SOME EXAMPLES OF CALABI-YAU PAIRS WITH MAXIMAL INTERSECTION AND NO TORIC MODEL

ANNE-SOPHIE KALOGHIROS

ABSTRACT. It is known that a maximal intersection log canonical Calabi-Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi-Yau pairs that admit no toric model.

1. Introduction and motivation

A Calabi–Yau (CY) pair (X, D_X) consists of a normal projective variety X and a reduced sum of integral Weil divisors D_X such that $K_X + D_X \sim_{\mathbb{Z}} 0$.

The class of CY pairs arises naturally in a number of problems and comprises examples with very different birational geometry. Indeed, on the one hand, a Gorenstein Calabi–Yau variety X can be identified with the CY pair (X,0). On the other hand, if X is a Fano variety, and if D_X is an effective reduced anticanonical divisor, then (X,D_X) is also a CY pair.

- **Definition 1.1.** (a) A pair (X, D_X) is (t,dlt) (resp. (t,lc)) if X is \mathbb{Q} -factorial, terminal and (X, D_X) divisorially log terminal (resp. log canonical).
- (b) A birational map $(X, D_X) \xrightarrow{\varphi} (Y, D_Y)$ is volume preserving if $a_E(K_X + D_X) = a_E(K_Y + D_Y)$ for every geometric valuation E with centre on X and on Y.

The dual complex of a dlt pair $(Z, D_Z = \sum D_i)$ is the regular cell complex obtained by attaching an (|I| - 1)-dimensional cell for every irreducible component of a non-empty intersection $\bigcap_{i \in I} D_i$.

The dual complex encodes the combinatorics of the lc centres of a dlt pair and [4] show that its PL homeomorphism class is a volume preserving birational invariant.

By [3, Theorem 1.9], a (t,lc) CY pair (X, D_X) has a volume preserving (t,dlt) modification $(\tilde{X}, D_{\tilde{X}}) \to (X, D_X)$, and the birational map between two such modifications is volume preserving.

Abusing notation, I call dual complex the following volume preserving birational invariant of a (t,lc) CY pair (X,D_X) .

Definition 1.2. $\mathcal{D}(X, D_X)$ is the PL homeomorphism class of the dual complex of a volume preserving (t,dlt) modification of (X, D_X) .

As the underlying varieties of CY pairs range from CY to Fano varieties, they can have very different birational properties. However, X being Fano is

not a volume preserving birational invariant of the pair (X, D_X) . Following [13], I consider the following volume preserving birational invariant notion:

Definition 1.3. A (t,lc) CY pair (X, D_X) has maximal intersection if $\dim \mathcal{D}(X, D_X) = \dim X - 1$.

In other words, (X, D_X) has maximal intersection if there is a volume preserving (t,dlt) modification of (X, D_X) with a 0-dimensional log canonical centre. Maximal intersection CY pairs have some Fano-type properties; Kollár and Xu show the following:

Theorem 1.4. Let (X, D_X) be a dlt maximal intersection CY pair, then:

- 1. [13, Proposition 19] X is rationally connected,
- 2. [13, Theorem 21] there is a volume preserving map $(X, D_X) \xrightarrow{\varphi} (Z, D_Z)$ such that D_Z fully supports a big and semiample divisor.

Remark 1.5. The expression "Fano-type" should be understood with a pinch of salt. Having maximal intersection is a degenerate condition: a general (t,lc) CY pair (X,D_X) with X Fano and D_X a reduced anticanonical section needs not have maximal intersection.

Definition 1.6. A toric pair (X, D_X) is a (t,lc) CY pair formed by a toric variety and the reduced sum of toric invariant divisors.

A toric model is a volume preserving birational map to a toric pair.

Example 1.7. A CY pair with a toric model has maximal intersection.

Remark 1.8. In dimension 2, the converse holds: maximal intersection CY surface pairs are precisely those with a toric model [6].

The characterisation of CY pairs with a toric model is an open and difficult problem. A characterisation of toric pairs was conjectured by Shokurov and is proved in [1], but it is not clear how to refine it to get information on the existence of a toric model. A motivation to better understand the birational geometry of CY pairs and their relation to toric pairs comes from mirror symmetry.

The mirror conjecture extends from a duality between Calabi-Yau varieties to a correspondence between Fano varieties and Landau-Ginzburg models, i.e. non-compact Kähler manifolds endowed with a superpotential. Most known constructions of mirror partners rely on toric features such as the existence of a toric model or of a toric degeneration. In an exciting development, Gross, Hacking and Keel conjecture the following construction for mirrors of maximal intersection CY pairs.

Conjecture 1.9. [6] Let (Y, D_Y) be a simple normal crossings maximal intersection CY pair. Assume that D_Y supports an ample divisor, let R be the ring $k[\text{Pic}(Y)^{\times}]$, Ω the canonical volume form on U and

$$U^{\operatorname{trop}}(\mathbb{Z}) = \Big\{ \operatorname{divisorial\ valuations\ } v \colon k(U) \setminus \{0\} \to \mathbb{Z} \ \operatorname{with\ } v(\Omega) < 0 \Big\} \cup \{0\}.$$

Then, the free R-module V with basis $U^{\text{trop}}(\mathbb{Z})$ has a natural finitely generated R-algebra structure whose structure constants are non-negative integers determined by counts of rational curves on U.

Denote by K the torus $Ker{Pic(Y) \rightarrow Pic(U)}$. The fibration

$$p \colon \operatorname{Spec}(V) \to \operatorname{Spec}(R) = T_{\operatorname{Pic}(Y)}$$

is a T_K -equivariant flat family of affine maximal intersection log CY varieties. The quotient

$$\operatorname{Spec}(V)/T_K \to T_{\operatorname{Pic}(U)}$$

only depends on U and is the mirror family of U.

Versions of Conjecture 1.9 are proved for cluster varieties in [7], but relatively few examples are known.

The goal of this note is to present examples of maximal intersection CY pairs that do not admit a toric model and for which one can hope to construct the mirror partner proposed in Conjecture 1.9 (see Section 2 for a precise statement).

2. Auxiliary results on 3-fold CY pairs

The examples in Section 3 are 3-fold maximal intersection CY pairs whose underlying varieties are birationally rigid. In particular, such pairs admit no toric model; this shows that [6]'s results on maximal intersection surface CY pairs do not extend to higher dimensions. In this section, I first recall some results on birational rigidity of Fano 3-folds. Then, I introduce the (t,dlt) modifications suited to the construction outlined in Conjecture 1.9 and discuss the singularities of the boundary D_X .

2.1. Birational rigidity. Let X be a terminal \mathbb{Q} -factorial Fano 3-fold. When X has Picard rank 1, X is a Mori fibre space, i.e. an end product of the classical MMP.

Definition 2.1. A birational map $Y/S \xrightarrow{\varphi} Y'/S'$ between Mori fibre spaces Y/S and Y'/S' is square if it fits into a commutative square

where g is birational and the restriction $Y_{\eta} \xrightarrow{\varphi_{\eta}} Y'_{\eta}$ is biregular, where η is the function field of the base k(S).

A Mori fibre space Y/S is (birationally) rigid if for every birational map $Y/S \xrightarrow{\varphi} Y'/S'$ to another Mori fibre space, there is a birational self map $Y/S \xrightarrow{\alpha} X/S$ such that $\varphi \circ \alpha$ is square.

In particular, if X is a rigid Mori fibre space, then X is non-rational and no (t,lc) CY pair (X,D_X) admits a toric model.

Non-singular quartic hypersurfaces $X_4 \subset \mathbb{P}^4$ are probably the most famous examples of birationally rigid 3-folds [9]. Some mildly singular quartic hypersurfaces are also known to be birationally rigid, in particular, we have:

Proposition 2.2. [2, 16] Let $X_4 \subset \mathbb{P}^4$ be a quartic hypersurface with no worse than ordinary double points. If $|\operatorname{Sing}(X)| \leq 8$, then X is \mathbb{Q} -factorial (in particular, X is a Mori fibre space) and is birationally rigid.

2.2. Singularities of the boundary. I now state some results on the singularities of the boundary of a 3-fold (t,lc) CY pair. Let (X,D_X) be a 3-fold (t,lc) CY pair and $(\widetilde{X},D_{\widetilde{X}})$ a (t,dlt) modification. A stratum of $(\widetilde{X},D_{\widetilde{X}})$ is an irreducible component of a non-empty intersection of components of $D_{\widetilde{X}}$. Given a stratum W, there is a divisor $\mathrm{Diff}_W D_{\widetilde{X}}$ on W such that $(W,\mathrm{Diff}_W D_{\widetilde{X}})$ is a lc CY pair and

$$K_W + \operatorname{Diff}_W D_{\widetilde{X}} \sim_{\mathbb{Q}} (K_{\widetilde{X}} + D_{\widetilde{X}})_{|W}.$$

When $K_{\widetilde{X}} + D_{\widetilde{X}}$ is Cartier and $D_{\widetilde{X}}$ reduced, $\operatorname{Diff}_W D_{\widetilde{X}}$ is the sum of the restrictions of the components of $D_{\widetilde{X}}$ that do not contain W.

In particular, for any irreducible component S of $D_{\widetilde{X}}$, the link of [S] in $\mathcal{D}(X,D_X)$ is the dual complex $\mathcal{D}(S,\operatorname{Diff}_S D_{\widetilde{X}})$. Therefore, if (X,D_X) has maximal intersection, so does $(S,\operatorname{Diff}_S D_{\widetilde{X}})$. By the results of [6], $(S,\operatorname{Diff}_S D_X)$ then has a toric model.

As X has terminal singularities, X is normal and Cohen-Macaulay. Any Cartier component S of the boundary D_X is Cohen-Macaulay and satisfies Serre's condition S_2 . By [12, Proposition 16.9], $(S, \operatorname{Diff}_S D_X)$ is semi log canonical (slc). In particular, if X is Gorenstein and D_X irreducible, D_X has slc singularities.

I am particularly interested in producing examples of (t,lc) CY pairs for which the mirror partners proposed in Conjecture 1.9 (see also [8]) can be constructed; this motivates the following definition:

Definition 2.3. A (t,dlt) modification $(\widetilde{X}, D_{\widetilde{X}}) \to (X, D_X)$ is called good if $(\widetilde{X}, D_{\widetilde{X}})$ is log smooth in the sense of log geometry, that is if the components of $D_{\widetilde{X}}$ are non-singular and if \widetilde{X} has only cyclic quotient singularities.

An immediate consequence of the definition is that if $(\widetilde{X}, D_{\widetilde{X}}) \xrightarrow{f} (X, D_X)$ is a good (t,dlt) modification and $D_X = \sum_i D_i$, then

$$D_{\widetilde{X}} = \sum_{i} f_{*}^{-1} D_i + E,$$

where E is reduced and f-exceptional, and the restriction of f to $f_*^{-1}D_i$ is a resolution for all i.

Normal singularities Let $p \in \text{Sing}(D_i)$ be an isolated singularity lying on a single component of the boundary. The restriction $f_i \colon \widetilde{D}_i \to D_i$ is a

resolution and we have:

$$K_{\widetilde{D}_i} = (K_{\widetilde{X}} + D_i)_{|\widetilde{D}_i} = (f_{|\widetilde{D}_i})^* K_{D_i} - (E)_{|\widetilde{D}_i}$$

where E is defined by $K_{\widetilde{X}} + f_*^{-1}D_{\widetilde{X}} + E = f^*(K_X + D_X)$. We now assume that D_i is Cartier, as is the case when X is Gorenstein and D_X irreducible. Without loss of generality, assume that $\operatorname{Sing}(D_i) = p$. Then, p is canonical if $E \cap D_i = \emptyset$, and elliptic otherwise. Indeed, let

$$f_i \colon \widetilde{D}_i \stackrel{q}{\to} \overline{D}_i \stackrel{\mu}{\to} D_i$$

be the factorisation through the minimal resolution of $(p \in D_i)$. Then, q is either an isomorphism or an isomorphism at the generic point of each component of $E_{|\widetilde{D}_i}$ because f is volume preserving. We have: $K_{\overline{D}_i} = \mu^* K_{D_i} - Z$, where the effective cycle $Z = q_*(E_{D_i})$ is either empty (and p is canonical) or a reduced sum of μ -exceptional curves (and p is elliptic). In the second case, $Z \sim -K_{\widetilde{D}_i}$ is the fundamental cycle of $(p \in D_i)$. If Z is irreducible, it is reduced and has genus 1; if not, every irreducible component of Z is a smooth rational curve of self-intersection -2.

When p is elliptic, Z is reduced and p is a Kodaira singularity [10, Theorem 2.9], i.e. a resolution is obtained by blowing up points of the singular fibre in a degeneration of elliptic curves; further, in Arnold's terminology, the singularity p is uni or bimodal.

Further, $p \in D_i$ is a hypersurface singularity (resp. a codimension 2 complete intersection, resp. not a complete intersection) when $-3 \le Z^2 \le -1$ (resp. $Z^2 = -4$, resp. $Z^2 \le -5$) [14]. When $-1 \le Z^2 \le -4$, normal forms are known for $p \in D_i$: Table 1 lists normal forms of slc hypersurface singularities, while normal forms of codimension 2 complete intersections elliptic singularities are given in [19].

3. Examples of rigid maximal intersection 3-fold CY pairs

All the examples below are (t, lc) CY pairs (X, D_X) which admit no toric model. Except for Example 3.4, all underlying varieties X are birationally rigid quartic hypersurfaces by Proposition 2.2; the underlying variety in Example 3.4 is a smooth cubic 3-fold, and therefore non-rational.

3.1. Examples with normal boundary.

Example 3.1. Consider the CY pair (X, D_X) where X is the nonsingular quartic hypersurface

$$X = \{x_1^4 + x_2^4 + x_3^4 + x_0x_1x_2x_3 + x_4(x_0^3 + x_4^3) = 0\}$$

and D_X is its hyperplane section $X \cap \{x_4 = 0\}$.

The quartic surface D_X has a unique singular point p = (1:0:0:0:0), and using the notation of Table 1, p is locally analytically equivalent to a $T_{4,4,4}$ cusp

$$\{0\} \in \{x^4 + y^4 + z^4 + xyz = 0\}.$$

type	name	symbol	equation $f \in \mathbb{C}[x, y, z]$		$\operatorname{mult}_0 f$
terminal	smooth	A_0	x		1
canonical	du Val	A_n	$x^2 + y^2 + z^{n+1}$	$n \ge 1$	2
		D_n	$x^2 + z(y^2 + z^{n-2})$	$n \ge 4$	2
		E_6	$x^2 + y^3 + z^4$		2
		E_7	$x^2 + y^3 + yz^3$		2
		E_8	$x^2 + y^3 + z^5$		2
lc	simple elliptic	$X_{1,0}$	$x^2 + y^4 + z^4 + \lambda xyz$	$\lambda^4 \neq 64$	2
		$J_{2,0}$	$x^2 + y^3 + z^6 + \lambda xyz$	$\lambda^6 \neq 432$	2
		$T_{3,3,3}$	$x^3 + y^3 + z^3 + \lambda xyz$	$\lambda^3 \neq -27$	3
	cusp	$T_{p,q,r}$	$x^p + y^q + z^r + xyz$	$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$	2 or 3
slc	normal crossing	A_{∞}	$x^2 + y^2$		2
	pinch point	D_{∞}	$x^2 + y^2 z$		2
	degenerate cusp	$T_{2,\infty,\infty}$	$x^2 + y^2 + z^2$		2
		$T_{2,q,\infty}$	$x^2 + y^2(z^2 + y^{q-2})$	$q \ge 3$	2
		$T_{\infty,\infty,\infty}$	xyz		3
		$T_{p,\infty,\infty}$	$xyz + x^p$	$p \ge 3$	3
		$T_{p,q,\infty}$	$xyz + x^p + y^q$	$q \ge p \ge 3$	3

Table 1. Dimension 2 slc hypersurface singularities

 D_X is easily seen to be rational: the projection from the triple point p is

$$D_X \dashrightarrow \mathbb{P}^2_{x_1,x_2,x_3};$$

this map is the blowup of the 12 points $\{x_1^4 + x_2^4 + x_3^4 = x_1x_2x_3 = 0\}$, of which 4 lie on each coordinate line $L_i = \{x_i = 0\}$, for i = 1, 2, 3.

I treat this example in detail and construct explicitly a good (t,dlt) modification of the pair (X, D_X) .

Let $f: X_p \to X$ be the blowup of p, then X_p is non-singular, the exceptional divisor E satisfies $(E, \mathcal{O}_E(E)) = (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-1))$, and if D denotes the proper transform of D_X , we have:

$$K_{X_p} + D + E = f^*(K_X + D).$$

Explicitly, the blowup $\mathcal{F} \to \mathbb{P}^4$ of \mathbb{P}^4 at p is the rank 2 toric variety $\mathrm{TV}(I,A)$, where $I=(u,x_0)\cap(x_1,\ldots,x_4)$ is the irrelevant ideal of $\mathbb{C}[u,x_0,\ldots,x_4]$ and A is the action of $\mathbb{C}^*\times\mathbb{C}^*$ with weights:

(1)
$$\begin{pmatrix} u & x_0 & s_1 & s_2 & s_3 & s_4 \\ 1 & 0 & -1 & -1 & -1 & -1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

The equation of X_p is

$$X_p = \{u^2(u(s_1^4 + s_2^4 + s_3^4 + (x_0s_1s_2s_3)) + s_4(x_0^3 + u^3s_4^3) = 0\},\$$

while $E = \{u = 0\}$ and $D = \{u(s_1^4 + s_2^4 + s_3^4) + x_0s_1s_2s_3 = 0\}$. By construction, E is the projective plane with coordinates s_1, s_2, s_3 . Note that $(X_p, D + E)$ is not dlt because $D \cap E = \{x_0s_1s_2s_3 = 0\}$ consists of 3 concurrent lines C_1, C_2, C_3 .

Consider $g_1: X_1 \to X_p$ the blowup of the nonsingular curve

$$C_1 = \{u = s_1 = s_4 = 0\} \subset X_p.$$

The exceptional divisor of g_1 is a surface $E_1 \simeq \mathbb{P}(\mathcal{N}_{C_1/X_p})$, and since $C_1 \simeq \mathbb{P}^1$, the restriction sequence of normal bundles gives

$$\mathcal{N}_{C_1/X_p} \simeq \mathcal{N}_{C_1/E} \oplus (\mathcal{N}_{E/X_p})_{|C_1} \simeq \mathcal{O}_{C_1}(1) \oplus \mathcal{O}_E(-1)_{|C_1},$$

so that $E_1 = \mathbb{F}_2$. Further,

$$K_{X_1} + D + E + E_1 = g_1^* (K_{X_p} + D + E)$$

where, abusing notation, I denote by D and E the proper transforms of the divisors D and E. The "restricted pair" on E_1 is a surface CY pair $(E_1,(D+E)_{|E_1})$ by adjunction. By construction, $E\cap E_1$ is the negative section σ . The curve $\Gamma=D\cap E_1$ is irreducible, and since $(D+E)_{|E_1}$ is anticanonical, we have

$$\Gamma \sim \sigma + 4f$$
 where f is a fibre of $\mathbb{F}_2 \to \mathbb{P}^1$, and $\Gamma^2 = 6, \Gamma \cdot E_{|E_1} = 2$.

The divisors D, E, E_1 meet in two points, the dual complex $\mathcal{D}(X_1, D + E + E_1)$ is not simplicial it is a sphere S^2 whose triangulation is given by 3 vertices on an equator. While not strictly necessary, we consider a further blowup to obtain a (t,dlt) pair with simplicial dual complex.

Denote by C_2 the proper transform of the curve

$$\{u = s_2 = s_4 = 0\}.$$

Then $C_2 \subset E \cap D$ is rational, and as above

$$\mathcal{N}_{C_2/X_1} \simeq \mathcal{N}_{C_2/E} \oplus (\mathcal{N}_{E/X_2})_{|C_2} = \mathcal{O}_{C_2}(1) \oplus \mathcal{O}_{C_2}(-2).$$

Let $g_2: X_2 \to X_1$ be the blowup of C_2 , then the exceptional divisor of g_2 is a Hirzebruch surface

$$E_2 \simeq \mathbb{P}_{\mathbb{P}^1}(\mathcal{N}_{C_2/X_1}) \simeq \mathbb{F}_3.$$

Still denoting by D, E, E_1 the strict transforms of D, E, E_1 , we have:

$$K_{X_2} + D + E + E_1 + E_2 = g_2^* (K_{X_1} + D + E + E_1).$$

The pair $(X_2, D + E + E_1 + E_2)$ is dlt; the composition

$$g_2 \circ g_1 \circ f : (\widetilde{X}, D_{\widetilde{X}}) = (X_2, D + E + E_1 + E_2) \to (X, D_X)$$

is a good (t,dlt) modification.

The "restrictions" of $(X, D_{\widetilde{X}})$ to the component of the boundary are the following surface anticanonical pairs:

- On D: $(E + E_1 + E_2)_{|D}$ is a cycle of (-3)-curves, the morphism $D \to D_X$ is the familiar resolution of the $T_{4,4,4}$ cusp singularity;

- On E: $(D + E_1 + E_2)_E$ is the triangle of coordinate lines with self-intersections (1, 1, 1);
- On E_1 : $(D + E + E_2)_{E_1}$ is an anticanonical cycle with self-intersections (5, -3, -1);
- On E_2 : $(D + E + E_1)_{E_2}$ is an anticanonical cycle with self-intersections (5, -3, 0) (as above, $E_{|E_2} \sim \sigma$ is a negative section, $E_{1|E_2} \sim f$ a fibre of $\mathbb{F}_3 \to \mathbb{P}^1$, and $D_{|E_2} \sim 4f + \sigma$).

It follows that the dual complex $\mathcal{D}(X, D_X)$ is PL homeomorphic to a tetrahedron and (X, D_X) has maximal intersection. Note that $(0 \in D_X)$ is a maximal intersection lc point, and since D_X is a rational surface, it has a toric model.

Example 3.2. Let X be the hypersurface

$$X = \{x_3(x_0^3 + x_1^3) + x_2^4 + x_0x_1x_2x_3 + x_4(x_3^3 + x_4^3) = 0\},\$$

and D_X its hyperplane section $X \cap \{x_4 = 0\}$.

The quartic X has 3 ordinary double points at the intersection points

$$L \cap \{x_0^3 + x_1^3 = 0\},\$$

where L is the line $\{x_2 = x_3 = x_4 = 0\}$. The singular locus of D_X is $\operatorname{Sing}(X) \cup \{p\}$, where p = (0:0:0:1:0) is a $T_{3,3,4}$ cusp, i.e. locally analytically equivalent to

$${0} \in {x^3 + y^3 + z^4 + xyz = 0}.$$

The quartic surface D_X is rational; the projection of D_X from p is

$$D_X \dashrightarrow \mathbb{P}^2_{x_0,x_1,x_2};$$

this map is defined outside of the 12 points (counted with multiplicity) defined by $\{x_2^4 = x_0^3 + x_1^3 + x_0x_1x_2 = 0\}$.

If $\widetilde{X} \xrightarrow{f} X$ is the composition of the blowups at the ordinary double points and at p, \widetilde{X} is smooth and $D_{\widetilde{X}}$ is non-singular, so that f is a good (t,dlt) modification.

The minimal resolution of $p \in D_X$ is a rational curve with self intersection $C^2 = -3$. Explicitly, taking the blowup of X at p, the proper transform is a rational surface D. The exceptional curve is the preimage of a nodal cubic in \mathbb{P}^2 blown up at 12 points counted with multiplicities. Note that $(\widetilde{X}, D + E)$ is not dlt, but in order to obtain a (t,dlt) modification, we just need to blowup the node of $D \cap E$ which is a nonsingular point of \widetilde{X} , D and E. The (t,dlt) modification of (X, D_X) in a neighbourhood of p is good and the associated dual complex is 2-dimensional.

The pair (X, D_X) has maximal intersection; but as in the previous examples, X is rigid, so that (X, D_X) can have no toric model.

Example 3.3. Let X be the nonsingular quartic hypersurface

$$X = \{x_0^3 x_3 + x_1^4 + x_2^4 + x_0 x_1 x_2 x_3 + x_4 (x_3^3 + x_4^3) = 0\} \subset \mathbb{P}^4$$

and D_X its hyperplane section $X \cap \{x_4 = 0\}$.

The surface D_X has a unique singular point p = (0:0:0:1:0) of D_X , which is a cusp $T_{3,4,4}$, i.e. is locally analytically equivalent to

$$\{0\} \in \{x^3 + y^4 + z^4 + xyz = 0\}.$$

As in Example 3.1, X is non-singular, and finding a good (t,dlt) modification of (X, D_X) will amount to taking a minimal resolution of the singular point of D_X . Let $X_p \to X$ be the blowup of X at p; X_p is non-singular and if D denotes the proper transform of D_X , and E the exceptional divisor, $D \cap E$ consists of 2 rational curves of self intersection -3 and -4. These curves are the proper transforms of $\{x_0 = 0\}$ and of $\{x_0^2 + x_1x_2\}$ under the blow up of $\mathbb{P}^2_{x_0,x_1,x_2}$ at the points

$${x_1^4 + x_2^4 = x_0(x_1x_2 + x_0^2) = 0}.$$

The dual complex consists of 3 vertices that are joined by edges and span 2 distinct faces: $\mathcal{D}(X, D_X)$ is PL homeomorphic to a sphere S^2 whose triangulation is given by 3 vertices on an equator. The CY pair (X, D_X) has maximal intersection but no toric model.

3.2. Examples with non-normal boundary.

Example 3.4. This example is due to R. Svaldi. Consider the cubic 3-fold

$$X = \{x_0x_1x_2 + x_1^3 + x_2^3 + x_3q + x_4q' = 0\} \subset \mathbb{P}^4$$

where q, q' are homogeneous polynomials of degree 2 in x_0, \dots, x_4 . If the quadrics q and q' are general and if

$$(q(1,0,0,0,0), q'(1,0,0,0,0)) \neq (0,0),$$

then X and $S = \{x_3 = 0\} \cap X$ and $T = \{x_4 = 0\} \cap X$ are nonsingular.

Let D_X be the anticanonical divisor S+T. The curve $C=S\cap T=\Pi\cap X$ for $\Pi=\{x_3=x_4=0\}$ is a nodal cubic. It follows that both (S,C) and (T,C) are log canonical, and therefore so is (X,D_X) .

Since S and T are smooth, $\operatorname{Sing}(D_X) = S \cap T = C$, and if p is the node of C, we have:

$$(p \in D_X) \sim \{0\} \in \{(xy + x^3 + y^3 + z)(xy + x^3 + y^3 + t) = 0\}$$
$$\sim \{0\} \in \{(xy + z)(xy + t) = 0\} \sim \{0\} \in \{(xy + z)(xy - z) = 0\}.$$

Thus, $p \in D_X$ is a double pinch point, i.e. p is locally analytically equivalent to $\{0\} \in \{x^2y^2 - z^2 = 0\}$.

We now construct a good (t,dlt) modification of (X, D_X) . Let $f: X_C \to X$ be the blowup of X along C; Sing (X_C) is an ordinary double point.

Indeed, let $\Pi = \{x_3 = x_4 = 0\}$, then f is the restriction to X of the blowup $\mathcal{F} \to \mathbb{P}^4$, where \mathcal{F} is the rank 2 toric variety $\mathrm{TV}(I,A)$, where $I = (u, x_0, x_1, x_2) \cap (x_3, x_4)$ is the irrelevant ideal of $\mathbb{C}[u, x_0, \dots, x_4]$ and A is the action of $\mathbb{C}^* \times \mathbb{C}^*$ with weights:

$$\left(\begin{array}{cccccc} u & x_0 & x_1 & x_2 & x_3 & x_4 \\ 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{array}\right),$$

The equation of X_C is

$$\{x_0x_1x_2 + x_1^3 + x_2^3 + u(x_3q + x_4q') = 0\},\$$

so that X_C has a unique singular point at

$$x_0 - 1 = u = x_1 = x_2 = x_3 q(1, 0, 0, 0, 0) + x_4 q'(1, 0, 0, 0, 0) = 0,$$

and this is a 3-fold ordinary double point. In addition, denoting by $E_f = \{u = 0\} \cap X_C$ the exceptional divisor, we have

$$K_{X_C} + \widetilde{S} + \widetilde{T} + E_f = K_X + S + T,$$

so that the pair $(X_C, \widetilde{S} + \widetilde{T} + E_f)$ is a (t,lc) CY pair.

The pair $(X_C, \widetilde{S} + \widetilde{T} + E_f)$ is not dlt as the boundary has multiplicity 3 along the fibre F over the node of $S \cap T$. The blowup of F is not \mathbb{Q} -factorial, therefore in order to obtain a good (t,dlt) modification, we consider the divisorial contraction $g \colon \widetilde{X} \to X_C$ centred along F. This is obtained by (a) blowing up the node, (b) then blowing up the proper transform of F, (c) flopping a pair of lines with normal bundle (-1, -1) and (d) contracting the proper transform of the $\mathbb{P}^1 \times \mathbb{P}^1$ above the node to a point $\frac{1}{2}(1, 1, 1)$. The exceptional divisor of g is denoted by E_g .

The pair $(\widetilde{X}, \widetilde{S} + \widetilde{T} + \widetilde{E}_f + E_g)$ is the desired (t,dlt) modification of (X, D_X) , and it has maximal intersection. The dual complex is PL homeomorphic to a tetrahedron.

Example 3.5. Let X be the quartic hypersurface

$$X = \{x_1^2 x_2^2 + x_1 x_2 x_3 l + x_3^2 q + x_4 f_3 = 0\} \subset \mathbb{P}^4,$$

where l (resp. q) is a general linear (resp. quadratic) form in x_0, \dots, x_3 , and f_3 a general homogeneous form of degree 3 in x_0, \dots, x_4 . Let D_X be the hyperplane section $X \cap \{x_4 = 0\}$.

As l, q and f_3 are general, X has 6 ordinary double points. Indeed, denote by $L = \{x_1 = x_3 = x = 4 = 0\}$ and $L' = \{x_2 = x_3 = x = 4 = 0\}$, then

$$Sing(X) = \{L \cap \{f_3 = 0\}\} \cup \{L' \cap \{f_3 = 0\}\} = \{q_1, q_2, q_3\} \cup \{q'_1, q'_2, q'_3\}$$

which consists of 3 points on each of the lines. In the neighbourhood of each point q_i (resp. q'_i) for i = 1, 2, 3, the equation of X is of the form

$$\{0\} \in \{xy + zt = 0\}$$

(and $D_X = \{t = 0\}$) so that all singular points of X are ordinary double points. The quartic hypersurface X is birationally rigid by Proposition 2.2.

The surface D_X is non-normal as it has multiplicity 2 along L and L'. The point $p = L \cap L'$ is locally analytically equivalent to

$$\{0\} \in \{x^2y^2 + z^2 = 0\},$$

so that $p \in D_X$ is a double pinch point. We conclude that the surface D_X has slc singularities, and hence (X, D_X) is a (t, lc) CY pair.

We construct a good (t,dlt) modification as follows.

First, since $\operatorname{Sing}(X) \cap L$ (resp. $\operatorname{Sing}(X) \cap L'$) is non-empty, the blowup of X along L (resp. along L') is not \mathbb{Q} -factorial. In order to remain in the (t,dlt) category, we consider the divisorial extraction $f\colon X_L \to X$ centered on L (resp. L'). This is obtained by (a) blowing up the 3 nodes lying on L, (b) blowing up the proper transform of L, (c) flopping 3 pairs of lines with normal bundle (-1,-1) and (d) contracting the proper transforms of the three exceptional divisors $\mathbb{P}^1 \times \mathbb{P}^1$ lying above the nodes to points $\frac{1}{2}(1,1,1)$. The exceptional divisor of f is denoted by f. Let f f denote the morphism obtained by composing the divisorial extraction centered on f with that centered on f (in any order), and let f denote the exceptional divisors of the divisorial extractions. Then

$$K_{\widetilde{Y}} + \widetilde{D} + E + E' = p^*(K_X + D)$$

is a (t,dlt) modification of (X, D_X) and it has maximal intersection. The dual complex $\mathcal{D}(X, D_X)$ is is PL homeomorphic to a sphere S^2 whose triangulation is given by 3 vertices on an equator.

4. Further results on quartic 3-fold CY pairs: beyond maximal intersection

This section concentrates on (t,lc) CY pairs (X, D_X) , where X is a factorial quartic hypersurface in \mathbb{P}^4 and D is an irreducible hyperplane section of X. I give some more detail on the possible dual complexes of such pairs.

As explained in Section 2.2, D_X is slc because (X, D_X) is lc. In order to study completely the dual complexes of such (t,lc) CY pairs, one needs a good understanding of the normal forms of slc singularities that can lie on D. In the case of a general Fano X, this step would require additional work, but here, D_X is a quartic surface in \mathbb{P}^3 and the study of singularities of such surfaces has a rich history. I recall some results directly relevant to the construction of degenerate CY pairs (X, D_X) . The classification of singular quartic surfaces in \mathbb{P}^3 can be broken in three independent cases.

- (a) Quartic surfaces with no worse than rational double points: the minimal resolution is a K3 surface. Possible configurations of canonical singularities were studied by several authors using the moduli theory of K3 surfaces; there are several thousands possible configurations. The pair (X, D_X) is (t,d) and the dual complex of (X, D_X) is reduced to a point.
- (b) Non-normal quartic surfaces were classified by Urabe [17]; there are a handful of cases recalled in Theorem 4.1.
- (c) Non-canonical quartic surfaces with isolated singularities. These are studied by Wall [20] and Degtyarev [5] among others; their results are recalled in Theorem 4.5.

Theorem 4.1. [17] A non-normal quartic surface $D \subset \mathbb{P}^3$ is one of:

- 1. the cone over an irreducible plane quartic curve with a singular point of type A_1 or A_2 .
- 2. a ruled surface over a smooth elliptic curve G, $D = \varphi_{\mathcal{L}}(Z)$, where:

- (a) $\mathcal{L} = \mathcal{O}_Z(C_1) \otimes \pi^*M$, and $Z = \mathbb{P}_G(\mathcal{O}_G \oplus N)$, for
 - -M a line bundle of degree 2 and
 - -N a non-trivial line bundle of degree 0.

Denoting by L_i the images by $\varphi_{\mathcal{L}}$ of the sections of Z associated to $\mathcal{O}_G \oplus N \to \mathcal{O}_G$ and $\mathcal{O}_G \oplus N \to N$, $\operatorname{Sing}(D) = L_1 \cup L_2$.

(b) $\mathcal{L} = \mathcal{O}_Z(C) \otimes \pi^*M$, and $Z = \mathbb{P}_G(E)$ for a rank 2 vector bundle E that fits in a non-splitting

$$0 \to \mathcal{O}_G \to E \to \mathcal{O}_G \to 0.$$

Denoting by L the image by $\varphi_{\mathcal{L}}$ of a section $G \to Z$, Sing D = L.

- 3. a rational surface $D \subset \mathbb{P}^3$ which is
- (a) the image of a smooth $S \subset \mathbb{P}^5$ under the projection from a line disjoint from S; D has no isolated singular point and

 $-S = v_2(\mathbb{P}^2)$, where v_2 is the Veronese embedding; D is the Steiner Roman surface and is homeomorphic to \mathbb{RP}^2 ;

 $-S = \varphi(\mathbb{P}^1 \times \mathbb{P}^1)$, where φ is the embedding defined by $|l_1 + 2l_2|$ for $l_{1,2}$ the rulings of $\mathbb{P}^1 \times \mathbb{P}^1$;

 $-S = \varphi(\mathbb{F}_2)$, where φ is the embedding defined by $|\sigma + f|$ for σ the negative section and f the fibre of \mathbb{F}_2 .

- (b) the image of a surface $\hat{D} \subset \mathbb{P}^4$ with canonical singularities under the projection from a point not lying on it; \hat{D} is a degenerate dP4 surface which is the blowup of \mathbb{P}^2 in 5 points in almost general position.
- (c) a rational surface embedded by a complete linear system on its normalisation D̂; the non-normal locus of D is a line L and D may have isolated singularities outside L. The minimal resolution of the normalisation of D is a blowup of P² in 9 points. The normalisation of D has at most two rational triple points lying on the inverse image of the non-normal locus; their images on D are also triple points.

Remark 4.2. D is not slc in case 1.

Corollary 4.3. Let (X, D_X) be a (t,lc) quartic CY pair with non-normal boundary. Then, (X, D_X) has maximal intersection except in the cases described in 2.(a) and (b) of Theorem 4.1.

Example 4.4. Consider the pair (X, D_X) where:

$$X = \{x_0^2 x_3^2 + x_1^2 x_2 x_3 + x_2^2 q(x_0, x_1) + x_4 f_3 = 0\}, D_X = X \cap \{x_4 = 0\},$$

where q is a general quadratic form in (x_1, x_2) and f_3 a general cubic in x_0, \dots, x_4 .

When q and f_3 are general, the quartic hypersurface X has 3 ordinary double points. Indeed, denote by $L = \{x_0 = x_1 = x_4 = 0\}$, then $\operatorname{Sing}(X)$ consists of points of intersection of L with $\{f_3 = 0\}$; there are 3 such points $\{q_1, q_2, q_3\}$ when f_3 is general. In the neighbourhood of each point q_i for i = 1, 2, 3, the equation of X is of the form

$$\{0\} \in \{xy + zt = 0\}$$

(and $D_X = \{t = 0\}$) so that all singular points of X are ordinary double points. The nodal quartic X is terminal and \mathbb{Q} -factorial because it has less than 9 ordinary double points; X is birationally rigid by [2, 16].

Taking the divisorial extraction of the line L is enough to produce a dlt modification $(\widetilde{X}, D_{\widetilde{X}} + E)$ of (X, D_X) ; this shows that (X, D_X) does not have maximal intersection. The dual complex has a single 1-stratum, the elliptic curve $D_{\widetilde{X}} \cap E$, which is a (2,2) curve in $\mathbb{P}^1 \times \mathbb{P}^1$. The quartic surface D_X is a ruled surface over an elliptic curve isomorphic to $D_{\widetilde{X}} \cap E$; it is an example of case 2.(b) in Theorem 4.1.

Theorem 4.5. [20] A normal quartic surface $D \subset \mathbb{P}^3$ with at least one non-canonical singular point is one of:

- 1. D has a single elliptic singularity and D is rational, or
- 2. D is a cone, or
- 3. D is elliptically ruled and
- (a) D has a double point p with tangent cone z^2 , the projection away from p is the double cover of \mathbb{P}^2 branched over a sextic curve Γ . The curve Γ is the union of 3 conics in a pencil that also contains a double line. When this line is a common chord, D has two $T_{2,3,6}$ singularities, when this line is a common tangent, D has one singularity of type $E_{4,0}$. In the first case, D may have an additional A_1 singular point.
- (b) D is $\{(x_0x_3 + q(x_1, x_2))^2 + f_4(x_1, x_2, x_3) = 0\}$ and $\{f_4 = 0\}$ is four concurrent lines. Depending on whether $L = \{x_3 = 0\}$ is one of these lines or not and on whether the point of concurrence lies on L, D has either two $T_{2,4,4}$ singular points or one trimodal elliptic singularity. The surface may have additional canonical points A_n for n = 1, 2, 3 or $2A_1$.

Example 4.6. Let X be the nonsingular quartic hypersurface

$$X = \{x_0^2 x_3^2 + x_0 x_1^3 + x_3 x_2^3 + x_0 x_1 x_2 x_3 + x_4 (x_0^3 + x_3^3 + x_4^3) = 0\}$$

and D_X its hyperplane section $X \cap \{x_4 = 0\}$. The surface D_X is normal,

$$\operatorname{Sing}(D_X) = \{p, p'\} = \{(1:0:0:0:0), (0:0:0:1:0)\},\$$

and each singular point is simple elliptic $J_{2,0} = T_{2,3,6}$, i.e. is locally analytically equivalent to $\{0\} \in \{x^2 + y^3 + z^6 + xyz = 0\}$.

Here X is nonsingular and D_X is irreducible and normal, and as I explain below, finding a good (t,dlt) modification amounts to constructing a minimal resolution of D_X . Let $\widetilde{X} \to X$ be the composition of the weighted blowups at p = (1:0:0:0:0) with weights (0,2,1,3,1) and at p' = (0:0:0:1:0) with weights (3,1,2,0,1), and denote by E and E' the corresponding exceptional divisors. Note that \widetilde{X} is terminal and \mathbb{Q} -factorial by [11, Theorem 3.5] and has no worse than cyclic quotient singularities. The morphism

$$(\widetilde{X}, D + E + E') \stackrel{f}{\to} (X, D)$$

is volume preserving and the intersection of D with each exceptional divisor is a smooth elliptic curve $C_6 \subset \mathbb{P}(1,1,2,3)$ not passing through the singular points of E and E'; f is a good (t,dlt) modification.

The dual complex $\mathcal{D}(X, D_X)$ is 1-dimensional, it has 3 vertices and 2 edges; (X, D_X) does not have maximal intersection. The quartic surface D_X is an example of case 3.(a) in Theorem 4.5.

Corollary 4.7. Let (X, D_X) be a (t,lc) quartic CY pair. Assume that D_X is normal, has non-canonical singularities but is not a cone. Then (X, D_X) has maximal intersection except in cases 3.(a) and (b) of Theorem 4.5.

Remark 4.8. When dim $\mathcal{D}(X, D_X) = 1$, D_X either has two $T_{2,3,6}$ or two $T_{2,4,4}$ singularities. Indeed, as is explained in Section 2.2, singular points $p \in D$ are Kodaira singularities, and in particular are at worst bimodal. The description of cases 3.(a) and (b) of Theorem 4.5 immediately implies the result, because a surface singularity of type $E_{4,0}$ is trimodal.

References

- Brown, M., McKernan, J., Svaldi, R., and Zong, H.: A geometric characterisation of toric varieties. Duke Math. J., 167, 923–968, (2018)
- [2] Cheltsov, I.: Factorial threefold hypersurfaces, J. Algebraic Geometry, 19, 781–791, (2010).
- [3] Corti, A. and Kaloghiros, A.-S.: The Sarkisov program for Mori fibred Calabi–Yau pairs, Algebraic Geometry 3, 370–384 (2016)
- [4] de Fernex, T., Kollár, J. and Xu, C.: The dual complex of singularities, Adv. Stud. Pure Math. 74, 103–130 (2017).
- [5] Degtyarev, A.: Classification of surfaces of degree four having a nonsimple singular point, Math. USSR Izv. 35, 607–627(1990)
- [6] Gross, M., Hacking, P. and Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I, Inst. Hautes Etudes Sci. Publ. Math. 122, 65–168 (2015)
- [7] Gross, M., Hacking, P., Keel, S. and Kontsevich, M.: Canonical bases for cluster algebras, J. Amer. Math. Soc. **31**, 497-608 (2018)
- [8] Gross, M. and Siebert, B.: Intrinsic mirror symmetry and punctured Gromov-Witten invariants, Proc. of Symposia in Pure Mathematics, **97.2**, 199-230 (2018)
- [9] Iskovskih, V. and Manin, Ju.: Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb., 86, 140-166 (1971)
- [10] Karras, U.: On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 47, 43-65 (1980)
- [11] Kawakita, M.: Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145, 105-119 (2001)
- [12] J. Kollár et al, Flips and abundance, Astérisque, 211, (1992)
- [13] Kollár, J. and Xu, C.: The dual complex of Calabi–Yau pairs, Invent. math. 205, 527–557 (2016)
- [14] Laufer, H.: On minimally elliptic singularities, Amer. J. of Math, 99, 1257-1295 (1977)
- [15] Liu, W. and Rollenske, S.: Two-dimensional semi-log-canonical hypersurfaces, Le Matematiche, 67, 185-202 (2012)
- [16] Mella, M.: On the birational geometry of quartic 3-folds II: the importance of being Q-factorial, Math. Ann., **330**, 107-126 (2004)
- [17] Urabe, T.: Classification of non-normal quartic surfaces, Tokyo J. Math., 9, 265-295, (1986)

SOME EXAMPLES OF CALABI-YAU PAIRS WITH MAXIMAL INTERSECTION AND NO TORIC MODE 15

- [18] Wagreich, P.: Elliptic singularities of surfaces, Amer. J. Math., 92, 419-454 (1970)
- [19] Wall, C.: Classification of unimodal isolated singularities of complete intersections, Proc. of Symposia in Pure Mathematics, **40**, 625-640 (1983)
- [20] Wall, C.: Sextic curves and quartic surfaces with higher singularities, preprint, (1999), https://www.liverpool.ac.uk/~ctcw/hsscqs.ps

Department of Mathematics, Brunel University London, Uxbridge UB8 3PH, UK

 $E ext{-}mail\ address: anne-sophie.kaloghiros@brunel.ac.uk}$