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Abstract—This study evaluates the combination of computa-
tional fluid dynamics (CFD) and artificial intelligence (AI) algo-
rithms in heat exchanger application. More specifically, fuzzy 
logic controller (FLC) is selected in the closed-loop control sys-
tem. The sensor read by the FLC is based on the reading from 
the CFD meshing finite element method (FEM) discretization in 
order to solve the Navier-Stokes (N-S) equation. The controller 
output is the boundary condition of the CFD system (i.e heat 
flux). In this study, the CFD result will provide a predicted value 
approaching the set point. This system utilizes six rules for the 
controller. In order to evaluate the controller performance, sev-
eral different set points are set. In addition, the genetic algo-
rithm (GA) is set as the optimizer for the making of the sequence 
of the Mamdani triangular membership function. Finally, the 
GA is used to modify the membership function of the FLC. The 
total evaluation error for the FLC is 0.92 ºC of the mean abso-
lute error (MAE). Meanwhile, the GA-based FCL produces 0.78 

ºC has of MAE. 

Keywords—computational fluid dynamics, artificial intelli-
gence, fuzzy logic controller, genetic algorithm 

I. INTRODUCTION 
Artificial intelligence (AI) has been widely administered 

in considerable applications. It has been utilized for medical 
use such as arrhythmia problems [1, 2], anesthesia [3, 4] and 
blood pressure estimation [5]. Moreover, the AI also has been 
applied to energy systems [6-8], electromagnetic field [9] and 
shape optimization to increase the aerodynamics of the un-
manned aerial vehicle [10].  

Specifically for fuzzy, it has been used for clustering to 
deal with the highly unbalanced dataset in ensemble algo-
rithm method [11]. Moreover, the fuzzy algorithm has also 
been used for the forecasting the stock index in time series 
evaluation [12]. In further, it also provides very powerful 
method for the control system application in anesthesia [13] 
and wearable sensor-based human rehabilitation [14].  

Computational fluid dynamics (CFD) is a powerful nu-
merical approach in solving the fluid system and also has 
been extensively implemented into massive fields. It has been 
used in aerodynamics-related field such as wind turbine [15] 
and refrigeration [16]. Meanwhile, the hybrid method, com-
bination of genetic algorithm (GA), ANN and CFD, has also 
been studied in autonomous underwater vehicles [17]. fur-
thermore, this study utilized GA to minimize the drag. In bi-
omedical area, CFD was also used in cerebrovascular prob-

lem in order to evaluate the performance of stent for the cer-
ebral aneurysms analysis [18] and the evaluation of blood 
flow-related to the arrhythmia [19].  

 

 
Figure 1. Navier-Stoker convergence. 

 

Most of the FLC applications used sensor reading-based 
set point. However, this study’s big contribution is combining 
the CFD application as the artificial sensor-based prediction 
value to several set points for the FLC. The advantages the 
CFD method is the ability to create massive vital set points in 
specific positions by the generated mesh. Therefore, this 
study has main purpose in optimizing the CFD-based closed-
loop fuzzy logic controller evaluation by the GA algorithm. 
The GA is utilized to set and adjust the error and error change 
membership functions with the mean absolute error generated 
from the system compared to the set point as the fitness func-
tion. 

II. METHODOLOGY 
The simulation data of the utilized heat exchanger size are 

31 cm, 12 cm and 1 cm, respectively for the length, width and 
tube radius. The system is an air-cooled heat exchanger. The 
system is assumed to be steady-state and limited only for lam-
inar flow system. The Quickersim Toolbox for MATLAB 
[20] and its scripts, especially for the fuzzy logic controller, 
are utilized for this study. The Quickersim toolbox utilizes 



the finite element method (FEM) discretization method in or-
der to solve the physical phenomena. The air velocities are 
0.1 m/s and 0 m/s, respectively for the horizontal and vertical 
velocities. The stop criterion is selected either 100 iterations 
or the lower than 1E-9 residual. The relaxation value is set to 
0.25.  

 
Figure 2. Navier Stokes velocity distribution. 

 

The Navier-Stokes (N-S) equation is initially solved to 
get the velocity and pressure distribution of the system. The 
semi-log plot for the convergence of the N-S result can be 
seen in Fig. 1. The priority of this study is the 1E-9 of the 
error. However, the model is stopped earlier after 100 itera-
tions when the residual concludes to lower than 1-e6 which 
is still relatively acceptable. The velocity distribution is 
shown in Fig. 2.  

The next step after the fluid-related computation is the as-
sembly of the 2-D global diffusion matrix and global matrix 
scalar convection. In addition, the thermal boundary condi-
tions are applied in the last step of the thermal boundary con-
ditions. For more detail about these operations, it can be seen 
on [20].  

 

 
Figure 3. Heat flux effects. a) heating system. b) cooling 
systems. 

 

In further, the thermal boundary condition is defined with 
the heat flux. The positive and negative heat fluxes mean the 
processes are under heating and cooling, respectively. These 
conditions also generate different phenomena to the tube sur-
face temperature. The condition is shown in Fig. 3. Mean-
while, Fig. 4 shows the CFD-based evaluation area definition. 
Fig. 4a visualizes the distribution temperature. The green cir-

cles are the evaluation area in the outlet of the system. Mean-
while, Fig. 4b is the temperature distribution of the outlet 
temperature for the evaluation area. The maximum value of 
the green circles is set as the specific controlled temperature 
of the system. These temperature values are fully related to 
heat flux generated from inside the tube. 

 
Figure 4. Thermal boundary condition. a) Temperature dis-
tribution. b) Evaluation area.  

 

Therefore, closed-loop fuzzy logic controller with the 
heat flux, for both output and the boundary condition of the 
system, Sugeno skeleton membership function is set. Further-
more, for the inputs, the Mamdani triangular membership 
function is used. The error membership functions are distrib-
uted into six levels, which are negative very large (NVL), 
negative large (NL), negative normal (NN), negative small 
(NS) negative very small (NVS) and zero (Z). Meanwhile, 
the error change membership function is shared into three 
levels; negative large (NL), zero (Z) and positive large (PL). 
The system is minimized into a six-rule controller as can be 
seen in Table 1. The evaluation error is defined by 15 seconds 
after the set point to the end of the system or another set point 
change. This condition can be described in another way by 
the controller only has this period to reach the set point. 

 

Table 1. Fuzzy logic controller rules 

Heat Flux (W/m^3) Error Change (◦C / Sec) 
NL  Z  PL 

Error (◦C) 

NVL VL     

NL  L     

NN   N   

NS   N   

NVS     VS 

Z     Z 
 

The next step is the optimization. The genetic algorithm 
(GA) is selected as the optimizer. Generally, GA hast three 
major parts; reproduction, crossover and mutation. The repro-
duction is the step that produces single or multiple random 
chromosomes to build the population. Crossover, normally, 
is the mating between some parts of a population to another 
one. In further, the mutation is a change of a single or multi-
ple bit in the chromosome in populations. This study sepa-
rates the 18-bit and 9-bit chromosomes for the error and error 
change, respectively. Furthermore, four-population system is 
set for the structure to reduce the computation.  

The GA started by initialization of the random popula-
tions. After the initialization, the fitness function calculation 
is directly applied to sort the population based on the mini-
mum mean absolute error (MAE) by comparing the con-
trolled output to the set point. The best chromosome is stored, 



meanwhile the others are discarded. The crossover is sepa-
rately performed for each input by swapping saved chromo-
some; nine-to-nine bits are parted for the error input and five-
to-four bits for the error rate. The following step is the fitness 
function evaluation as well. Furthermore, the squared of 0.1 
mutation rate is utilized and also followed by the calculation 
of the fitness function. Temporarily, the system has three 
populations; the initial part, crossovered, and the mutated 
chromosomes. In order to reform the 4-population system, 
another random chromosome is produced. Finally, the sorting 
procedure is conducted based on the minimum MAE in order 
to have the best candidate of the system. The flowchart of the 
GA-based FCL can be seen in Fig. 5.  

 

 
Figure 5. Genetic algorithm-based fuzzy logic controller 
flowchart. 

 

 
Figure 6. Fuzzy logic controller membership function. a) Er-
ror membership function. b) error change membership func-
tion.  

III. RESULT AND DISCUSSION 
The main results between the CFD-based FLC and GA-

tuned FCL are investigated. The performance of the control-
ler is evaluated by three set point changes from the relatively 
small to relatively big changes in 2 minutes. Initially, the 
CFD-based FLC is presented.  The membership function of 
the FLC is shown in Fig. 6. The error and error change mem-
bership functions can be seen in Fig. 6a and Fig. 6b. The 

Sugeno skeleton membership function of the output can be 
seen in Fig. 7.  

 

 
Figure 7. Output membership function 

 

 
Figure 8. CFD-based FCL result. 

The CFD-based performance can be seen in Fig. 8. The 
format of this image; time, set point, transferred heat flux and 
controlled temperature. Furthermore, the initial room temper-
ature is 35 ºC. The first set point is set to 30 ºC. It can be seen 
that the controller supplies -0.14 W/m2 reduce the tempera-
ture steadily to 29.62 ºC, generating overshoot error about 
0.38 ºC error. Meanwhile, the second set point is 20 ºC, the 
controller initially generates -0.19 W/m2 to reach 22.28 ºC. 
However, due to the set point is not reached yet, the addi-
tional -0.08 W/m2 is provided. Nevertheless, it has overshoot 
1.02 ºC error. The final set point is adjusted deeper to 0 ºC. 
In this condition, initially, the heat flux is transferred to -0.2 
W/m2 in 10 seconds. It reaches 11.21 and 3.44 ºC, respec-
tively. The reduced -0.11 W/m2 heat flux is then supplied to 
reach -0.96 ºC that generates 0.96 ºC overshoot error. Even-
tually, the total evaluation error is 0.92 ºC. 

 



 
Figure 9. Fitness function of genetic algorithm. 

 

 
Figure 10. Genetic algorithm-based fuzzy logic controller 
membership function. a) Error membership function. b) error 
change membership function. 

 

The evaluation of the GA-based FLC can be seen in the 
following figures. Fig. 9 shows the convergence of the GA 
fitness function and its generation. In the initial generations, 
the fitness function achieves higher than the non-optimized 
FLC and gradually reduces. However, in about the 10th gen-
eration, the system has a remarkably reduced condition, gen-
erating about lower-than 0.8 ºC error. The error continues to 
slightly reduce in about 15th generation. This condition is held 
until 60 generations to conclude the 0.78 ºC error.  

By having a good fitness function, the generated member-
ship function can be seen in Fig. 10. The error membership 
function system tends to be unsymmetrical triangular mem-
bership functions and the “Zero” membership functions shifts 
to the left side compared non-GA FLC membership function. 
Meanwhile, the error change membership function relatively 
has less width for the “Zero” membership function and also 
the shift to the left side for all of the membership functions. 

The controller result of these membership function can be 
seen of Fig. 11. Initially, the -0.09 W/m2 is transferred to get 
31.5 ºC. Subsequently, another -0.03 W/m2 is supplied to 
reach 30.28 ºC that has steadily 0.28 ºC undershoot error. The 
next set point is 20 ºC. In this condition, the system adapts 
with transferring -0.17 W/m2 and additional -0.12 W/m2 to 

reach 19.34 ºC and has 0.66 ºC of overshoot error. Finally, 
the last set point, 0 ºC, the initial heat flux supplied by GA-
FLC are -0.2 W/m2, -0.05 W/m2 and -0.03 W/m2, respectively 
to have 0.59 ºC and has -0.59 ºC of undershoot error. Totally, 
the GA-tuned FLC produces 0.78 ºC of error. 

 

 
Figure 11. CFD-based GA-tuned FCL result. 

 

The comparison between FLC and GA-based FLC can be 
seen in Fig. 12. Fig. 12a shows the controller performance 
from FLC and GA-based FLC to the set point. As can be seen, 
the GA-FLC produces better result in approaching the set 
point. Meanwhile, Fig. 12b displays the generated error be-
tween two controllers to the set point. The three different tem-
peratures are set in order to see the performance in dealing 
with different changes of the set points. The GA-based FLC 
generates better result compared to the FLC.  In further, the 
supplied heat flux can be seen in Fig. 12c. It can be seen that 
initially the GA-based FCL provides a lower supply to the 
system for the lowest change which is 5 ºC. Furthermore, 
when the 10 ºC change, the GA-based FCL adapts more 
smoothly in distributing the heat flux. Meanwhile, the FCL 
forces the heat flux to a relatively deep change. Finally, for 
the highest change of the set point, the GA-based FCL is in a 
better step in dealing with the overshoot. In addition, the GA-
based FCL needs to slow down the heat flux more rapidly due 
to the set point is about to be achieved.  

IV. CONCLUSION 
This study investigates the fuzzy logic controller with the 

evaluation of computational fluid dynamics. The genetic al-
gorithm as the optimization method is applied to tune the 
membership function of the fuzzy logic controller. The result 
shows the optimized membership function of the fuzzy logic 
controller overcomes the non-optimized fuzzy controller. 



 
Figure 12. Comparison between fuzzy logic controller and 
genetic algorithm-based fuzzy logic controller.  a) controller 
performance. b) Generated error and c) Supplied heat flux.  
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