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A B S T R A C T  

It  is  well  known  that  irreducibly  diagonally- 

dominant  matrices  with  positive  diagonal  and 

non-positive  off-diagonal  elements  have  positive 

inverses.    A  whole  class  of  symmetric  circulant 

and  symmetric  quindiagonal  Toeplitz  matrices  with 

positive  inverses  which  do  not  satisfy  the  above 

conditions  is  found. 
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Introduction

A  condition  that  the   zeros  of  a  certain  polynomial  are  positive 

implies  that  the  corresponding  quindiagonal  matrix  has  a  positive 

inverse.     A  similar  condition  means  that  the  related  circulant  with 

five  entries  per  row  has  a  positive  inverse.     The  quindiagonal  matrix 

is  analysed  by  expressing  the  first  row  of  its   inverse  as  the 

solution  of  a  finite  difference  equation  and  showing  that  this 

solution  is  positive.     A  result  of  Trench   (1964)  may  then  "be  used  to 

prove  that   for  symmetric   quindiagonal  Toeplitz  matrices,   the  complete 

inverse  is  positive  if  the  first  row  of  the  inverse  is  positive.   The 

behaviour  of  the  first  row  of  the  inverse  for  very  large  orders  is 

considered  and  examples  of  this  new  class  for  matrices  are  given. 

Main  Theorems

Theorem  1.        (Proof  in  section  3) 
If  the  real  numbers  a  and  b,  b  non-zero,  are  chosen  so  that 

the  symmetric  polynomial 

bx4  +  ax3  +  x2  +  ax  +  b (l) 

has  real  positive  zeros,  then  the  inverse  of  the  symmetric 

quindiagonal  Toeplitz  matrix, 
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consists   of  positive  elements   for  all  order  n. 



 
- 3 - 

 

The  values  of  a  and  b  for  which  the  polynomial   (l)   has   real 

positive   zeros   may   be   described  as   follows.   Suppose  the  real   zeror. 

of  polynomial   (l)   are  r1  ,   l/r1   , r2     and  l/r2    where  r1     and  r2     are 

positive,  then  the  values  a  and  b  may  be  expressed  as 

,
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It  is  easy  to  verify  that    -  2/3  <  a  <  0  and  0  <  b ≤  1/6. 

The  relation  a  +  b  ≥  ½   follows  from  the  inequality 

 (r1  +l/r1   -2)(r2  +l/r2   - 2 )   ≥  0  and  a2  + 8b2 - 4 b  ≥  0   is  the  condition 

that  r1  and  r2  are  real. The  above  inequalities  describe  a  region,  R, 

in  the  a  - b   plane  bounded  by  the  three  curves  b  =  0,   a +b  = -
2
1   and 

a2 + 8b2 -4b = 0 with intersection  points   (0,0),(-1/2,0)  and 

(-  2/3,  1/6). 

 

Theorem  2. 

If  the  real  numbers   a  and  b,   b  non-zero,   are   chosen  such  that 

the  symmetric  polynomial 

bx4 + ax3 + x2 + ax + b    (l) 

has  real  positive  zeros,  not  equal  to  one,  then  the  inverse 

of  the  symmetric  circulant  matrix 

Cn = circ  (l,a,b,0   ...  , 0,b,a)nxn   (3) 

consists  of  positive  entries  for  all  orders  n. 
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Proof 
 

The matrix Cn  ,   in  (3),   can be  factored into the product  of two 
matrices, 

,])PP(I)r/r([])PP(I)r/r([C n
1

22
1

11 11 −− +−++−+= wh

ere    P    is  the  permutation  matrix  circ   (0,1,0,...,0)nxn  and 

r1 and r2 are  zeros  of  (l)   not  equal  to  1.  However,  both  factors 

are  irreducibly  diagonally  dominant  and  have  positive  inverses, 

Varga  (1962),  and  consequently,  the  inverse  of  the  matrix  Cn    is 

positive. 

The  above  method  of  proof  may  be  used  for  a more  general theorem 

concerning  circulant  matrices,  Meek  (1973). 

 

Theorem  3.   (Trench(1964)). 

If  Tn  is the  nth order,  n  ≥  3,  symmetric  Toeplitz  matrix  in  (2) 

and  the  first  row  of  the  matrix  is  positive,  then  1
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are  positive.    However, thus   Tn

-1> 0 ,
  
all  of  the  elements 

of  the  matrix 
 
are  positive. 1
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3.     Proof  of  Theorem  1. 

The  first  row  of  the  matrix nT 1−
 
is  shown  positive  by  solving  a 

difference  equation  so  that  theorem  3  is  an  induction  step  in  the 

proof  of  theorem  1.     It  is   easy  to  verify  that   03
1 >−T

  
when  a  and  b 

are  chosen  so  that   (a,b)   is  in  region  R. 

The  difference  equation  for  the  elements  of  the  first  row  of  the 

   isnTmatrix 1−

bD r-2  +   aDr-1  ,  + Dr + aDr+1 +  bDr+2 =  er ,r = 1,2,... ,n,      (4) 

with  end  conditions  D-1 = D0 = Dn+1 = Dn+2 = 0, where 
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while  the  general  solution  falls   into  four  cases,  depending  upon 

the  zeros  of  the  polynomial   (l).  The  more  general  case  of  positive 

real  distinct  zeros  not  equal  to  1  will  be  discussed  first. 

The  zeros  of the  polynomial   (l)   are  positive,  distinct  and 

not  equal  to  1,   if  and  only  if  a  and  b  are  such  that  the  point   (a,b) 

lies  in  the  interior  of  the  region  R.    For  convenience  take 

r1   > r2 >  1   to  be  zeros  of  (l),  then  the  general  solution  to  the 

difference  equation ( 4 )   is  of  the  form 

.n......,,,r,HrDrrCrrBrrArD rr 2012211 +−=−++−+−=
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If  the  function  f(r,n)   is  defined 

)5(,tstststststs)n,r(f 2n1rn2rn1n1n2rn1rn2nr11r ++−+−+++−+−+= + + − − +
  ,rrtandrrswhere 2211

ω−−ω≡ω−−ω≡ ωω    then the solution satisfy- 

ing the end condition is

                                    Dr    =  f(r,n)/  (b  f(l,n+l))   +  Hr    , r =-1,0,... ,n+2.              (6) 

As    n    becomes   large,  Dr    approaches  the  function 

⎩
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t)r,br/(Dn
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r 100
01 21

where    r ≡(n-l)t+l. 

The substitution r1 = e(θ+ ψ )  ,  r2  =  e(θ+ ψ )   ,    where 

θ >  ψ  >  0,  transforms  the  function  f(r,n)   in  (5)    into 

f(r,n)  =l6sinh(n+l)θ  sinh(n-r+2)θ   sinhrψ   sinh  ψ

-  l6sinh(n+l)ψ   sinh(n-r+2)ψ   sinhrθ  sinhθ 

which  is  positive  for  r = 1,2,...,n   since  both 

sinh(n+l)θ  sinhrψ   -  sinh(n+l)ψ   sinhrθ 

and 

sinh(n-r+2)θ  sinhψ  -  sinh(n-r+2)ψ  sinhe 

are positive r = 1,2,... ,n, (see the appendix) - Now tooth  b  and 

f(r,n) are  positive, thus Dr , r= 1,2,...,n  in equation (6) is 

positive. 

      The  results  for  the  remaining  three  cases  may  now  be summarized. 

The  polynomial  (l)  may  have  one  repeated  zero,  that  is  the  zeros  are 

r1, 1/r1,l, l,r1 >1, and a+b  = -1/2, or it  may have two pairs  of 

repeated zeros, that is the zeros are r1 , 1/r1 , r1 ,1/r1 ,r1 >1 and 
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a2 + 8b2 - 4b = 0 , of  it. may  have all.   Four  zeros   equal to 1, 

whence a= -2/3   b = 1/ 6 .  The solulion of the difference 

equation   (4)   is  of the same form as   in  equation   (6)  with the  function 

f(r,n)  being defined 

f(r,n)   = sr+rs1+ ( n-r+1)sn+2-( n+1) s n-r+2-(n-r+2)sn+1+(n+2)sn-r+1, 

f(r,n)  = rsn+1sn-r+2-(n+1)(n-r+2) srs1   , 

and 

f(r,n) = r(n-r+l)(n-r+2) , 

respectively.    As  n  becomes  large,  Dr  ,  in  these  three  cases  approaches 

the  functions  
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where  r = ( n - l ) t + l .  

The  substitution  r1   =  e2θ  ,θ  > 0,  in  the  first  case  yields 

f(r,n)  =8sinh(n-r+2)θ  sinhθ[(n+l)cosh(n+l)θ    sinhrθ-rcoshrθ     sinh(n+l)θ] 

+  8sinh(n+l)θ     sinhr9 [ (n-r+2)cosh(n-r+2)θ  sinhθ-coshθ  sinh(n-r+2)θ] 

in which  both  of  the  terms  are  positive  for  each  n  and  r=l,2,...,n 

(see  the  appendix).  The substitution  r1 = eθ  ,θ  >  0,  in  the  second  case 
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gives 

f(r,n)  = 4[rsinh(n+l)θ]:sinh(n-r+2)θ]-U[(n+l)sinhre3L(n-p+2)sinhe] 

which  is  also  positive  for  each  n  and  r=l,2,—  n    (see  the  appendix). 

In  the  third  case,   f(r,n)   is  ohviously  positive  for  each  n  and 

r  =  1,2,...,  n  . 

4.     Examples

The  matrix  arising  from  quintic  polynomial  spline  interpolation 

on  a  uniform partition  with  non-periodic  boundary  conditions  is  the 

quindiagonal 
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Ahlberg,  Nilson  and  Walsh,   p. 124   (1967).   The  related  matrix  DADT  , 

where  D  is  the  diagonal  matrix  diag  ( 1,-1,...,(-1) n-1) nxn  ,  has  a 

positive  inverse  since  the  zeros   of 

1/66 z4 -  26/66 z3  +  z2 - 26 /66 z + 1/66 

are  real  and  positive 

Hoskins  and  Ponzo   (1972)  have  found  another  class  of  symmetric 

Toeplitz  matrices  with  positive  inverses  which  intersects  with  the 

class   described  here  in  the  nxn  matrix 
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6.      Appendix 

Lemma    1. 

The  function   (sinhmθ)m  is  greater  than  θ   and  monotone  

increasing 

in  m  when  θ > 0, m > 0. 

Proof 

The  result  follows  from  a  Maclaurin  expansion  of  sinhmθ . 

Lemma  2. 

The  function  m  cothmθ   is  greater  than  θ   and  is  monotone 

increasing  in  m, θ > 0, m > 0. 

Proof 

The  derivative  of  m  cothm9  with  respect  to  m  can  be  shown  to 

be  positive  using  lemma  1.   for  θ  >  0,  m  >  0  and     (m  cothmθ)  =  
0m

lim
→

θ. 

   

Lemma  3. 

The  function  (sinhmθ )/(sinhmψ )   is  greater  than  θ/   and  ψ

increases 

with  m,   θ > 0, ψ   >  0,  m > 0. 

The  derivative  of   (sinhmθ)/(sinhimψ )  with  respect  to  m  can  be 

shown  to  be  positive  using  lemma  2.   and      (sinhmθ)/(sinhimy)   =  
0m

lim
→

θ/ψ . 
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