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Abstract: Ovarian cancer is fifth in the rankings of cancer deaths among women, and accounts for
more deaths than any other gynecological malignancy. Despite some improvement in overall-(OS)
and progression-free survival (PFS) following surgery and first-line chemotherapy, there is a need
for development of novel and more effective therapeutic strategies. In this mini review, we provide
a summary of the current landscape of the clinical use of tyrosine kinase inhibitors (TKIs) and
mechanistic target of rapamycin (mTOR) inhibitors in ovarian cancer. Emerging data from phase I
and II trials reveals that a combinatorial treatment that includes TKIs and chemotherapy agents seems
promising in terms of PFS despite some adverse effects recorded; whereas the use of mTOR inhibitors
seems less effective. There is a need for further research into the inhibition of multiple signaling
pathways in ovarian cancer and progression to phase III trials for drugs that seem most promising.
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1. Introduction

Ovarian cancer (OC) is the fifth most common female cancer [1]. It has complex molecular
and genetic changes and is a heterogeneous disease that can be categorized into various histological
subtypes: High-grade serous (HGSOC) −80% of OCs, low-grade serous, clear cell carcinoma (OCCC),
endometrioid, and mucinous adenocarcinoma. The prognosis and chemo sensitivity depend on the
subtype. HGSOC, the most common subtype, is characterized by genomic instability and sensitivity to
platinum-based chemotherapy [2].

Epithelial ovarian cancer is staged according to the International Federation of Gynecology and
Obstetrics (FIGO) staging system where cancer extension beyond the pelvis becomes stage III. Given
that the most common serous ovarian cancers are now thought to arise from the fallopian tube, it is
unusual to identify patients with earlier stages of ovarian cancer, and the single cells drop off from the
fallopian tube and are easily circulated around the peritoneal cavity by peristalsis. Approximately 70%
of patients are diagnosed with stage III/IV disease [3,4]. The first-line treatment includes cytoreductive
surgery and combined platinum-based chemotherapy [5,6]. Although data suggest that primary
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surgery achieves better outcomes for patients, this is often challenging, and many patients are treated
with primary chemotherapy and interval surgery. Ovarian cancer is highly responsive (>75%) to initial
platinum -based chemotherapy but the vast majority (~85%) will recur and ultimately die of recurrent
disease [7].

Given the high relapse rate and poor prognosis of advanced stage epithelial ovarian cancer (EOC),
exploration into the biology of EOC has burgeoned and led to the development of a number of targeted
molecular and biological therapies, including antiangiogenic agents, poly (ADP-ribose) polymerase
(PARP) inhibitors, signaling pathway inhibitors, and immunotherapies [6,8].

Due to the advanced stage at diagnosis and genomic heterogeneity of HG serous OC, molecular
profile-specific trials for different sub-types need to be developed. For the future, we need to reveal
resistance mechanisms, develop rational combinatorial strategies, and identify predictive biomarkers
in case we have to impact mortality. We also need to target various other molecular mechanisms
involved and altered in this carcinoma.

The severity of ovarian cancer metastasis is currently assessed using the International Federation
of Gynecology and Obstetrics (FIGO) staging system detailed below (Table 1; Figure 1).Cancers 2019, 11, x 3 of 18 
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Figure 1. The location and metastasis of ovarian cancer and the corresponding stage. (A) Stage I ovarian
cancer is confined to the ovaries. (B) Stage II ovarian cancer has metastasized to near locations within
the pelvic cavity such as the fallopian tubes or bladder, (C) stage III ovarian cancer has metastasized to
the retroperitoneal lymph nodes or outside of the pelvic cavity, (D) stage IV ovarian cancer involves
malignant cells in pleural effusion and metastasis to distant sites based on a graphic created by Cancer
Research UK.
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Table 1. Ovarian cancer staging parameters as defined by the International Federation of Gynecology
and Obstetrics (FIGO) [9].

Stage Substrate Description

I
Ia The tumor is confined to one ovary with no signs of tumor on the surface

Ib As Ia but involving both ovaries

Ic
The tumor is confined to one or both ovaries with either or all the following:

signs of the tumor on the surface of the ovary, rupture of tumor capsule before or
during surgery, malignant cells found in ascites

II
IIa Metastasis outside the ovaries in the uterus or fallopian tubes

IIb Metastasis to pelvic cavity organs for example the bladder

III
IIIa Metastasis to retroperitoneal lymph nodes or microscopic malignancy found

outside the pelvis

IIIb Tumor smaller than or equal to 2cm found outside the pelvic cavity including
surface of liver and/or spleen

IIIc Tumor bigger than 2cm found outside the pelvic cavity including surface of liver
and/or spleen

IV
IVa Pleural effusion (fluid around the lungs) positive for malignant cells

IVb Metastasis to distant sites including extra-abdominal and parenchymal liver or
spleen involvement

2. Tyrosine Kinases: Current Landscape

Tyrosine-kinases are classified as a group of enzymes that consist of a catalytic subunit, which
transfers a phosphate from nucleotide triphosphate to the hydroxyl group of one or more tyrosine
residues on signal transduction molecules, resulting in a conformational change affecting protein
function. Upon activation, they function to auto-phosphorylate as well as phosphorylate other signaling
molecules carrying out an important role in signal transduction and acting to activate and promote a
variety of biological processes including cell growth, migration, differentiation, and apoptosis. Amongst
the most important cytoplasmic signaling pathways activated are the phosphoinositid 3- kinase/Akt
pathway/mechanistic target of rapamycin (PI3K/AKT/mTOR), the Ras/Raf/mitogen-activated protein
kinase (MAPK) pathway, the Raf/MEK/ERK1/2 pathway, and the protein kinase C (PKC) pathway.
Following the success of a pure vascular endothelial growth factor (VEGF) 1 receptor inhibitor,
the monoclonal antibody bevacizumab, it was hoped that the tyrosine kinase inhibitors (TKIs) could
target alternate angiogenic pathways in cancer growth. Additionally, the TKIs could potentially be
useful in overcoming resistance to VEGF blockade [10].

Tyrosine kinase inhibitors (TKIs) utilize different mechanisms such as competing for the substrate
and bind in that ATP-binding pocket during an active conformation, they can occupy a site adjacent to
the ATP-binding pocket, this allows both the inhibitor and ATP to bind to the same protein and/or
bind irreversibly to the protein kinase target [11]. It has also been shown that TKIs can block protein
kinase recruitment to the Hsp90-Cdc37 system. This is of particular importance in cancer cells, where
these inhibitors deprive oncogenic kinases of access to this complex, leading to their degradation [12]
(Figure 2).
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Figure 2. Overview of kinase inhibitors used as potential therapeutic agents against ovarian cancer (OC).

3. Monotherapy Treatments Using TKIs

Sorafenib: Sorafenib is a non-selective multi-kinase inhibitor (Table 2), shown to have
anti-proliferative effects in thyroid cancer, renal cell carcinoma, and hepatocellular carcinoma. Sorafenib
inhibits signaling in the VEGF and platelet-derived growth factor (PDGF) receptor pathways [13–15].
It carries out its function by binding to their substrate and preventing phosphorylation and leading
to inhibition of the cell-cycle, consequently attenuating tumor growth. Therefore, sorafenib was also
involved in inhibition of the RAS/RAF/MAPK pathway as well as the ERBB (epidermal growth factor
receptor; EGFR) signaling pathway through prevention of the coordinated epigenetic switching in
these pathways [16,17].

Table 2. List of tyrosine kinase inhibitors (TKIs) and their targets.

Agent VEGFR PDGFR EGFR FGFR C-kit Flt-3

Sorafenib 4 4

Sunitinib 4 4 4

Pazopanib 4 4

Nintedanib 4 4 4 4 4

Cediranib 4 4

Tivozanib 4

Gefitinib 4

Erlotinib 4

Lapatinib 4

EGFR: epidermal growth factor receptor; FGFR: fibroblast growth factor receptor; PDGFR: platelet-derived growth
factor receptor; VEGFR: vascular endothelial growth factor receptor; c-kit: mast/stem cell growth factor receptor;
Flt-3: FMS-like tyrosine kinase 3 [18–21].

Sorafenib has been shown to have modest anti-proliferative effects in thyroid cancer, renal cell
carcinoma and hepatocellular carcinoma [22–28]. Various adverse side effects have also been reported
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including diarrhea and edema [20]. It should be noted that despite some modest activity in earlier
studies [20], latest findings when used in combination approach are far more encouraging. For example,
in a more recent phase II trial, administration of sorafenib plus topotecan in platinum-resistant
ovarian cancer demonstrated clinically significant improvement in progression-free survival of these
patients [29].

Sunitinib: Sunitinib is a highly potent multi-kinase inhibitor. It acts as a competitive inhibitor of
the catalytic activity of tyrosine kinase receptors (Table 2) including VEGFRs, PDGFRs, and stem cell
factor receptor (c-KIT), to name a few [30]. Phase I and II studies for the clinical efficacy of this TKI for
epithelial ovarian cancer have shown acceptable toxicity but only modest activity [30,31].

Pazopanib: Pazopanib is an inhibitor of multiple tyrosine kinase receptors and competes with
ATP for phosphorylation of the TK receptors. Pazopanib targets various receptors involved in
regulating tumor cell growth, metabolism, and angiogenesis, including the VEGF and PDGF receptors
(Table 2) [32]. These receptors are integral to the process of angiogenesis, inhibition leads to slower
tumor growth, caused by a lack of appropriate blood vessel growth [33].

Pazopanib is not well tolerated in combination with cytotoxic therapy. It has thus only really
been studied as a maintenance treatment after chemotherapy. In a study of 940 patients confirmed
with cancer of the ovary, fallopian tube, or peritoneum (stages II–IV) were randomized 1:1 to receive
pazopanib 800 mg once per day or placebo—after primary chemotherapy—the results were not
encouraging since overall survival data did not suggest any extra benefit [34]. Further analyses of data
revealed that there were small to no significant mean score differences in global health-related quality
of life (HRQoL) between patients receiving pazopanib and placebo [35].

Nintedanib: Nintedanib is an oral inhibitor of VEGFRs, PDGFRs, and fibroblast growth factor
receptors (FGFRs) (Table 2) [36]. Modest activity has been recorded in early phase II studies of
combination or maintenance nintedanib with or after first line chemotherapy [14]. In a recent phase
II trial in patients with bevacizumab resistant recurrent EOC, the effect of nintedanib (200 mg/day)
was evaluated until disease progression or unacceptable toxicity. The authors of the study concluded
that nintedanib as a single-agent has minimal activity in an unselected bevacizumab-resistant EOC
population [37].

Cediranib: Cediranib is an oral inhibitor of VEGF signaling that binds all three VEGFR and
demonstrates selectivity towards VEGFR2. This molecule is a potent ATP inhibitor of VEGF signaling.
It does so by binding to the intracellular domains of VEGFRs [38]. Like sunitib, it can also inhibit c-KIT
and both PDGFRs (i.e., PDGFRα and PDGFRβ) [38] (Table 2). An initial phase II study of cediranib for
recurrent EOC or peritoneal or fallopian tube cancer (dose of 45 mg daily) demonstrated anticancer
properties, although this was not very tolerable for patients, with diarrhea being the main concern.
Subsequent studies explored the lower doses of 30 and 20 mg daily for five of every seven days.
Toxicities similar to other TKIs were also observed including nausea, fatigue, and hypertension [39].

Tivozanib: Tivozanib is a pan-VEGFR tyrosine kinase inhibitor that appears to compromise
angiogenesis in various tumors [40]. In a recent study, it has been shown that tivozanib reduced
cell proliferation in vitro, using chemo resistant EOC cell lines through arrest of G2/M cell cycle and
apoptosis [41]. In a phase I study of 41 patients with advanced solid tumors, tivozanib was tolerated
well and patients exhibited manageable side effects. This study also shown that this TKI inhibitor was
suitable for one dose per day [42]. Tivozanib is currently under investigation in a phase II study in
recurrent platinum-resistant ovarian cancer (OC), fallopian tube cancer (FTC) or primary peritoneal
cancer (PTC) (TIVO; ClinicalTrials.gov Identifier: NCT01853644). It has been found that the inhibitor is
active in patients with recurrent OC, FTC, or PTC, without substantial toxicity, supporting its further
development [43].

Gefitinib: Gefitinib is an oral aniline quinoline compound which functions through inhibition
of EGFR. It has been approved by the FDA for the treatment of non-small cell lung cancer. In vitro,
gefitinib has shown to inhibit growth in human ovarian cancer cell lines [44]. In a study on an HPV
induced ovarian squamous cell carcinoma where the patient developed bone metastases, the patient
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did not respond to gefitinib [45]. Results were not that promising for another TKI, named erlotinib
(a quinazoline derivative that reversibly inhibits the kinase activity of EGFR). In a randomized phase
III study of erlotinib versus observation in patients with no evidence of disease progression after
first-line platin-based chemotherapy for ovarian carcinoma, it was shown that maintenance erlotinib
after first-line treatment in ovarian cancer did not improve progression-free survival (PFS) or overall
survival (OS) [46].

4. Combination Trials for TKIs

In a randomized, open-label, phase II trial (MITO 11), PFS was significantly longer in the pazopanib
plus paclitaxel group than in the paclitaxel only group (median 6.35 vs. 3.49 months) [33]. Novel role is
currently explored in a trial looking at pazopanib and C4AP (fosbretabulin) for ovarian cancer that has
come back (PAZOFOS) [46]. In this case there is a combination of an anti-angiogenic agent (AA) with a
vascular disrupting agent (VDA). The AA inhibits VEGF signaling that is a major driver of angiogenesis
and the VDA is a tubulin-binding agent that affects the cytoskeleton of endothelial cells directly,
leading to subsequent disruption of junctions between endothelial cells [47]. A recent a multicenter,
multinational, randomized, double-blind, 2-arm, parallel-group, a phase II/III (NCT02641639; FOCUS),
evaluating the combination of CA4P plus bevacizumab and chemotherapy in platinum-resistant OC
terminated the recruitment status since interim analysis failed to show efficacy benefit.

ICON 6, a placebo-controlled trial of cediranib in combination with second line chemotherapy with
or without maintenance cediranib in patients with relapsed OC reported a significant improvement
in progression-free survival with minimal alterations in Quality of Life (QoL) [47]. In a more
recent randomized phase II study of combination cediranib and olaparib versus olaparib in relapsed
platinum-sensitive ovarian cancer, the authors reported that a combination of cediranib (AA) and
olaparib (PARP inhibitor) extended PFS significantly, when compared with olaparib alone [48].
Emerging evidence suggests that AAs can drive downregulation of genes implicated in homologous
recombination (HR) leading to a creation of a HR-deficient state [48–51] that can allow a PARP
inhibitor to explore further this vulnerability. Olaparib is currently approved as therapeutic agent for
BRCA-associated epithelial ovarian cancer, platinum-sensitive recurrence where the BRCA status is
unknown, and for germline BRCA (gBRCA) [52]. This is currently being examined further in a larger
phase III study ICON 9.

In a randomized, double-blind, placebo-controlled phase 3 trial (AGO-OVAR 12, NCT01015118),
the combination of nintedanib with standard carboplatin and paclitaxel chemotherapy was investigated
in patients with newly diagnosed advanced ovarian cancer. Median PFS was significantly longer in the
nintedanib group (17.2 months) than in the placebo group (16.6 months). However, this subtle increase
in PFS was associated with an increased frequency of gastrointestinal adverse events [49]. The authors
of the study have proposed that “future studies should focus on improving patient selection and
optimisation of tolerability”.

In a phase II, randomized, placebo controlled, multicentre, trial (METRO-BIBF; NCT01610869) the
effect of low dose (metronomic) cyclophosphamide with or without nintedanib in relapsed ovarian
cancer (ROC) patients was evaluated [50]. As mentioned, angiogenesis has been shown to have a
central role in ovarian cancer, both with respect to disease progression and prognosis. The addition
of bevacizumab to first-line chemotherapy and as maintenance in certain ovarian cancer patient
populations has been shown to improve progression free and overall survival. Several phase II
trials of different antiangiogenic drugs have demonstrated activity in patients with relapsed ovarian
cancer [53,54]. Oral cyclophosphamide is well tolerated and has been shown to have clinical benefit,
since it exhibits anti-angiogenic properties. In this study, addition of nintedanib to cyclophosphamide
did not improve OS/PFS. However, in this study of heavily pre-treated ROC, almost one quarter
remained on therapy for >6 months, suggesting either more indolent disease and/or cyclophosphamide
has longer-term cytostatic or immunological benefits requiring further investigation.
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5. Concluding Remarks on TKIs

It should be noted that due to the heterogeneous nature of tumors, many treatments are rendered
ineffective, whether they are broad-spectrum chemotherapies or more targeted therapies. Despite
initial success seen in many targeted therapies [55,56], many of these eventually give rise to resistance
and prove ineffective [57,58]. Emerging evidence reveals that targeting multiple pathways may prove
more promising [59]. One such includes the RTK inhibitors of the HER family proteins that have
been evaluated clinically include the EGFR TKIs gefitinib and erlotinib, including the dual therapies
such as EGFR/HER2 TKI lapatinib, and the EGFR/VEGFR/RET TKI vandetanib. Clinical trials have
proved disappointing for HER TKIs in EOC patients either as a single agent or in combination with
chemotherapy or other biological agents [60–67].

There is growing evidence that inhibiting a single step in one pathway does not necessarily prevent
downstream events from occurring, as these could be triggered from another cascade, leading to
resistance to the initial therapy. The so-called “horizontal” blockade looks to overcome this, where two
or more TKIs or other inhibitors are combined to target multiple pathways [68]. Thus in this context,
the “vertical” blockade is also included, whereby several steps of the same pathway could be inhibited,
preventing the negative feedback loops that occur in case of a single step inhibition [69]. Some of the
more successful reported drugs include nintedanib, pazopanib and cediranib, all multi-kinase inhibitors.

6. Inhibitors of Src Kinase

There is also evidence for activation of Src and MAPK in high-grade serous OC (HGSOC) [58].
Src belongs to a family of nine non-receptor tyrosine kinases (Src, Lyn, Fyn, Lck, Hck, Fgr, Blk, Yrk,
and Yes), sharing a key role in many cellular signaling pathways [70]. Extensive research on the
role of the Src family kinase (SFK) has shown that it can control four key cellular functions, namely:
Cell adhesion, proliferation, invasion, as well as cell motility [71,72]. Src can be induced via interaction
with activated EGFR [73], HER2 [74], FGFR [75], or hepatocyte growth factors [76] leading to changes
in tertiary Src conformation [70]. Interestingly, over-expression and subsequent activation of SFKs
has been documented in human ovarian cancer in vitro [77]. When clinical samples were examined,
it has been shown that 50% of tumors have some deregulation on the Src signaling pathway that is also
associated with poor prognosis [78]. Dasatinib is a tyrosine kinase inhibitor that inhibits the Src family
kinases as well as focal adhesion kinases (FAK; [79]) and EphA2 [80] at low concentrations [79].

Konecny et al. showed an anti-proliferation effect of dasatinib across all 34 ovarian cancer cell lines
tested, but showed variation of up to three log-fold differences between the cell lines [70]. Dasatinib was
shown to significantly inhibit invasion and induce apoptosis in vitro [81]. Src inhibition by Selumetinib
rapidly mediates MEK/MAPK activation in preclinical breast cancer models [82,83]. Selumetinib added
to saracatinib overcomes the EGFR/HER2/ERBB2–mediated bypass activation of MEK/MAPK that is
observed with saracatinib alone and targets tumor-initiating ovarian cancer populations, supporting
combined Src–MEK inhibition therapeutics for future trials [58]. However, in a placebo-controlled trial
of weekly paclitaxel and saracatinib in platinum-resistant OC in a total of 107 patients, saracatinib did
not improve outcomes of weekly paclitaxel in platinum-resistant OC [84].

7. Inhibitors of the Mechanistic Target of Rapamycin (mTOR) Pathway

The PI3K/AKT/mTOR is one such cellular signaling pathway implicated in many cellular activities
including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy,
transcription, as well as angiogenesis. It is one of the most investigated intracellular signaling
pathways. Consistent with its physiological role, the PI3K/AKT/mTOR pathway has been found to
be hyperactivated in many types of cancer. Overall, this pathway is dysregulated via several genetic
mechanisms in approximately 30% of solid cancers [85]. It plays a critical role in the malignant
transformation of human tumors and their subsequent growth, proliferation, and metastasis. It is
frequently activated in OC, especially in clear cell carcinoma and endometrioid adenocarcinoma. As a
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sign of its dysregulation, PIK3CA mutations have been reported in approximately 12% of OCs. The
mTOR pathway is activated in approximately 70%. The type of PI3K alteration seems to be related to
the histology. PTEN loss has been identified in 5% of cases of HGSOC and amplifications in PIK3CA in
20% and in one of the AKT isoforms (AKT1, AKT2, and AKT3) in 10–15% of cases [86,87]. A number
of genetic aberrations in PI3K/AKT/mTOR signaling genes have been found in EOC, including PTEN,
INPP4B, PIK3CA, PIK3R1, AKT1, AKT2, TSC1, TSC2, and mTOR [88]. These observations have
directed increasing interest in evaluating inhibitors of this pathway as a form of therapy for EOC. Recent
studies including The Cancer Genome Atlas program have provided a more detailed understanding
of the roles played by PI3K pathway aberrations in ovarian cancer. In high-grade serous ovarian
carcinoma, the mutation of PIK3CA and AKT, or inactivating mutations in the PTEN gene are rare [89].

mTOR is a serine/threonine protein kinase. mTOR, a 289 kDa highly conserved serine/threonine
kinase, is the central catalytic component of mTOR Complex 1 (mTORC1) and mTOR Complex 2
(mTORC2). These two complexes have distinct functions and associated proteins [90]. mTORC1
contains mTOR, Raptor, DEPTOR, GBL, and PRAS 40. mTORC2 contains mTOR, Rictor, DEPTOR,
and GBL [91].

PI3K/AKT/mTOR inhibitors not only impact directly upon cancer cells but can also affect immune
cell effector function and to modulate the tumor microenvironment. As single agent therapies,
the efficacy of PI3K/AKT/mTOR inhibitors in the treatment of a variety of cancers has generally not
been satisfactory and phase III clinical trials have not been reported yet in patients with ovarian
cancer [92–96].

8. Monotherapy Trials Using Rapalogs (mTOR Inhibitors)

Rapamycin (also known as sirolimus), the first known inhibitor of mTOR kinase, was first
described in 1975 in two seminal papers [97,98]. It was initially developed as an antifungal and
immunosuppressive drug, but its anticancer potential was observed during the last decade. Since
the discovery of Rapamycin, a host of semi-synthetic rapamycin-related mTOR inhibitors, known as
rapalogs, have been developed by modifying the C40 hydroxyl group to improve the aqueous solubility
and pharmacokinetics of Rapamycin. These include everolimus, ridaforolimus, and temsirolimus,
among others. The mechanisms by which Rapamycin (a first generation mTOR inhibitor) exerts its
effects if by binding to FRBP-12 (12 kDa FK506-binding protein) and forming a ternary complex with
mTOR, leading to inactivation of mTOR compex 1 (mTORC1) [99].

A few rapalogs (Table 3) are currently used in clinical trials, out of which temsirolimus and
everolimus have been granted FDA approval [92–94]. However, only modest therapeutic effects have
been observed in all these malignancies since mTOR inhibitors may have more of a cytostatic rather
than a cytotoxic effect, with a benefit mainly in terms of disease stabilization and progression free
survival (PFS) improvement rather than tumor shrinkage. The phase I and II trials conducted to date
with mTOR inhibitors in OC have been single-arm studies in which the primary efficacy end point was
usually objective response rate (ORR).

The most studied mTOR inhibitors in OC are: Temsirolimus, everolimus, and ridaforolimus.
Initial studies have all been phase I and phase II trials with limited number of patients using one of
these agents as monotherapy.

In a phase II clinical trial conducted by the Gynecologic Oncology Group, it was shown that
temsirolimus exerted modest activity in patients with recurrent epithelial ovarian and primary
peritoneal cancers. The progression free survival response was such that did not lead to inclusion for a
phase III trial [95].

The most common toxicities were metabolic toxicities, fatigue, and interstitial pneumonitis.
A second phase II study of temsirolimus in patients with platinum-refractory/resistant EOC was
stopped early for lack of efficacy [96]. In this study led by the AGO-study group in patients with
ovarian cancer and endometrial carcinoma, the efficacy of temsirolimus did not actually meet the
predefined criteria [96].
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Table 3. Molecular structures, chemical formulas, and uses of rapalogs commonly used.

Agent Mechanism of
Action

Molecular
Structure Chemical Formula Licenced Uses

Rapamycin
(Sirolimus)

Forms complex
with FKBP12 to

allosterically
inhibit mTOR
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Considering the limited activity of mTOR inhibitors as monotherapy and the evidence from
preclinical studies indicating an additional benefit of mTOR inhibitors when associated with
chemotherapy, some trials have investigated the effects of the combination of mTOR and cytotoxic
drugs [100].

9. Combination Trials

In a phase I study, 41 patients with advanced gynecologic malignancies were administered
a combination of bevacizumab (VEGF inhibitor) plus temsirolimus (mTOR) inhibitor. Using
FDA-approved doses, 20% of patients achieved stable lasting over six months [101]. Similarly, in another
phase I study, 32 patients with advanced solid tumors were treated with bevacizumab, everolimus,
and panitumumab. The doses were tolerable and moderate clinical activity was recorded [102]. Similar
results were reported when patients with advanced/or recurrent gynecologic malignancies were treated
with temsirolimus and topotecan (a topoisomerase inhibitor). Although there was evidence that 9 out
of 11 patients reported stable disease covering approximately a two-year study period, the authors
concluded that “the regimen may be safe in women who have not previously received radiation, but full
doses of each agent could not be administered in combination” [103]. Despite the limited therapeutic
success in ovarian cancer, new rapalogs are now emerging. Despite lack of any phase I studies, there
are some promising results using a dual mTORC1/2 inhibitor named WYE-132 in vitro. Preliminary
results show that this compound can stop proliferation of ovarian cancer cells via mTOR-dependent
and mTOR-independent signaling pathways [104].

A Phase II clinical trial investigating the effects of the combination “bevacizumab plus everolimus”
in recurrent ovarian cancer patients (NCT01031381), revealed that 14/50 (28%) patients were
progression-free at six months (95% CI 16.67–42.71%), with 5 (0.65%) grade 4 and 66 (8.64%)
grade 3 toxicities, mostly consisting in oral mucositis, fatigue, abdominal pain, diarrhea, nausea,
and hypertension [105]. The toxicity profile of mTOR inhibitors for OC patients needs further
assessment. Larger studies on breast cancer patients suggest that the most common adverse events
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of mTOR inhibitors include stomatitis (all grades: Approximately 60%), non-infectious pneumonitis
(15%), rash (40%), hyperglycaemia (15%), and immunosuppression (40%) [106,107].

Vistusertib is a dual mTORC1/mTORC2 inhibitor, competitively binding to the ATP site [108].
Two recent studies assessed the combinatorial effect of vistusertib and paclitaxel. A combination of
vistusertib and paclitaxel on inhibition of cell growth was additive in a majority of 12 OC cell lines
(n = 12) studied, followed by reduction of S6 and AKT phosphorylation [109]. In the same study, in
a cisplatin-resistant xenograft model, there was a significant reduction in tumor volume only in the
group that was treated with both paclitaxel and vistusertib. Results from a phase I trial of vistusertib
in combination with paclitaxel in patients (n = 22) with GHSOC and squamous non-small-cell lung
cancer also appeared to be encouraging. In the OC cohort, RECIST (Response Evaluation Criteria in
Solid Tumors) rates were 52% and median PFS was 5.8 months. However, further clinical trials should
be explored for knowing the pharmacodynamics and pharmacokinetics of vistusertib [110].

10. Future Perspectives on mTOR Inhibition and OC

Studies on the mTOR field over the past 20 years underline a high level of complexity in
this particular signaling, its inhibition and expression of key mTOR components in a tissue- and
cell-specific manner. Initial studies from our laboratory revealed a differential expression of expression
of mTOR signaling components in drug resistance using in vitro OC models. We showed that
RICTOR and mTOR expression were up-regulated in the PEO1 taxol-resistant cells (TaxR; cells with
epithelial phenotype), whereas their expression was markedly down-regulated in SKOV-3TaxR OC
cells (cells with intermediate mesenchymal phenotype) [111]. This is of increasing significance since
epithelial–mesenchymal transition (EMT) appears to facilitate the invasive OC phenotype [112].

BEZ (BEZ-235) is another dual inhibitor for PI3K and the mTOR complex, it works by competitively
binding to both of their ATP sites [113]. We assessed its effect in vitro using two OC cell lines (SKOV3 and
MDAH-2774 cells) [114]. We showed that BEZ reduced cell proliferation, and this is accompanied
by dephosphorylation of S6K (Thr389). We highlighted then that the need for ‘tailor-made’ therapies
against OC depending on the genetic make-up of the patient.

It should be noted that despite a wealth of preclinical/clinical data on PI3K/AKT/mTOR pathway
inhibitors in OC, currently there are no FDA approved inhibitor(s) as combinatorial treatments for
ovarian cancer Interestingly, the PI3K inhibitors copanlisib and idelalisib (for follicular lymphoma)
have been clinically approved [115–117]. There is also evidence that protein kinase C (PKC) can activate
the mTORC1 signaling pathway [118]. It would have been interesting to test whether dual inhibition
of mTOR and PKC pathways can be of benefit to ovarian cancer patients. However, emerging data
on the clinical use of PKC inhibitors are not very encouraging. For example, efforts to target PKC
signaling in clinical trials for pancreatic cancer have failed [119]. Similarly, in a phase II study for
multiple myeloma, enzastaurin (a serine/threonine PKC inhibitor) was not effective in this particular
cohort [120]. The last study recorded using the same inhibitor in another phase II study in patients with
recurrent epithelial ovarian cancer and primary peritoneal carcinoma was not promising either [120].

For the future, large-scale investigations are needed for a better characterization of their properties
as antitumor agents. To date, no phase III trials have been reported on these drugs. Moreover, defining
the OC population by the sub-types will tell us which subset shall derive maximal therapeutic benefits
with minimal adverse effects.

11. Conclusions

Over the past decade we have gained a better insight into the molecular mechanisms implicated
in the aetiopathogenesis of ovarian cancer. Looking at the current landscape, combinatorial treatments
appear to be more beneficial than single agents for ovarian cancer patients (Figure 2). However, further
research is needed not only for phase III trials but there is also a need for the development of biomarkers
that will predict response or relapse. Moreover, sequencing of the human genome has allowed the
development of new therapeutic regimes; e.g., PARP inhibitors for ovarian cancer patients carrying
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BRCA mutations. Hopefully, the field will move towards personalized medicine, where tailor-made
treatments will become available.
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