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Abstract 

Inversion of almost arbitrary Laplace transforms is 
effected by trapezoidal integration along a special 
contour.     The  number   n    of points  to  be  used is  one 
of  several  parameters,   in most   cases  yielding absolute 
errors   of order  10-7  for   n = 10, 10-11   for n  =  20, 
10-23   for  n = 40   (with  double precision working), and 
so  on,   for  all  values   of the  argument  from 0+ up to 
some  large maximum. 

The   extreme  accuracy of which the  method  is   capable 
means  that   it   has   many  possible   applications   of 
various  kinds,   and  some  of these  are   indicated. 
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1. Introduction
 
The inversion of Laplace transforms is a topic of fundamental 
importance in many areas of applied mathematics, as would be 
evident by a glance at, for example, Carslaw and Jaeger (1948). 
In the more standard applications the inversion can he accomplished 
by the use of a dictionary of transforms, or in the case of 
rational function transforms by partial fraction decomposition. 
Where these methods are of no avail recourse may be had to the 
inversion integral formula, which is likely to lead to an 
intractable integral, or to an infinite series, often with 
terms involving the roots of some transcendental function. It 
is clear that in all but the simplest cases considerable effort 
is needed to obtain an accurate numerical value of the inverse 
for a specified value of the argument. 
It is therefore natural that attention has been paid by 
mathematicians, engineers, physicists and others to alternative 
ways of evaluating the inverse.  Early methods (e.g. Widder (1935), 
Tricomi (1935), Shohat (1940)) involved expansion of the inverse 
in series of Laguerre functions.     Salzer (1955) evaluated the 
inversion integral by Gaussian quadrature using an appropriate 
system of orthogonal polynomials.      Since 1955 et very large number 
of methods for numerical inversion have been published: see for 
example the partial bibliography in Piessens and Branders (1971) 
or the fuller one in Piessens (1974) .     A useful critical survey 
of earlier work was given by Weeks (1966). 
Many of the methods use either orthogonal series expansions, or 
weighted sums of values of the transform at a set of points, 
usually complex points. In either case considerable preliminary 
work must be carried out.   In the second type this may be done in 
advance once and for all for each selected set of points, and the 
points and weights stored in the computer.   However, if more points 
are desired for the sake of gaining increased accuracy,much further 
computational effort must be expended first. 
In general the methods hitherto published have been intended for 
use with transforms of particular types, e.g. rational functions 
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in the transform variable   s,   functions   of  s ,   functions 
representable  by  polynomials   in   1/s,   and   so   on. The   accuracies 
attainable  have  depended  very  much  on  the  particular  transform 
F(s)   to  be   inverted,   as   well  as   on  the   argument,   t,   of  the 
inverse   f(t). The  highest   accuracies   so   far   claimed  have 
probably  been  those  obtained  by  Piessens   and  Branders   (1971), 
Piessens   (1971,   1972),   and  Levin   (1975),   who   in  particular  cases 
obtained  errors   of  orders   10-12  to   10-15. 

The  method  to  be   described  in  the  present   paper   is  of  the   second 
type,   but   is   unlike   any  previously  published  method.        The 
number  n  of  points  to  be   used  is   one  of   several   arbitrary  para- 
meters.        No  preliminary  computational  work,  is   required.        The 
method   is   almost   universal   in  its  application.        The  theoretical 
error   is   expressible  in  closed   form  by  means  of  contour   integrals, 
and   for  a   given  t   decreases   roughly   exponentially  with   increase 
of  n,   being  typically  of  order   10-4   or   10-5   for  n   =   6,   10-7   for 
n  =   10,   10-11   for  n  =  20,   10-23   for  n  =  40   (with  double  precision 
working)   and  so  on.     The  actual  decrease  of  error   is   of  course 
limited  by  the  precision  of  the  computer,   but   the   "round-off" 
error   is  very  easily  estimated   from  the  value  of  one   single  term. 
In  practice  the   orders   of  error   quoted  are   always   attainable,   by 
proper   choice   of  the   other  parameters,   for  all   values   of  t   from 
0+  to   some  maximum  value,   usually  ranging  between  20  and   100  or 
more,   and   depending  on  the   accuracy  required  and  the  positions   of 
the   singularities   of  F(s).        The   computer   execution  time   is   roughly 
proportional  to   n. Using  a  CDC   7600  the   average  time  per 
inversion  when   n   =   20   (giving   errors   nearly  all  of  order   10-11 

or  less)   is   about   1   ms. 

In   essence   the  method   is   contained   in  an   unpublished  Ph.D.   thesis 
(J.S.   Green,   1955)   which  was   supervised  by  the  present   author. 
However  the  potentialities   as     regards  accuracy  attainable  only 
became  apparent   much  later,   and  turn  on  the  correct   choice  of 
the  various   parameters. 

Possible  applications  of  the  method  are  numerous,   and  many  have 
already  been  tested.        These  include: 

(a)        The   direct   one-step  solution,   for  any   specified  value  of 
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the   independent   variable,   of  any  linear   constant—coefficient 
differential   equation  with   arbitrary  right-hand   side  possessing 
a  Laplace  transform  calculable   as   a   function  of the   complex 
transform variable   s. 

(b) The  time-domain   solution  of any  linear  network  or   system 
(e.g.    control   system)   using   either   standard  network  or   system 
analysis   or the   solution  of   simultaneous   algebraic   linear 
equations. 

(c) In  particular,   the   solution  of a   system  governed by  a 
state-matrix A: 

,)t(vAudt
du +=  

by   combining  the   inversion  process   with   Fadeev's   method   for 
evaluation  of   (sI—A)-1. That   is   to   say,   given  any  vector  v(t) 
and  any   initial   conditions,   the   equation   can be   solved   for  the 
vector  u(t)   for  a   given     t      in  one   step to   almost   any  desired 
degree  of  accuracy. 

(d) The   direct   one-step   solution   for   any   specified  x  and t 
of the  parabolic   equation 

0t,bxa,t
u

x
u
2

2
>≤≤∂

∂=
∂
∂  

with   arbitrary  initial   condition 
u(x,0)   =   ø (x)    ,    a < x < b  

and  a  variety  of   (or  perhaps   arbitrary)   end - conditions  on  u 
or   ∂u/∂x. 
(e) The   evaluation   of   some   difficult   integrals   to   great   accuracy, 
by   inversion   of  their  transforms   taken  with  respect   to   a  pre- 
existing  or  artificially   introduced  parameter. 

(f) The   direct   evaluation   of  transcendental   functions,   by 
inversion   of  their  transforms,   to   many  more   decimal   places   than 
are  available   at   present,   provided  a  computer   of   sufficient 
precision   in   its   arithmetic   and   in   its   exponential   and  sine - 
cosine   subroutines   is  at   hand.        For  example,  with  a  CDC   7600 
in  double  precision  J0(t)   can  be   found  to  21   or  more  decimal 
places   for  t  ≤  100.     Triple   precision  would  raise  the  number 
of  places   to   about   35 ,  and   so   on. 
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2. Description  of the   method

Let   f(t),      defined  for  t > 0,   have  the  Laplace transform 

                                                                                              (1)
dt)t(fste

0

)s(F −
∞

= ∫
with  abscissa  of  convergence  γ 0 ,  S O that  the   integral   converges  
in  the  half-plane   Res   >   γ 0    hut   diverges   in  Res <  γ 0 .  Our 
starting  point   for  numerical   inversion  of  F(s)    is  the   standard 
inversion   formula 

                                  0t,ds)s(Fei2
1)t(f st

B
>π= ∫              (2)

where   B   is   the   "Bromwich   contour"   from  - iγ ∞  to + iγ ∞ ,  w h e r e  
γ  > γ 0 ,  SO  that B is  to the   right of all singularities of  F(s). 

Direct numerical  integration along  B is impractical on account 
of  the  oscillations   of  est  as   Ims  →  ± ∞. The   difficulties  were 
to   some   extent   overcome  by   Filon   (1929)   and  others   since,   and 
probably   Levin   (1975)   has   gone   as   far   as   anybody   in  this   direction 
by   use   of  his   remarkable   convergence—acceleration  algorithms.      But 
his method  would  require  considerably more effort  to improve   on 
the   orders   of  error   10-12   to   10-15   which  he  has  been  able  to   achieve 
for   some   functions   F(s)   and   some  values   of  t. 

Here   we   overcome  the  difficulty  by   avoiding   it:      we   replace  B  by 
an   equivalent   contour   L   starting  and   ending   in  the  left   half-plane, 
so that Re s → - ∞ at each end. This replacement is permissible, 
i.e.   L   is   equivalent   to   B,   if 

(i)   L   encloses all singularities of  F(s),                                                 (3) 
and 

(ii) |F(s) | → 0 uniformly in  Re s ≤ γ o     as  | s | → ∞  .                            (4) 
Condition   (ii)   holds   for   almost   all   functions   likely  to  be 
encountered,   and  we   shall   assume   it   satisfied  by   all   F(s)    considered 
here. Condition   (i) may  well  not be satisfied by a given F(s), 
but   for  the  time  being  we   shall   assume  that   it   does   hold. 

To choose one particular path  out of  all possible equivalent paths, 
we write the integral in (2)  as 

                                                    (5) ivuw,dse )s(w
B

+=∫
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Now  if   ŝ   is   a   saddle-point   of the   integrand,   i.e.   a  zero   of dw/ds, 
then  in   general,   as   is  well-known,   there   is   a pair of  steepest- 
descent   paths  through   ŝ   on  which,   if we  write w(s)   =  û  +   i , v̂
(a) v =  const.   =  ,   so  that   ev̂ w  does  not   oscillate, 
and 
(b) u  decreases   steadily   from û at   ŝ to  -∞ at   both   ends. 
It   is  obvious  that  this pair  of paths   forms   a contour L which,   if 
equivalent   to  B,   is  likely to be  very   suitable   for numerical 
integration   of   (5). 

For  later  reference  we  note that   if we write µ2   =  û -  u,   then 
µ2   ≥  0  on L,   and we may  suppose  µ  to  increase  steadily  from 
-∞ to  +∞  along L.      Furthermore,   on  L we  have 

μ2    =   -  w  =   -   ŵ
2
1 Ŵ" . (s - ŝ)2   +  .  . . . ,   (6) 

from  which,   retaining  only  the  first  term  of  the  Taylor  expansion, 
we  derive  the  Saddle-Point  approximation  formula 

                     
)8(.

)"ŵ2(
e

)7(dµdµ
dsei2

edsei2
1

ŵ

2µŵw
B

π√
−−

π=π
−∞

∞−∫∫

Now  referring  to   (7)  we  recall  that   for  real   integrals  of  the  form 

      ø(x) dx    trapezoidal   quadrature  has  long  been  known  to  yield ∫
∞

∞−
− 2xe

abnormally  accurate  results.      Loosely   speaking,   this   can  be  explained 
by  reference  to  the  derivative   form  of  the   Euler-Maclaurin   formula, 
on  noting  that   the   integrand,  and  all   its   derivatives   vanish  at   ± ∞  . 
(See   for   example  Hartree (1952),  sec. 6 . 5 4 . )    An  analysis  by  oodwin 
(1949)   using  contour   integration  provides   a  strict   explanation  of 
the  phenomenon. 

We  may  therefore  expect  that  trapezoidal  quadrature  applied  on  a 
steepest-descent   (S.D.)   contour  will  be   exceptionally  accurate. 
Wow  it  would  be  quite  impracticable  to  calculate  the  S.D.   contour 
for  each  function  F(s)  to  be  inverted.       A  little  thought  however 
shows  that  this   is  unnecessary,   for  by  the   discussion  above  the   S.D. 
contour  for  any  F(s)   is  likely  to  produce  good  results  for  all  F, 
and  this   does   indeed  turn  out   to  be  the  case.     Moreover,   it   is   clear 
that  this  will  continue  to  hold  if  u  in   (7)   is  replaced  by  any 
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other   suitable   parameter,   for  the   integrand  will   still   have  the 
same  type   of "behaviour   at   the   end-points. 

For  our  method  we   take  the   simplest   possible   F,   viz.   F(s)   =   1/s, 
and   for   simplicity take  t   =   1. This   gives 

w =   s   -   ℓns,          =   1,          =   0, ŝ v̂

and  the   S.D.   contour   is,   taking   θ   =  arg   s      as   a  parameter, 

L   :    s   =   sc   (θ)    =α   +   i θ,    α  =  θ cot θ ;  -π < θ < π ,   (9) 
or 

r  =  rc   (θ)    =  θcosec  θ  . 
Hence   the   suffix     c      denotes    'critical'. The   reason     for   its 

use  will   become   apparent   later.      The   contour   is   shown   in   Fig.1. 

If  with  L   as   in   (9)   condition   (3)    is   satisfied  by   a  given  F(s), 
we   can  apply   (2)   with  L   in  place   of  B. If  however  the   condition 
is   not   satisfied  by  F(s) ,    it  will   in  general  be   satisfied  by  the 
modified   function   F ( s    +  σ)   for   suitable  choice   of  the   positive λ

scaling  parameter   λ    and  the   shift   parameter  a,   for   if  sj   is   a 
singularity  of  F ( s ) ,    F(λs    +  σ)   has   the   corresponding   singularity 

                                                 .
s

j
*s j

λ
σ−

                                                                (10)

We  may then   replace   (2)   by 

                            ,ds)s(Fei2)t(f t)s(
L

σ+λπ
λ= σ+λ∫                                                    (11)

and   if  F(s)   is   a   real   function   it   is   now easy  to   derive  the 
trapezoidal   approximation 

                        )12()]s(Fce)i1[(Ren
e)t(f~ kc

s1n

0k

t
θ=σ+λβ+λ= θ

τ−

=

σ
∑

where    τ =   λt, 
 

θk  =  kπ/n   ,     k  =   0,1,    ...    ,   n-1,               (13) 
 
and 

                              θ−αα+θ=θ
α−=β /)1(d

d                     (14)

The  term  for  k  =  n,   i.e.  θ  =  π ,   is   omitted   since   it   is   zero.      If 
 

    F(λsc     +  σ)   =   G +  iH                                                               (15) 
where   G  and  H  are   real,   (12)   takes  the   real   form 
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(16) .}]sin)GH(cos)HG{(e[n
e)t(f~ k

1n

0k

t
θ=θτβ+−θτβ−λ= θ

ατ−

=

σ
∑

 
Equations   (12)   and   (16)   are  the  basic   formulae  of  the  method. 
By   suitable   choice   of  the   parameters   n,   λ and  a  they  are   in   general 
capable  of  yielding  extreme  accuracy.     The  principles   governing 
the   choice  are   simple,   and  depend  on  the   error  analysis   given  in 
the   next   section. 

3.      Error  Analysis

Consider  the  conformal  transformation 

                        .)2
zcoth1(2

z
e1
z)z(Ss z +=

−
== −                               (17)

This  has   branch-points   at   z   =  ±   2rπi   ,     r  =   1,2,    ...    ,   and  maps 
the   imaginary  z-plane   interval  M between  - 2πi    and 2πi  on to  the 
curve L  in the  s-plane. Some  idea of the nature of the mapping 
in  relation  to  L   is   given  by  Fig.2,   where   correspondences  between 
z-plane  and  s-plane  regions  are  indicated by  shading,  or  its   absence, 
and  correspondences  between  points  by their  labels.      In  particular 
the   region        enclosed by  L   is  mapped   1 - 1   from  a  z-plane  region    R 
bounded on the   right  by M,   above  by  a  curve   CFH between  -∞ + πi 
and  2πi,   and below by  the   conjugate   curve.        We   shall   call   points 
z   in  this   region   "principal   inverses"   of the  corresponding  points 
s,   and   shall   denote them by the  notation 

z  =  Z(s). (18) 

Writing     z  =  x +   iy,   and 

                                ,dz
dS)S(Ft)S(e)z(Q σ+λσ+λλ=                                      (19)

(11)   becomes 
(20) 

and  the  trapezoidal  approximation to   f(t)   is 

(21) 

which  is   seen  to   agree  with   (12)   on  noting  that   zk = 2iθk and  
s(zk) =sc(θk)   . 
If the   singularities   of  F(λs +σ)   are   all   inside  L,  those  of  Q are 
all   in the region R,   and if M1   is  any path from -2πi to  2πi  passing 

,dy)iy(Q2
1Qdzi2

1)t(f
2

2M ∫∫
π

 
π−π=π=

,n/ik2z,)z(QRe2'n
1)t(f~ kk

1n

0k
π== ∑

−

=
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to   the   right   of  M,   and  M'2   any   such   path  to   the   left   of  M  but   close 
enough  to   it   to   exclude  the   singularities   of  Q,   then  by   (21) 
and  the   Residue  Theorem 

                               .
e1
dzQ

i2
1)t(f~ nz2M1M −− −π= ∫                                                           (22)

 (The   integrand   in   (22)   is   regular   at   z   =  ±   2πi      since  by  assumption 
F  and  hence   Q   satisfies   condition   (4).) 
Paths   M1 ,   M’2   and  their  maps   L1 ,   L'2   are   shown   in   Fig. 3. 

It   now  follows  by   (20)   and   (22)   that   the  theoretical   approximation 
error   is 

E(t)   = f~ (t)   -   f(t)   =   E1   +   E'2

where 

.
e

dzQ
i2

1E

,
e

dzQ
i2

1E

1nz2'M2

1nz1M1

−−

−

∫

∫

π=

π=

 
(23) 

(23) 

Now  if  L2   can  be   found   such  that   L2 ,   L'2   enclose  the  poles  but   no 
other   singularities  of  F(λs + σ),   then  M2,   the  principal   inverse  of 
L2,   and  M’2   enclose  the   poles   hut   no   other   singularities   of  Q,   and 
we  may  write 

E'2   =   E2   +   EQ,                                                                    
where 

,
1e

dzQ
i2

1E
nzM2

2 −π
=

−∫                                                       (24)

and,   after   simplification, 

                                     .
1j

*e
)sj(Fresje

jE nz

ts
0

−
∑= −                                                             (25)

Here  the   summation  is  over  poles   sj   of  F(s),   and 

./)s(j
*s,)j

*s(Zj
*z j λσ−==                                        

Thus   the  theoretical   error   is 

E~    =  E0  + E1  + E2. 

Since  in   (25),   z   in   (23)   and  -z   in   (24)   all  have  positive j
*z−

real   parts,   it   is   obvious   that  the  components  E0 ,   E1   and  E2   all 
decrease   exponentially  to   zero    as   n    increases.     However, there 

(26) 

(27) 
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is   still   a  round-off  error   component  to  consider.      Now  it   is 
clear that  the  largest  or near-largest  term in   (12)   is the 
first,   viz. 

                               .)(Fen2T t)(
0 σ+λλ= σ+λ                                                 (28)

Moreover,   because  of  cancellations, .|T||f~| 0<<  
computer  evaluates   T0   correct  to    c    significant   figures,   the 
round-off  error   in     is f~

Er  =  0(10- CT0), (29) 

all  other   round-off  errors   in the   evaluation   of   being negligible f~

by  comparison.        Finally,   we  may   state that  the  actual   error  in    is f~

E  =   E0   +   E1   +  E2   +  Er      , (30) 
the  four  components  being  given  by   (25) ,    (23) ,    ( 2 4 ) ,    (29) 
respectively.     We  shall  now  consider  these   components   one  by  one, 
and  obtain   estimates  of  their  orders   of  magnitude. 

Component   E0.        By   (25)   we  may   indicate  the   dominant   exponential 

factor   in  E0     by  writing    

                                                                            (31) ,)tpj
*nu(j

minA,e~E j00A
0 −=−

where   but  p,0j
*zRej

*u >−= j   =  Re  sj  may  have  either  sign. 

If  sj   is  known  and   X  and  0  fixed,  is   found  as   in   (26).        A j
*s

rough  idea  of  the  value  of   can  then  be  obtained  from  Fig.4, j
*u

which  shows   s-plane  loci  u  =  constant,   s  =   S (z ) ,    z   =  -u  + iy  ,   for 
various   values  of     u.        More  accurate  values   of   may  be   found  from j

*u

Table   1.       This   gives  values  of  u  =  - R e z ,    where   S(z)    =  s   =  re iθ  , 
for  various   values   of  s   inside  L.     Table   1   was   computed  by  applying 
Newton's  method  to  the  equation 

S (1   -  e-Z)  - z   =   0   . (32) 

Except  when     is  near  to  π,   a  suitable  starting  value,   ensuring θ
convergence,   is   z0   =   ( θ -   3)/18  +  2iθ , and  it is convenient  to  take 
as   independent   variables   in  the  Table   θ   and  Κ,  where 

K  =  rc(θ )/r.  (33) 

For  θ   near  to  π  we  take  r  and  θ    as  the  variables,   and  z0   =  -4+   iπ. 
     It  will  be   seen   from  Table   1   that  values  of  u  increase   rapidly  as 
     r  approaches   zero,  and  thus  A0   increases  rapidly  as   λ    increases. 

Thus   if  the 
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We   note   also  that   poles  (or   s0j
*s = j   =   0   if  σ  =   0)   make   no 

contribution   to   E0   ,      since   u →  ∞ as   s → 0. 

We  may   remark  that   in   cases   where   E0  is  the  dominant   component, 
(25)   is   an   accurate   formula   for  E,   and  thus   could  be   used   as   a 
correction  term  to   convert f~ (t)   to  f ( t ) .    However   in   such   cases 
it   is   much   simpler   and  more   efficient   merely  to   increase  the 
value   of     n. 

Component   E1 . Except   near  the   end   points   of  M1 ,   the   order   of 

magnitude   of  the   integrand   in   (23)   is  mainly   determined  by  the 
factor   eτ S – n z. Since   S(z) −− z     when     Re z  >   2,   say,   and  M1   may 
be   deformed  arbitrarily   far  to  the   right,   the  modulus   of  this 
factor  is   of  order  e(t-n)Rez over  much  of  L1.      It   follows   at 
once  that   a   necessary   condition   for   E1   and  therefore   E(t)   to  be 
small   is   that 

n  >   τ   =   λt.               
 (34) 

Thus   for   large  t   coupled   with   large  λ  necessitated   by    the 
presence of remote singularities of F(s) ,  the use of large n 
is essential for good results.(Large n may not suffice, however, 
because  of  the   Er     term,   as   we   shall   see). 
A   close   estimate   of  E1   may  be   obtained  by  applying  the   saddle- 
point   formula   (8)   to  the   integral   (23).        Details  of  the  calcula- 
tion   are   given   in  Appendix   1,   but   it   is   immediately  obvious   from 
(8)   that   if   z1   =  X1   +   iy1   is   a   saddle-point   in   (23) ,    and 
s1   =   S ( z 1 )    =   p1 + iq1 ,   then 

 

E1 ~ e-A1      ,      A1 =  nb1   -  σ t  , (35) 

where     b 1 = x 1 - pρ 1 ,       ρ   =   τ / n. 

Now  it   has   been   found   empirically   (but   not   so   far   explained)   that 
for  a   great   variety  of  functions   F(s)    and values   of     τ     and     n, 
b1   is  practically  a  function  of     only,   even though  xρ 1   and p1   may 
vary  appreciably. Thus   the   estimation  of  E1   and  hence  of  E   is 
greatly   facilitated by Table   2  which  shows   values   of b1 (ρ  )   for  a 
range   of     <   1.      (By (34) Eρ 1   will  be   large   if  ρ   >   1.)       It   will 
be   seen  that   for  optimum E1 ,      should be  between  0.3   and   0.5. ρ



11. -  11  - 

Component   E2.        Similar  results  hold  in  general   for  E2 ,   though 

there  is   a  complication  here  in  that  unlike  M1 ,   M2  cannot   be 
deformed  arbitrarily  far   from  M  since  it  must  remain  to  the 
right  of  non-polar  singularities  of  F(λS + σ).        Nevertheless, 
if  z2  =  -u2  +  iy2  is  a  saddle-point  in  (24)   and  s2 =  S(z2) = P2  +  iq2 , 

then  in  a  large  number  of  cases 

  E2 ~ e-A2     ,           A2=  nb2  -  σ t, (36) 

where     b2  =  u2   -  pρ 2     is  practically  a  function  of    ρ      only, 
and  is   also  given  in  Table  2. 

It is clear that except for very small ρ  , which are unlikely to 
be  used,   b2  >  b1 . Thus   in  practice  we  can  usually  neglect  E2

in  comparison  with E1,   and  this  we   shall   do  henceforth  unless 
otherwise   indicated. 

However,   exceptional   cases   can  arise  when  E2   is  by  no  means 
negligible,   and  in  fact   dominates  E.       To   see  this,   suppose  that 
F(s)   has  a  branch  point   s0,   and  that  = (S0

*s 0 – σ) λ   is  inside  L 

but   "near"  to  it,   i.e.   such  that   if  z0   =  Z ( )  , u0
*s 0  =  -Rez0   is 

small  and  positive.     Then  any  modification  M2   of  the  path  M’2   in 
(23’),   enclosing  with  M’2   only  poles  of  F(λs + σ),   must   remain  to  the 
right  of  Z0  and  thus  must  contain  an  arc  on  which  Re z    is   small. 
Thus   E2  will  be  abnormally  large,  although  it  will   still   decrease 
exponentially  as    n    increases.     An  example  of  this   situation  occurs 
when   F(s)   =   1 / √ (s2  +  1)   and   t    is  large.        Here  so  =  i,   and  if 
σ =0  the   'critical' ,   i.e.   minimum  value  of  λ   to  keep   inside 0

*s

L  is   λc  =  2/Π. But  as   is  clear  from  (28)   and   (29)   an  increase 
of   t    tends  to   increase  Er   unless  X  is  reduced.     Thus  to  make  Er

acceptably small when t is large it may be necessary to reduce 
λ  nearly to the value λ c , and then E2 may be unacceptably large 
unless n is very large. More details of this case, and of the 
improvement   effected  by  judicious  choice  of  σ ,  will  be  given  later. 

Much  more  work  remains  to  be  done  in  investigating  this  phenomenon. 
Experiments  with  F(s)   =   1/ √(s2   +   1)   indicate    that     d2  −−   ½nu0 

in  this  case,   at  any  rate  when    d  =  d2   <  d1r.    (See   (40).)  To  what   extent 
this   generalises  to  other   functions   is  not  at  present  known. 
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Component   Er   .        In  the  approximations   (32),   (35) ,   (36)   we  have 
included  only  the  exponential  factors,  and  ignored  factors  of 
the   form  λF  and  other   factors.        We   shall   do  the   same   for  Er , 
but   shall   include  a  contribution  representing  the  denominator 
factor  2n  in   (28),   which  may  be  appreciable.     Thus  we  write 

 Er  ~ e-Ar   ,   Ar =  2.3(c+ log102n)-  τ -  σ t. (37) 
In  practice   it   is   always   found  that   for   fixed  t,   λ  and σ , E 
decreases   exponentially  as    n    increases   until   dominated  by  Er 
(which  is  practically   independent   of  n),   and  then  remains 
approximately   steady. 

As  an   illustration  of  the  results  of  this   section,   consider  the 

case 

,tcoshtcos)t(f,
4s

s)s(F 4
3

=
+

=  

 
with  t  =  10,   λ=   1,  σ  =   1. Using  the  CDC   7600   in  double 
precision,   for  which    c    is   about   27  or  28   for  this   function   F, 
the   following  values   of  E   (to   3  figures)  were  obtained  for 
various   n: 

n 20 30 40 60 80 100 120 150 

E     -2.67D-2   3.88D-5   -5.03D-8   -4.09D-14   1.3D-8  -4.96D-22   2.17D-22  4.91D-22 

First,   T0   =   (9.7D7)/n,   so  for   n  ≥   100,   (29)   gives   Er     =   0(10-21) 
or  0(10-22),   agreeing  with  the  above  values.        Next,   F(s)   has 
poles   1   ±   i,   -1  ±    i,   and  we   find  z*j  =  -0.6465  ±   2.7961i, 
-0.5572   ±   4.6273i   respectively,   and  resF(sj)  =   1/4   for   each  pole. 
Then  by   (31) 

A0   =  min   (O.6465 n - 10  ,   0.5572 n + 10)  , 

and  clearly the   first   pole-pair  is   dominant   in  E0   if n  <   220. 
Considering now E1,   we  have  τ   =   10   and b1   >   0.7   for   n   between 
20  and  200,   by Table  2.        Thus  E0 >> E1   for all    n    under  consideration, 
and  E0    is   dominant   in  E  up  to  n  =  90,  when  Er  begins to dominate. 
One  does   indeed  find that  the terms   in   (25)   for the  pole-pair   1   ±   i 
do  accurately  give the  above   values   of  E  for  n  ≤   80. (A  slight 
discrepancy,   of  about   2D-21,   for n  =  80   is  almost   certainly  due to 
the   effect   of  Er . ) 
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4.        Strategy,   and  some  results 

The  order  of  E   in   (30)   is   determined by  that   of  its   largest 
component.        Thus,   writing     d0     = A0 /2.3,    d1  = A1 / 2.3,   etc., 

we  have 
 E ~ 10-d   ,   d = min (d0 , d1, d2 , dr). (38) 

For  a  given  F(s),   the  relative   sizes  of  the  d's  vary  as  we  vary 
t, n, λ, σ, c.  Thus  the  best   strategy   (i.e.   choice  of  the 
parameters  n,   λ,  σ )   will   depend  on  the  value   of   t,    the  nature 
and  position  of  the   singularities   of  F(s),   the   computer  precision 
c,   and  the   accuracy   desired. Fortunately  however,   except   when 
there  are   remote   singularities  or  when   t    is   large,   a  simple 
general   strategy   applies   in  all   cases. 

Noting  that,   as   pointed  out   earlier,   in  general   d2   >   d1 ,   we  may 
writ e 

d  =  min   (d0,   d1r) (39) 
where 

d1r  =  min   (d1,dr)  −− δ lr  - σ t / 2.3, (40) 
δ lr  =  min   (nb1/2.3, c + 2  -  τ /2.3). 

Table   3   gives   values   (rounded  below)   of  δ 1r   when   c   =   14   or  27, 
for  various   values   of   n    and    τ ,    using  Table   1   for  b1.      In   each 
column   dr     is   dominant  at   the  bottom  entry,   and  remains   so  below 
this.        Whenever   d0   >   d1   or   dr  , δ lr – σ t/2.3   gives  a  safe   estimate 
of  the  order    d   of  error   (to  within  one  or  two  units),   and  pairs 
(n,  τ )   can  be   readily  selected  to  produce  any  attainable   accuracy. 
If  dr  ≤   d1     larger   n   yields   practically  no   increase   in  dlr,   but   may 
be  needed  to   ensure  that   d0 > dr  ,  i.e.  that   the  value  d  =   d1r 

is  actually  attained.        This  will  certainly  be  the  case   if  F(s) 
has   no   poles   except   possibly  at   the  origin   (so  that   E0   =  0),  provided 
λ   =  τ /t   is   large   enough  to  bring  all   singularities   inside  L.        In 
the  general   case  when  F(s) has  poles  away   from s = 0,  d0  can be  found 
with  the  help  of  Table   1.        In  fact,   referring  to  Fig.   1,   let 

S0   =   (p0,   q.0)   be   any  singularity,   polar  or  non-polar,   of  F(s), 
and  for   fixed σ let s0 -  σ  =  r0eiθ.The   radius  to     s0   -  σ   meets 
L   at   the   'critical'   point 

,)q,p(ers cc
i

cc == θ  
(41) 

                                                    rc = θ cosec θ  ,  q c = θ.  
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The  value  of    A    used  must   be   greater  than  the  critical   value 
λc   bringing     s0  -  σ  to sc  , say 
                            
                                   λ   =    λc  ,      λc   =   q0/θ  ,    > 1 , 

 
 
 
 
 
(42) 

and  then 

            ,s*ss c0
κ==λ

σ−               (43)

giving

λ = q0 /θ , σ = p0 - q0 cot θ . 
 

(44) 

If in particular s0 is a pole sj , then the corresponding  j
*u

in (31) can he found by entering Table 1 with θ and , or 
θ and  r,   r  =   |s*|. 
 
In   general,   little   is   gained  by  taking  σ   non-zero,   and   in  most   of 

our  results   σ  =   0.     However,   in  cases   where   dr     and  hence    d    is 
small   because    τ    is  large   (see   (40)),   non—zero   σ   can  be  used to 
advantage. In   fact,   we  have 

dr   −−   c   +   2 - (λ+  σ ) t / 2.3, (45) 
and  to   increase   dr     we  must   make    λ + σ  small. Now with a 
singularity   s0   as   above   and   ,   σ   as   in   (44),   λ λ   + σ   is   minimised   if 

 
    =  θ2 cosec2θ =   (θ)                                                (46) 

Then 
λ  +  σ   =   p0  +  q0 γ  (θ),      (θ)   =   θcosecγ 2θ  -   cotθ  .      (47) 

Table  4  gives   values   of    (θ)    and  γ  (θ),   and   also   of  u(θ)   corresponding 
to   θ   and   (θ),   for  a  number  of  values   of  θ.        Clearly   a  compromise   is 
needed  between  large   θ,   giving  large  u   (and  thus   large   d0   If  s0   is 
a  pole)   and  also  large   γ  (hence   small   dr   ),   and   small   θ,   giving 
small   d0   and  large   dr   ,  though   it   should  be  noted  that   one  can   always 
compensate   for   small    u   by  taking   n    large. 
As   an   illustration   of  this   strategy   consider  

                                   ,)t(J)t(f,
)1s(

1)s(F 02 =
+√

=  

and  suppose  we   require   f(t)   for   t  =  50.      F(s)   has  branch-points 
at   S0   = ±i    .      First,   if σ  =   0,   the  minimum  λ  is λc  =  2/Π   =  . 637 , 
and corresponding  τC   −−  32. 
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The  table  below  records   values   of   d   obtained  with  various    n 
and     τ    and  the   corresponding  dr     values. (In  all   cases 
dlr  =  dr.) 

n 60 60 60 60 
τ 35 40 45 50 
d 5 10 10 7 
dr 14 12 10 7 

60 80   100 120 120 120 
55 50    50 40 50 60 
 6     7      8    12   7  3 
 5   7      8   12 8    3 

It  will  be   seen  that   in  all   except  the   first  two  cases     d −−   dr. 
With  the   (n,   τ)   pair   (60,   35) ,      =  τ / τ C  =  1.10  and  u  =  0.14. 
The   approximate  empirical   formula  d2 −− nu/2  mentioned   earlier 
gives   d2 −− 4   :   cf.d  =   5.      With   (60,40) ,        =   1.26   and  u  =  0.33, 
giving  d2 −−  10  =  d.      On  the  other  hand  with   (120, 40)    u   is    the 
same  but   d2 −−  20,   so  that   now   d  =   dr,     and  does   not   increase  with 
further   increase   of   n. 

If  however  we  use   ( 4 4 )  ,   ( 4 7 )    and  Table  4  we  note  that  by   (45)   dr 

decreases   from  21   to   12   as   θ increases   from  0.5  to   1,   and  any 
such  dr     value   is   attainable  with   sufficiently  large    n,    viz. 
n > n2  =  2dr/u  if  we   assume  d2 −−  nu/2.        For   0  =  0.5 ,   0.6,   ...   1 
the   values   of  n2   are   about   260,    180,   120,   80,   60,   40   corresponding 
to   dr  =   21,   20,   18,   16,   14,   12.        Thus   if  we   aim  for   d  =   20,   then 
θ   =   0.6   and  n −−  80   are   indicated. In   fact,   n  =   180   gives   an   error 
1D —19,   while   n  =   200   gives   1D-20,   thus   confirming  the  general 
strategy. 

For  larger   t    the  dr  values   and  hence  attainable    d   values  would 
be   smaller.      For   example,   if  t   =   100  they  would  be   13,   11,   7 ,   3,   ... 
for   θ = 0.5,    ...    1 .        To   obtain   dr  =  20  we  would need θ = 0.3, 
giving  n2   =  670.        If  this   is  thought   excessively  high,   recourse 
may  be  had  to  a  modified  contour,   viz.   our  contour  L   expanded 
vertically  by  a   factor    v  .        With  this   it   is   possible  to   achieve 
d  =  21   with  n  =  250   for  t  =   100,   using  a  similar  strategy.     Some 
details   of  the  use  of  this  new  parameter  v   are  given  in  Appendix  2, 
but  much  work  remains  to  be   done  in  investigating  its   effect   on  the 
error. 

We  now  consider  various  types  of  function  F (s ) ,    and  in  a  number 
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of  selected  examples  compare   actual    d   values   obtained  using 
various   (n,τ )    pairs   with  those  obtained  by  other  authors. 
For   all   results   quoted  a  CDC  7600  was   used,   with  double 
precision  working  unless  otherwise   stated.     The  execution 
time  per  answer  is  roughly  proportional  to  the  number  of  points  n, 
i.e.   the  number  of  transform  function   evaluations,   and   is   about 
3ms.    when  n  =  20.      If  single  precision  is  used,   then  as  Table   3 
shows   d  -values   of   11   are  readily  achieved  with  n  =  20,   and 
the  average   execution  time   is  then   1  ms.       If  n   <   20,   single 
precision  gives  the   same  d - values   as   double  precision. 

In  the   examples  below,   each  line  of  results   starts   with  an 
(n,  τ  )    pair. 

I. Singularities  only  at   s   =   0. 

In  these   cases   E0     =   0,   and  Table   3,   adjusted   for  the  appropriate 
value  of  c,   may  be  used  with  confidence   (to  within  one  or  two 
units)   for  d.  

).t(/)t2(cos)t(f,e)s(F)a( s/s/1 π√√== √−  
(10,4)    :   d  =   5 -  8,     t   ≤   20 
(20,8.5)     :   d  =   11  -  14,     t   ≤   50 
(40,10.5)    :   d  =  23-24,      t ≤  50. 

Cf.   Nakhla   et   al   (1973),   where   22  points   (per  value  of  t)   yield 
d  =   3   up  to  t   =   50.        The  method  of  Piessens   (1972)   for  this   function 
yields   d  =   12  to   14   for    t    between   1   and   10,   using   31   points. 

).t(t2/du)u2(Jue)t(f,s/s/1e)s(F)b 0
t4/u

0

2
π√⎟

⎠
⎞

⎜
⎝
⎛ √=√−= −∞
∫ (  

(20,6)    :    d ≥ 11 ,   t  <  10    ;    d=14,     10 ≤ t   ≤  100 
(30 ,13 .5 )     :   d≥17,   t  <  4   ;   d =  19,     4  ≤  t  ≤  100 
(40,12)    :   d  =  20+   (probably   about   25),    t  ≤ 100.    (Values   inferred 
from  20-figure   results   using   10   different   ( n ,  τ )   pairs   and   comparison 

with  Table   3.) 

Cf.   Piessens   and   Branders   (1971 ) ,   example   6,   where   d = 9 ,    10≤ t ≤ 100, 
with  51   points;     Piessens   (1971),   where  d  =   15,  14,  12   for  t   =   1,  10,  100, 
with   12  points;      and  Levin   (1975)   where   Gaussian  quadrature  together 
with  Levin's   rational  transformation  of  order   14/ 1 4   yields 
d  =   12,  15,  12     for   t   =   1,  10,  100. 
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(c) F(s)   =   (√s   +  0 . 5 ) / ( s    +  √s   +  0 .5) .       (For  f ( t ) ,    see   Piessens 
and  Branders   (1971) ,    example   3.)  
(20, 6)   :   d  =   11,   t   =   0.001;      13,   0. 1  ≤ t ≤  1 0 ;      14 ,   1 0 < t ≤  100 
(30,13.5)   :   d  =   17,  t  =  0.001:      18,   0.1  ≤ t ≤ 4   ;      19,   6 ≤ t ≤  100 
(40,12)    :    d  =   20+   ,     t  ≤  100. 

Cf.   Piessens  and  Branders   (1971),   where   d  =   7   is   claimed  for 
t  =  2, 4, 6,  10    and  d  =   5   for  t  =   14, 20.       (in  fact  the  "exact" 
values   quoted   for  t   =   4  to   20   are   in   error,   and   d  =   7   or  8   is 
achieved  throughout.)        Such functions   F(s)   are   important   in 
connection  with   electric   networks  containing  mixed  lumped  and 
distributed  elements. 

Similar  values   of  d  have  been  obtained  by  our  method   for 

,))t(t2/e(e),t(/1)t(f(s/1)s(F t4/1s π√π√=√= −√− and  other 
such  cases. 

II     Poles   (if  any)   at   s   =  0,   other   singularities   elsewhere
As   already   indicated,   the  presence  of  branch  points  has   a  depressing 
effect   on   d2 ,   which  can  be   countered  by   increasing    λ   (and  so   dr )   or 
n.        In  these   cases    d   may  be  less  than  d1r . 
(d) F(s)   =   1/√(s2   +   1)    ,      f(t)   =  J 0( t ) .  
(10,6)   :   d  =  7,  t ≤  1;     5,   t   =  5 
(20,10)    :   d  =   13,  t  ≤  5 ;      7,  t   =   10 
(40,18)    :    d  =   20,  t   ≤  10;       13,  t   =  20 
(50,10)    :   d  =   25,   t  ≤  6 ;       16,  t   =   10 
(60,   max(20,t)) :  d  =   19  or  20,  t ≤ 20;  13,  t   =  40;  8,   t   =   50.   (Taking 

  =  max   (20,t)   ensures   that   λ ≥  1,   i.e.   κ     ≥   1.57   and   u*   ≥   0.65). τ
Of.   Piessens   and  Branders   (1971),   ex.   4,   where   251   points  yield 
d  = 12   up  to   t   =   10,   and   11   at  t  =  20  decreasing  to  3   at  t  =  100. 
An   alternative   method   applicable   only  to   special   classes   of 
functions  yields   d  =   14   up  to  t   =  20  but   poor  results  thereafter. 

As   already  discussed,   we   can  obtain  even  better  results  by  using 
σ  < 0.      For   example,   with σ  =  -1 ,   n  =   160   and  τ    =  max(50,   1 . 5t)   we 
obtain   d=   12,14,14,18,   14,  12,  8    for   t   =   10, 20,  40,  50,  60,  80,  100. 
(Here  we   are  not   using  the   special   strategy  described  earlier.) 
Good  results   can  likewise  be  obtained  for   F(s)   =   1/√(s2   -   1), 
f(t)   =   I0(t),   though  the   singularity  positions   are   quite   different. 
Taking  n  =   60  and   τ  =  max  (7,   2t)   for  example   gives     d ≥ 20,   t ≤  5; 
19,   t   =   10;      9,   t   =  20. 
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  .s/e)s(F)e( )1s(s +√−=

This   transform  arises   in   pulse-propagation   problems    (see   Longman, 
1973)   ,     and   its   inverse   f(t)    is   not   known   in   explicit   form. 

Levin   (1975)   gives   10-   to   13-   decimal   place  values   of   f(t)   for 
t   =   0.5(.5)2.5. The   pairs    (n,  τ )   =   (40, 12)   and   (40,18),   with 
d1r   =   23   and   21    respectively,    give   values   of   f(t)   which   are 
identical   to   at   least   20   decimal   places   for  t   =   0.1   to   100,   and 
may  be   presumed   correct   to   20   d.p. They   confirm  Levin's   figures 
to   12   d.p.,   but   show  errors   of  3   x   10-13   in  his   figures   for 
t   =   2   and  t   =   2.5. 
 
Similar   results   are   obtained  with   F(s)   =  1/s ℓn(l  +  s),   f(t)   =   E,  (t); 
F(s)   =   tan-1(1/s)    (with  logarithmic   branch—points   at   s  =   ±   i ), 
f(t)    =    (sin t)/t;        and   so   on. 

III Rational   functions
Since   the   method   is   based  on   an   S.D.   path   for   the   inversion   integral 
(2)   when   F(s)   =   1/s   it   is   not   surprising  that   it   should   give   good 
results   with   rational   functions.   Now  however   with   poles   present 
other   than   at   s   =   0,   E0    ≠ 0 and 

d  =   d01r   =   min(d0,   dlr), 

assuming  as   before  that   E2   is   negligible.      Here   d0   =  A0/2.3   is 
given   by   (31). If  pj    <      0,   large    t     actually   helps   to   increase 
d0   and   d,   but   if  pj   >    0   the   opposite   occurs. d0   can   be   made   as 
large   as   desired  by   increasing  n,   but   increase   of   λ    (and  use   of   σ ) 
to   increase  will   permit   of   smaller   n,   though   dj

*u r   may   also   decrease. 

Thus   compromise   is   needed  to   achieve   a   specified   d,   but   there   is 
usually   no   difficulty   if    d    is   not   too   close  to   the   computer 
precision   constant    c. 
The   only   properties   of   F(s)    relevant   to   the   choice   of  n,   λ and σ are 
the   distances   and   polar   angles   of   its   most   distant   poles,   though 
only   a   rough   indication   is   needed,   and   even  without   this   a   succession 
of  choices   with   increasing    n     (or,   up  to   a  point,   τ )   will   pinpoint 
f(t)   with   increasing   accuracy.    We   give  two   examples. 

(f)      F(s)   =   (s4+4s3+4s2+4s+8)/(s + 1)5    ,   f(t)   =   e-t(l-t2+2t3/3+5t4/24). 
The   pole   sj   =   -1   being   negative   real,   arbitrary   λ   may   be   used,   but 
we  note   that   u*   increases   with   λ  . If   say  n  =   20   and  τ    =   9,   dlr   =   11 

by  Table   3b. Now   = p/λ,   p = -1 ,      =    |p|/λ   =   rj
*s |j

*s| *
,   say,   and 
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A0   =  nu*  -  pt   =  n(u*  +  pr*), 

which   for  varying  t,   i.e.   varying  r*
,   is  minimum  when 

du*/dr*   =  -ρ    =  -0.45.      Inspection  of  Table   1   shows   that   for 
θ  =   180°,   this   occurs   roughly     when   r*   =   1.7,    i.e.    λ   =   0.6, 
t  =   15,   u*  =   1. 06,   A0   =  36,   d0   =   16  >  dlr. It   follows   that 
d  =  dlr  for  all   t.  In   fact  we   find  that    d    ranges  between 
12   and   14   for  t   ≤   100,   and  E(t)   is   indeed  largest   for   t about   15. 
(Note  that   the  multiple  pole   is  not   a  problem,   as   in  other  methods.) 
Similarly  n  =   30,   τ    =   13.5   gives   d  =   19  or   20   for  t  ≤  100,   while 
n  =   40, τ   = 12  gives  d between   22  and  25,  mostly  24.  In  Piessens   and 
Branders   (1971),   ex.1,     d  is   5-7     up  to  t   =   16.  
(g)   F(S)  = 999/(S+1)(S+1000)  =  1/(S+1)  -  1/(s+1000),   f(t)  = e-t –e-1000t. 
Such  cases,   having  a  large   ratio  of  time-constants,   are   often 
described  as  presenting  difficulties   for  numerical  inversion,  but 
they  are  no  problem  with  our  method.      For   example,   in  Nakhla   et   al. 
(1973),   22  points  yield   d   between   5   and  7   for  t  ≤   50,   whereas 
here  the   (n,  τ )  pair   (20,6)   gives    d   between   13  and   17   for  t ≤ 100, 
(30,13.5)   gives    d   between   19  and  22,   and   so   on   (up  to   dr .) 

IV       General   F(s). 

No   new  principles   are   involved.      We   give  two   examples.  

.)u(/due)utcos()t(f,)1s()1s(s)s(F)h( ut
0

2 π√−=+√+= −∫  

Piessens   and  Branders   (1971)   obtain  d  =   5   or   6  up  to  t   =   14, 
d  =   4   at   t   =   20. With  the   pair   (40,24)   we   obtain   d  =   19   or  20 
up  to  t   =   10,   17  up  to   t   =   20. 
(i)        F(s)   =   sℓns / (s2 +  l),   f (t)   =  -   s in t  Si( t)   -   c o s  t  C i ( t ) .  
Levin   ( 1975)    obtained   d=  5,   t  =  0. 1 ;       12  -14 ,    t = 1 - 4 .  
Results   in  Piessens   and  Branders   (1971)   and  others   quoted  there 
are   poor.        This   is   stated   elsewhere  by  Piessens   to   be   due  to 
the  logarithmic   singularity.     However  this   does   not   affect   the 
present   method.      For   example,   n  =  40,   τ   =  max   (10.5,   1.8t)   gives 
d   between    21+   and   11    for  t ≤ 20. 

5. General   remarks
It  will  be  clear  from  the   examples  that  the  method   is   almost 
universal   in   its   scope,   except   that   there  may  be   difficulties   for 
large   t,     depending  on  the  positions   of  singularities.      Where  the 
inversion  problem  arises   from  the   solution  of  linear   constant - 
coefficient   differential  equations  the  difficulty   for  large   t    can 
be  overcome  by  using  two  or  three   steps   to   reach   t    instead  of 
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only  one,   and  making  terminal   values   (including  derivatives   if 
necessary)   of  one   step   serve   as   initial   values   for  the   next. 
This   would  be   particularly   simple   for   state-matrix,    i.e.    first- 
order   problems    since   no   derivatives   would   need   to   be   found. 
Alternatively,   for   all   types   of  problem,   the   difficulty   can   often 
be   overcome   as   we   have   seen  by   careful   use  of  the   shift   parameter 
σ ,   and   of  the   new  expansion   parameter   ν . It   may  be   remarked 
that    if  the   difficulty   is   due   to   the   existence   of   a   remote   pole 
sj   whose   location   is   accurately   known,   then  there   is   no   need  to 
choose   λ   so   large   as   to   bring  the   pole   inside   L    :      it   can   be 
left   outside   L   and   its   effect   taken   into   account   by   adding  the 

residue   term 
)s(Frese j

jts  (48) 
 
to f~ (t). 
Problems   involving  delay  would   seem  at   first   sight  to  be   failing 
cases.      For   example,    if 

F ( s )    =   e-as   G( s ) ,  
(49) 

where   a   >   0   and   G   satisfies   condition   ( 4 ) ,    then   F  will   in   general 
not   satisfy  the   condition,   and  the  method  would  be   inapplicable   to 
F. However,   this   is   a  trivial   failure,    for   we   know  that   the 
inverse   g(t)   of   G ( s )    can  be   found,   and  

f(t)   =   0,      t   <   a, 

                                                 =   g(t - a) ,     t  >  a.  

Indeed,   the   integrand   in    (2)    may   be   written   es(t-a) G(s) , so that 

for  t   >   a  the  method  may   in   fact   be   applied  directly   to   F. 

We   note   in   passing  that   in   this   method,   unlike   others,   there   is   no 
"Gibbs   phenomenon"   for    t    close   to    a.        However,   it   can  be   shown 
that   for   G(s)   =   1/s,   i.e.   f ( t )    a   delayed  unit   step,   f~ (a)   =   1  -  1/2n, 
while   for   t  >  a      f~ ( t )     is   a   function   of    n    and     τ    only   (if  σ   =   0), 
not   of    t     or    λ     separately.       For   fixed    n    and   λ,    f~  (t) → f~ (a)   as 
t  → a+. For      fixed   τ , f~  ( t)  → 1      as    n    increases. 

In   general,   if  F(s)   has   an   infinite   number  of  complex   singularities 
the  method  will   fail,   for  no   value   of   A   can  bring  them  all   inside   L. 
If  however   as   a   special   case 

F(s)   =   G ( s ) / ( 1   -  e -as) , (50) 
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where the inverse g(t) of G(s) is 
then the method will give g(t) in 
repetition  of  g(t). 

6.        Applications

Some indication of the variety of 
inversion method has already been 
Here we will mention a few of the 
leaving a full description of the 
to   later  papers. 

(i) State matrix problems. The 
system 

a  pulse  between  t  =  0  and  t   =  a, 
(0,a),   and  f(t)   is   a  periodic 

possible  applications   of  the 
given   in  the   Introduction. 
results   so  far  obtained, 
various   processes   involved 

solution-vector  u(t)   of  the 

 
is   normally obtained  either  by  using  some  Runge-Kutta  process,   or  
by   inverting  the  transform 

)51()t(vAu
dt
du

+=

U(s)   =   (sI- A)-1   W(s )  ,     W  =  V(s)  + u(o)                 (52) 

by  partial-fraction   expansion  using  the   eigenvalues   of  A, 
assuming  W(s)   is  rational.        In  the   first   case  the   accuracy 
attainable   is   very  limited,   and  in  the   second  case   great   care 
has  to  be  taken  to  avoid  serious  loss  of  accuracy  through  errors 
in   eigenvalues   and  residues.     To   find  u(t)   by  numerical  inversion 
of  U(s),   one  must  be  able  to  evaluate   (sI-A)-1   for  arbitrary 
complex  s,   and  the   Fadeev  algorithm  enables  this  to  be   done   very 
efficiently  and  accurately.        As  an  example  of  results   obtainable, 
in  a   control   problem  concerning  a  boiler   system  of  order  8,   the 
vector  output   was   obtained  correct   to   11   or  more  d.p.   for   38   values 
of  t   ≤   20  using  n  =   20,   τ    =8   and  single  precision,   with   execution 
time   of  about   3 ms.  per   component   per  value   of  t.     With  double 
precision  and  n  =  40,   τ    =   14,   22  or  more  d.p.   were   obtained. 

Clearly  the   Fadeev  algorithm  has   contributed  very  little   error  to 
these  answers,   and   it   is  unlikely  that   the  accuracy  would  be 
appreciably  reduced  in  the  case  of  much  larger  systems,  but  this 
has  yet  to  be  tested. 

(ii) Diffusion  equation.   For  the  solution  of 

                                        bxa,
t
u

x
u2
2 ≤≤

∂
∂

=
∂

∂
                                      (53)
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with  initial  condition 

u(x,0)   =  φ (x),     a<x<b (54) 

and  various   end-conditions,   two  transform  variables   and 
successive  inversions  are  required.        A  new  feature  here   is 
that  the  result   of  the   first   inversion,   which   is   involved  in 
the   second  inversion,   is  a  non-real  function  of  the   second 
transform  variable,   and  our   formulae   (12)   and   (16)   have  to  be 
modified  accordingly. 

As   an   example  of  results  obtainable,   if  a  =   0,   b  =   1,   u(0,t)=u(l,t)  = 0, 

and 
ø(x)  =  1  -  |2x- 1| , 

then  with   (n,   τ ,   σ )   =   (30,   25,   0)   in  the   first   inversion,   and 
(10,   2.5, -  λ /2)   in  the  second,   and  using  single  precision, 
d   ≥  7   for   all   x   for  t   ≥   0.1.      Here,   unlike  the  normal   situation, 
and   in  accordance  with  the  theoretical   analysis,   results   are  less 
good  for  small  t:      for  t  =  0.01,   d  reduces   from  6  at  x  =   0.1   to 
4  at   x  =   0.9.        The   execution  time  was   about   20ms.  per  value  of 
u.        Similar  results  are  obtained  when  ø(x)   =   1,   with  a  discontinuity 
in  ø  at   x  =   0  and   1   instead  of  the  previous   discontinuity  in 
dø/dx    at   x  =  0.5. There  is  no  reason  to  think  that   either 
of  these   discontinuities  worsens  the  results.(Later  work  with  ø(x)   =1, 
still  using  single precision,  has given  d  12  for  t  ≥  0.3,   but  this  work   is ≥
not   yet   completed. ) 
It  may prove  possible  to  tackle  Laplace's   equation  by   similar  means,   but 
this   remains  to   be   investigated. 
(iii)        Miscellaneous   quadratures. To   illustrate  the   use   of 

our  method  for  numerical  quadrature,   we  consider  the  integrals 

which  were  the   subject   of  Burnett   and  Soroka   (1972),   namely 

.)R/1R(d,Rc,dxtxsin
cos.)x/R1()R,t(S

C 2d
c

+√=√=−√= ∫  

In  the  paper  a  complicated  approximation  procedure  was  described 
by  which  C  and  S  were  evaluated  correct  to   7  d.p.   for  a  range  of 
values  of  R  between   1   and  32  and  between   1/2  and   1/32,   and  for  t 
between  0.1   and  100.        By  transforming  C  and  S  with  respect  to  t, 
and  inverting  the  transforms,   using  the   expansion  parameter    and ν
the  special   strategy  embodied  in  Table 4,   one  can  easily  obtain 
20   d.p.   over  the  whole  range  of  R  and  of  t,   using  double  precision. 
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(iv)        Evaluation  of  mathematical   functions.        We  have   already 
seen  that   we   can   evaluate  J0(t)   for  t    ≤  100   correct   to   21   or 
more  d.p.   by  using  the   CDC   7600,   in   double  precision,   to   invert 
its   transform   1/√(s2   +   1).      The  only  preparatory  work  needed 
is  the  choice  of  the  parameters  n,   λ, σ and  ν , or  of  n  and      if θ
Table  4   is   used.  It   would  be  a   simple  matter  to  obtain  similar 
results  with  other   standard  mathematical   functions. 

Now  the  accuracy  obtainable  is  limited  by  dr  and  therefore  by 
the  precision   constant    c.       If  a  computer  were  available   giving 
higher  precision,   not   only   in  its   arithmetic  working  but   also 
in  its   exponential  and  sine-cosine   subroutines,   then  the  attain- 
able  accuracy  would  be   correspondingly   increased,   for   it   is 
always   possible  to   obtain  d  =   dr  by  using   sufficiently  large     n. 
For   example,   the   CDC   in  triple  precision  would  have   c  =   41 ,   and 
without   any  additional  work  we  would  be  able  to  obtain  J0(t) 
correct   to   35   d.p. 

7. Conclusion. 
An  almost   universal  method  of  numerical   inversion  has  been 
described  which  is   applicable   over  very  wide   ranges   of    t. It 
gives   errors  which   can  be  made  smaller  than  those  obtained   in 
any  other   hitherto   published  method,   and  uses   only  modest   amounts 
of  computer  time.   The  method   is   simple,   but   requires  the   evaluation 
of  the  transform  F (s)   at   sets   of  complex  points. 

So   great   is  the  accuracy  attainable  that   it   is   suggested  that 
transform   inversion  be  considered  as   a  method  of  solving  any 
mathematical  problem  the   solution  of  which   can  be   regarded  as 
a  value  or   set   of  values   of  a   function  f(t)   whose  transform  F(s) 
can  be  found  as  a  function  of   s. 
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Appendix  1   :   S.P.   estimation of E1   and E2.

The  integral  for E1  in  (23) is  of the   form  ∫ ,dze )z(w  with 
 
                      w(z)   =  S ( Z )    +  ℓnS'  +  ℓnF(ø)  -  ℓn(eτ nz-  1),       (A1)            
where     ø =  ø(z)   =   λs  +   σ .        Then 
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where  P  =  P(ø)   =  F'(ø)/F. 

With  S(z)   given  by   (17),  we  find,   for  efficient  computation  of  S'   etc., 

S'   =  z
S   (1   +  z  - S), 
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The   saddle-point   Z1   is   a root   of w ' ( z ) ,    and may be  found by 
a   (complex)   Newton process.       A suitable  starting value zl0, 
usually  leading to   rapid  convergence  of the   iteration,   is   obtained 
by  considering the   special   case  when  F(s)   =   1/s,   and  is   given by 

Z10   = 2πi + (1 - i)√(πρ ).                                     (A5) 

Taking  into  account  the  conjugate  saddle-point   1z  (assuming F(s) 
is real )   we   find by   (8)   the approximate  S.P.   formula 

.
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It  will  be  noticed  that  the  value  of  w ' ' (Z 1 )    required  for  Els 
will  already  have  been   found  for  the  Newton  algorithm. 
The  evaluation  of   (24)   for  E2   is  almost  identical:     the  only 
change  needed  in  the  computer  program  is  the  replacement   of  n  by 
-n,   and  the  corresponding  replacement  of  √(πρ )   in   (A5)  by  √( )/i, πρ

since  ρ   =  /n.     Thus  a  starting  value  for  the  saddle-point   zτ 2   is 

z20 = 2πi - (1+i)√ (πρ )   ,  (A7) 
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Numerous   checks   have   shown  that   (A6)   gives   an   approximation  to 
E1   which,  is  accurate  to  within  one  or  two  percent ;      similarly   for 
(A8)   and  E2 ,   except   where   a  branch-point   of  F(s)   abnormally 
increases   E2. 

Appendix  2   :      Generalized  contours. 

If  the   error   analysis   leading  to   (27)   is   examined,   it  will  be 
seen  that   it   does   not   rest   on  the  particular  nature   of the 
function   S(z):      any   function  which  maps   the   z-interval 
M   (-2πi,   2πi)   onto   an   s-curve   similar   in  appearance  to   L  would   probably 
do   equally  well,   and would   give   errors   E0 ,   E1,   E2   tending 
exponentially to   zero   as    n    increases. 

As   a  particular   case,   consider  the   family  of mappings 

                                .az)2
zcot1(2

zs ++=                                                           (A9)

Taking     z   =   2iθ,    -Π   <   θ   < Π,      on M   gives  the   s-curve 
 (A 10)

  :    s   =      = θ cot θ   +νs ν iθ ,  ν    =  2a + 1 . νL

In  the   special   case   ν    =   1    (a  =   0)   we   obtain  the   curve   L.      For 
ν    >   1           consists   of  L   expanded   'vertically'   by  a   factor   . νL ν
It   is   immediately  obvious   that   by  using  an  appreciable   value   of 
ν ,   one   can   reduce  the   value   of   λ    and  hence  τ    required  to   bring  a 
singularity   of  F(s)   inside  L,   and  thus   enable   dr   and   so    d    to   be 
increased,   though  naturally  at   the   cost   of  an   increase   in    n  . 

The   use   of  this   new  parameter  v   entails   slight   changes   to   previous 
formulae.  We   replace   sc   by   sv   in   (12)   and   ( 15) , 1   by  ν   in   (12).   The 
angles   θν  and  the  terms   G,H  are   multiplied  by  ν    in   (16). 
The   strategy   described   in   Section   h   involving  the   use   of   (44), 
(46)   and   (47)   can  still  be  used,   the   only  change  being  that   q0   is 
replaced  by  q0/ν .        This   strategy  was  used  in  obtaining  J0(100) 
correct   to   21   d.p. 

Many   features   of  the   use   of  the   parameter   v   have   still  to   be 
investigated,   as   has   the  possibility  of  the   use  of  quite   different 
mapping  functions  and  contours. 
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ρ  .025  .05  .075      .10       .15  .20       .25        .30         .35         .40        .45         .50 
b1 .530  .726  .862      .966   1.118 1.221    1.290    1.332   1.352      1.353    1.338     1.306 

b2 .535  .743  .896    1.021    1.223 1.385   1.523    1.644    1.751       1.848    1.937     2.019 

ρ  .55  .60  .65        .70        .80  . 90 

b1 1.260 1 .199 1 .124    1.033      .803  .491 

b2 2.094 2 . 165 2 .232    2.295   2.410 2 . 5 1 5  
 
Table   2. 

 

  τ  4 6 8 10 12 14 16 18 20 22 24 26 28 30 33 

  n 
10 

 
5 

 
5 

 
3 

            

15 8 8 8 7 5           

20 10 11 11 11 10 9 7 4        

25 12 13 12 12 1 1 10 9 8 7 6      

30 14          5 4 3   

35              3  

40               2 

Table   3a.        Values   of   δ 1r    when   c   =   14 

      τ

n 
10 

15 

20 

25 

30 
35 

40 

45 
50 

55 

60 

65 

100 

4     6     8     10   12   14   16   18   20   22  24  26  28   30   33   36  39   42  45   48   51    54   57 

5     5     3 

8    8     8    7     5 
10     11    11   10      9     7     4 

12     13    14   14     14   13  12    10     8     6 

14     15    17   17     17   17   16   15   14    12   10     8      4  

15   17    19   20     20   20   20    19   18    17    16    14    12      9      3 

16   19    21   22    23   23   22   21    20   19    18    17   16     16    12     8 
 

18   20   22   24   24  15   13   12      6 

19   22   24   25  10     9     5 

20   23   25 8     6 

21   25 5 4 
22   26 

27 

Table   3b.       Values   of  δ lr  when  c   =  27. 
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θ o.4        0.5       0.6       0.7       0.8       0.9       1.0       1.1        1.2       1.3       1.4        1.5 

K(θ) 1.055 1.088 1.129 1.181 1.244 1.320 1.412 1.523 1.658 1.820 2.018 2.261 

0.272 0.345 0.420 0.499 0.583 0.673 0.770 0.876 0.993 1.123 1.269 1.437 

0.104    0.161    0.228     0.307    0.394     0.489    0.592     0.701     0.816    0.936     1.062   1.191 

γ(θ) 

u(θ) 

Table 4. 
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	TR/61                                                           April  1976 
	W9261050 
	The   accurate  numerical   inversion  of  Laplace  transforms 
	Abstract 
	Now  referring  to   (7)  we  recall  that   for  real   integrals  of  the  form 
	We  may then   replace   (2)   by 
	Newton's  method  to  the  equation 



	As   an   illustration   of  this   strategy   consider  


