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ABSTRACT

A numerical method for the conformal mapping of simply-connected
domains onto the unit disc is considered. The method is based
on the use of the Bergman kernel function of the domain. It is
shown that, for a successful application, the basis of the series
representation of the kernel must include terms that reflect the
main singular behaviour of the kernel in the complement of the

domain.






Introduction

Let Q be a bounded simply-connected domain with boundary 0Q in
the complex z-plane (z=x+iy) and let t be a fixed point inQ.
Consider the Bergman kernel function K(z;t) of Q. This function
is completely characterized by its reproducing property

o0 =], K@y = (2. Kz 0). () < 12, (1.1)

where L*(Q) is the Hilbert space of all square integrable analytic

functions in Q and (g,(z),g2,(z)) denotes the inner product

(@222 =] o & (21, @xdy, (12)

of L*(Q).
It is well-known that:
(1) If {(bj(z)}(ji1 is any orthonormal basis of L*(Q) then

K(z;t) has the infinite series expansion
w —
Kz =2, ¢;(@);0), (1.3)
5l

which, for fixed t, converges uniformly and absolutely in any
closed domain which is entirely within Q; Nehari (1952;p.250).
(i) If

w=1(z), (1.4)

is the mapping function which maps Q conformally onto the

unit disc |w|<1, in such a way that

f()=0 andf'()>0, t e Q, (1.5)
then
o
f(z)={K(Tt‘,t)}2 ft K(G0dC ; (1.6)

Nehari (1952;p.252)



Given a complete set of functions {v;(z)}i, of L*(Q), the

results (i) and (ii) suggest the following procedure for obtaining
a numerical approximation to the mapping function f(z). The set

{Vj(Z)} }\I:l is orthonormalized by means of the Gram-Schmidt process,

to give the set of orthonormal functions {d)j(z)} ﬁil' The series (1.3)

is then truncated after N terms to give the approximation

N
KN@D =2, 62650, (1.7)
=l
to K(z;t) and finally equation (1.6) is used to give the
approximation
2
@ =1——t [Ky(Gbde, (1.8)
N Ky@of N

to the mapping function f(z). We shall refer to this method
of numerical conformal mapping as the Bergman kernel method (BKM)
with basis {vj(z)}.

The major shortcoming of the BKM is that the Gram-Schmidt
process is usually numerically unstable; see Davis and Rabinowitz
(1961;p.61). Thus, in practice, only a limited number of

orthonormal functions ¢;(z)can be computed accurately and, for

this reason, the success of the method depends strongly on the
speed with which the series (1.3) converges. Since the convergence
of (1.3) depends on the orthonormal basis used, it follows that
the choice of an appropriate basis is of paramount practical
importance.

The use of the BKM with the complete set {ZJ}(J?OZO as basic

has been considered by Burbea (1970). Unfortunately the convergence
of the series

K(z0= 2 0250, (19)
=

where the pj(z) are the polynomials obtained by orthonormal-

2

izing the powers 1,z,2z ~ ..., is often extremely slow. This is



due to the presence of singularities of K(z;t), in the complement
of Q, which can affect seriously the rate of convergence of the

series (1.9). For this reason the use of the set {ZJ}(}O:O as a

basis for the BKM does not lead to a practical method for the
numerical mapping of Q onto the unit disc.

In the present paper we consider using the set {z)} augmented
by the introduction of appropriate singular functions, as a basis
for the BKM. In section 2, we show that, in many cases, considerable
information about the singularities of (z;t) is available. We use
this information to construct an augmented basis, and a corresponding
non-polynomial orthonormal set{;(z)}, for which the series (1.3)

converges rapidly. In section 3, we present numerical results which
indicate clearly that, if such an augmented basis is used, the BKM
is an extremely efficient method for the numerical mapping of
simply-connected domains.

Singularities of K(z:t) - Choice of Basis for the BKM.
In this section we consider two types of singularities of the

Bergman kernel function K(z;t) on the complement of Q, which affect
the rate of convergence of the polynomial series in (1.9). These
are either poles of K(z;t) which lie close to the boundary 0Q or
branch point singularities on the boundary itself. We describe how
available information about these singularities can be used to

appropriately augment the basis set {z'} of the BKM, by introducing
functions which reflect the main singular behaviour of K(z;t).

(1) Poles. To illustrate the damaging influence that the
poles of K(z;t) can have upon the rate of convergence of the
representation (1.9), we consider the trivial case of the mapping
of the unit disc Q onto itself. The function which effects this
mapping so that the pointt € Q_ is mapped onto the origin of the
w-plane is

f(z)=(z-t)/(z—-1/1).
Thus, both f(z) and the corresponding Bergman kernel function

K(z;t) have a pole at z = 1/t. Since the polynomials

1
2
pk(z) ={E} zk_l, k=12,....,
T

form a complete orthonormal set in Q_ it follows that, in this case,



the polynomial series representation of K(z;t) is
w -_
Kz=—3 k)* 2.1)
Tk=1

The series (2.1) converges rapidly when |t| is small, but the
rate of convergence slows down considerably as |t|—>1. In
other words, the convergence of (2.1) is slow when the pole
z=1/t is near the boundary of Q,.

In general, the damaging influence that the poles of
K(z;t) have upon the numerical process can be removed by
introducing appropriate rational functions into the basis set
{z'}.In order to motivate a procedure for determining such

an augmented basis, we consider the mapping of the rectangular
domain

b
Qab:{(x,y) |x|<%, y|<5}; b<a,

onto Q .The mapping function is, in this case, known in terms

of elliptic functions. However, it is more instructive, for our
purpose, to determine the poles of the corresponding Bergman
kernel function by considering the singularities of the Green's
function of Qg . For this we note that, in the general case,
the mapping function f(z) in (1.4) is connected to the Green's
function G(x,y;t) of Q by

f(2) = exp{-2n(G(x,y;t) +i(x,y))} , (2.2)

where H(x,y) is the conjugate harmonic of G(x,y;t). Using the
method of images it is possible to express the Green's function
of Q,, by an infinite double sum of logarithmic functions.

In particular,

1 & m-+n 1
G(x,y;0)=— (-1 log ——,
2n m,1qz=:—oo |Z_Zmn

where zmyp, =ma+nbi; see fig.2.1. Since the conjugate

harmonic of 10g|z—zmn| is arg (z—zmp) it follows, from (2.2),



that the mapping function f(z) which maps Q, onto Q_ so that

f(0) = 0 is given by

o0
f(z)=exp { > (pmm Log(z—zmn)}
m,n=—o0
H(z—zmn)} { 11 (z—zmn)} (2.3)
m+n=even / lm+n=0dd
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Figure 2.1

Thus, both f(z) and the corresponding kernel function K(z;0)
have poles at all the "negative" images of the point t = 0, with

respect to the four sides of Q.4 (i.e. at all the points labeled

with the - ve sign in fig. 2.1). The poles which have the most

damaging effect on the convergence of the representation (1.9)
are those at +a and +ib. These four poles bound the region of

convergence of any polynomial series expansion of f(z) and affect

the convergence of (1.9) even when Qabis a square. However,

their influence is much more damaging when Q_ is a thin rectangle.



This occurs because when b << a the distance of the poles £ ib

from 0Q, , is small relative to the dimensions of Q.
We note, from (2.3), that f(z) can be written as

f(2)

g(2),

Z
(z* —a®)(z? +b?)

where g(z) is analytic in the region

{(x,y) : ‘g <3}.
1

Since, from (1.6),
K(Z : 0) = {M}Z f!(Z) ,
T

+

o<

it is natural to expect that the set

Z M Z b Z. b Z. M Zk b k = 0)]"2""'9
z—a z+a z—1b z+1b

where the prime denotes differentiation with respect to z,

constitutes a more appropriate basis for the BKM than the set

0O
{Zk }k—O' The choice of the set (2.4) as the basis for the BKM

is justified completely by the numerical results of example 1,

section 3.

In the general case, let the mapping function f(z) in
(1.4) have a pole at z=p. Then, in order to remove the influence
of this pole from the numerical process we augment the basis

set 1,z,z%,..., by introducing the function {(z-t)/(z-p)}'. As

in the case of the rectangle, we construct the basis in this way

by considering only the poles of f(z) that lie close to the

boundary 0Q Thus, our procedure for determining a basis requires
knowledge of the dominant poles of f(z) or equivalently, by
equation (2.2), knowledge of the dominant singularities of the
Green's function G(x,y;t) of QQ, in the complement of QuoQ.

For polygonal domains these singularities can be determined by
the method of images. The method of images can also be used for
some other domains whose boundaries are composed of straight line

(2.4)



segments and circular arcs. For domains involving more general
curved boundaries no standard technique for determining the
dominant singularities of G(x,y;t), and hence the corresponding
poles of f(z), is available. However, if a good approximation p
to the pole of f(z) at z =p can be obtained, by some method, then
the introduction of the function {(z—t)/(z—p)}' into the basis set
is sufficient to remove the influence of the pole from the
numerical process; see example 5, section 3.

(i1) Branch point singularities. Let the simply-connected

domain Q be partly bounded by two analytic arcs I}, and I, which
meet at the point z, and form there a corner of interior angle an,
where a=p/q>0 is a fraction reduced to lowest terms. Assume,
without loss of generality, that in (1.5) t=0€Q and consider the
asymptotic behaviour, in the neighbourhood of z,, of the mapping
function f(z) in (1.4).

For simplicity we consider first the case where Q is a
polygonal domain. Then, the Schwarz-Christoffel formula shows
that, in the neighbourhood of z,,

F)~F(zg)= 3 ay (z—20)K/
k=1
or, since f(0) =0,
f(z):kz1 a {(z—zo)k/“—(—zo)k/“} ; (2.5)

see e.g. Copson (1975;p.70). Thus, for a#1/q, the asymptotic

expansion of f(z) involves fractional powers of (z-z,). That is
unless 1/a is an integer, both f(z) and the corresponding kernel
function have a branch point singularity at z, which always affects
the rate of convergence of (1.9), particularly in the neighbourhood
of z, This singularity becomes more pronounced as the angle a=n
increases and if o > 1, 1i.e. if the corner is re-entrant, its

effect upon the accuracy of the numerical process is catastrophic;
see examples 3, 4 and 7, section 3.

As in the case of a pole, we expect that the use of a basis
with terms that reflect the main singular behaviour of the



Bergman kernel function, in the neighbourhood of z,, will remove

the damaging influence of a branch point singularity at z,. Thus,

2

we augment the basis set 1, z, z°,..., by introducing the functions

(z—zo)/% (2.6)

corresponding to the first few singular terms of (2.5).

The choice of such an augmented set as a basis for the BKM is
completely justified by the numerical results of examples 2,3,4
and 7.

If Q is a non-polygonal domain then the asymptotic
expansion of f(z) can be deduced from the results of Lehman (1957).
These results, which include (2.5) as a special case, show that
in the neighbourhood of z,,

£(2)~(20) = (z=20) *M{(z=20), (z-20)' ¢ (2-20)Vlog(z-20)} (2.7)

where M is a triple power series in its arguments. The
expansion (2.7) differs from (2.5) in that apart from powers of
(z-z,) it also involves logarithmic terms of the form

(z-20)P{log(z—25)1™; (2.8)

where m is an integer. Thus, for a non-polygonal domain, we
cannotconclude that there is no singularity at z,, even when
a=1/q. The reason for this is that logarithmic terms may be

present in (2.7). For any value of a the dominant singular
functions required for the augmentation of the basis can be
determined from (2.7).

Two difficulties arise if functions of the form (2.6),
(2.8) are included in the basis. The first concerns the number
of singular functions that should be included. Our experiments
show that, after a certain value, a further increase in the
number of singular functions improves the accuracy of the mapping
in the neighbourhood of the corner but destroys some of the
accuracy elsewhere in the domain. Our criterion for choosing
the "optimum" number is based on intuitive arguments and,



unfortunately, we cannot state a general rule. The second
difficulty concerns the computation of the inner products
required for the Gram-Schmidt process. This however does not
present serious problems and it can often be overcome by a
very simple technique; see the remarks in section 3.

Numerical Examples

In all the examples considered in this section the augmented
basis is formed by introducing into the set {z!} appropriate

singular functions, as described in section 2.

N

The orthonormalization of the basis set {Vj(z)} i=1°

by means

of the Gram-Schmidt process, requires the evaluation of the
inner products

(v (2), vy (2) = IIQ Vm (z)vp(z) dxdy , m,n =1,2...., N.

Using Green's formula the inner products are expressed in the form

(Vm(zxvn(z)):%fm V@0 (@) dz 5 V) (2)=vn(2), (3.1)

and, as in Burbea (1970), the integrals in (3.1) are computed
by Gaussian quadrature. If, due to the presence of a corner,
the basis set contains functions of the form (2.6) or (2.8)
then the Gauss-Legendre quadrature formula may fail to produce
sufficiently accurate approximations to the inner products which
involve these singular functions. It is then necessary to use
special techniques in order to improve the accuracy of the
quadrature. These techniques depend on the geometry of 0Q and,
for this reason, it is not possible to describe a procedure for
a general 0Q. If however, as is frequently the case, the arms
I'),I', of the corner z, under consideration are both straight

line segments then the singularities of the integrands can always
be removed by choosing an appropriate parametric representation
for 3ft. Assume, for example, that the interior angle of the

corner at z, is pn/q, p#1 and, as a result, the augmented basis

involves terms of the form (Z_ZO)(kq—p)/p Then, in order to

remove the singularities due to the fractional powers in the
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integrands we choose the parametric representations of

I and I', to be respectively
z=a, tP exp(i0) )+ 7, zely, k=1,2. (3.2)

In (3.2) tan©,, k = 1,2 are respectively the gradients of
the straight lines I'y, and I', and ax, k =1,2 are real constants
chosen so that I'corresponds to the interval t; <t<0
and I', to the interval 0<t<t,.If, apart from fractional
powers of (z — z,), the basis also involves logarithmic terms

then the effect of the integrand singularities can be suppressed

by taking the parametric representations of I; and I, to be

respectively
z=a,thexp(i0) )=zo, zeT,, k=12 (3.3)

when n is a sufficiently large positive integer.
In all the examples we take t = 0 in (1.5). Thus, once

N

i=1> corresponding to the basis set

the orthonormal set {d)j(z)}

{Vj(Z)} g'il is constructed we form the sum

N -
Kyy(0)= 3, 0j(2)6;00)
J:

and hence, using (1.8), we obtain by formal integration the
approximation fy(z) to the mapping function f(z).

For every simply-connected domain considered, and for
every choice of basis, the numerical results given correspond

to the approximation fy (z)This approximation is
opt

p
opt determined as follows. In each case a sequence of approximations

{fn (z)} 1s computed by taking N = Noin *Nmin 1 Npin + 20

where Nmin denotes the smallest number of basis functions used.

At each stage the quality of the approximation fx(z) is
determined by computing

en (@) :1—‘fN(z)‘

at M" boundary test points" z; edQ, j=12,...,.M.
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The quantity

EN =mleeN(Zj)‘
then gives an estimate of the maximum error in the modulus of
fn(2). If at the (N+1) th stage the inequality

Ent1 <EnN (3.4)

is satisfied then the number of basis functions is increased

by one and the approximation fy, ,(z) is computed. When for a

certain value of N, due to numerical instability, the inequality
(3.4) no longer holds we terminate the process and take this

value of N to be the optimum number Nopt of basis functions.

For each example we list the augmented basis, the boundary
test points and the order of the Gaussian quadrature used. Also,
when the accurate computation of the inner products requires
the use of a special parametric representation for part of the
boundary 0Q, we give this representation.

In presenting the results we denote the BKM with monomial

basis {z(j_l)}jlil by BKM/MB and the BKM with augmented basis by

BKM/AB.

All computations were carried out, in single length
arithmetic, on a CDC 7600 computer.

EXAMPLE 1
Rectangle {(x,y) : |x| < a, y|£1} ; Fig .3.1

i%(O,Z)

F ! E(a,l)
1
i
]

— e e e S SPGB, .
92("2l,0) He D PQa,0)

]
.’

Al-a,-1) ;B Ca 1)
1
: B(0,-2)

Figure 3.1
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Augmented Basis. Because the domain has fourfold symmetry

about the origin, odd powers of z do not appear in the
polynomial representation of the kernel function K(z;0) see
Burbea (1970, p.824). For this reason, when a # 1 , we take the

. . 2(j-1) N .
monomial basis set to be i=1 - When a = 1 the domain

has eightfold symmetry and the polynomial representation of K(z;0)
includes only powers of z which are multiples of 4. In this case

. . 4(j-1, N
we take the monomial basis to be ) (i=1-

The augmented basis is formed by introducing into the monomial
basis the four singular functions corresponding respectively to the
four poles at z = £2a and z=+2i. The symmetry of the domain implies
that these four singular functions can be combined into the two

functions {z/(z®> —4a?)}' and {z/z? +4)}' . A further simplification

occurs when a = 1. In this case the four singular functions can

be combined into the single function {z/(z* —16)}". Thus, the
augmented basis is

' 1

z z 2j .
v, = —— +, Vo = , Vi,oa=2z"7, 7=012,..,
I {22—4212 } 2 {22+4} 3

when a=1,

and

'

Z 4 .
Vi =3——¢, V:,~n=2z ", j=012,..; when a=1.
! {24 —16} 2

Quadrature. Gauss-Legendre formula with 48 points along each side
of the rectangle.

Boundary Test Points. Because of the symmetry, we only consider
points on AC and CE. The points are distributed in steps of a/5
and 0.2 along AC and CE respectively, starting from A.

Numerical Results. See Tables 3.1(a) and 3.1(b).
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TABLE 3.1(a)

Values of Nopt and ENOpt =mex eNopt(Zj)
BKM/MB BKM/AB
a
Nopt ENopt Nopt ENopt
1 9 1.4x1078 5 3.4x107 11
2 17 2.1x107° 10 2.1x10710
6 13 4.1x1072 10 1.9x107°

TABLE 3.1(b)

Values of eNO (z) at a selection of boundary points: see Fig.3.1

pt
a=1 a=2 a==6
POINT
BKM/MB | BKM/AB | BKM/MB | BKM/AB | BKM/MB | BKM/AB
A | 12x1078 | 34x107! | 2.1x10™ | 72x1071! | 4.1x1072 | 1.7x107
B | 14x1078 | 6.7x10712 | 1.5x10™° | 7.0x107!! | 3.3x1072 | 1.9x10°°
C | 12x1078 | 34x10711 | 2.1x107° | 2.1x10710 | 4.1x1072 | 1.2x1077
D | 14x107% | 6.7x10712 | 1.9x10™°> | 2.0x10710 | 4.4x1072 | 8.0x10~/
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EXAMPLE 2

Quadrilateral; Fig 3.2

1P0,2)
] ’,.
G e E21) -~ G(3V3/2,V3.12)
Ree,0) ML
A(-2r1)

Figure 3.2
Augmented Basis
' 1
V.= z i=1,234; ve=1, vo=(z-2zp)?, Vvo4=2, Vv p
j_ Z—p- )J_)JJ’ 5_: 6_ E s 7_) 8_
J
24+ .
Vg =(Z—ZE)7/2 , V9+j =z , 1=123, ...,

Quadrature. Gauss-Legendre formula with 48 points along each side

of the quadrilateral.
In order to perform the integration accurately we choose
the parametric representation of CE and EG to be of the form (3.2).

Thus, we take,

2+1/y)t+2z, , 0<t<2; for AC
4 2 2TCl
——(t=3)"exp| — |+ 2z , 2<t<3; for CE
7= \/g( ) p(3j E (3.5)
—(t—3)2+zE , 3<t<5; for EG
—2(t—-6)i1+z, , 5<t<6; for GA




Boundary Test Points.

15

The distribution of the points is defined

by (3.5) with t = 0(0.25)6,

Numerical Results.

For the BKM/MB, Noprand Ep =2.2x107°.

For the BKM/AB, Npg and Eq7 =5.2x107 .

Values of

in Table 3.2.

eNopt (z)| at a selection of boundary points are given
TABLE 3.2
POINT BKM/MB BKM/MB
A 1.9x1073 43x107
B 1.7x1075 2.6x1077
C 1.3x10~% 47x1077
D 23x107% 1.5%10~7
E 1.1x1073 4.6x1077
F 12x1073 2.0x10~7
G 1.8x1073 8.7x1078
H 1.0x1073 1.7x1077
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EXAMPLE 3

L - shaped region ; Fig.3.3

{1 PA0,2)
]
F(-‘o‘) EE D
]
'
t
————— Bt T
p‘("z -0) : i'a* 5.4
]
i A B(3,-1)
i
|
[}
)
[]
|
G i H(1,-3)

i
1
]
]
|
]
i
!
1pP,(0,-6)

Figure 3.3

Augmented Basis.

1/3

v,=1—2 L =234 ve=(z-2,)7"0, ve=1, v, =(z-2,)
z-p;

5/3 2 7/3 3
Ve=2, Vo=(z—2,)"", Vviy=2", v =(z—-2,)"", vp,=2",

11/3 3+ .
Vi3 =(z-2zpA) /3, VI3+j=2 tloj=12.

oo g

Quadrature. Gauss-Legendre formula with 16 points along each side of

the polygon.
In order to perform the integration accurately we choose the

parametric representations of HA and AB to be the form (3.2). Thus,
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we take,
~ Pz, : —2<t<0; for HA

7= ‘1‘ (3.6)
Zt3+ZA R 0<t<2; for AB

Boundary Test Points. On cach of the sides BD,DF,FG and GH the

points are equally spaced, in steps of 0.25, starting from a corner.

On HA and AB the distribution of the points is defined by (3.6) with
=-2(0.25)2.

Numerical Results.

For the BKM/MB, Nogpt =24 and Egq =1.9x107.

For the BKM/AB, Nppot, =26 and Epg =2.2x107°.

Values of e (z) | at a selection of boundary points are given
opt

in Table 3.3.
TABLE 3.3
POINT BKM/MB BKM/MB
A 1.9x107 1 22x107°
B 1.9x107! 1.1x107°
C 8.8x10 2 3.2x107°
D 1.8x1072 1.1x107°
E 2.0x1072 7.9x107°
F 3.0x1072 22x107°
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Example 4
Octagon ; Fig.3.4

p

I 3(0.10)

F 1E 55)
i »
H G
%

|

]
____________________ I F
%‘_10.0) 0 : c P,(10,0)

|

=

I: A B(5n—3)

K ! u3,-s)

|

1

|

|

|

|

'PA(O‘-10)

Figure 3.4

Augmented Basis. Because the domain has fourfold symmetry about the

origin, the monomial basis set is taken to be {zz(jfl) }?—1 . The
augmented basis used is,
z z -1/3 .
V=i, Vo=4—F5——¢ , VvV, . = (z-z)) , J=L7Z
! {22—100} 2 {22+100} 2+] j
1 . .
vs =1vsyj=(z-2j) By V7+j=(z—2j)5/3, J=12;

2 .
V10 +j = 2 I j=1.2, ...
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Quadrature. Gauss-Legendre formula with 16 points along each
side of the polygon.

In order to perform the integration accurately we choose the
parametric representations of LA,AB,FG and GH to be of the form (3.2).
Thus, we take

2t 4z, ,

2it> +z,,  —1<t<0; for LA,
zZ= (3.7)
0<t<I; for AB,

and similar representations for FG and GH.

On each of the sides BD, DF, HK and KL

the points are equally spaced, in steps of 1.0, starting from a
corner. On LA and AB the distribution of the points is defined

by (3.7) with t =-1(0.25)1. On FG and GH the distribution is similar
to that on LA and AB.

Boundary Test Points.

Numerical Results

For the BKM/MB, Ngpt =27 and Ep7 =1.3x107L

For the BKM/AB, Npt =23 and Ep3 =5.7x107°.

Values of eNopt(Z) at a selection of boundary points are given in
Table 3.4.
TABLE 3.4
POINT | BKM/MB BKM/MB
A 13x107! 2.1x107°
B 49x1073 5.0x107°
C 531073 3.5x1070
D 5.4x107° 5.7x10~°
E 53x1072 5.0x107°
F 49x1073 5.1x107°
G 1.3x107 ! 2.1x107°
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EXAMPLE 5
2
Ellipse {(x, y) : X—2+y2 < 1}
a

Augmented Basis. Because the domain has fourfold symmetry about the
. . . . 2(j-n) N
origin the monomial basis set is taken to be i=1 -

The mapping function f(z) is, in this case, given by an elliptic
sine; see e.g. Kober (1957;p.177). From this we find that the
of f(z) nearest to the boundary occur at z== ip, 2a2 /(a2—1).
the augmented basis is

_ z L= 20°D) Lo
V]—{ > 2} s Vitl =2 ,  J=12,.... (3.9)

Z-+p

We also perform the BKM/AM with basis

'

z 2(j-1 .
VI=Y 5 VitlT? U= =12, (3.9)
Z7+Dp

where 5:(2a2—1)/(a2—1). This corresponds to approximating the
poles at +ip by £ip, where (0, p) is the inverse point of the

origin with respect to the circle of curvature of the ellipse at
the point (0, 1 ).

Quadrature. Gauss-Legendre formula with 48 points along each of
the four subarcs defined respectively by

x=acost,y=sint (3.10)
with j% StS(j+1)g, i=0,1,2,3.

Boundary Test Points. The points are defined by (3.10) with

t:O(Ej 2.
8

Numerical Results. See Table 3.5.
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TABLE 3.5
Values of Ngpt and ENopt=m?XGN0pt(Zj) ‘
j
BKM/MB BKM/AB BKM/AB
. Basis (3.8) Basis (3.8)
Nopt . Nopt Nopt : Nopt Nopt : Nopt
2.5 13 2.6x107° 6 3.5x107 11 12 3.1x1077
50 | 11 1.0x1072 11 3.3x10710 12 2.5x1070
10.0 | 11 9.4x10 2 11 5.8x107° 11 731070
200 | 11 2.8x1071 11 5.6x10~% 11 5.5x107%
EXAMPLE 6

Simply - connected region,

() :=1<x<0, |y| <1} U{(x,y): x> +y? < 1}; Fig. 3.5

F(-1.1)

Ip3(0.2)

m

N

- ——

)

DG,0)

- - -—--—

B(-1,-1)

O

P0,2)

Figure 3.5
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Augmented Basis

'

ij{z Zp} , J=123; vq =1, V4+j={(z—2j)210g(2—2j)' ,j=12;
~Pj

vV, =12, V7+j:{(Z_Zj)3(10g(2—zj))2}' , J=12;
V9+j=Zl+j , =12, ..

Quadrature. Gauss-Legendre formula with 48 points along each of the
straight lines BC,EF,FB and the arcs CD,DE.

In order to perform the integration accurately we choose the
parametric representation of BC and EF to be of the form (3-3) with
n =10. We also take the parametric representation of the semi-circle
CDE to be

1
2 -t2%)2 —i1-t*) : 0<t<1; for CD
2-9)""2-2-t)"+i{1-2-t)*r 1<t<2; for DE.
Boundary Test Points. On each of the straight lines FB, BC, FE the

points are equally spaced, in steps of 0.25, starting from a corner.
On the semi-circle CDE the distribution of the points is defined by

7= el | t:_i(iji,
2.8)2

Numerical Results

For the BKM/MB, No

ot =20 and By, = 5.5x107%

For the BKM/AB, N, =26 and E,, =1.5x107°.

pt

Values of |eNop’gZ) | at a selection of boundary points are given

in Table 3.6
TABLE 3.6
POINT BKM/MB BKM/MB
A 1.9x107% 42x1077
B 5.5x10~% 6.7x10~
C 1.9x107% 1.5%x1070
D 1.4x107% 2.6x1078
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EXAMPLE 7

Circular sector of radius 1 and angle 31/2; Fig. 3.6
..3(—»/2.v7)

AVZUNT )

\‘\\D(SVZ/A,-S\/?/A)

Figure 3.6

Augmented Basis.

1

z . _
Vj: o[ 1=L2; V3=(Z—ZA) 1/3, V4=1,V5=(Z—ZA)1/3 ,
J
Ve =2 V7=(Z—ZA)5/3, VSIZZ, V9=(Z—ZA)7/3, VlO=Z3,
11 3+ .
V11=(Z—ZA) /3, V11+j:Z J, j=12,....

Quadrature. Gauss-Legendre formula with 48 points along each of
the straight lines AB, AD and the arcs BC, CD.

In order to perform the integration accurately the parametric
representations of DA and AB are chosen to be of the form (3.2).



24

Boundary Test Points. On each of AB and AD the points are
equally spaced, in steps of 0.25, starting from a corner. On the

are BCD the distribution of the points is defined by z = z + eit,

t=0[£j 3
4) 2

Numerical Results.

-1
For the BKM/MB, Nopt=21 and Ep1=[e21(za)[=1.7x10 .

-5
For the BKM/AB, Nopt=21 and Ep1=[e21(z¢)| =5.6x10 .

In table 3.7 we give the real and imaginary parts of the approxi-
mation f,;(z) obtained by the BKM/AM at a selection of boundary and
interior points. We compare these results with their analytic
counterparts computed from the exact mapping function f(z).
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TABLE 3.7
Key to point numbers
6
)
7 9
10
8
12 3
1
\} 2 3 4
A 8
z = ZA + relt
r=0(H1,t =ox) &,
POINT Real f5; (z) Imag f5; (2) Real f (z) Imag f (z)

1 0.7070742 -0.7070742 0.7071068 -0.7071068
2 0.9975213 -0.0697145 0.9975633 -0.0697674
3 0.9968618 0.0797509 0.9968206 0.0796781
4 0.9941923 0.1075205 0.9942209 0.1073533
5 0.9748706 0.2226125 0.9748945 0.2226674
6 0.7371164 0.6756825 0.7371724 0.6757047
7 -0.7071362 0.7071362 -0.7071068 0.7071068
8 0.8684045 0.1575020 0.8684044 0.1575022
9 0.5360579 0.3627624 0.5360580 0.3627624
10 -0.1927762 0.1927762 -0.1927761 0.1927761
11 -0.7850148 -0.0348388 0.7850147 -0.0348398
12 0.5053199 -0.0187851 0.5053199 -0.0187850
13 0.1775234 -0.1775234 0.1775234 -0.1775234
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Discussion.

The results of section 3 indicate clearly that in applying the
BKM the choice of basis is of paramount importance. For the successful
application of the method the basis set must contain terms which reflect
the main singular behaviour of the kernel function. Provided that such
a basis can be constructed the BKM is an extremely accurate method for
the numerical conformal mapping of simply-connected domains.

For the rectangles and ellipses of examples 1 and 5 a direct
comparison can be made between the BKM results and those obtained by
other methods of numerical conformal mapping. For these domains the
BKM/AM results are several orders of magnitude more accurate than those
obtained by Rabinowitz(1966), using the Szegd kernel function method
with orthonormal polynomials, and by Symm (1966), using an integral
equation method. Also, for these domains, the BKM/AM approximations
are as good as, or better than, those obtained by Hayes, Kahaner and
Kellner (1972), who modified Symm's method in order to improve its
accuracy.

The above three papers do not contain results obtained from the
mapping of domains with sharp corners, like the domains of examples 3,
4 and 7. However, an indication of the poor performance of the
integral equation methods for numerical conformal mapping, in the
neighbourhood of a re-entrant corner, is given by the results of
Symm (1974;p.273). For the L - shaped region of example 3, Symm's

method yields an approximation f(z) which at the re—entrant corner A

has modulus ‘?(ZA)’ =0.959. Although the accuracy of f(z) improves
considerably away from the corner, at a boundary point distant 1 AB

from A the error in the modulus is still |e(zy )= 5%10 73 By

contrast the BKM, with an appropriate augmented basis, overcomes
the difficulties associated with sharp corners and produces accurate
results throughout the region.



27

REFERENCES

BURBEA, J. 1970 Maths.Comput. 24, 821.

COPSON, E. T. 1975 Partial Differential Equations.
London: Cambridge University Press.

DAVIS, P. J. & RABINOWITZ, P. 1961 In Advances in Computers Vol.2.
(Ed.Franz.L.Alt), p.55. London and New York:Academic Press.

HAYES, J.K. KAHANER,D. K. & KELLNER, R. G. 1972 Maths.Comput. 26,327,
KOBER, H. 1957 Dictionary of Conformal Representations. New York: Dover.
LEHMAN, R.S. 1957 Pacific J. Math. 7 1437.

NEHARI, Z. 1952 Conformal Mapping. New York: McGraw-Hill.
RABINOWITZ, P. 1966 J.Assoc.Comput.Mach. 13 296.

SYMM, G.T. 1966 Num. Math. 9, 250.

SYMM, G.T. 1974 Numerical Solution of Integral Equations (Ed.L.M.Delves and
J. Walsh) p.267, Oxford: Clarendon Press.






	Figure  3.5 

