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The  Numerical  Solution  of  Stefan  Problems  With  Front-Tracking 

And  Smoothing  Methods 

1.     Introduction.     The  term  Stefan   (or  Stefan  type)   problem 

refers  to  a  parabolic  initial/boundary  value  problem  involving 

standard  data  on  the  given  boundaries  as  well  as  Cauchy  data 

on  an  a-priori unknown and  moving  boundary  or  interface.     Such 

problems  arise  in  a  diversity  of  applications  and  as  a  conse- 

quence  they  have  received  considerable  attention  in  the  scientific 

and  technical  literature.     For  a  wide  ranging  discussion  of   the 

origin,   numerical  solution  and  mathematical  properties  of  such 

problems  we  refer  to  the  monograph  of  Rubinstein   [29]   and  the 

proceedings  of  a  recent  conference  on  Stefan  type  problem   [26]. 

Moreover,   interest  in  the  subject,   particularly  from  the  finite 

element  and  variational  inequality  point  of  view  remains  un- 

diminished   ([4] ,[6],[11]) . 

For  the  numerical  solution  of  Stefan  problems  numerous 

algorithms  have  been  proposed.     Most  of  them  are  special  purpose 

techniques.     Some  apply  only  to  one  dimensional  problems   (such  as 

the  method  of  lines   [3])   or  to  special  equations  and  boundary  con- 

ditions   (Greens  function  methods),  while  other  require  a-priori 

a  certain  monotonicity  or  regularity  of  the  solution   (as  in  the 

isotherm  migration  method   [8]   or  the  heat  balance  method   [16]). 

Consequently,   it  is  difficult  to  compare  and  judge  the  value  of 

different  numerical  methods,   and  general  surveys  for  such  methods 

tend  to  be  open  ended   [10]. 
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It  is  not  the  purpose  of  this  paper  to  compare  numerical 

methods  for  Stefan  problems.     Instead,  we  should  like  to 

concentrate  on  two  specific  and  essentially  unrelated  numerical 

methods  which  have  been  described  earlier   [17],[18]   and  which 

have  proved  useful  for  a  variety  of  Stefan  type  problems.     The 

first  of  these  methods  so  far  has  been  used  primarily  for 

one  dimensional  free  boundary  and  interface  problems  where  the 

free  surface  varies  smoothly  with  time.    As  a  compensation  for 

this  restriction  the  method  is  found  to  be  applicable  to 

general  free  boundary/interface  problems  for  one  dimensional 

linear  parabolic  equations  and  not  just  the  Stefan  problem. 

The  second  method  is  specific  to  Stefan  problems  but  unaffected 

by  the  number  of  thermal  phases  or  the  dimension  of  the  space. 

The  main  intent  of  this  paper  is  to  give  some  comments  on  the 

applicability,   performance,   and  limitations  of  these  methods 

and,  whenever  possible,   to  relate  them  to  other  methods  proposed 

for  Stefan   (type)   problems. 

2.     One  dimensional  Stefan  problems.     As  a  basis  for  our  dis- 

cussion  we  shall  choose  the  equations  for  a  two  phase  Stefan 

problem  on  an  interval  [b,,b2]  with  the  free  interface  s(t). 

The  equations  of  this  model  problem  are  
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subject  to  prescribed  initial/boundary  data.     In  order  to  demon- 

strate  how  Dirichlet  and  Neumann  data  are  handled  we  shall  impose 

the  following  boundary  conditions 

 (2.1c)       u1 (b1,t)   =  β1(t)   x
u2
∂
∂    (b1,t)   + α1(t),   t>0 

x
u2
∂
∂         (2.ld) 

(b2,t)   =  β2(t)u2(b2,t)   + α2(t),   t>0 

On  the  free  interface  s(t)   we  shall  prescribe  the  following 

conditions 

         (2.le) u1(s(t),t)   = μ1(s(t),t);   u2(s(t),t)   = μ2(s(t),t) 
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         (2.1f)            

It  may  be  noted  that  the  only  coupling  between  u1   and  u2  is 

provided  by  equation   (2.1f).     Should  the  function  u  be  known 

a  priori  to  the  right  or  left  of  the  interface   s(t)    (such  as 

u2 ≡  0  for  x  >  s(t))   the  above  problem  reduces  to  the  one  phase 

Stefan  problem. 

It  will  be  assumed  that  all  data  functions  are  at  least 

continuous  on  their  domain  of  definition,   and  that  they  rule 

out  the  appearance  of  multiple  free  interfaces.      (Criteria  for 

the  existence  of  a  unique  free  interface  for  the  classical 

Stefan  problem  may  be  found,   for  example,   in   [17].)     However, 
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the  numerical  method  does  not  require  consistency  of  the  data 

at   (x,t)  =   (bi ,0),   i  =  1,2,  nor  is  the  specific  form  of  the 

free  interface  equations   (2.1e,f)   important.    We  simply  require 

three  equations  linking  the  unknown  quantities 

u.{s(t),t), x
ui
∂
∂  (s(t),t),   i  =  1,2  and  s(t),     Finally  it  may  be 

observed  that  the  following  development  does  not  depend  on  the 

self-adjointness  of  the  elliptic  part  of   (2.1a,b).    As  indicated 

in [21]  convection  terms  can  be  included  without  further  difficulty. 

The  numerical  method  suggested  here  for   (2.1a-f)   requires 

a  time  discretization  with  the  method  of  lines  which  reduces 

the  above  parabolic  problem  to  a  sequence  of  free  interface 

problems  for  ordinary  differential  equations.     If  one  chooses 

the  implicit  Euler  method  the  sequence  of  problems  at  the  nth 

time  level  may  be  written  as 

        (2.2)     (kiui
´)´  -  ci       i

ii Ft
)x(vu
=

Δ
−  i = 1,2

ul(bl) = β1u1
´(bl)  +  αl

u2´(b2) = β2u2(b2)  +  α2

u1(s)  = μ 1’ μ 2(s)  =  μ 2   , (k1u1´(s)  +  k2u2´(s) 

                            3
1n )

t
ss
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Δ
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−−=Δ≡  and  where  all  coefficients  and 
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source  terms  are  evaluated  at   t  =  tn     .     The  functions  vi. 

denote  ui   at  the  previous   time  level  or  their   linear  extensions 

beyond  their  domain  of  definition.     They  become  necessary   in 

order  to  cope  with  the  curved  free  interface.     For  example, 

let  us  set  s(tn )   =  sn´ u(x,tn )   =  u(x)n     and  consider  the 

following  geometry 

s(t) 

tn 

 
tn-1

 
  In  order  to  compute  u1   over   [b1 , sn ]   the  function  v1 (x)   is 

needed  over   [b1 , sn ]    .     If  we  set 

⎩
⎨
⎧

≥−+
ε=

−−−−−−
−−

1n1n1n1n11n1n1
1n11n1

1 sx,)sx())s('u())s(u(
)s,b[x,))x(u()x(v

then  it  follows  from  a  Taylor  series  expansion   (around 

(sn_1  , tn  )   if  x  ε    [sn_1´sn])   that  the  expression   (2.2)   defines 

a  consistent  approximation  of  order  At  to  the  Stefan  problem. 

The  question  now  arises  whether  the  order  can  be  improved 

by  changing  over  to  a  Crank - Nicolson  type  formula.     One  possible 

way  of  accomplishing  this  is  a  smooth  continuation  of   (ui) n-1

as   a  cubic   to  handle  the  curved  boundary´   and  to  approximate 

s(t)   with  a  quadratic  Lagrange  polynomial.     For  example,   given 

that   sn     >   sn-1     ,   we  can  
define 
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        x  >   sn-1  
 

and  write  the  Crank-Nicolson  approximation 

 (2.3)        2
1 { (k1 u1

´)´n +   (kl Vl´)´n-1 }  -  c1         t
vu 11

Δ
−  

                            })(F   ){(F2
1

1-n1nl +=
 
On   [b1 ´ sn-1]   this  is  the  usual  Crank-Nicolson  expression.     If 

x  ε   (sn-1 ´ sn)   then  a  substitution  of  the  classical  solution 

{u1 (x , t) , s ( t ) }    into  the  expression   (2.3)    and  a  Taylor  expansion 

around  (sn-1 , tn-1  + 
2
1  t)   shows  that   (2 .3)    is  a  second  order Δ

approximation  of   (2.1a)   on   (sn-1´sn)   .    An  improved  order  of 

the  free  interface  approximation  may  be  obtained  if  s(t)   is 

replaced  by  the  quadratic  Lagrange  polynomial  through 

sn-1´sn-1  , and  s.     If  tn-1 - tn-2 =  tn  -  tn-1   =  Δ t  then  the 

interface  condition  correct  to  order  Δ t2     is  as  follows 

(2.4) 
 u1(s)   = µ1 ,µ2 (S)   = µ2 ,   (k1u1 ´(s) +  k2u2 

´ (s) 
 

                                                 ..t2
s3s4s

3
n1n2n μ=Δ

+−
λ+ −−

The  second  order  method  defined  by   (2.3,4)   has  not  been 

tested  numerically; however, it  is  doubtful  that  such  compli- 

cated  equations  can  be  recommended,  particularly  since  u'"  is 
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not  routinely  available  and  since  the  method  is  not  self-starting, 

and  also  in  view  of  the  common  observation  that  the  Crank-Nicolson 

method  may  show  oscillations   in  problems  with  inconsistent 

initial/boundary  data.     Indeed  numerical  evidence  with  the 

implicit  Euler  method points the  other  way.     Little  difference 

in  the  numerical  performance  of  the  algorithm  was  observed   if 

  vi (x)   was  continued  as  a  constant  past  the  free  interface 

 although  in  this  case  the   approximation   (2 .2 )    is  not  formally 

consistent  on   [sn-1 , sn ] .  If  a  higher  order  method  is  necessary 

the  finite  element  approach  of   [ 4 ]    in  the   (x, t)-plane  may 

merit  consideration.     In  our  own  work  the  first  order method 

(2.2)   has  always  shown  an  acceptable  numerical  performance. 

Given  a  method  of  lines  discretization,   here  always  sug - 

gested  to  be   ( 2 . 2 ) ,    the  Stefan  problem  is  reduced  to  finding the 

free  interfaces  for  a  sequence  of  ordinary  differential  equations. 

Since  these  equations  are  linear  it  has  been  proposed  re- 

peatedly  to  determine  their  fundamental  solutions  and  a  par- 

ticular   integral  and  to  combine  them  in  such  a  way  as  to 

satisfy  the  boundary  conditions.     But  as  indicated  in  [17], 

one  may  experience  numerical  instabilities  with  this  approach. 

Instead,   the  method  of   invariant   imbedding   (also  called the 

sweep  or  factorization  method)   is  suggested  which  is  known here  

to  be  stable  under  persistent  perturbations   [2]    and  which leads 

to  a  stable  process  for  determining  the  free  interface.     The 

last  assertion  has  always  been  observed  in  practice  and  has 

been   (partially) proven for  a  one  phase  Stefan  problem   [30]. 
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The  method  has  been  described  in  great  detail  in   [21]   and 

we  shall  only  list  the  steps  of  the  solution  algorithm.    The 

starting  point  is  the  use  of  the  Riccati  transformations   (at 

time  level  tn ) 
 

   (2.5a)   u1(x)= U (x)Φ1+ w(x) 

 
      (2.5b)       Φ2 (x) = R (x)u2 (x) + z(x) 

where  Φi(k)  =  ki (x,tn)ui , ,  and  where  U,w,R,  and z  are  given 

on   [b1,b2]   as  the  solutions  of  the  initial  value  problems 
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n22
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n11
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The  computation  of  U,W,R,   and  z  is  frequently  called  the  forward 

sweep   (although  R  and  z  are  actually  integrated  backward  in  x). 

In  order  to  determine  the  free  interface  the  representations 

(2.5)   are  used.     Elimination  of  ui   and  ui  leads  to  the  conclusion 

that  the  free  interface  s  at  time  tn  must  be  a  root  of  the  equation 
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Once  s  at  time  tn   is  known  the  functions  ui are  obtained  from 

the  socalled  reverse  sweep,   where  the  following  equations  are 

to  be  integrated  
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and  where  u1   follows  from  the  Riccati  transformation 

 
     u1(x) = U(x)Φ1 (x) + w(x). 

In  this  manner  to  initial  data  {u1(x,0),u2(x,0) ,s(0)}   can  be 

advanced  from  time  level  to  time  level. 

The  mathematical  properties  of  this  algorithm  depend 

strongly  on  the  data  of  the  problem.     However,   under  conditions 

common  in  liquid/solid  heat  transfer  processes  it  can  be  shown 

that  the  sweep  equations  have  smooth  solutions  on   [b1 ,b2]   and 

that  the  scalar  equation ψ (x)   =  0  has  a  unique  root  on   [b1 ,b2] 
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Moreover,   under  some  additional  conditions  it  is  known  that 

the  method  of  lines  solution  converges  to  the  unique  solution 

of  the  Stefan  problem.     For  details  we  refer  to   [17]. 

In  order  to  implement  the  method  of  lines-invariant  im- 

bedding  approach  on  a  computer,   solution  methods  for  the  inte- 

gration  of  the  above  initial  value  problems  and  for  determining 

the  root  of  (x)   =0  have  to  be  chosen.     If  the  solutions  of ψ

the  differential  equations  must  be  expected  to  vary  rapidly  in 

x  it  would  appear  advisable  to  use  an  adaptive  high  order 

integrator.     Particularly,  variable  order  variable  steplength 

multistep  methods   (Adams  methods)  may  be  useful  for  the  forward 

sweep  because  of  their  ability  to  express  the  solution  as  a 

function  of  x   (a  polynomial  through  the  computed  nodal  values) 

over  the  range  of  integration.     These   functions   are   necessary 

in  order  to  solve  ψ(x) =  0 ,      and  to  integrate  the  reverse  sweep 

equations  which  require  the  solutions  of  the  forward  sweep  as 

input  data.     If  a  high  order  single  step  method  like  a  Runge- 

Kutta-Fehlberg  method  is  used,   then  interpolation  through  the 

nodal  values  is  necessary  to  find  the  root  of ψ (x)   =  0  and  to 

carry  out  the  reverse  sweep.     For  a  recent  discussion  of  avail- 

able  methods for initial value problems and the numerical problems 

in  using  a  sweep  method  we  refer  to   [13] and   [23] . So  far,   how - 

ever,   there  has  apparently  been  no  attempt  to  couple  the  sweep 

method  with  an  Adams  integrator.    What  numerical  results  there 

do  exist  for  the  method  of  lines-invariant  imbedding  approach 

to  the  Stefan  problem  have  been  obtained  from  integrating  the 
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sweep  equations  with  the  standard  trapezoidal  rule  and  from 

linearly  interpolation ψ{x)   between  the  computed  nodal  values. 

The  overriding  advantage  of  this  method  is  the  fact  that  the 

reverse  sweep  can  be  carried  out  with  only  the  nodal  values 

of  U,w,R,   and  z   so  that  interpolation  is  not  necessary;   in 

addition,   the  difference  equations  for  the  forward  and  back- 

ward  sweeps  are  at  most  quadratic  in  the  unkown  and  can  be 

solved  in  closed  form.     As  a  result  a  very  fast  numerical 

method  is  obtained.     In  general,   the  free  interface  determined 

from  the  piecewise  linear  approximation  of  ψ  will  have  a  root. 

s  which  does  not  coincide  with  the  previously  selected  nodes 

for  the  integrator.     It  is,   however,   not  difficult  to  modify 

the  difference  equations  to  incorporate  s  as  an  initial  point 

for  the  reverse  sweep.     In  most  of  our  numerical  work  an  even 

cruder approach  was  used  where  the  mesh  point  nearest  to  s  was  tak- 

en as  the  initial  point  for  the  backward  sweep.    The  heat  transfer 

problems  tackled  so  far  with  this  method  have  exhibited  slowly 

changing  temperatures  which  do  not  stress  at  all  the  numerical 

method.     Fortunately,   this  regular  temperature  behavior  is 

more  the  rule  than  the  exception  and  accounts  for  the  success 

of   the  heat  balance  method  which  in  fact  presupposes   a  quadratic 

dependence  of  the  temperature  on  the  space  variable.     In  sum- 

mary,   for  many  practical  problems  a  first  order  method  of  lines 

approximation  coupled  with  the  trapezoidal  rule  for  the  result- 

ing  sweep  equations  can  provide  a  simply  coded  and  fast  numeri- 

cal  solution  technique.     Some  numerical  evidence  of  this  assertion 
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may  be  found  in   [19]   where  heat  transfer  in  a  layered  permafrost 

is  analyzed,   and  in   [17]   where  a  periodic  cooling  of  a  sphere 

is  examined. 

The  main  advantage  of  the  above  algorithm  is  not  its 

ability  to  solve  the  classical  Stefan  problem  but  its  flexi- 

bility  in  treating  general  free  surface  conditions.      In  fact, 

it  has  been  shown  that  this  method  applies  to  any  nth  order 

system  of  linear  ordinary  differential  equations  over  an  unkown 

interval  subject  to  n+1  boundary  and/or  interface  conditions   [21]. 

In  particular,   the  method  can  immediately  be  applied  the  method 

of  lines  approximations obtained from  coupled  systems  of  one 

dimensional  diffusion  equations  arising,   for  example,   in  heat 

and  mass  transfer   [25],   in  first  order  chemical  reactions   [9], 

or  in  coupling  the  boundary  conditions  through  functional 

conservation  relations   [22].     Similarly,  purely  convective 

systems  can  be  treated   [21].     However,   equations  arising  from 

diffusion  problems  are  especially  distinguished  because  here 

the  resulting  Riccati  equations  have  uniformly  bounded  solutions; 

thus  one  always  has  available  invertible  Riccati  transformations 

which  reduce  most  common  free  interface/boundary  conditions  to 

a  single  scalar  equation  on  a  bounded  interval.     Indeed,   from 

a  computational  point  of  view  the  free  interface  conditions 

                          u1 (s ( t),t)   =  u2 (s (t),t) x
u)t,)t(s(x

u 21
∂
∂

−∂
∂

= (s ( t ),t )   =  0 

 and  the  radiation  condition      u1 (s (t) ,t)   =  µ1 (s (t),t) 
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lead to the same order of difficulty. The scalar function ψ  

associated with the first boundary condition (using the same 

equations  and  fixed boundary conditions  as  in (2.1)  is 

                            ψ  (x)   ≡  
2

2
1

1
k

zRµ
Uk
wµ +

−
−    =   0 

while  in  the  second  case  we  obtain 

             
.t

)sx(
U

wµ)x(

0R
z)x(µ)x()x(

1n1

44
1

Δ
−

λ+
−

=ξ

=ξ −+−ξ≡ψ

−
where 

Both  functions  are  readily  available   (numerically)   a   [b1,b2] 

after  the  forward  sweep  has  been  carried  out.     This  ability 

to  treat  quite  general  free  boundary/interface  conditions   in 

their  natural   form   (i.e.   without  problem  specific  transforma- 

tions)   is  considered  an  advantage  of  this  approach. 

The  major  disadvantage  of   the  method   is   its   inability  to 

handle  multiple   free   interfaces  which  occur,   for   example,    in 

three-phase  thermal   systems.     At  a  phase  boundary  the  Riccati 

transformations   (2 .5 )    are  discontinuous.     At  a  known  interface 

location  the  specific   form  of  the  interface  condition  is  used 

to  determine  new  initial  values  for  the  sweep  equations   (for 

details  see   [21,   Chapter  3 ] ;    however,   since  now  the  location 
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of  the  interface  is  not  given,  no  representation   (2.5)   is 

available  to  reduce  placing  the  free  interface  to  the  solution 

of  a  scalar  function.     From  a  practical  point  of  view  it  is 

suggested  to  determine  all  but  the  most  critical  free  boundary 

location  through  extrapolation  and  the  one  remaining  point 

with  the  above  method.     However, no  numerical  experiments  based 

on  such  algorithm  have  been  carried  out  so  far. 

Although  free  boundary  problems  are  inherently  nonlinear 

they  were  solvable  with  the  sweep  method  only  because  the  dif- 

ferential  equations  and  the  fixed  boundary  conditions  were 

linear  so  that  the  Riccati  transformations   (2.5)   were  valid. 

If  the  diffusion  equations  themselves  are  nonlinear,   a  choice 

must  be  made  as  to  either  applying  invariant  imbedding  as 

developed  for  nonlinear  problems   (see [21] )  or  to  linearize  the 

problem  and  then  use  the  above  algorithm.     So  far,  little  infor- 

mation  about  the  numerical  solution  of free surface  problems  has 

been  reported  and  we  can  merely  outline  some  options. 

  In  order  to  be  specific  we  shall  consider  the  nonlinear 

problems 

(2.6a)                  )u,t,x(Ft
u)u,t,x(c)x

u)u,t,x(k(x ii
i

i
i

ii =∂
∂

−∂
∂

∂
∂

(2.6b) fi (ui ,bi ,ti)   =  0 

and  the  above  Stefan  type  free  interface  condition 
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u1(s(t),t)   =  µ1,µ2 (s(t),t)   = µ2

                  ..µdt
dsux)u,t,s(kux)u,t,s(k 3222111 =λ+∂

∂−∂
∂  

   The  most  common  method  is  the  linearization  of  the  differential 

equations  and  the   fixed  boundary   conditions  .     For  example, 

ui   appearing  in  the  coefficients  and  source  terms  of   (2.6a) 

may  be  the  values  at  the  previous  time  level  or  their  extra- 

polation  to  the  new  time  level.     This  method  is  known  to 

converge   [3]   as Δt →  0   .     If  the  errors  are  intolerably  large 

for  practical  time  steps  an  iteration  involving  simple  substi- 

tution  of  the  computed  solution  into  the  coefficients  and  source 

terms  and  resolving  the  linear  equations  will  be  successful  if 

the  dependence  of  ki,  ci   and  Fi   on  ui   is  of  the  proper  form 

[20].     More  sophisticated  and  more  involved  are  Newton 

(quasilinearization)   methods  which  are  commonly  applied  to 

nonlinear  boundary  value  problems   for  ordinary  differential 

equations.     At  any  rate,   after  linearization  the  invariant 

imbedding  method  is  applicable  to  the  solution  of  the  free 

surface  problem. 

As  a  simple   illustration  of  linearization  the  one-phase 

Stefan  problem  for  the  inhomogeneous  heat  equation  with  radi- 

ative  input  on  the  fixed  boundary  was  solved.     The  equations 

were 
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uxx - ut  = F(x,t) 
 

        )t,0(x
u
∂
∂ = u4  -  α4   (t) 

    u(s ( t )´ t) =  0  , x
u
∂
∂ (s(t),t)   + λ   s’(t) = µ3(s(t),t)  . 

The  boundary  condition x
u
∂
∂    = u4   -  α4  (t)   was  linearized with 

Newton's  method  as 

x
u
∂
∂ =   4u0

3u  -3u0
4 - α4(tn) 

where  u0  is  the  value  of  u(bi, tn )   from  the  previous  iteration. 

The  initial  value  u0  necessary  to  start  the  iteration  was 

determined  by  extrapolation  from  the  boundary  values  at 

previous  time  levels.     While  in  this  case  the  sweep  equations 

remained  unchanged  for  each  iteration  their  initial  values 

had  to  be  changed  to  U(b1)   =  4u0
3   ,   w(b1)   =  -3u0

4 - α 4 (tn ) 

at  each  iteration.     The  equations  were  solved  with  the 

trapezoidal  rule.     If  the  data  F,   α  and  µ3  were  chosen  such 

that  u(x,t)   =  t  cos2 t-x  was  the  solution  of  the  Stefan  problem, 

only  two  iterations  per  time  step  were  required  to  obtain 

numerical  convergence  to  order  10-6 
.

In  this  example,   as  is  common  in  many  practical  problems, 

the  iteration  at  the  first  time  level  could  use  the  initial 

data.     Sometimes ,   however ,   the  initial  conditions  and  the 
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boundary   conditions    are   inconsistent;   conceivably,   the 

initial  condition  is  now  of  little  value  in  determining  a 

starting  solution  for  the  iteration  at  the  first  time  level. 

In  this  case  the   invariant   imbedding  formulation  for  free 

surface  problems   for  nonlinear  ordinary  differential  equations 

as  described   in   [21]   and   [23]   can  provide  a  first   solution. 

This  approach  involves   integrating  initial  value  problems  for 

hyperbolic  partial  differential  equations  and  is  recommended 

only  as  a  last  resort  for  nonlinear  Stefan  problems. 

3.     Multidimensional  problems.     Without  further  restrictions 

on  initial  and  boundary  conditions,   Stefan  problems   in  two  or 

more  dimensions  may  show  a  disconcerting   lack  of  regularity 

which  may  prevent  an  application  of  the  front  tracking  methods 

which  are  useful   in  one   space  dimension.     For  example,   phase 

boundaries  may  disappear,   reappear  or  have  corners.     Moreover, 

multiple  phases  may  be  present.     For  this  reason  it  is  common 

practice  the  reformulate  the  free  boundary/interface  problem 

over  a  fixed  domain  by  absorbing  the   free  boundary  processes 

into  the  differential  equation.      If  one  defines  the  enthalpy 

of  a  heat   transfer  process  relative  to  a  base   temperature  u0  as 

                                               dx)v(c)u(H u
0u∫=

 

then  conductive  heat  transfer   is  described by the  equation 

 (3.1)             ∇ •k(u ,x ,t) ∇ u  -   ρ∂
∂
t (u ,x ,t)H(u)   = F(u ,s ,t)
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where k  is  the conductivity, ρ  the  density,  and  c  the  heat 

capacity  of  the  medium,   and  where  F  accounts  for  external 

sources  or  sinks. The  phase  transition  is  built  into  H. 

For  example,   in  two  phase  heat  transfer 

lim     H(u)   -  lim    H(u)   =  L 
 u→u*-0              u→u*+0 

where  L  is  the  latent  heat  for  the  phase  change  of  the 

medium.   It  follows immediately  from  the  discontinuity  of  H 

that  equation  (3.1)  is  meaningless  at the  phase  transition 

temperature  u* ;   instead,   it  must  be  interpreted  in  an 

integrated   ("weak")   form  

0dx)0,x())0,x(u(Hdxdt]n)t,x,u(k)t,x(u

n
u)t,x,u(k)t,x(dxdt]t))t,x(u(H)t,x,u(

)t,x,u(k•)t,x(u[dxdt)t,x()t,x,u(F)2.3(

D

D
T
0

D
T
0D

T
0

=φ+∂
φ∂−

∂
∂φ+∂

φ∂ρ+

φ∇∇+φ−

∫

∫∫

∫∫∫∫

∂  

where Φ  belongs  to  the  class  of  smooth  test  functions  which 

vanish at  t  = T and  which  is  chosen  so that  all  portions  of 

the boundary integral vanish  for  which  no  data  are  given  for 

u.     D  in  this  case  is  the fixed  domain  with  smooth  boundary 

in  which  the  heat  transfer  process  takes  place.    Existence 

and  uniqueness  proof  for  multidimensional  Stefan  problems 
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frequently  are  based  on  the  weak  formulation   (3.2) 

Although  equation   (3.1)   must  not  be  interpreted  in  the 

classical  sense  because  of  the  singularity  at  the  phase 

boundary  it  does  provide  a  means  for  the  numerical  solution 

of  the  Stefan  problem.     In  essence  we  are  now  dealing  with  a 

nonlinear  partial  differential  equation  with  a  discontinuous 

coefficient,   namely  H(u)   .     Two  different  approaches  have  been 

suggested.     Either  the  discontinuity  is  retained  and  numerical 

methods  are  formulated  to  cope  with  it,   or  the  discontinuity 

is  removed  through  smoothing  or  transforming  the  dependent 

variable   in  which  case  one   is  faced  with  a  particular  non- 

linear  partial  differential. 

In  the  work  of  Atthey   [1]   the  discontinuity  is  retained 

and  an  explicit  method   is  suggested  to  advance  the  temperature 

from  time  level  to  time  level.     In  the  case  of  one  space  di- 

mension  and  constant  coefficients  the  Euler  method 

       (3.3)          )u(Fu2uukt
)u(H)u(H n

i
n
i

n
1i

n
1ii

n
i

1n
+

−+
=Δ

−
ρ −+

+
 

        is   suggested   where 

H(u)   =  { ,*uucu
*uuLcu

<
>+  

Here    denotes  the  approximate  temperature for t  =  tn
iu n    at  the 

grid  point  xi   of  an  a  priori  chosen  grid  on  a  fixed  interval. 

The  calculation  proceeds  from  the  initial  distribution  for 
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H  and  u  by  computing   the  new  enthalpy  and  the  new  temperature. 

If     Hn+1    (ui)   ε  (cu*,  cu*+L)   then  the  temperature  is  set  equal 

to  the  phase  transition  temperature  u*   .     This  model  allows 

the  existence  of   zones  which  have  variable  enthalpy  at  u*, 

socalled  mushy  regions.      In  the  presence  of  body  heating 

( F  >  0)   such  zones  are  physically  present  and  it  was  the 

expressed  purpose  in   [1]   to  determine  the  mushy  regions. 

Neither the method nor the convergence proof provided 

for it in [1] depend on the dimension of the space so that 

this   explicit   method  represents  a  general  purpose  code  for 

multidimensional  Stefan  problems.     Its  drawback  is  the 

stability  restriction  on  the  ratio  Δt/Δx2     which  carries 

over   from  the  well  known  case  for  the  heat  equation  as 

k2/c
x
t

02 ρ=λ<
Δ
Δ

If  one  uses  the  thermal  parameters  for  water,   for  example, 

then    725   sec/cm≈λ0
2    .    Since  the  ratio  on  Δt/ Δx     is 

decreased  by  2n-1   where  n  is  the  dimension  of  the  space  it 

is  apparent  that  the  explicit  method  virtually  precludes 

obtaining   long  term  solutions   (requiring  At  of  the  order  of 

days)   with  fine  spacial  resolutions   (with  Δx  of  the  order 

of  a  few  centimeters).     Thus,   for  practical  problems  the 

impression  of  Fox    [10]   is  shared  that  only  unconditionally 

stable,   i.e.   implicit,   methods  deserve  further  attention. 

An  implicit  analog  of   (3.3)   results  if  all  temperatures 
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are  taken  at  the   (n+l)th  time  level.     It  can  be  shown  that 

the  resulting  nonlinear   system  can  be  solved  with  a  monotonely 

converging  Gauss-Seidel  method  by  adapting  the  proof  of  ortega 

and  Rheinboldt  on  M-functions  and  nonlinear  SOR  processes 

([27],   p.   465)   to  handle  the  discontinuity  of  H   .     The  nu- 

merical  performance  of  such  an  algorithm  is  not  known  at  this 

time.      (For  a  convergence  proof  see   [14].) 

The  second  approach  for  solving  the  Stefan  problem  re- 

quires  smoothing  the  enthalpy.     In  this  case  H  is  replaced 

by  a  continuous  function,   for  example  by 

                  (3.4)   
⎪⎩

⎪
⎨
⎧

ε+>+ε−−
ε+ε−εε−+ε+−ε

ε−<
≡

*uuL)*uu(c
)*u,*u(u)*u(c)*uu(2

L
*uucu

)u(H  

   where  e   is  an  a  priori  chosen  tolerance.     This  model  replaces 

the  phase  change  at  the  transition  temperature  u*  with  a  phase 

change  over  the  interval   (u*-ε ,   u*+ε ).     If  necessary  the 

density  ρ   and  conductivity  k  are  similarly  smoothed  out.     It 

may  be  noted  that  this  formulation  is  not  equivalent  to  the 

above  since  there  is  no  mushy  zone  over  a  nonzero  interval. 

The  continuous  enthalpy  has  been  quite  common  in  work  on 

Stefan  problems   since   it  allows  the  application  of  classical 

mathematics  to  establish  the  existence,   uniqueness  and  the 

properties  of  approximating  solutions  which  then  are  shown 

to  converge  to  the  weak  solution  of  the  Stefan  problem.      (For 
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further  details  and  references  on  the  analytic  aspects  of 

Stefan  problems  we  refer  to   [14]   and  the  many  references 

cited  therein.) 

While  the  piecewise  differentiable  enthalpy  still  does 

not  allow  a  pointwise  interpretation  of   (3.1)   it  is  well 

suited  for  the  numerical  solution  of  the  Stefan  problem.     As 

in  the  discontinuous   case   we  time  difference  the  enthalpy  to 

obtain  the  following  sequence  of  problems 

(3.5) · k(u,x,t) u -∇ ∇ t
)u(H)t,x,u()u(H)t,x,u( nnn

Δ
ρ−ρ = F (u,x,t), n=0,1.. 

subject  to  specified  boundary  conditions,  where  u  denotes  the 

unknown  temperature  at  time  t  =   (n+l) Δt .   At  each  time  level 

we  therefore  have  to  solve  a  nonlinear  elliptic  problem  of 

divergence  form with  a  nonlinear  source  term.     We  shall  write 

it  as 

        (3.6) ∇ •k(u,x,t) u  -  Φ (u,x,t)   =  0 ∇

where  both  k  and  Φ  are  continuous  functions  of  u  . 

The  efficient  numerical  solution  of  quasilinear  equations 

like   (3.6)   is  still  matter  of  research   (see,   e.g.   [20],[28]. 

Two  different  approaches  have  been  explored,  finite  elements 

and  finite  differences.     If  for  ease  of  exposition  we  assume 

that  u  is  subject  to  Dirichlet  conditions  on  3D  then  both 

methods  may  be  interpreted  as  solution  techniques  for  the 
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operator  T  from  the   Sobolev  space     (D)   into  its  dual  defined 2,1

0w

by 

        (3.7) 
(Tu,v)  =  ∫D  [k(u,x,t) u∇ ∇ v  +  Φ(u,x,t)v]dx  =  0 

                    for  all  v  ε   w0
1,2   (D)   . 

As  is  well  known,   finite  elements  coupled  with  the  Galerkin 
method  require  the  solution  of 

        (3.8) (Tum ,vm )   =  0     ,     vm    arbitrary   , 
 

where  um    and  vm    belong    to   a  finite  dimensional  piecewise 

polynomial  subspace  of   (D)    .     Finite  difference  methods 2,1
0w

provide  the  solution  of 

        (3.9) <Tm um ,vm >m  =  0 
 

where  um ,vm  and  Tm    are  approximations  to  u,   v,   and  T  in  a 

discrete  Sobolev  space  with  inner  product  <,>m   [18]    . 

The  existence  of  solutions  for   (3.7)   and  its  finite 

dimensional  approximations  depend  on  the  structure  of  T. 

The  ellipticity  of   (3.6)   and  some  mild  growth  restrictions 

on  k  coupled  with  the  monotonicity  of  Φ  suffice  to  insure 

the  existence  of  a  solution  while  the  divergence  form  of  the 

equation  provides  uniqueness.     Some  analogous  results  can  be 
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given  for  the  finite  dimensional  approximations.     However, 

existence  and  uniqueness  questions  are  considered  here  to  be 

secondary  to  providing  constructive  useful  algorithms  for 

their  computation. 

Both  the  Galerkin  and  the  finite  difference  method  lead 

to  a  nonlinear  system  of  the  form 

        (3.10) A(u)u  +  B(u)   =  0 

where  A(u)   is  the  discretized  elliptic  operator  ∇ •k(u,x,t)   , ∇

and  where  B  depends  on  Φ  such  that  the  ith  equation  of   (3.10) 

approximates   (3.6)   at  the  ith  node  or  mesh  point.     It  may  be 

noted  that  for  finite  elements  the  ith  component  of  B  involves 

N+l  unknowns  where  N  is  the  number  of  immediate  neighbors  of 

the  ith  node,  whereas  for  finite  differences  the  ith  component 

of  B  depends  only  on  ui    ;   in  this  case  B  is  said  to  be  diagonal. 

We  shall  examine  this  case  in  more  detail  below. 

Under  assumptions   acceptable  for  heat  transfer  processes 

with  change  of  phase  it  can  be  shown  that  the  system   (3.10)   has 

at  least  one  solution  and  that  Newton's  method  will   locally 

converge.     However,   in  practice  initial  values  for  the  diffusion 

equation  are  sometimes  not  consistent  with  its  solution  at 

subsequent  times   so  that  good  starting  values  for  Newton's 

method  may  be  difficult  to  find.     Hence  globally  convergent 

methods  for   (3.10)   are  desireable. 

One  particularly  attractive  method  for  the  solution  of 
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(3.10)   is  the  approximation  by  mildly  elliptic  problems  which 

leads  to  the  iteration 

        (3.11) A(un )un+1       +   B(un+1)   =   0 

where  u0     is  an  arbitrary  initial  vector   (usually  the  projected 

solution  from  the  preceding  time  level).     Due  to  the  nonlinearity 

of  B  the  equations   (3.11)   for   fixed  n  represent  a  nonlinear 

system  in  the  unknown  un+1   which  must  be  solved  with  a  suitable 

inner  iteration;   however,   such  systems  have  been  widely  studied 

and  can  be  solved  with  a  variety  of  methods.     For  example,   it 

is  known  that  a  Gauss-Seidel  method  can  be  used  for  the  inner 

iteration  in  which  the  ith  equation  of   (3.11)   is  solved  for 

the  ith  component  of  u  using  the   latest  values  available  for 

the  other  components  of  u   .     Each  one  dimensional  equation  is 

nonlinear  because  B  is  nonlinear   in  u   ;   however,   because  B 

is  chosen  to  be  piecewise  linear  in  u  no  great  difficulty 

arises  in  solving  the  ith  equation  of   (3.11)   for  the  ith  com- 

ponent  of  u. 

It  is  known  that  the  inner  Gauss-Seidel  iteration  con- 

verges  globally   [27] ,   and  it  has  been  observed  that  the  rate 

of  convergence  can  be  accelerated  through  point  overrelaxation 

[18].     The  choice  of  the  relaxation  parameter  is  critical  for 

convergence.     Published  theoretical  results   [32]   do  not  apply 

to  this  problem  since  B  is  not  convex;   in  practice  it  was  found 

that  away  from  the  phase  transition  zone  the  problem  could  be 
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treated  like  a  standard  elliptic  problem  while  in  and  near  the 

interval   (u*-.ε   , u*+ε )    no   relaxation  was   applied  to  u  .     If 

the  relaxation  parameter  was  too  large  a  cycling  of  the   inner 

iteration  was  observed   (for  further  comment  see   [7]). 

The  outer  iteration   (3.11)   together  with  a  Gauss-Seidel 

or  SOR  method  for  the  inner  iteration  is  attractive  because 

the  system  is  readily  set  up  since   no   further  derivatives  are 

required.     Moreover,   it  can  be  shown  that  if  A(u)   is  Lipschitz 

continuous  with  sufficiently  small  Lipschitz  constant  then  the 

iteration   (3.11)   converges  globally  to  a  unique  solution  of 

(3.10)    (see,   e.g.    [20]   and   [28]).     At  this  time  not  enough 

numerical  evidence  exists  to  indicate  whether  a  small  Lipschitz 

constant  for  A  is  necessary  for  convergence.     If  the  latter  is 

indeed  necessary  then   (3.11)   may  not  converge  for  problems  with 

change  of  phase  since  A(u)   ≡  A(k(u))   will  have  a  Lipschitz 

constant  proportional  to  that  of  the  conductivity  k(u)   which 

in  the  phase  transition  zone  is  of  the  order    (k(u*-)  -k(u*+))/2ε,  

and  which  becomes  unbounded  as  ε →  0   .     The  Lipschitz  constant 

of  B  increases   likewise   in  this  zone  which   (loosely)   increases 

the  diagonal  dominance  of   (3.10);  but  the  iteration   (3.11)   may  not 

utilize  this  fact  because  A  is  evaluated  at  un     ,   B  at  un+1 

It  may  be  noted  that  a  balancing  of  these  two  Lipschitz  constants 

does  occur  if  Newton's  method  is  applied  to   (3.10)   and  it  is 

possible  to  verify  that  under  certain  constraints  on  the  ratio 

of  2x
t

Δ
Δ  a  globally  convergent  continuation  method  for  an 

        operator  imbedding  like 
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H(u,t)    ≡   A(u)u  +   B(u)   +   (t-l)u0  =   0,t ε,  [0,1] 

can  be  defined  where  u0     is  chosen  such  that  H(u,0)   =  0  has 

an  obtainable   solution. 

The   enthalpy  approach  and  related  methods  based  on 

variational   inequalities  have  been  used  successfully  for 

the  solution  of  a  large  number  of  Stefan  type  problems.     How- 

ever,   they  appear  unable  to  cope  with  those  problems  where 

the  process  on  the  free  surface  cannot  be  absorbed  into  the 

differential  equation.     Source  terms   like  µi. in (2.1)   or 

radiative  and  reactive  phenomenon   seem   to exclude  all  methods 

based  on  fixed-domain  considerations  since  the  solution  now 

no  longer   is  determined  by   its    values  on  the  fixed  boundary, 

On  the  other  hand,   if  the  free  surface  is  sufficiently  regular 

then  it  appears  possible   to  use   locally  one  dimensional   (i.e. 

alternating  direction  or   fractional  step)   methods  to  reduce 

the  multi-dimensional  problem  to  a  sequence  of  one  dimensional 

problems.     We  remark  that  this  approach  was  used  already  in 

[5]   and  [31]  for  the  classical   Stefan  problem  in  its  enthalpy 

form   (3.1)   and  thus   still   subject  to  the  limitations  of  fixed- 

domain  methods.     An  explicit tracking of   the   free   surface   in 

the  presence  of   source  terms  becomes  possible  if  the  invariant 

imbedding  equations  are  used  to  solve  the  one  dimensional 

problems.     We  are  presently  examining  this  technique  and  can 

exhibit  some  preliminary  numerical  results  which  seem  quite 
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promising. 

As   described   in   [33]   there  exist  a  number  of  locally  one- 

dimensional  approximations   for  multi-dimensional  partial 

differential  equations;   the  expected   shape  of   the  free 

surface  will  dictate  the  choice  of  approximation.     If  it  can 

be  assumed  a-priori  that  the  free  surface  is  an  invertible 

function  with  respect  to  some  rectangular  coordinate  system 

then  it  is  possible  to  apply  a  direct   (non   iterative)   method. 

As  described  in   [5]   and   [31]   we  simply  integrate  half   the 

diffusion  equation  in  alternating  directions  at   successive 

time  levels.     Extensive  numerical  experiment  with  one phase Stefan 

type  problems  and  implicit  problems,    (where  the  gradient  of  the 

solution  is  specified  on  the   free  surface)   as  well   as  problems 

with  prescribed  normal  derivative  are  described   in   [24] . 

Moreover,   the  extension  of  the  alternating  direction  method 

to  two  phase  problems  with  one   invertible  free  interface 

is  immediate.     The  main  limitations of this  method  are   (as  in 

the  one  dimensional case)  its  inability  to  handle  directly  more 

than  two  phases  and,   of  course,   the  requirement  of   invertibility. 

If  the  motion  of  the  free  surface  is  essentially  along  one 

coordinate  axis   it  may  be   inconvenient  or  impossible  to  find  a 

new  coordinate  system  in  which  the   free  surface  is  an  invertible 

function.     For  such  a  case  an  iterative  method  is  suggested 

which  also  is  capable  of  handling  source  terms  and  nonlinear 

relations  on  the  free  surface.     As  will  be  seen,   first  numerical 

results  with  a  crude  implementation  of  a  Gauss-Seidel   type 
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algorithm  are  encouraging.      Specifically,   we   shall  consider  the 

one  phase  model  problem 

(3.12)  Δu- ,)t,y,x(Ft
u =∂
∂   0 < x < x,   0 < y < s (x,t) ,t > 0  

  u   =   g(x,y,t)   x   =   0,   0<  y < s (0,t) 

x   =   x,   0<  y < s (X,t) , t> 0  

y   =   0,   0 < x < x  

u  =  u0(x,y)  0<x<X,0<y<s (x,0) 

and  the  free  surface  condition 

(3.14)   u  =  µ1(x,y,t) 

            y  =  s (x, t) ,  t>0 

))t,t
y,y,x(µ,)t,t

x,y,x(µ(u 32 ∂
∂

∂
∂=∇

The  one  phase  Stefan  problem  is  a  special  case  obtained  by  setting

.0µandt
yµ,t

xµ 132 ≡∂
∂λ−=∂

∂λ−=

A  simple  discretization  based  on  discretizing  x  and  replacing 

 uxx     with  a  central  difference  quotient  has  been  used  so  far 

  Let  0  =  x0  < x, <  ..  < xn   =  X  be a  partition  of   [0,X]   with 

    xi   -  xi-1   =  Δx;   let  ‘  denote  
dy
d  and  let  all  time  derivatives 

  

    be  replaced  by  backward  difference  quotients.     Then   (3.12-14) 

    at  time  level  tn    is  approximated  by 
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(3.15)    )t,y(ut
1

x

uu)t,y,x(Fut
1u

x
2"u 1ni2

1i1i
niii2i −

+−
Δ−

Δ

+
−=Δ−

Δ
−  

ui(0)  =  g(xi , 0,tn) 

and 

ui  =  µ1(xi,s(xi,tn), tn) 
   

ui  =  µ3(xi, s (xi , tn ) , )t,
t

)t,x(s)t,x(s n1nini
Δ
− −  

for  i = l,..,N-l  .     (The  free  surface  equation  involving  µ2    is 

simply  ignored.)    The  system   (3.15)   is  solved  with   a  standard 

SOR  method  by  cycling  through  the  index  i  .     For  each  i  we 

thus  have  a  one dimensional  free  surface  problem which  is 

solvable  in  the  usual  manner  with  the  invariant  imbeddir 

equations.     The  computed  ui  and  s(xi,tn )  for  (3.15)  are  adjusted 

through  overrelazation.     Although  presently no  theoretical 

justification  for  this  procedure  is  known  an  acceleration  of 

convergence  was  observed.     The  iteration  terminates  when  the 

free  boundary  moves  less  than  10-4       units  between  successive 

SOR  sweeps. 

In  order  to  gain  insight  into  the  performance  of  this 

algorithm  some  numerical  experiments  were  conducted.   Two   of 

them  will  be  described  here.     In  both  calculations  the  Riccati 

equation  has  a  known  solution  while  the  remaining  invariant 

imbedding  equations  were  integrated  with  the  trapezoidal  rule. 

All computations  were  performed  with  the  CDC  Cyber  70 



31 

Problem  1.     In  order  to  demonstrate  that  the  algorithm 

can  reproduce  known  solutions  the  source  terms  F  and  µ3  and 

the  boundary/initial  conditions  were  computed  such  that 

(3.12-14)   had  the  solution 

u(x, y, t) = 2
1 (l+cos ( t-x) - y)    ,       t ≥ 0,   0 ≤  x ≤  3, 14,  0 ≤  y ≤ s (x, t) ≤ 1

         s (x ,t)   = 2
1  (1+cos(t-x))        ,        t  ≥ 0 

Fig.   1  shows  a  plot  of  the  computed  free  boundary  after  each 

10  time steps as  the  system  evolves from t = 0   to  t = 3.00   in 

60  time  steps.     The  results  shown  are  valid  for  Δx  =  3.14/10, 

Δy  =  1/20  and  Δt=0.05  and  took  about  80   sec.   of  computer  time. 

Only  a  slight  deterioration  was  observed  if  instead  Δx= 3.14/10, 

Δy = 1/10  and  Δt = 0.1  was  chosen  and  30  time  steps  were  carried 

out.     Such  a  run  required  15   sec.  and  its  results  are  shown  after 

10,  20 and  30  time  steps  in  Fiqure  2.     In  both  illustrations 

the  upper  curve  near  y = 1  is  the  exact  solution  y = 2
1  (1+cos (t-x)) . 

The  agreement  between  the  exact  and  computed  free  boundaries 

is  apparent. 

Problem  2.     In  order  to  observe  the  performance  of  the  algorithm 

for  a  classical  Stefan  problem  the  melting  of  a  long  strip  of 

zinc   is    modeled.     It   is    assumed  that  the  strip   is    100  cm 

wide  and  4  cm  thick  and  that  both  sides  and  the  bottom  are 

insulated.     It  is  also  assumed  that  the  strip  is  initially  at 
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the  phase  transition  temperature   (scaled  to  be   0).     If   the 

strip   is   long   it    is   possible   to   consider   heat  transfer   in a 

typical  cross  section  to  which  the  following  one   phase      two 

dimensional  Stefan  problem  applies 

 k(uxx  +uyy )  -  cρut  =  0 

 u(x,0,t)   =  α (x,t)  , 0)t,4,x(n
u,0)t,y,100(n

u)t,y,0(n
u =∂

∂=∂
∂=∂

∂  

 ,0dt
ds)t,)t,x(s,x(ku y =ρλ+

  u(x,y,0)  =0   ,   s(x ,0)  = 0   . 

Here  y = s(x,t)   denotes  the  depth  to  which  the   zinc  has  melted. 

The  thermal  constants  of   liquid  zinc  as  reported  by  Huber   [12]  

are  k = 0.137  ,  c = 0.121  ,ρ = 7.0,A = 26.6   in  the  cgs   system. 

As   temperature  input   on  the   surface  y = 0  the  linear  ramp 

α (x,t)   =  t/300  +  max   {100 (x-10)/80,100} 

was  chosen.     This  problem  does   not  have  a  known   solution: it    it 

was  considered  solved  numerically  when  further  mesh     refinements 

no  longer  noticeably  changed  the  computed  free boundary  and 

mesh  refinements. 

For  this  problem  the  initial  and  boundary  conditions  are 

discontinuous;   in  fact,   the  temperature  jumps from the  phase 
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change  temperature  to  100  degrees  above   it  at  the  right  end 

of   the   strip.      This   is  not  an  easy  problem  and  short  time 

steps  are  essential.     Moreover,   quite  possibly  near  the  left 

end  a  melting   from  both  the  top  and  bottom  of   the   strip  may 

occur  since  the  temperature  at  the  lower   left  corner  is 

constrained  to  be  fairly  low.      If  this  process   is  to  be 

modeled  correctly  a  change-over  to  a   sweep  along  the  x- 

direction   should  be  carried  out  after   the  free  boundary 

reaches  y=4.      However,   as   long  as ∞<dy
dx  the  above  model  and 

its   solution  algorithm  remain  valid.     Fig.   3   shows   some 

representative   free  boundaries  for  this  one  phase  problem 

as  t  ranges between   0   and  20   sec.     The  results   are  shown   for 

Δx  =2.5  cm   ,   Δy  =  0.1   cm  and  Δt  =2.5 sec.   Further  refinements 

had  little  effect. 
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Figure  1.              Plot  of  the  computed  and  exact  free  surface 
after   each   10   time   steps   for   a   Stefan  problem 
with   source   terms  on   the   free  boundary. 

Exact   solution:      u(x,y,t)  = 2
1 (l+cos(t – x) – y; 

s(x,t)  = 2
1  cos(t-x) 

Δx = 3.14/10  ;  Δy = 1/20  ;  Δt =  0.05  ; 

60   time   steps,  80  sec.   CPU   time. 



 

Figure   2.              Plot  of   the  computed  and   exact   free   surface 
after  each   10   time   steps   for   the  mesh 

Δx =  3.14/10  ;  Δy =  1/10  ;  Δt = 0.1  ; 

30   time   steps,  15   sec.   CPU   time. 



 

Figure   3.           Phase  boundaries   after   each  10   time   steps 
in  a   4 x100  cm.   strip  of   zinc  with  a   sharp 
temperature  gradient  across   the   surface. 

Δx = 2. 5  cm ;  Δy = 0.1 cm ;  Δt = 2 . 5   sec.; 

80   time  step,160   sec.   CPU  time. 
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