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Abstract: Forced displacement has a huge impact on society today, asmore than 68million people are forcibly
displaced worldwide. Existingmethods for forecasting the arrival of migrants, especially refugees, may help us
to better allocate humanitarian support andprotection. However, few researchers have investigated the e�ects
of policy decisions, such as border closures, on the movement of these refugees. Recently established simu-
lation development approaches have made it possible to conduct such a study. In this paper, we use such an
approach to investigate the e�ect of policy decisions on refugee arrivals for the South Sudan refugee crisis. To
make such a study feasible in terms of human e�ort, we rely on agent-based modelling, and have automated
several phases of simulation development using the FabFlee automation toolkit. We observe a decrease in the
average relative di�erence from 0.615 to 0.499 as we improved the simulation model with additional informa-
tion. Moreover, we conclude that the border closure and a reduction in camp capacity induce fewer refugee
arrivals and more time spend travelling to other camps. While a border opening and an increase in camp ca-
pacity result in a limited increase in refugee arrivals at the destination camps. To the best of our knowledge, we
are the first to conduct such an investigation for this conflict.

Keywords: Refugee Modelling, Agent-Based Modelling, Automation Toolkit, Policy Decisions, Validation, Sen-
sitivity Analysis

Introduction

1.1 A civil war makes people vulnerable and leads them to migrate, in search for a secure and stable location. The
choice of destination determineswhether fleeing individuals are internally displaced people (IDPs) or refugees.
IDPs seek safety within their own country and do not cross borders to neighbouring nations while refugees
have been forced to flee their home countries due to war or violence (UNHCR 2010). There are more than 68
million people forcibly displaced worldwide, of which 24million are refugees (UNHCR 2018a). These fleeing in-
dividuals are the unfortunate victims of civil wars and internal conflicts, who make decisions to migrate at the
times of distress. To understand the causes of forced displacement, researchers establish three concerns faced
by migrants, namely, the choice to stay or flee, the choice to flee internally or across borders, and the choice
of destination (Salehyan 2014). Their decisions are o�en based on economic and political push-pull factors in
sending and receiving countries. Especially, Schmeidl (1997) states that economic and political instabilities,
poverty, violence and insecurity in the origin countries push people to flee. In contrary, economically and po-
litically stable and safe countries pull forcibly displaced people to receiving areas. Thus, we can consider the
economic andpolitical conditions, security, the challenges andexpenses ofmoving internally or across borders
as causes of forced displacement.

1.2 Unfortunately, forceddisplacementhasenduring consequenceson the refugees, aswell asonboth sendingand
receiving countries. For instance, civil war and violence within the origin countries may spread across borders.
Similarly, receivingnationsmay interfere in internal conflicts andwarsoccurring in sendingcountries toprevent
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further increasing migrant arrivals (Gleditsch et al. 2008). In addition, receiving countries may face external
costs by hosting refugees as residents and have to share available resources. Some countries may not have
enough support and required refugee aid in terms of shelter, food and safety. Hence, hosting refugees can have
positive or negative consequences (Martin 2005).

1.3 According to Jacobsen (1996, p. 674), refugee-receiving governments base their decision whether to host or
refuse refugee arrivals on "the costs and benefits of accepting international assistance, relations with the send-
ing country, political calculations about the local community’s absorption capacity, and national security con-
siderations". Thus, both sending and receiving governmentsmakedecisions basedonhuman rights, economic,
political and humanitarian factors. Their institutional decisions turn into policies that canmanage, resolve and
overcome the consequencesof forceddisplacement. Similarly, aidorganisations andnon-governmental organ-
isations (NGOs) take part in the decision-making to achieve their objectives, such as facilitating e�icient allo-
cation of human resources for refugees in camps. However, the literature lacks in identifying e�ective policies
to overcome and assist in forcedmigration. It is also seldom clear how policy decisions a�ect refugee journeys
and camp arrival rates, particularly those in other countries.

1.4 For instance, South Sudan has more than 4million forcibly displaced people, of which 2.4 million are refugees
hosted by neighbouring Sudan, Uganda, Kenya and Ethiopia (UNHCR 2018b). These people escape a civil war
that lasted for decades prior to its independence fromSudan and still continues to this date as local authorities
fail to provide basic needs (Reid 2018). Moreover, the Sudanese government closed their border with South
Sudan and worsened the situation as it disabled free movement of residents and obstructed the exchange of
goods between both countries. To understand the South Sudan conflict extensively, we focus on how policy
decisions, such as camp or border closure, camp capacity change and forced redirection, can have an e�ect on
the distribution of refugee arrivals across camps in neighbouring countries.

1.5 Forecasting forced displacement is challenging asmany forced population data sets are small and incomplete,
data sources have too little information; statistical methods are outdated and do not consider refugee arrival
estimations (Edwards 2008; Disney et al. 2015). Yet, forced population predictions are essential to save refugee
lives, to investigate the consequences of a nation closing its border for forced population, and to help complete
incomplete data collections on refugee movements (Groen 2016). Improvements in data collection may be a
possible solution to overcome data issues, but we require an enhanced logical framework to capture forced
displacement thoroughly.

1.6 In this paper, we investigate the e�ect of policy decisions in theSouthSudan conflict on the camparrival rates of
displacedpersons. Policy changesmayoccur at short notice in crisis situations, and correctly predicting arrivals
of displaced people in these cases is essential to prevent shortages in food, water and shelter in refugee camps.

1.7 The recent study by Gilbert et al. (2018) examine the role and applicability of agent-based modelling (ABM)
when experimenting with policy decisions, where ABM provides an understanding and knowledge to govern-
ments, stakeholders and policymakers bymodelling complex systems, such as humanmovement in this paper.
Our ABM approach examines the e�ects of policy implications under various scenarios. It also provides a new
perspective and helps researchers and other organisations in forecasting refugee movements, and inform pol-
icy decisions related to forced displacement. This was previously much more di�icult and ine�ective due to
incomplete data and outdated statistical analysis.

1.8 To enable this investigation, we extend the simulation development approach (SDA) to support counterfactual
scenarios. The original SDA, initially proposed by Suleimenova et al. (2017a), adopts an ABM approach to esti-
mate how refugees reach destination camps. As part of the Verified Exascale Computing for Multiscale Applica-
tions (VECMA) project, we seek systematic approaches to validate andanalyse the sensitivity of our simulations,
to investigate output variability and to generate more actionable results (Groen et al. 2019b). To do this, we in-
corporate integrated sensitivity analysis and exploration of policy decisions in our SDA. This helps us to better
understand refugee behaviour and better assist policymakers with their decision-making process.

1.9 Moreover, we add value by automating parts of the simulation development process, from construction to exe-
cution. Here, we propose an automated policy exploration toolkit, together with the sensitivity analysis, which
is an essential step towards enablingusers to create refugee arrival forecastswithindays of a newconflict erupt-
ing. To showcase our approach, we present simulation results for seven runs for South Sudan and discuss how
changes in the policy of forced displacement a�ect the refugee arrival rates in camps. Forecasting refugee ar-
rival rates in camps is crucial since governments and NGOs can use this information to better allocate humani-
tarian resources and provide humanitarian protection to forcibly displaced people (Groen 2016).

1.10 In the remainderof thispaper, Section2discusses computationalmodelling techniquesof forceddisplacement,
describes a generalized simulation development approach for refugee modelling and presents an automated
toolkit for policy explorations. We apply our proposed approach to the South Sudan conflict. We then discuss
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simulation results in application to policy decisions of camp or border closure, camp capacity changes and
forced redirection (Section 3). Finally, Section 4 concludes and o�ers final remarks on refugee modelling and
policy decisions.

Computational Modelling of Refugee Movements

2.1 In recent years, there has been a gradual increase in the use of computational techniques, both machine-
learning based (Sfyridis et al. 2017; Quinn et al. 2018) and simulation-based (Hassani-Mahmooei & Parris 2012;
Sokolowski et al. 2014; Hebert et al. 2018), to providemigration forecasts. In the case of simulations, one of the
more widely adopted approaches is ABM, a computational approach that provides an opportunity to model
complex systems with individual heterogeneity. It consists of agents that represent animals, humans, organ-
isations or any other types of entities interacting with each other and within their environment. Particularly,
the use of ABM allows to model how agents and their environment vary across time and space. Agents are
autonomous and o�en unique, meaning that each agent is distinct in terms of size, location and other at-
tributes (Macal & North 2014).

2.2 Recent forceddisplacement studies favour theuseof ABM to study the influenceof natural disasters andclimate
change on displacements (Kniveton et al. 2011; Hassani-Mahmooei & Parris 2012; Entwisle et al. 2016). Johnson
et al. (2009) determined how refugees behave and interact with military groups in neighbouring camps, while
Collins&Frydenlund (2016) investigatedhowrefugees formgroupsdependingon their travelling speed towards
safer environments using an ABM. Moreover, Lin et al. (2016) analysed economic and social factors influencing
refugee decisions to migrate by adopting an ABM. Anderson et al. (2006, 2007) proposed an ABM approach
exploring policy decisions for sending and hosting governments and organisations interacting with refugees.
Comparatively, Sokolowski & Banks (2014) presented an ABM Environment Matrix based on an early warning
model of forced displacement (Schmeidl 1997; Schmeidl & Jenkins 1998) and applied to the Syrian conflict.

2.3 In the context of refugee arrival predictions, Suleimenova et al. (2017a) propose a generalized simulation devel-
opment approach forecasting the distribution of refugee arrivals across destination camps. To understand the
significance and generalisation of the proposed approach, the authors for the first time successfully modelled
three African countries experiencing refugee emergencies, namely Burundi, Central African Republic and Mali,
usinga single approach. Their generalizedapproach relies onanABM,where refugees are agents, andeach time
step represents oneday since the validationdatahas a granularity of a single day and cannot beused to validate
patterns on an intra-day timescale. The simulation starts by inserting a number of refugees (obtained from the
United Nations High Commissioner for Refugees (UNHCR) database) in their conflict locations (extracted from
the ArmedConflict Location and Event Data Project (ACLED)) that can be presented using a network-based ABM
model. Each refugee can traverse from zero to more links during each simulation step. The probability of an
agent’s movement depends on the move chance, where the move chance of 1.0 represents agents in conflict
and between locations, 0.001 for refugee camps and 0.3 for all other locations. Suleimenova et al. (2017a) pro-
vide a detailed flowchart of algorithm assumptions and agent parameters used by a simulation code - Flee,
which can be found at https://github.com/djgroen/flee-release. It is optimised for its simplicity and
flexibility, and it can be adapted to most scenarios involving escaping refugees.

Description of a generalized simulation development approach with the FLEE code

2.4 To facilitate rapid and consistent simulation development, Suleimenova et al. (2017a) suggest a generalized
SDA, which enables rapid construction, execution and validation of refugee counts in conflict scenarios. We
present a revised generalized SDA in Figure 1, which contains the same six phases of the original SDA (refer to
Suleimenova et al. (2017a)), including situation selection, data extraction, model construction, model refine-
ment, simulation execution and analysis, but also enhanced to fit the focus of this paper. Specifically, this re-
vised version incorporates changes in policy decisions (e.g. camp and border closures, camp capacity changes
and forced redirection) in the refinement phase and introduces both an ensemble of simulation executions and
sensitivity analysis of simulation runs in the simulation execution phase.

2.5 Currently, the construction and execution of simulations are mostly done manually, which is both ine�icient
and time-consuming. For instance, an extraction of input data, construction of network maps and initial mod-
els for Burundi and CAR required 2-3weeks ofmanual work. While refugee predictions need quick construction
and execution as there is a prediction urgency of refugee crises or multiple conflict scenarios to simulate on
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short time period (Suleimenova et al. 2017b). Hence, we automate several phases of the SDA, namely, the con-
struction, an instantiation and execution of ensemble runs using a unified approach. In the next section, we
describe the automation of each phase of a generalized SDA.

Figure 1: A generalized simulation development approach forecasting the distribution of refugee arrivals across
destination camps. We use the same assumptions as given in Suleimenova et al. (2017a) for our simulations
(except where this is mentioned otherwise for individual runs).

Automation of simulation development using FabFlee

2.6 Manual routine tasks inmodel construction and simulation execution canbe simplified using automation tools.
Automation is essential in simulation development since it provides time e�iciency to modellers, reduces the
probability of human error, simplifies and accelerates process activities and delivers a highly transparent and
customised programme to users. Suleimenova et al. (2017b) comprehensively discuss existing automation
tools, as there is an extensive number of languages, open-source so�ware and automation tools that facili-
tate the development of computational research. Groen et al. (2019a) perform an analysis of added value for
a range of coupling tools, including several automation tools. In both works, FabSim is recognised as a toolkit
that helps to curate and simplify simulation researchat the simulationdeployment, executionandoptimisation
stage. Based on these findings, we chose to use the FabSim3 toolkit, which is an improved version of FabSim.
Among other things, FabSim3 simplifies organising input and output files, user and machine configurations,
and application executions (Groen et al. 2016). Currently, FabSim3 contains an integrated test infrastructure,
more flexible customisation options using a plug-in system, and in-code documentation and examples to im-
prove usability. It is distributed under a BSD 3-clause license.

2.7 A FabSim3-based FabFlee toolkit is one of the plug-in applications, which predicts the distribution of incoming
refugees across destination camps under a range of di�erent policy situations (Groen et al. 2019b). FabFlee is
a partially automated implementation of our SDA, and provides an environment for researchers and organi-
sations to construct and modify refugee simulations, instantiate and execute multiple runs for di�erent policy
decisions, as well as to validate and visualise the obtained results against the existing data. In Figure 2, we
present the SDA phases with automated functionalities from model construction to analysis. Specifically, we
aim to construct the initial model using a comma-separated values (csv) formats, refine the model with a new
set of parameters or policy range decisions, execute an automated ensemble of runs and analyse the obtained
results with the use of automated plotting tools. In the next section, we provide a detailed description of au-
tomation applied to each phase of the SDA.

Figure 2: Phases of our simulation development approach,given in arrow boxes, and automation implemented
in FabFlee for each phase, described in the ovals.
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Model construction

2.8 To start with, we simplify the model construction phase by creating reader modules for csv formats for input
data. Three formats of csv files, namely locations.csv, routes.csv and closures.csv, are integrated with FLEE’s
input interface. The initial idea of introducing these files is described in Suleimenova et al. (2017b). For this pa-
per, we revised their outline to reduce data collection time and implemented these csv file formats in themodel
construction phase. We create these csv files manually according to the formats demonstrated in Tables 1, 2
and 3 for the conflict scenario and store them under the base conflict data in a specified conflict directory (e.g.
https://github.com/djgroen/FabFlee/tree/master/conflict_data/SSudan).

name county country latitude longitude location_type conflict_date* population/capacity

conflict population of location
town - -
camp - camp capacity
forwarding_hub - -

Table 1: locations.csv contains all locations with the properties required for simulation construction, such as
name and geographical information of locations, and populations (for non-camp locations) or capacities (for
camp locations). Note: conflict_data is given as an integer, counting the number of days a�er the simulation
start. The value of 0 indicates the start, while -1 indicates the end date of the simulation.

location1 location2 distance [km] forced_redirection*

0
1
2

Table 2: routes.csv specifies distances between two locations. Note: forced_redirection refers to redirection
from source location (can be town, camp or forwarding_hub) to destination location (mainly camp). The value
of 0 indicates no redirection, 1 indicates redirection from location2 to location1 and2 corresponds to redirection
from location1 to location2.

closure_type* name1 name2 closure_start* closure_end*

location
country

Table 3: closures.csv provides camp closure event specifying locations names or border closure event requiring
country names toname1 andname2 respectively. Note: closure_type canbe two types: location corresponding
camp closure and country referring to border closure. closure_start and closure_end are given as integers,
counting the number of days a�er the simulation start. The value of 0 indicates the start, while -1 indicates the
end of the simulation.

2.9 A�er the generation of locations.csv, routes.csv and closures.csv files, we follow the FabFlee workflow diagram
(see Figure 3). As a start, we load a base conflict data which includes csv files and the source data of a con-
flict scenario using load_conflict command. This, in turn, duplicates all existing files from a base conflict di-
rectory to a working directory, namely active conflict data. The load command also generates a text file (i.e.
commands.log.txt) that records command logs of commencing activities. Moreover, to refine themodel, we ex-
amine policy implications through parameter explorations for policy decisions related to a refugee emergency.
We have developed several parameter exploration commands to modify a range of parameters illustrated in
Table 4.
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Figure 3: FabFlee workflow diagram demonstrating steps to explore policy decisions

Actions FabFlee command

change camp capacity change_capacities:camp_name=capacity
add a new location add_camp:camp_name,region,country,lat,lon
delete an existing location delete_location:location_name
camp closure close_camp:camp_name,country,closure_start,closure_end
border closure close_border:country1,country2,closure_start,closure_end
forced redirection redirect:source,destination,redirect_start,redirect_end

Table 4: FabFlee functions for policy decision exploration.

2.10 Following the refinement phase, we duplicate parameter changes of themodel by running the instantiate com-
mand. The instance is then saved in a new directory, which can include run name, version and date of instan-
tiation on users insert choice. Now that we have our simulation input, we can proceed with the fi�h phase of
our SDA and run execution command triggering the FLEE code and producing results. Next, we visualise and
validate the obtained resultswith graphs for each camp in a neighbouring country by running plot_output com-
mand.

2.11 To create a clean slate for future work, we can clear the active conflict directory using
fab localhost clear_active_conflict,

uponwhichwe can reload the conflict and changeother parameters (and instantiate and run anewsimulation).
Indeed, phases four to six in Figure 3 canbe iterative andproduce additional results aswe extendour policy and
parameter exploration. Similarly, we can conduct sensitivity analysis for each instantiated model by running
test_sensitivity function (see Table 5 for more details).

Sensitivity test FabFlee command

refugee move speed test_sensitivity:flee_conflict_name,simulation_period=number,
name=MaxMoveSpeed,values=50-100-200

refugee awareness level test_sensitivity:flee_conflict_name,simulation_period=number,
name=AwarenessLevel,values=0-1-2

Table 5: FabFlee functions for sensitivity test analysis

Forecasting the distribution of refugees in South Sudan

2.12 To understand the significance and practicality of a generalized and automated SDA, we construct a newmodel
of the South Sudan conflict, which involves almost 2 million refugees fleeing to destination camps (UNHCR
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2018a). For many years, Sudan experienced a civil war from which South Sudan declared independence on
the 9th July 2011. However, the authorities of South Sudan failed to deliver the basic needs (Reid 2018), and in
December 2013, a conflict between the government and rivals broke out.

2.13 Specifically, the civil war in South Sudan started on 15 December 2013, following fierce fighting between rival
units of the Sudan Peoples’ Liberation Movement (SPLM) and the Sudan People’s Liberation Army (SPLA) in
the capital, Juba (UNHCR 2015). Subsequently, South Sudan’s president Salva Kiir announced that former vice
president Riek Machar had attempted a coup. Machar escaped from Juba and became the leader of an armed
opposition movement, namely the ’SPLM/A in Opposition’. Violence and fighting spread to other parts of the
Jonglei, Upper Nile and Unity states, as well as other regions of South Sudan (ICG 2014). This forced people to
flee internally and across neighbouring countries.

2.14 Our South Sudan model has a simulation period of 604 days starting from the 15th December 2013 to the 10th
August 2015, during which 2.4 million refugees were known to escape the country. We run the simulation for
10 camps (listed in Table 6) in neighbouring countries, namely Sudan, Uganda and Ethiopia. Overview of the
geographical network model for South Sudan demonstrated in Figure 4.

Countries Camp names

Ethiopia Tierkidi, Kule, Pugnido and Jewi
Kenya Kakuma
Sudan Khartoum andWest Kordofan
Uganda Adjumani, Rhino and Kiryandongo

Table 6: List of camps in neighbouring countries of South Sudan

Setup of simulation execution for South Sudan

2.15 A�er selecting our conflict country and the simulation period, we then extract data from the sources according
to the SDA. Next, we construct our initial model for South Sudanwith default settings using the discussed three
csv file formats, namely locations.csv, routes.csv and closures.csv. The initial constructed model, which is the
third phase of SDA, is then refined with additional information obtained from reports (fourth phase of SDA). In
Figure 5, we demonstrate the layout of our simulation tests for the South Sudan conflict. This includes refine-
ments to determine how policy decisions, such as camp and border closures, changes in camp capacities and
redirection between camps, can a�ect the distribution of refugee counts and simulation results. Using our ap-
proach, we also automatically create and perform sensitivity analysis study for each of our scenarios. Bearing
in mind, we set our default setting to the refugee move speed is equal to 200 km per day and the awareness of
surrounding is 1 link.

Description of the base scenarios

2.16 A�er constructing the initial South Sudanmodel (ssudan_default), we executed and obtained the initial results.
Next, we determined level 1 refugee registrations from the source data and included them to improve the initial
model. We named the secondmodel as ssudan_reg and executed to observe changes in the results. We further
refined the ssudan_reg model using additional information obtained from publicly available online reports.
Specifically, the UNHCR (2014) report declares that refugees arrived at Ethiopian camps on foot, due to the lack
of roads. To accommodate this fact, we modified our simulation assumptions, and we incorporated specific
"o�-road links" from conflict zones to Ethiopian camps in a modified simulation setup named ssudan_links.
To reflect the fact that o�-road routes are likely to result in slower travel speeds, we multiplied the coordinate
point-by-point distances by 2 for all walking routes. We also incorporated additional information in regards to
later camp openings and closures, which was derived from the UNHCR reports (run ssudan_ccamp).
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Figure 4: Overview of the geographic networkmodel for South Sudan. This includes conflict zones (red circles),
refugee camps (dark green circles) and othermajor settlements (yellow circles). Interconnecting roadswalking
routes are given with lines, with adjacent numbers used to indicate their length in kilometres (blue for roads
andbrown forwalking routes). Backgroundmaps are courtesy of carto.comcreatedusingOpenStreetMapdata.
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Figure 5: Setup of simulation execution for South Sudan. For each execution, we perform ensemble runs for
sensitivity analysis. The structure of these ensembles is given in the bottom grey panel.

Results

3.1 In Figure 6, we demonstrate the averaged relative di�erence for four simulations (ssudan_default, ssudan_reg,
ssudan_links and ssudan_ccamp). Despite the same levels before day 200, the average relative di�erence for
these runs persistently lessens respectively from 0.615 to 0.499 over the simulation period and the refinement
of the South Sudan model as we incorporated additional details. Overall, ssudan_ccamp is the most refined
with the lowest average relative di�erence in the aggregate level. We calculate the average relative di�erence
using the equation below:

E(t) =

∑
x∈S(|nsim,x,t − ndata,x,t|)

Ndata,all
(1)

where, the number of refugees found in each camp x of the set of all camps S at time t is given by nsim,x,t

based on the simulation predictions, and by ndata,x,t based on the UNHCR data. The total number of refugees
reported in the UNHCR data is given byNdata,all (Suleimenova et al. 2017a).

3.2 Moreover, we perform a range of sensitivity analysis tests to identify the important input variables in an aware-
ness level and agents’ movespeed of the simulation outputs. To begin with, we executed 10 replicas of ssu-
dan_ccampwith default settings to determine the rangeof the output due to theprobabilistic nature of the sim-
ulations. Over these 10 executions, the average relative di�erence rangedbetween0.495 and0.502. In addition,
we perform a sensitivity analysis for each run by varying the level of agent awareness range and a speed limit
of refugees. Here, the awareness range represents the level of knowledge of refugees about nearby locations.
They may know only the distance to the adjacent locations in the graph (path distance only), or also the type
of location for adjacent locations (1 link away), or also the location type of locations adjacent to those (2 links
away). We present the results of this analysis in Table 7. For the most refined scenarios, the averaged relative
di�erence is lowestwhen agents are aware of locations 1 link away, though the di�erence ismarginal compared
to simulations with an awareness range of 2 links away. Our simulations are clearly sensitive to the maximum
refugee move speed parameter, and in particular move speeds below 100km/day result in significantly higher
validation errors. This parameter sensitivity is in line with our simulations of previous conflicts (Suleimenova
et al. 2017a).
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Figure 6: Overview of the averaged relative di�erences for ssudan_default (red line), ssudan_reg (blue line),
ssudan_links (violet line) and ssudan_ccamp (grey line) simulations.

Run type ssudan_default ssudan_reg ssudan_links ssudan_ccamp
(least refined) ... ... (most refined)

normal (default)
1 link away, 200km/day 0.615 0.621 0.509 0.499

awareness range
Path distance only 0.627 0.630 0.530 0.522

1 link away 0.613 0.621 0.510 0.500
2 link away 0.611 0.614 0.517 0.507

max. move speed (km/day)
25 0.667 0.673 0.575 0.570
50 0.634 0.643 0.535 0.527
100 0.621 0.629 0.519 0.503
150 0.616 0.625 0.514 0.501
200 0.611 0.622 0.511 0.502
250 0.616 0.624 0.509 0.502

Table 7: Averaged relative di�erence values, averaged over time and all four base type of simulations using
di�erent agent awareness ranges, and di�erent speed limits for agents. Note that we present results from 3
separate executions of the default type run: in the first data row, the third data row (labelled "1 link away") and
the ninth data row (labelled "200").

3.3 We present ssudan_ccamp simulation results for all 10 camps validated against the UNHCR refugee registration
data in Figure 7. Themost populous camp in our simulation is Adjumani withmore than 140,000 refugees over
the simulationperiodand slightly overpredicteda�er 200days into simulation compare to thedata. The reason
being that it is the closest camp for refugees fleeing from the South Sudan conflict. The forecast refugee counts
in Kiryandongo and Kakume (at the start prior to 100 days) are in close agreement with the UNHCR data, while
our simulations underpredict for Kule, Jewi andKhartoumcamps. South Sudanhas a record of being in conflict
prior to our simulation start date. Kakuma (45239), Pugnido (42044), Rhino (5313) and Kiryanongo (15) camps
had registered number of refugees fled prior to the simulation start; these, therefore, do not count towards the
refugee arrival numbers.
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Figure 7: Number of refugees as forecast by our ssudan_ccamp simulation and validated against the UNHCR
data for the South Sudan conflict. (a-j) Graphs are ordered by camp population size, with the most populous
camp on the top to the smallest one on the bottom.

3.4 There are no arriving refugees at the start of simulation period for several camps, namely Tierkidi, Kule and
Jewi, illustrated in Table 8, as they opened a�er the conflict has commenced according to the UNHCR data.
For instance, the Tierkidi camp has no arrivals prior to 73 days of simulation, but refugee counts increase over
the simulation period and overpredict UNHCR data by the end of simulation period. In addition, the Jewi, Kule
and Khartoum camps show slowly increasing and underpredicted refugee counts. Whereas, the Pugnido, West
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Kordofan and Rhino camps are considerably overpredicted according to simulation results by almost 25000
refugees decreasing to 5000 refugees for each camp by the end of simulation period.

Countries Camp names Camp opened on

Ethiopia Tierkidi 26th of February 2014
Kule 17th of May 2014
Jewi 15th of March 2015

Table 8: A list of camps that opened a�er the South Sudan conflict has commenced in neighbouring countries.

Examining policy decisions

3.5 There are various real-world policy implication instances, which have changed the course of refugee move-
ments. To demonstrate, the Dadaab camp in Kenya, which was opened in 1991, currently hosts more than
260000 Somali refugees (Cannon & Fujibayashi 2018). Despite its populated occupancy, in 2016, the Kenyan
authorities attempt to shut this camp, but a high court judge ruled out the authority’s decision and allowed
refugees to remain in theDadaabcamp. However, if theauthority closed thecamp, itwouldhave forced refugees
to return to their violent home country, hide illegally in Kenya or flee to other neighbouring countries. Another
instance is refugee camps in the Gambia, which were planned to reopen in 2006 since there was an increase in
refugee numbers. Nevertheless, the authoritywas hesitant to site camps near borders due to armedopposition
groupswho opposed a danger on refugee lives. Hence, the authority has decided to place Casamance refugees
in the old camp at Bambali in the central Gambia. Since this camp was farther from borders, refugees refused
to travel and settled in nearby villages of Gambia (Grant 2016). In this case, it is uncertain how refugees have
impacted the Gambian villages and their residents, as well as how refugees managed themselves in the neigh-
bouringcountry. Moreover, inMay2013, Jordanclosed itsborderswithSyria to stop the influxof refugees,which
instead increased illegal crossings into the country (Hargrave et al. 2016). It is an instance of a single country,
while there are many other countries that have closed their borders to refugees, such as European countries,
and increased illegal crossings and human tra�icking.

3.6 These instances illustrate thatpolicydecisionshave influenced refugeemovements towardsdestinationcamps.
However, we do not know how these decisions a�ect refugees, their movement and overall refugee counts.
Hence, we aim to investigate and understand the implications of these policy decisions on refugee arrivals, as
well as inform other authorities and policymakers on the consequences of their decisions. We model policy
decisions using four di�erent scenarios of the South Sudan conflict.

3.7 First, we compare the refugee arrivals in camps between three scenarios, which are a model without camp
and border closures (ssudan_links), a model with camp closures (ssudan_ccamp), and a model containing an
additional border closure between South Sudan and Uganda, enforced until day 302 that is halfway into the
simulation (ssudan_cborder). We present our comparison results in Figure 8, and find no significant di�erences
between ssudan_links and ssudan_ccamp. However, we do find di�erences between these two scenarios and
ssudan_cborder, which results in 40% fewer refugee arrivals on day 302. This implies an increasingly long travel
time for refugees up to day 302, the day that the border is again reopened. In addition, the delaying e�ect of
border closures lingers in our simulation results a�er borders have been reopened, with approximately 15%
fewer arrivals on day 400, for instance. This emergent behaviour can by definition not be validated against
reality (we’re examining a counterfactual). However, explanations for such delays are possible. For instance,
refugees may fear that recently opened borders are more likely to be closed again, or may not be immediately
aware that a previously closed border has again reopened.
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Figure 8: Comparison of the total number of refugees in camps between ssudan_links (red line), ssudan_ccamp
(blue line) and ssudan_cborder (violet line) simulations.

3.8 Second, to explore how changes in camp capacities a�ect simulation results, we changed the capacity of the
most populous camp, namely Adjumani. For the first instance, we decreased the original capacities of 112734
refugees by half. The second instance involved an increase in the original capacity by 50%. In Figure 9, we
present the number of refugees for Adjumani camp ssudan_adjumani1 (capacity: 56367 refugees) and ssu-
dan_adjumani2 (capacity: 169101 refugees). We find that a reduction of capacity in Adjumani results in up to
16% fewer refugee arrivals in camps, which implies considerably longer refugee travel times. However, increas-
ing the capacity at Adjumani by allocating more resources appears to only result in a very limited increase in
refugee arrivals (< 4%). Based purely on these results, we find that, in a setting where aid resources are heavily
constrained, the default capacity of this camp is close to optimal.

Figure 9: Comparison of number of refugees in camps between three simulations with capacity change for Ad-
jumani camp in comparison to the base model of ssudan_ccamp.

3.9 Finally, we explore how the enforced redirection of arriving refugees from one camp to another can a�ect the
distribution of refugees across all the camps. As an exemplar, we created a scenario (ssudan_redirect) where
all refugees arriving in Kule, Jewi and Pugnido are redirected to the Tierkidi camp, which has its capacity in-
creased accordingly, creating a counterfactual situation where Tierkidi is the single central camp in Ethiopia
receiving refugees from South Sudan. This kind of centralised management of incoming refugees has been
known to occur in some other conflict situations, such as Mauritania (Mbera camp) in the North Mali conflict in
2012 Suleimenova et al. (2017a).

3.10 Wepresent a comparisonof arrivals across sevencamps inboth scenarios inFigure 10. Here, Kule, Jewi andPug-
nido are excluded from the comparison, as theydonot host any refugees in themodified simulation. In compar-
ison to the ssudan_ccamp simulation results for individual camps, we attain di�erent distribution of refugees
across camps in ssudan_redirect. By Day 180, Tierkidi has received twice as many arrivals in ssudan_redirect
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Figure 10: Comparison of the number of refugees in seven camps as forecast by our ssudan_ccamp and ssu-
dan_redirect simulations for the South Sudan conflict. (a-g) Graphs are ordered by camp population size, with
the most populous camp on the top to the smallest one on the bottom.

than in ssudan_ccamp, while the other six camps retain similar arrival rates. However, a�er Day 180 the number
of refugees in the other six camps becomes lower in ssudan_redirect than in ssudan_ccamp, while the number
of refugees in Tierkidi remains considerably higher. This behaviour can primarily be attributed to the Pugnido
camp, which reaches full capacity around Day 180 in ssudan_ccamp (see Figure 7), but which is redirected to
Tierkidi in ssudan_redirect, a camp with a higher (combined) capacity.

Conclusion

4.1 Forecasting forced displacement, especially refugee movements, is both very important and very challeng-
ing. Forecasting the distribution of refugee arrivals to potential destinations, as governments and NGOs can
e�iciently allocate humanitarian resources and provide protection to vulnerable refugees. Through the use of
computational modelling and the automation approach presented here, we are able to systematically explore
the possible impact of specific policy decisionswhile accounting for the sensitivity to at least someof individual
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parameters and assumptions in themodel. To achieve this, we have extended the simulation development ap-
proach by Suleimenova et al. (2017a) and used it to forecast refugee arrivals in camps in the South Sudan crisis.
Our approach, which relies on the FabSim3-based FabFlee toolkit, publicly available as part of the EU-funded
VECMA project (https://github.com/djgroen/FabFlee). Though the runs in this paper were all performed
on local resources, the FabSim3 toolkit has been applied extensively to execute simulations on supercomput-
ers. We aim to enable this functionality for FabFlee andperformmuch larger parameter and policy explorations
in the near future using it.

4.2 We demonstrated our automated ensemble simulation approach by analysing the e�ect of policy decisions
on refugee journeys in the South Sudan conflict. This conflict is relatively di�icult to simulate, primarily due
to the lack of roads and di�icult food circumstances. While investigating the latter aspect requires newmodel
development and is beyond the scope of this paper, we did update themodel to include several walking routes,
and were able to achieve a much lower validation error (averaged relative di�erence) as a result. All policy
decisions presented here are purely hypothetical, and largely derived from having observed similar decisions
being made in the three conflicts we analysed previously in Suleimenova et al. (2017a).

4.3 In terms of policy decision examples, we incorporated camp and border closures, two camp capacity changes
and a forced redirection. As expected, border closure and a reduction in camp capacity result in fewer refugee
arrivals as more refugees end up travelling to other camps. Likewise, an increase in camp capacity results in a
limited increase in refugee arrivals at the destination camps. However, we also found several unexpected be-
haviours, such as a lingering e�ect in prolonged refugee journey times once a border is again reopened, and
a clear boost in refugee arrivals when refugees are redirected to a reduced number of camps with larger ca-
pacities. These findings help to understand the e�ects of policy decisions on refugee arrivals and inform other
similar conflict situations. We believe these policy decisions in particular warrant more in-depth investigation,
using simulation and data analysis approaches that take intomore relevant factors and circumstances, and can
also leverage the benefits from the automation approach we presented here.
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Model Documentation

We use the FLEE agent-based modelling code for our migration simulations and FabFlee to automate our mi-
gration modelling workflows (Groen et al. 2019b). FabFlee is a plugin for the FabSim3 automation toolkit, and
can be installed using a one-liner command once FabSim3 is set up. The Flee code is available at https://
github.com/djgroen/flee-release/releases/tag/1.0while the FabFlee plugin can be found at https:
//github.com/djgroen/FabFlee/releases/tag/v1.0. Information on how to set up FabSim3 is available
at https://fabsim3.readthedocs.io. Flee, FabFlee and FabSim3 are all written in Python3 and have been
releasedunder theBSD3-clause license. All output datapublicly available onFigshare under aCC-By4.0 license
with DOI http://dx.doi.org/10.17633/rd.brunel.11395977.v1.
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