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1. Introduction.

The existence of Sobolev norm bounds for interpolation remainders
defined on triangles is well known [7,8], as is the relationship of such
bounds to finite element analysis. A constructive method for the derivation
of such bounds is proposed in a recent paper by Barnhill and the author [3].

This method is used here to derive error bounds for linear interpolation

on a triangle T to functions defined in the Sobolev space H?(T). In
particular, the constants which are involved in the bounds are estimated.
Knowledge of such constants can lead to computable finite element error
bounds for second order elliptic problems defined on convex domains [5].

Let T be the triangle with vertices at (1,0), (0,1), and (0,0) .

The Sobolev space H?(T) is the space of all real valued functions which,

together with all their generalized derivatives of order < 2 , are in L, (T).

A norm and semi-norm on H?(T) are respectively defined by

1/2
m i - {5, [l

<i+j<2

1/2
2
ui,j HLz (T) )

(1.2) |u|H2(T)_{ 2 ‘

Let linear interpolation remainders be defined by

R[u](s, 1) = u(s, £) —su(1,0) — tu(0,1) — (1—s — t)u (0, 0),
(1.3) R1,0[ul(s, ) = %R[u](s, ) =up,0 (s, 1) —u(1,0) +u(0,0),

RO,1[u](s, 0 == Rul(s, ) =u,1 (5,6~ (0,1) + u (0.0



Then the bounds of interest for u € HXT) are those on the L,(T) norms
of (1.3).

The bounds which are given in this paper are derived by means of a
piecewise defined Taylor expansion of ueC*(T). This expansion is
defined in Section 2 and the bounds are given in Section 3. The use of the
function space C?(T) can be justified by the use of 'smooth' or 'mollified'

functions from H?(T). Finally, in Section 4, bounds are derived for an
arbitrary triangle. In particular, it is shown that the bounds hold under

the maximal angle condition that no angle of the triangle should approach

n. This condition is derived by Synge [11] for functions in C?(T) and

is also the subject of recent studies [1,2,9].

2. A Taylor expansion in C*(T).
Let (a,b) € T and let A;, A, , and A; be subsets of T defined

by

A1 =T-Ap U A3z where
(2.1) Ay ={x, y/(x, y)e T ad x >1- b},
A3 = {(Xa Y)/(Xa Y) € T and y > 1- a}a

see Figure 2.1.

,1n
A3
(0,1-a)
A
(0,0) (1-b,0) (1,0)

Figure 2.1

The regions A, ., A. , and A,
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Then u e CXT) can be written in the piecewise defined form
(22) u(Xa Y) = XAl (Xa y)u(x, Y) + XAZ (Xo Y)U(X, Y) + XA3 (X: Y)U(X, Y)a (Xv Y) € T:

Where

1 if XY e A,
2.3 Xa (X, = -
23) Ai( 2 {O otherwise

For each region A, i = 1,2,3, single variable expansions of U C2(1') are
made along parallels to the coordinate axes, see Figures 2.2 and 2.3. These
expansions are such that their arguments are contained in T for all (a, b) € T
and the following piecewise defined Taylor expansion of the function u(x,y)

about the point (a, b) results:

(2.4) ux,y) = u@, b) + x — au, fa, b) + ¢ - blg,(@, b)

X _ —~ ~ Y X ~ o g~ g~
+XA1 (x,y)[fa (X =X)u, o (X,b)dx +fb ja uy; (X, y)dx dy

1 (1.9 ug, (@.9) 0]
+ XA2 (x, y)U;‘ ff U, o(x',1=-X)dx"dX + I;‘ t_i u,(a, y )dy dX
I G EFE (- P ug, 0.5 6]
x4, (| -, (KDY [ 5wy, (R.9) dR

+ -[l}; .[;_? Uy (X*ab) dX*dy + jg .[Z uo,z(l -v,y")dy' d?J

(A detailed derivation of the generalized form of this expansion for u e C"(T)
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Figure 2.2

Function arguments in Taylor expansion for (X,y) ¢ A1

(x,¥)¢

9~ ~o~ ]_~’~
(x,y) o) (1=-y,y)

(1-y,y")1

(x,b) (X,b) (1-y,b) (x ,b) (a,b)

Figure 2.3

Function arguments in Taylor expansion for (x,y) A3

( (x,y) € A2 is dual )

Remark 1. The fact that (a,b) can be an arbitrary point of T is
significant since (a,b) = (s,t) is permissible, where (s,t) is the point
of evaluation of the interpolation remainders (1.3). This choice of (a,b)

enables bounds to be derived in Sobolev function spaces. This is observed
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by Birkhoff, Schultz, and Varga | 6

, who use the Kernel Theory of Sard | 10 |

to derive error bounds for Hermite interpolation on rectangles. However, the
theory of Sard is based on Taylor expansions which correspond to the case of
(x,y) € A; in (2.4), and such expansions have a rectangular domain of
influence, see Figure 2.2. This precludes the choice of (a,b) = (s,t) in
the application of Sard's theory on triangles (although this theory can be
applied with (a,b) = (0,0), [2.,4]).

Remark 2. The remainder terms which involve u; ¢ in the Taylor
expansion (2.4) are constants in the variable y and, dually, the terms which
involve up > are constants in the variable x. This property, which is a
result of the development of the Taylor expansion along parallels to the
coordinate axes, has an important consequence in the following section and

leads to the maximal angle condition of Section 4.

3. Error bounds for linear interpolation on T .

The application of the linear interpolation remainders defined by (1.3)
to the Taylor expansion (2.4), with (a,b) = (s,t) , gives the following

representations:

(3.1)  Rlul(s,t)=-s[ [ u, (x"1-%)dx"dX —s [} [\ u, (s, y ) dy "dX
1 S oy~ v . (1 S o\ A AT
_sfs I?—i u1,1(X,y)dydx—tftf?_?ul,l(x,y)dxdy
1-V * % v ~ L
—tf}[fs yul,l(x ,t) dx dy—tf}[f%,u(),z (1-Yy,y")dy'dy
+(1-9)10%ur0 (R 0)dX—(1-s—1]°[0 < Y 7 dT
s Xu2 0 (X,)dXx - (1-s—-9J Jg up 1 (X,y)dxdy

+(1-91%Fu0,2 5,945,



6y RGO = - 1 1B uyoc 1 - dxdx — [ [FX ups,yDdy'dx

STV gy R9)d¥dR - T Rupg (R.0) dR

+I? fguljl(i,y)didy

( R o,1 [u](s,t) has a dual representation to (3.2)). Equations (3.1) and
(3.2) contain terms which involve only second derivatives since R and R
annihilate the linear terms in (2.4). Also, a consequence of the form of the
Taylor expansion (2.4) and the form of the interpolation remainders (1.3) is
that (3.2) contains no term in ug,,. This is because R[g(y)](s,t) is a
constant in the variable s for all univariate functions g(y), and hence
Rio[g(y)] (s,t) = 0 (see Remark 2, Section 2). A generalization of this
property forms the basis of the Zero Kernel Theorem in Barnhill and Gregory [2]
The L,(T) norm of (3.1) and (3.2) is now taken with respect to (s,t)

and the triangle inequality for norms is applied to the sum of terms of the

right hand sides. For u € H? (T), the norms of the terms which result can be
bounded appropiately. For example, for one such term (cf. (3.2)) the

following inequalities hold:

1 [1-% N Aot AT 112
3.3) |10 up,(s,y )dy dX||L2(T)
_fes ey N | *\ g 1 F 0
=I5 oy dRdy = Jo L w5 y)dRdy I oy
I-s * 2 4 % [l-s £ 2 g |12
< 1=y =sPdy" [ uy s,y P dy'|

Aoty Ty e b



s 1 —t s * % t3 % *
s [( (=520 s 6,9 P dy =y lu sy dy

s Tuy (say D) P dy " Th 1 (uyys,y ) 1P

. (l_s_t)3/2t3/2
3

1/2
dy*} dt ds

<To(=s)*/6+m/32) 5% [uy (s,y ) |* dy ds

</6+m/32) fluyy L, (1)

The details of the calculations which involve the other terms are omitted for

brevity, and the final bounds obtained are

(34) R[]Il (y< 017wzl (py +0-391 My +0-17 102 Il (1 -
(3.5 IR [u] HLQ(T)S 0.65]|u, ||L2(T) +0.93|uy HLz(T) ,

(3.6) [[Rg [u] HLZ(T)S 0.93[|u ||L2(T) +0.65[ ug ||L2(T) -

4. Error bounds for linear interpolation on a general triangle.

Consider the linear transformation defined by

(4.1) we, ) = dax, y), . 1,
where
& = dXy) = x + ay
(4.2)
X, y) = by,

3
Il

and 1 > a >0, 1 > b > 0.. Equations (4.2) define a transformation of the

triangle T with vertices at (1,0), (0,0), and (0,1) in the (x,y) plane,
to the triangle T with vertices at (1,0), (0,0), and (a,b) respectively
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in the (&,m) plane. Further, let the angles at the vertices of T be
denoted by a, B, and y respectively, where a < B < v, see Figure 4.1.

Thus, the length of the greatest side of T is 1. (Results for a triangle

of greatest side h follow immediately from the analysis in this section.)

(a,b)
Y

(0,0) (1,0)
Figure 4.1

The triangle T

Let R, R, 'R\l,o,and 'R\o’l,denote the linear interpolation remainder

operators on T. Then, from (3.4)-(3.6) and the transformation (4.1), the

following results can be obtained:

@3) IRTaI 5 =VbIRTullp )

<(0.17 +0.392+0.17a%) | §, I )
2

+(0.39b+0.34ab)| 4, ||L2(T) +0.17 b% || 4, , ||L2 .

44) [IR,[u]| Iyt =vb IR g[ulllp ()
< (0.65 +0.93a)| 1, ||L2(T) +0.93 b [l a,, ”Lz(f)’
- 1
@35 IR g =V = { Riolul+ o Rolullp o)

a ~
<—1.58(1+a)||u ~
NEERI YR

+(0.93 +1.3a)||d] +0.65b] 4|
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From (4.4) and (4.5), the following semi-norm result is obtained:

1/2

< (cy + c, tan B)|ﬁ|H2("f)’

where C; and C, are constants independent of T and T, and tan B = a/b .

Moreover, since the semi-norms in (4.6) are invariant under translation and
rotation, (4.6) is true for any triangle of greatest side 1 and with angles

o < B < vy From (4.6) there follows the condition that tan f < K < oo,
thatis B > B, > O, where a < B < y. This is equivalent to the maximal
angle condition that y < y, < =m. Finally, it should be noted that had (3.6)

contained a term in U,,, then (4.5) would have contained the additional

from 1/b[[ 0, | This term would give the more usually quoted

Ly(T) -

minimum angle condition that a > a, > O.
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