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ABSTRACT

A finite element model for analysing static problems

of three-dimensional thin panel constructions is
presented. The potential energy of stretching of each
panel is represented by the classical Reissner
formulation of two-dimensional elasticity, and in the
finite element discretisation piecewise constant
stresses and piecewise linear u-, v- displacements
are used. The potential energy of bending of each
panel is represented in the finite element discretisation
by Herrmann's model, i.e. piecewise constant moments
and piecewise linear w - displacements. The physical
appropriateness of the model is verified for different
assemblages of panels, and in all cases good numerical
results are obtained.



1. The description of the model.

The total potential energy of a three-dimensional thin panel

structure is expressed in the form

N
(1) = {11
k=1 k
where N is the number of panels and
) M = Hgs + Hgp s
My

s and Iy being respectively the potential energies of the

k -th panel in stretching and bending.

Using the Reissner energy formulation of two-dimensional
elasticity [4], the stretching potential energy of the k -th panel

can be written as
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where X,y is a local co-ordinate system in the middle plane QO of
the panel, and Ik s is the part of the boundary I} of (4 on which the

boundary force (p)—(, py) is prescribed. Further E is Young's modulus,

hk is the thickness of the k-th panel and the quadratic form b is
defined by

4) b M O=C + F + 2(1 + pIE - &n)

with p the Poisson's ratio.



In our model we assume that Qkhas a polygonal boundary.

We approximate the displacement components u and Vv in the

directions x and y, respectively, by continuous functions which

are linear on the triangles T. of a given triangulation of O

J

while the stress components Og» To o are constant on Ts.

%y: xy J

The local components X y and Ps» of prescribed body and boundary

Py

forces, respectively, are approximated on the triangles T. by constants.

J

For I} p We choose Herrmann's formulation [2], [5]:
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the quadratic form b being defined by (4). Here ng is the number

of triangles in the given triangulation of Q,, JT; denotes the

boundary of T., and the moment of M is given by

. 2 .2
(6) My :_(MX_MSI) coso sino + MW (cos“a -sin“a) ,

o being the angle made by the outward normal v to a side of Tj.
with the positive direction ofX.
The displacement component Win the direction of the axis Z

(which forms with the axes X, Y a cartesian right-handed set) is

approximated by a continuous function which is linear on the

triangles T;. The moments Mx, My, Mﬁare approximated on the
triangles T;. by constants in such a way that the normal moment
M, is continuous across all interelement boundaries. This is
always possible because

2 . 2 .
(7) My = My cos a+Mysm a+2Miycosasma.



Prescribing on the sides /;. of T;. constant values M_., we get

Vi’
three independent equations for the three unknowns MXMSIME'
The normal load q; is approximated on the triangles Tj. by
constants. The expressions for X,Y, qz can be obtained by
decomposing a given force F into the form
(®) F=Xi + Yi, + qz i3 ,
il,izandi3 being the unit vectors in the directions of the
axes X,Y and Z respectively.
The whole construction is considered in terms of one global

cartesian co-ordinate system x, y, z. The displacement vector

9) u=uij+vi, +wij
must be continuous in the construction, whereij,ip and i3

are the unit vectors in the directions of the axes x, y and z,

respectively. This is guaranteed by prescribing the parameters

uj,vi,wj at the vertices P; of all triangles into which the

construction is divided. The relations between the local

components uj,Vj,wjand the global components uj,vij,wj of

the displacement vector at the point P; are

U Bt Bz B3 4
10y | Vi = B2r B2 P23 Vi
Wi B3t B32 B33 Wi

The parameters corresponding to stress components and normal.
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moments are considered in their local context. We prescribe

fifteen parameters for each triangle. These are
uj,vi,wij at pj (1=123)
Ox,0y,Tx y at the centre of gravity
Myi, My2, Mys3 on the sides.
Let the jth triangle have the vertices P4, P, , Py and let
(11) féj:(GY’GV’TY?’HQ’ poUss VgV Vso
Mygr M yrs sMysq »Wq.Wr W)

be the vector of local parameters of this element. The potential

energy of the jth triangle can be written in the form

(12) My =— (AT O TA AT s,
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The matrices of third order gj,gj,gj,_j,ﬂj and the

three-dimensional vectors fx j.fyj.f7jare computed in

the local co-ordinate system X, Yy, Z . Details are omitted

because of their simplicity.
Let

(15) gé] = (Gi :Gy ’ Tiy ,Uq :ur auS :Vq :VI' :VS:

T
Myqr-Myrs ,Mysq.Wq>Wr,Ws)
be the vector of global parameters of the jth triangle.
Then
(16) CA.=L:8A.

=] =] =]

where, according to (10),

I o o o o
o Bl Pl o Pysl
(I7) Ly = |0 Pl Pl o Pl
o 0 o 1 o
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I is the unit matrix and o is the zero matrix, both being

of order 3.

The potential energy M of the jth triangle can be written



in the form

(18) ni= géT gg.gé._gAT g .

L
2 J J J ot .
where, according to (12 ) and (16 ),

gx.=LT 'x. L.

gfr.=LT ‘¢,
20) tj=L] ‘t;.
The resulting system of linear equations

21) KA=*

is constructed from the matrices & Ej and vectors gﬁj. taking

into account the boundary conditions for both the global
displacement components and normal moments, and the relations
for normal moments on the edges of the construction (i.e., on
the lines of contact of panels). Thus the vectors A consist

of all local stress components, independent global displace-

ment components, and independent moments. The numbering of these

parameters can be done so as to minimize the band-width of K.

Although Kis an indefinite matrix, this will cause no trouble

as long as the system (21) is solved by the Gauss elimination
method.
The boundary I' of the construction is the union of the

boundaries of all panels. We shall consider the simplest case

of boundary conditions only when some part I'] of I' is clamped,



another part I', is simply supported and the remaining part
I3 is free. We assume that no external moments act on I'y.

E.g., if T, is parallel to the axis z then the boundary

conditions take the form

22 u =V =W ,
(22) I +0) I r Viro +13

As to the relations for moments on edges, they follow from
the condition that the sum of moments (with respect to their
orientations in the global system) must be equal to zero-
E.g., in Fig. la three panels have a common edge. If we orientate
the local z - axes as is shown in Fig.1b we have

M;-M;+M; =0.
(In Fig.1b the curved arrows denote the positive orientations
of moments at the point A with respect to the local systems as
it is seen from the global system).

If we use quadrilateral "macroelements" formed by four
triangles and eliminate (or "condense") 19 internal parameters
of each quadrilateral (i.e. 12 stress components, 4 moments
and 3 displacement components) the number of unknowns in the
system (21) and the band-width of K is considerably reduced
In all test examples this condensation of parameters was used

In a triangular element three stress components can be

condensed.



2. Some numerical examples.

2.1. Narrow Triangular Construction. A triangle consisting of

three panels as shown in Fig.2 is considered. The length a of the
horizontal panel is 1+6m and the length of both remaining panels
is given by b = V2 a /2. The width and the thickness of all three
panels is / = 0.1m and h = 0.01m, respectively. The horizontal
panel is subdivided into ten equal rectangles "macroelements"
and each of both remaining panels into eight equal rectangles.
The segment AB is fixed and the force P is equal to 2N.

According to the theory of frames consisting of one-dimensional
beams we have

6] =03=(3+8/2)p/28¢h =1022Nm~2,

6y, =— (32 +2)p/28 th = 446 Nm 2,

Mg =— (24/2-1) pb/28/ =— 1478 N ,

Mcp = Mgp = (242 —1)pb/14¢ = 2.955 N,

Mgy = - (3Y2+2) pb/28¢ = —5.045 N,

where o; (1 = 1,2,3) is the axial stress in the ith panel, i.e. the

stress in the direction which is parallel to the longer side of the ith
panel.

The finite element method gives the following results which

show a good agreement with the exact values : o = o3 = 1025 Nm™?,

Gy =—449Nm™2, Mg =-1.458N, M¢p = Mgp =2.947N, Mgy =-5.053N.

2.2. Wide Triangular Construction. The triangle consisting of

rectangular panels with the width ¢/ = 0.6m and with the same



parameters a,b,h as in Example 2.1 is considered. The linear
density of the given force remains the same : 20 Nm™' .

Two cases are considered : (a) the u-parameters on the
segments AC, CE, AE, BD, DF and BF are free; (b) the u-parameters
on these six segments are equal to zero.

The results for the moments, axial stresses, v-displacements and
w-displacements should he in both cases (a) and (b) the same as in
Example 2.1. As to the transverse stresses they should be in
case (a) equal to zero and in case (b) such that.

(23) Gtransverse —HOaxial -
For each panel the transverse direction is parallel to the
direction of the global x-axis.

The finite element procedure gives the following results
for the moments. On the segment AB;

-1.41IN, -1.559N, -1.568N, -1.568N, -1.559N, -1.411N;
on the segments CD and EF :

2.748N, 3.099N, 3.153N, 3.153N, 3.099N, 2.748N
and on the segment GH:
-5.067N, -4.981N, 4.950N, -4.950N, -4,981N, -5.067N.

In each panel the axial stresses differ from element to
element contrary to Example 2.1. They are constant in the mean
only, i.e. in each panfl the expression

1
o
ax = — 2 Gax

6 strip
1s invariant, where the sum is taken over the six elements

lying in the same strip which is parallel to the segment AB



In the case (a) the transverse stresses are equal to
zero in the strips close to the segments AB and GH. The
transverse stresses in the strips which are very close to
the edges CD and EF are almost of the same order as the
axial stresses. This can be explained by the fact that according
to the results of the finite element method the edges CD and EF
do not remain straight after the deflection, whilst the segment
AB is fixed, and thus straight.

In the case (b) the computed stresses Girapg and Ggx

satisfy (23) "in the mean", i.e.

2. Otrans = M Z Gax
strip strip

5

where again the sum is taken over six elements lying in the
same strip which is parallel to the edge AB. Moreover,

(23) is exactly satisfied in these elements which are very
close either to the segment AB or to the segment GH.

2.3. Rectangular Panel Construction. As the third example

the construction of Fig.4a is considered. Because of the
computational technique each node is numbered the same number
of times as the number of panels to which it belongs. Such a
numbering seems to be necessary in the case of edges in which
three or more panels meet. The thickness h and the width /

of each panel is given by h = 0.0l m and ¢/ = 0.1m, respectively.
The edges AB and CD are simply supported and on the edge GH a

1

force P with linear density 20 Nm™ acts. The lengths a, b, ¢

are givenby a=1.6m, b=1m, ¢ =0.6m.
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According to the theory of frames consisting of
one dimensional beams, we have for the absolute values of
the vertical and. horizontal reactions that

Vi =cP/b=1.2N, V,= (1 +c¢/b)P =3.2N,
H, = H, = 3c(3a+4b) P/8a(2a + 3b) = 0.399N.

Thus we get the axial stresses

6] =Vi/hl=12 2

Nm - ,
103
o3 =Hp /h(=3.99, 2 Nm™ 2,

03 =(p-V2)/hi=-12 3 Nm~™2 |

o4=-Va/h{=-32 3 Nm™ 2,

The moments can also be derived easily, e.g.,

MEF3 = (V1 b - Hy a/2)/ ¢ = 8.808N,

MEF,4 -Hypa/2¢ =-3.192N,
MEF,S = - Pc/¢ = 12N.

The symbol Mgf; (i = 3,4,5) denotes the normal moment on

the edge EF in the ith panel.
The computed values are in very good agreement with the

exact values :
2JNM2

2
NM
03 ’

-2

NM —3.986

3 92 10
2

03 NM “, o4 =-3.2000,

o1 = 12000,

63 =-12000 |

MEE3=881IN, MEFg4 =-3.189N, MEfs5 = ~12.000N

2.4. L - shaped Wide Construction. A construction consisting

of two square panels as shown in Fig.5 is considered. The edge

-11-



with the end points 1 and 9 is clamped and at the corners
145 and 153 respectively two opposing forces parallel to the

y-axis but with the same magnitude P = 10N act.

In the horizontal panel, according to the technical theory
of bending of plates, at a sufficiently large distance from

the edge with the end points 73 and 81 we have

‘Gy ‘ =Pap /] = 12Pp/ha2,

where Oy is the axial stress, a is the length of the side

of the panel, h the thickness of the panel, and p the distance

of a node from the line determined by the points 5 and 77.

In our case a = 0.8m, h = 0.01lm. Thus

oy | = 3,5 P16 -

The results are introduced in Table 1. (In this table, the

values are expressed in 103 Nm_z.)

2.5. Uniformly Loaded Cube. As the last example we calculate

the deflections and moments of a cube, the faces of which are

uniformly loaded.

The length of edges of the cube, and the thickness of
the panels were a = 3m, and h = 0.1m, respectively. The Young's

modulus, the Poisson's ratio and the intensity of a uniform
load were E=2.11011 Nm'z, p=0.3,and p = 10* Nm™?, respectively.

The results for maximum deflections and moments are given
in Table 2. The exact values of deflections, and moments at

centres of edges are taken to be the values computed by

-12 -



Conway [1]. As they are almost the same as the values
derived for a clamped plate by Timoshenko [4], we consider
the moment at the centre of a clamped plate as the exact value
for our case.

The results for moments are very satisfactory, the results
for deflections comparatively good. It should be noted that the
results for a clamped and uniformly loaded square plate are
practically the same ; they differ from the results in Table 2

at most by about 2%.
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pivision of plates Lx b 6% 6 8 x Exact
inte squares values
EZi‘]ﬁligzig?Spﬂtes 0.871 0.692 0.627 0.535 lO_Mm
fi‘fm;‘l‘z:e:t cemtres | o yeny | 0,997 | 0.0 | 0.2079 | 10°H
h:‘;ngz::t centres | o 3601 | -0doge | <0305 | ~0.4653 | 10°

Teble 2.  Extremal displacements and moments of the uniformly

loaded box (Example 2.5)
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