fir tree use, a large
amount of fir bark (FB) is produced, which causes gaseous pollution during burning.

Therefore, this work is focused on the preparation of AC from FB (ACFB) using the KOH activation
method. As mentioned, fir tree bark is a cost-effective and high-quantity by-product, which makes it a
very promising raw material for preparing low-cost activated biocarbons. To evaluate the properties of
this ACFB, we used its dye adsorption capacity towards MB as a performance criterion. When not used
as a fuel or treated as waste material, the value-added applications of fir tree bark have important
implications for both society and the environment. The morphology texture and pore structure of ACFB
were characterized using SEM and BET analyses, respectively. MB was selected to study the adsorption
capacity. The effect of contact time, adsorbent dosage, initial concentration and pH on adsorption
characteristics of ACFB was studied. The fitting of adsorption isotherms and kinetics were also
investigated. The results suggest the as-prepared porous carbon material from fir tree bark has great
potential for MB adsorption, which is comparable or better than the samples reported in the open literature.
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2. Material and methods

2.1. Reagents and materials

Chinese fir (Cunninghamia lanceolata) bark as raw material was sourced from a commercial plantation in
Fujian province (China). KOH pellets and HCI solution (approx. 36.5%), used as received, were of
analytical grade and acquired from Tianjin Fuchen Chemical Reagents Factory (Tianjin, China). We
used deionized water with 18.25 MQ cm resistance.

2.2. Activated carbon synthesis

For the synthesis of activated carbon (ACFB), Chinese fir was washed several times with tap water until
the waste water became clear. It was dried at 103°C for 24 h, after which the bark was milled and sieved
through a 10 mesh sieve to obtain powder around approximately 2 mm in size.

The synthesis procedure of AC was adapted from our earlier work as follows [35]: first, crushed FB was
carbonized at 450°C (from room temperature at 5°C min~" rate) under constant N, flow of 500 ml min~".
After 1 h held at 450°, the samples were slowly cooled at room temperature. The resulting product was a
carbonaceous precursor, which was then mixed with KOH pellets. The mixture was placed into a nickel

crucible and then into a tube furnace, which was slowly heated (at 3°C min~!) to 700°C under a constant
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Figure 1. Schematic procedure of the complete synthesis route of the porous carbons from FB for MB removal.

N, flow (500 ml min™"). After 2 h at 700°C, the samples were allowed to cool down inside the tube furnace
still under nitrogen flow. The resulting AC samples were rinsed with 1 M HCI and then washed with hot
water in Soxhlet for 48 h until the pH of water was stable, after which the products were dried for 24 h at
103°C. The resulting product was very pure AC. Because it was prepared from FB, it was named ACFB
(figure 1).

2.3. Characterization methods

Specific surface area as well as pore volume and sizes of ACFB were obtained by Micromeritics ASAP
2020 automatic apparatus using nitrogen adsorption/desorption isotherms at —196°C. ACFB was
degassed at 250°C under vacuum overnight. The average micropore diameters (Ly) and pore size
distributions (PSD) were calculated using density functional theory (DFT). The surface morphology
and pore texture of ACFB were characterized using scanning transmission electron microscopy (STEM;
FEG SEM Hitachi S3400, Chiyoda-ku, Tokyo, Japan) as well as high-resolution transmission electronic
microscopy (HRTEM; JEM-2100, JEOL, Tokyo, Japan) at 200 kV accelerating voltage.

2.4. Adsorption of dyes on methylene blue

Adsorption experiments were performed using the batch adsorption method to determine the influence
of pH (in the 3-11 range), initial adsorbent content (in the 20-80 mg 1™" range), ACFB dose (1-50 mg) and
adsorption duration (5-180 min) on the adsorption result. For each experiment, a certain amount of
ACFB was placed into a 250 ml conical flask containing 100 ml of MB of a specific concentration and
at certain pH. The mixture was stirred in an orbital shaker at 30°C at 150 rpm over a specific time.
Remaining MB content was measured by UV-vis UV-6300, MAPADA spectrophotometer at 664 nm
maximum wavelength.
The percentage of MB adsorbed was determined based on the following formula:

Co — Ce
Co

Removal (%) = x 100. (2.1)

The maximum MB uptake g, (in mg g™') was calculated as shown below

ge= 0 Cy, (22)
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Figure 2. Nitrogen sorption (filled symbols)/desorption (empty symbols) isotherms and PSD (inset) for ACFB.

where Cy and C, are initial and final MB concentrations in mg I, respectively; Wis the amount of ACFB
(in g) and V is the volume of MB solution (in I).

3. Results and discussion

3.1. Characterization of carbon material

N nitrogen adsorption/desorption isotherms at —196°C as well as PSDs of ACFB are shown in figure 2.
The nitrogen adsorption amount increased obviously at P/Py below 0.05, which indicated the mainly
microporosity of ACFB [35,36]. ACFB isotherms in the 0.4-0.99 P/P, range belong to type I isotherm
with H4 hysteresis according to the IUPAC classification. Such isotherms are typical for materials with
a wide pore distribution, including mesopores, which were present in our ACFB [35,37]. PSD obtained
using DFT calculations also showed a wide range: from 0.5 to 4 nm (figure 2 (inset)), which confirmed
the results above. BET analysis showed that the surface area of ACFB was as high as 1552 m” g™', and
its micro- and mesopore volumes were 0.56 and 0.28, respectively. It was found that the proportion of
microporosity to total porosity, Vpr/ Voo, is 0.68, demonstrating that ACFB is mainly microporous
with a small portion of mesopores.

The SEM and TEM images of the ACFB sample in figure 3a,b reveal a great number of the pores
(micrometre and nanometre in size), which were formed during the carbonization and activation
processes. Pore system and excellent pore morphology observed by SEM and TEM agree with those
obtained from BET analysis. Such porosity should definitely provide ACFB with high adsorption
capacity towards MB.

The TGA, FTIR, XPS spectra and elemental analysis were carried out to investigate the
thermostability and surface properties of ACFB in our previous work [24,35]. Upon heating to high
temperature, pyrolysis of organic substances produces volatile products, which means that most of the
non-carbon elements, hydrogen, nitrogen and oxygen are removed in gaseous form by pyrolytic
decomposition, and leave a solid residue enriched in carbon [35]. The results of XPS spectra and
elemental analysis also respond to the conclusion that the obtained AC is pure [24].

3.2. Effect of adsorption process parameters on the removal of MB
3.2.1. Effect of adsorption duration and contact time between MB and ACFB

The contact time is a non-negligible parameter for the MB adsorption process. An appropriate contact
time cannot only improve the treatment efficiency but also provide the most cost-effective route. Thus,
the effect of contact time of MB adsorption on to ACFB was tested at 30°C with 10 mg of ACFB,
100 ml of 20 mg 17" as initial MB concentration and at pH =7. Adsorption was allowed to proceed for
180 min to determine the optimum adsorption time (see figure 4 for the results). The results revealed
that MB adsorption rate increased rapidly. MB removal continued almost linearly during the initial
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Figure 3. SEM (a) and TEM (b) images of ACFB.
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Figure 4. Effect of the contact time on the removal of MB (C; =20 mg =", m =10 mg, T=30°C, pH=7, v=100 ml).

contact period, and then gradually slowed down until equilibrium was established at around 20-40 min.
Such behaviour was observed because of the higher availability of more active sites on the ACFB surface
as well as the weak internal diffusion resistance during early adsorption stages. After the early stages, a
plateau formed, during which only an insignificant increase could be seen, mostly because MB content in
the solution was significant as active sites were already saturated and diffusion into the ACFB surface
pores slowed down [34,38,39].

3.2.2. Effect of activated carbon dosage

The initial amount of an adsorbent is of high significance for adsorption processes. The dosage of the
adsorbent at the beginning of the adsorption process affects the total amount of available pores,
which will affect the overall adsorption rate and total MB amount adsorbed by ACFB [1,5]. Thus, as
initial amounts we used 1, 2.5, 5, 10, 20 and 50 mg of ACFB. All other adsorption parameters were
the same: 100 ml of 20 mg1™" MB solution, 30°C, pH=7 and 180 min equilibration time. Results
showing MB removal rates as a function of the initial ACFB content are shown in figure 5. The
percentage of removed MB increased dramatically as the weight of the initial ACFB increased: MB
removal efficiencies increased from 3.11% at a dosage of 1 mg to 99.78% at a dosage of 10 mg. This
can be attributed to the large available surface area as well as abundant active sites for MB molecules
to adsorb [40,41].

3.2.3. Effect of the initial concentration of MB on its adsorption

Eight different concentrations (20, 25, 30, 35, 40, 50, 60 and 80 mg 1Y) of MB were chosen to study how
initial dye MB content affected its adsorption on ACFB. All other experimental adsorption parameters
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Figure 5. Effect of the AC doses on the removal of MB (C; =20 mg I, £ =180 min, T=30°C, pH=7, v="100 ml).
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Figure 6. Effect of initial dye concentration of MB on maximum dye uptake (a) and the percentage removal by ACFB (b) (m =
10 mg, ¢ =180 min, T=30°C, pH =7, v=100 ml).

were the same: including 100 ml of MB, pH =7, 10 mg of ACFB, 30°C and 150 rpm agitation speed. As
can be seen from figure 64, adsorption curves display two stages of dye uptake as initial MB
concentration increases from 20 to 40 mg 17" the first one demonstrates constantly increasing, and the
second one shows decreasing adsorption capacities [42,43]. At a relatively lower dye concentration,
higher dye content concentration will increase the effective contact area between dye molecules and
ACEFB. It will also provide the necessary driving force to overcome MB mass transfer resistance on the
interface, which drives adsorption to higher capacity values [16,40]. At MB concentrations above
40 mg1™", a majority of the active sites are consumed. Therefore, MB adsorption slows down, and a
lot of MB in the second phase remains in the solution, which was seen during the second of our
adsorption tests [34,44]. Figure 6b displays decreased removal constant as initial MB concentration
increases. Lower consumption of MB at its higher concentrations was because of high MB/active sites
ratio. The ACFB surface quickly becomes saturated with MB at high concentrations, implying the
dependence of adsorption on MB initial concentration [42].

3.24. pH effect

pH is also considered as one of most essential factors affecting adsorption processes, mostly because it
affects adsorbent surface charge. To test how pH affects MB adsorption processes on ACFB, we
performed adsorption experiments in the wide pH range and at 20 mg1™" initial MB concentration,
10 mg ACFB dose, at 30°C and 60 min equilibration time. MB removal percentage increased slightly as
pH values increased from 3 to 11 (figure 7). At low pH, abundant H* compete with MB cations
for the active sites. Thus, MB adsorption on ACFB becomes inhibited at low pH vales. Therefore,
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Figure 7. Effect of the pH on the removal of MB ((; =20 mg = m=10 mg, t =60 min, T=30°C, v=100 ml).

as mid-level pH values, there are less competitive protons in the solution, which is beneficial for MB
adsorption on the ACFB surface [45]. However, our results showed over 98% removal percentage
values of MB in both acidic and neutral pH values. This is due to the fact that at low pH, MB
remains at cationic and molecular form and can enter into the pores of the adsorbent surface very
easily. With increasing pH, the surface of the adsorbent becomes more negative, making it favourable
for the cationic dye adsorption [40]. Thus, MB adsorption on ACFB is governed not only by
electrostatic interactions but also by van der Waals attraction, n- and other chemical interactions
between MB and ACFB surface [38]. In order to get a deep insight in the surface chemical properties
of ACFB, the FTIR spectra and XPS analysis were conducted in the previous work [35]. The existence
of functional groups such as -COOH, -OH and -NH, on the surface of ACFB, suggests that the
carbon material is CxOH, where Cx = carbon. It is necessary to note that the hydroxylated surface
groups vary at different pH values because of the protonation/deprotonation processes (i.e. CxOH +
H" & CxOH," at low pH, and CxOH < CxO~ + H" at high pH) [45].

3.3. Adsorption isotherms

Adsorption isotherms obtained in this work were fitted using the Langmuir, Freundlich and Tempkin
models. Their correlation with our adsorption processes was judged by the values of correlation
coefficient (R?) and errors.

The Langmuir model assumes monolayer adsorption on a homogeneous surface with all active sites
being equivalent and with the same energy. The Langmuir model also assumes dynamic equilibrium and
no interaction between adsorbates [43]. It is typically described by the following formula [46]:
C. Ce N 1

e B Jmax []maxKL ’

(3.1)

where g, is the amount of adsorbed dye at the equilibrium (in mg g™"), gumax correlates with the maximum
monolayer adsorption capacity (in mg g™'), Ky is an adsorption constant describing affinity between MB
and ACFB (in 1 mg’l) and C, is the MB equilibrium concentration.

The Freundlich model is described by a formula assuming heterogeneous multilayer adsorption on
heterogeneous surfaces. The Freundlich model also assumes interactions between the adsorbates and
that adsorption capacity increases with the analyte concentration. The formula describing the
Freundlich model is shown below [47]

logge = anlog Ce + log K, (3.2)

where K is the reaction constant reflecting adsorption capacity (in 1 mg_l), and 1/ng indicates the
dimensionless exponent of the Freundlich model to show adsorption intensity (it is calculated from
the slope and an intercept of log g, versus log C. plot).

The Temkin adsorption assumes a decrease in adsorption heat because of the adsorbent/adsorbate
interaction as coverage with molecular layers increases. Mathematically, it can be expressed as [40,48]

de = BInKr + BInC,, (3.3)
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Figure 8. Plots of Langmuir (a), Freundlich (b) and Temkin (c) isotherm models for the adsorption of MB into ACFB.

Table 1. Adsorption isotherm parameters for MB on ACFB.

model

Langmuir constants Freundlich constants Temkin constants

where B=RT/b, b is the Temkin constant related to the adsorption heat (in ]mol_l), Kt mg_l) is
the equilibrium adsorption constant, R is the gas constant equal to 8.314] Kmol™ and T (K) is the
absolute temperature.

Figure 8 displays the Langmuir, Temkin and Freundlich isotherms for our adsorption experiments. The
calculated parameters for all these isotherms along with R* values are shown in table 1. The correlation
coefficient (R?) for the linear portion of the Temkin model is the closest to 1.0. Thus, the Temkin model
describes MB adsorption on ACFB the best. Meanwhile, it reveals this adsorption is not a monolayer
adsorption process. The correlation coefficient R* for the Freundlich model was above R* obtained by
fitting the Langmuir model to our data, which very likely indicates that MB adsorption on ACFB does
not occur in a monolayer fashion on a homogeneous surface but rather on a heterogeneous one [3].
The value of 1/n equal to 0.758 is less than 1, which indicates favourable adsorption conditions [5,6,49].

3.4. Kinetics studies

Adsorption kinetics studies the relationship between adsorption capacity and reaction time. Thus,
its main concern is adsorption speed, dynamic equilibrium, mass transfer and diffusion rates. Analysis
of these parameters helps to understand adsorption process rates as well as adsorption mechanism.
For adsorption kinetics study, in this work, we used 0.01 g of adsorbent and 100 ml of 20 mg 1™' MB
solution, and then placed them into a 250 ml beaker at 30°C. We examined the adsorption rate and MB
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Figure 9. Plots of pseudo-first order (a), pseudo-second order (b) and intraparticle diffusion (c) for the adsorption of MB into ACFB.

removal mechanism by ACFB using different equilibrium times (5-180 min) to understand and develop a
solid /liquid-phase equilibrium kinetic model.

Our experimental data were fit using the pseudo-first and -second-order reaction models as well as an
intraparticle diffusion model with the goal of establishing adsorption rates.

The pseudo-first-order model is mathematically described as shown below [50]

log (e — q1) = logge — Kit, (3.4)

where k; is the pseudo-first-order kinetic constant (in 1/ min~?) and f is the time (in min).
The pseudo-second-order kinetic model can be expressed by the following equation [50,51]:

t 1 t
= 3.5
g Kog  ge 39
where k, is the pseudo-second-order kinetic constant (in g (mg min)™"), g, correlates with adsorption
capacity at time f in minutes (in mg g™").

Our experimental data were also treated using the intraparticle diffusion model to understand the
diffusion process of MB on ACFB particles. It is defined as [50]

3 = Kpt'? + C, (3.6)

where K, is the intraparticle diffusion constant (in mg g~' min®®) and C is the thickness of the boundary
layer. At C =0, intraparticle diffusion is the only controlling step. Thus, adsorption occurs inside the
adsorbent. The larger the C, the greater the boundary layer effect on the adsorption, or in other
words, the greater the effect of membrane diffusion on the adsorption process.

Figure 9 shows the three models’ fitting results. Meanwhile, the detailed parameters calculated from
the three kinetic models along with R? values are shown in table 2. The correlation coefficient (R?) of the
pseudo-second-order model was higher than the correlation coefficients obtained from other models.
Compared to g. values obtained by fitting our experimental data using the pseudo-first-order and
intraparticle diffusion models, the calculated g. values from the pseudo-second order show better
agreement with the experimental values. Thus, taking into account all experimental data mentioned
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Table 2. Kinetic model parameters for MB on ACFB.
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above, we determined that the pseudo-second-order kinetic model agrees the best with MB adsorption
on ACFB than other kinetic models.

Figure 9c displays our experimental results fitted using the intraparticle diffusion model. The C-value
was not zero. All corresponding curves are multilinear, and three main adsorption stages can be clearly
distinguished. The initial stage with slope K (19.24) shows that the dye molecules are adsorbed from the
liquid phase to the external adsorbent surfaces. The second stage had K equal to 3.88, which reveals
that dye molecules enter ACFB internal pores from its surface. Such a phenomenon is called
intraparticle diffusion. The third stage with the K3 equal to 0.11 represents MB adsorption on the
ACFB sites. During these stages, as MB concentration in the solution decreased, mass transfer
resistance of the adsorbate increased. As a result, the diffusion process gradually slowed down, and
the slope became less steep [2,14,40,52].

Table 3 shows the adsorption capacities of ACs prepared from other agricultural by-products, polymers
and carbon composite materials. It is clear from these data that AC is one of the lowest cost and one of the most
effective adsorbents for MB and other organics removal. What is more, as mentioned, FB is a sort of common
forestry waste, which means that the cost of FB is lower than the normal biomass, polymers or GO for AC
production, such as bamboo, wood, rice husk, coconut shell, graphene and so on. All these merits, along
with the zero-cost and wide availability of FB, make this type of sorbent highly promising in dye adsorption.

3.5. Regeneration of adsorbent

According to the above analysis, MB can be easily adsorbed into ACFB under moderate conditions. In order
to get further into the practical application, the regeneration property was investigated using ethanol as the
eluent. As shown in figure 10, the removal capacity of MB retained 69.41% after four cycles, indicating the
ACFB material possesses good regenerability and reusability when using ethanol solution [61-63].

3.6. Adsorption mechanism

The MB can be better removed by AC under both acid and basic conditions, indicating that the
electrostatic interaction played an important role in the adsorption process [63]. At lower pH, the
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Table 3. Comparison of adsorption capacity of various adsorbents for MB.
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various functional groups and reactive atom of dyes and adsorbent protonated and both get positive
charge [40]. At higher pH, the carboxylic groups are deprotonated, and negatively charged
carboxylate ligands (COO-) bind to the positively charged MB molecules. This finding confirms that
the sorption of MB by FBAC is an ion exchange mechanism between the negatively and the positively
charged groups [41,64]. Therefore, due to the strong repulsive force between dye and adsorbent the
removal percentage decreased. The results of equilibrium and kinetic studies showed that the
adsorption of MB onto FBAC was predominantly a chemisorption process [45]. Therefore, electrostatic
interaction along with chemical binding between adsorbate and adsorbent mainly controlled the MB/
FBAC adsorption process.

4. Conclusion

ACFB was prepared. It demonstrated substantial adsorption relative to MB because of its very high
surface area (approx. 1552 m?g™") and large pore volume (approx. 0.84 cm®g™"). The maximum MB
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adsorption capacity of ACFB was 330 mg g™". In general, the adsorption capacity of ACFB relative to MB
increased with longer equilibrium times, higher adsorbent dosage and higher initial MB concentrations.
Adsorption data can be fit with a good correlation coefficient using the Freundlich and Temkin models.
Adsorption kinetics followed the pseudo-second-order model. Overall, ACFB demonstrated outstanding
adsorption properties relative to MB and cationic dyes in general. Thus, ACFB is very promising for use
in wastewater treatment to mitigate dye pollution.
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