
Use of R-GMA in BOSS 

Henry Nebrensky (Brunel University)

VRVS 26 April 2004VRVS 26 April 2004

Some slides stolen from various talks at EDG 2nd Review 
(http://documents.cern.ch/AGE/current/fullAgenda.php?ida=a021814),

WP3 overview at GridPP middleware mtg. (???), 
WP1-WP7, CERN, 18th June 2002 

(http://documents.cern.ch/AGE/current/fullAgenda.php?ida=a02943),
and Claudio Grandi’s talk at CHEP’03



R-GMA

• Grid monitoring 
infrastructure

• Based on GGF 
GMAGMA

• Discrete 
consumers and 
producers

• Registry acts as 
matchmaker



R-GMA

R-GMA

• Use the GMA from 
GGF

Steve Fisher/RAL - 12/6/2002R-GMA and WP7 1

• A relational 
implementation

• Applied to both 
information and 
monitoring

• Creates 
impression that 
you have one 
RDBMS per VO

Producer

Consumer

Registry

subscribe

lookup

More on R-GMA see e.g.“RGMA deployment” at 
http://www.gridpp.ac.uk/gridpp7/gridpp7_fisher.ppt



Basic BOSS components
boss executable:

the BOSS interface to the user

MySQL database:
where BOSS stores job information

jobExecutor executable:
the BOSS wrapper around the user job

dbUpdator executable:
the process that writes to the database while the job is running

Local scheduler
may be a “Grid” scheduler



Basic flow

boss submit
boss query
boss kill BOSS

DB

BOSS Scheduler

farm node

farm node

Wrapper

Accepts job submission from users
Stores info about job in a DB
Builds a wrapper around the job (jobExecutor)
Sends the wrapper to the local scheduler
The wrapper sends to the DB info about the job



BOSS 

CMS Grid

BOSS
DB

RefDB

parameters
Job output filtering
Runtime monitoring

WN

SE

SECE

CMS software

Workload
Management

System

JDL

data 
registration

Push data or info

Pull info

UI
IMPALA/BOSS

Replica 
Manager CE

CMS software

CE

WN

SECE

CMS software

SE

SE



Use of R-GMA in BOSS 

BOSS

UI
IMPALA/BOSS

WN
Sandbox

BOSS wrapper

Job

Tee

1

2

4

BOSS
DB OutFile

R-GMA API

Farm

servlets

Receiver

servlets

Registry

Receiver

2

3

5a5b

6



Use of R-GMA in BOSS 

• Publish each update into R-GMA as a 
separate message – separate row

• Each producer gives host and name of 
“home” BOSS DB, and jobId; this identifies 

• Each producer gives host and name of 
“home” BOSS DB, and jobId; this identifies 
it uniquely

• Receiver looks for all rows relating to its 
DB; uses jobId and jobType to do SQL 
UPDATE



Use of R-GMA in BOSS 

The screenshot below shows the streamed output 
messages from a Brunel job (ID 112) being sent 
through R-GMA and displayed using the EDG 
Pulse tool from WP3. As Pulse can monitor Pulse tool from WP3. As Pulse can monitor 
multiple producers, it also shows the output from a 
longer job already running at Imperial (ID 72).

The receivers that update the BOSS databases use 
the bossDatabaseHost and bossDatabaseName 
fields to select only the relevant messages, so that 
the database at each institute is updated with only 
the information about its own jobs.

http://www.brunel.ac.uk/~eestprh/GRIDPP/Index.htm





Use of R-GMA in BOSS (1)

• R-GMA smoothes “firewall” issues

• Consumer can watch many producers; 
producers can feed multiple consumers. producers can feed multiple consumers. 

• Provides uniform access to range of 
monitoring data (WP7 network, etc.)

• Doesn’t depend on other EDG components



Use of R-GMA in BOSS (2)

• BOSS job wrapper uses an R-GMA 
StreamProducer and C++ API
– Can define minimum retention period– Can define minimum retention period

– No guarantees

• BOSS receiver implemented in Java



Scalability Tests With CMS, 
Boss and R-GMA

Stolen from Rob Byrom’s slides at 

http://agenda.cern.ch/fullAgenda.php?ida=a036755

(Presented at 2003 IEEE/NSS mtg, sub. to Trans. Nuc. Sci.)



Test Motivation

• Want to ensure R-GMA can cope with 
volume of expected traffic and is scalable.

• CMS production load estimated at around • CMS production load estimated at around 
2000 jobs.

• Initial tests with v3-3-28 only managed 
about 400 - could do better L .



Test Design

• A simulation of the CMS production system 
was created.

– A Java MC simulation was designed to represent a typical 
job.job.

– Each job creates a stream producer.

– Each job publishes a number of tuples depending on the 
job phase.

– Each job contains 3 phases with varying time delays.

– Emulates “CMSIM” message publishing pattern, but so far 
with 10 hour run time compressed into a minute …

– … so actually have fewer simultaneous jobs than real case, 
but overall a much higher rate of message production. 



Test Design

• An Archiver scoops up published tuples.
– The Archiver db used is a representation of the BOSS db, 

but stores history of received messages, rather than just a 
cumulative update.cumulative update.

– Archived tuples are compared with published tuples to 
verify the test outcome.



Topology
Archiver Mon BoxSP Mon Box

Archiver Client

IC (registry)

MC Sim

Test Output

Test verification

HistoryProducer DB



Topology
Archiver Mon Box

Archiver ClientSP Mon Boxes Archiver Client

Test verification
MC Sims

SP Mon Boxes

Test Output

IC (registry)
HistoryProducer DB



Test Setup

• Archiver & SP mon box setup at Imperial.
• SP mon box & IC setup at Brunel.
• Archiver and MC sim clients positioned at • Archiver and MC sim clients positioned at 

various nodes within both sites.
• Tried 1 MC sim and Archiver with variable 

Job submissions.
• Also setup similar test on WP3 testbed 

using 2 MC sims and 1 Archiver.



Results

• 1 MC sim creating 2000 jobs and publishing 
7600 tuples proven to work without glitch 
(R-GMA v3.4.13)(R-GMA v3.4.13)

• Demonstrated 2 MC sims each running 
4000 jobs (with 15200 published tuples) on 
the WP3 testbed.



Pitfalls Encountered

• Lots of fun integration problems.
– Firewall access between imperial and Brunel initially 

blocked for streaming data (port 8088).

– Limitation on number of open streaming sockets – 1K.– Limitation on number of open streaming sockets – 1K.

– Discovered lots of OutOfMemoryErrors.

– Various configurations problems at both imperial and 
Brunel sites.

– Caused many test runs to fail.

• Probably explained poor initial 
performance.



Weaknesses

• Test is time consuming to set-up.
– MC and Archiver are are manually started.
– Analysis bash script takes forever to complete.

• Requires continual attention while running.• Requires continual attention while running.
– To ensure the MC simulation is working correctly.
– Test takes considerable time for large number of jobs (ie > 

1000).

• Need to run multiple MC sims.
– To generate more realistic load.
– How to we account for ‘other’ R-GMA traffic?



Improving the Design

• Need to automate!
• Improvements made so far.

– CMS test comes as part of the ‘performance’ R-GMA 
RPM.RPM.

– MC simulation can be configured to occur repeatedly with 
random job ids.

– Rather than monitoring the STDOUT from the MC Sim, 
test results are published to an R-GMA table.

– Analysis script now implemented in java; Verification of 
data now takes seconds rather than hours!

– CMS test can now be used as part of the WP3 testing 
framework and is ready for Nagios integration.



Measuring Performance

• Need a nifty way of measuring 
performance!

• Things to measure.
– Average time taken for a tuple published via the MC – Average time taken for a tuple published via the MC 

simulation to arrive at the Archiver.
– The tuple throughput of the CMS test (eg how do we 

accurately measure the rate at which tuples are archived).
– Would be nice to measure the number of jobs each mon 

box can carry before hitting memory limits.

• Need to define a hardware spec that satisfies a level 
of performance.



Summary

• After initial configuration problems tests were 
successful -J J .

• But scalability of test is largely dependent on the 
specs of the Stream Producer/Archiver Mon box.specs of the Stream Producer/Archiver Mon box.

• Possible to keep increasing number of submitted 
Jobs but will eventually hit an upper memory limit.

• Need more accurate ways to record performance 
particularly for data and time related 
measurements.

• Need to pin down exact performance requirements!


