
Contents lists available at ScienceDirect

Addictive Behaviors Reports

journal homepage: www.elsevier.com/locate/abrep

Internet addiction disorder detection of Chinese college students using
several personality questionnaire data and support vector machine
Zonglin Dia, Xiaoliang Gonga,⁎, Jingyu Shib, Hosameldin O.A. Ahmedc, Asoke K. Nandic,a
a School of Electronic and Information Engineering, Tongji University, Shanghai, China
b East Hospital, Tongji University School of Medicine, Shanghai 200120, China
c Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UK

A R T I C L E I N F O

Keywords:
Internet addiction (IA)
IA detection
Personality questionnaire
Feature selection
Support vector machine

A B S T R A C T

With the unprecedented development of the Internet, it also brings the challenge of Internet Addiction (IA),
which is hard to diagnose and cure according to the state-of-art research. In this study, we explored the feasi-
bility of machine learning methods to detect IA. We acquired a dataset consisting of 2397 Chinese college
students from the University (Age: 19.17 ± 0.70, Male: 64.17%) who completed Brief Self Control Scale (BSCS),
the 11th version of Barratt Impulsiveness Scale (BIS-11), Chinese Big Five Personality Inventory (CBF-PI) and
Chen Internet Addiction Scale (CIAS), where CBF-PI includes five sub-features (Openness, Extraversion,
Conscientiousness, Agreeableness, and Neuroticism) and BSCS includes three sub-features (Attention, Motor and
Non-planning). We applied Student's t-test on the dataset for feature selection and Support Vector Machines
(SVMs) including C-SVM and ν-SVM with grid search for the classification and parameters optimization. This
work illustrates that SVM is a reliable method for the assessment of IA and questionnaire data analysis. The best
detection performance of IA is 96.32% which was obtained by C-SVM in the 6-feature dataset without nor-
malization. Finally, the BIS-11, BSCS, Motor, Neuroticism, Non-planning, and Conscientiousness are shown to be
promising features for the detection of IA.

1. Introduction

1.1. Background

In recent years, the development of the Internet has brought a lot of
benefits in our society. However, it also causes the Internet Addiction
Disorder (IAD) problems, which is also named as Pathological Internet
Use (PIU). Since IAD was first put forward by Ivan Goldberg in 1995
(Abbott, Cramer, & Sherrets, 1995; Young, 1998b), it has become a
social-psychological problem and many researchers have been working
on this topic (Dongyun, Ni'na, & Yao, 2018; Griffiths, 2018;
Wiederhold, 2018). Although IAD was not officially added into Diag-
nostic and Statistical Manual of Mental Disorders—Fifth Edition (DSM-
V) in 2013, Internet Gaming Disorder (IGD) has been included in Sec-
tion III, illustrating the importance of this area for further study (Petry
& O'brien, 2013; Cho et al., 2014; Hahn, Reuter, Spinath, & Montag,
2017; Association, A.P, 2013; Spada, 2014).

IAD is a compulsive-impulsive spectrum disorder which includes
five specific types or addiction: cyber-sexual addiction, cyber-relation-
ship addiction, net compulsions, information overload and computer

addiction (Young, 1998a, 1998b; Nordegren, 2002). As a result, IAD
can lead to marriage break-down, job losses, financial problems, aca-
demic failures and even death (Whang, Lee, & Chang, 2003; Young,
2004). Many studies indicate that IAD is a multi-dimension construct
which has many dependencies like mental health, age, peer influence,
social support, family relationship, parental mental health, emotion
dysregulation, alexithymia personality and so on (Mo, Chan, Chan, &
Lau, 2018; Xiuqin et al., 2010). Among these factors, certain personality
traits like self-control, impulsivity, items in Big Five personality in-
cluding Openness, Extraversion, Conscientiousness, Agreeableness,
Neuroticism are regarded to have close association with IAD (Ismail &
Zawahreh, 2017; Lam, Peng, Mai, & Jing, 2009; Musetti et al., 2016;
Treuer, Fa'bi'an, & Fu¨redi, 2001; Zhou, Li, Li, Wang, & Zhao, 2017).

Although IAD can be found in any age group and every occupation,
the youths are more vulnerable to IAD. Once they are addicted to the
Internet, they will have a deeper addiction level. Influenced by the
digital age, the Internet has resulted in the improvement of proficiency
in certain courses. However, more and more reports point out the ad-
dictive Internet usage problem. Globally, it is estimated that 4–12% of
adolescents may demonstrate IAD although the definition of IAD varies
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a lot (Petry & O'brien, 2013; Yau, Crowley, Mayes, & Potenza, 2012).
15.3% university freshmen in Taiwan and 20.3% adolescents in South
Korea were reported to have IAD (Ha et al., 2006; Lin, Ko, & Wu, 2011).
In China, the rates ranged from between 2.4%–5.5% in Hunan Province
and to 6.4% in Shanxi Province (Mei, Yau, Chai, Guo, & Potenza, 2016).
Also, college students are more likely trapped into the Internet among
the adolescents because of academic pressure, unlimited Internet ac-
cesses and newly experienced freedom from parental control (Young,
2004).

1.2. The previous work of IAD detection

IAD has been put forward over twenty years and many researchers
have been working on it about either the factors of this disorder or the
understanding of this disorder. (Ko et al., 2006) found adolescents who
have high novelty seeking, high harm avoidance and low reward de-
pendence are more likely to be addicted to IAD using t-test and logistic
regression. (Kayi¸s et al., 2016) investigated relationship between Big
Five Personality Traits and Internet Addiction using meta methods
which includes 12-study meta-analysis and calculates 13 effect sizes
and found that openness to new experiences, conscientiousness, extra-
version and agreeableness were negatively related with IAD whereas
neuroticism was positively related with IAD. Resilience was found to be
protective in IAD according to (Robertson, Yan, & Rapoza, 2018).
(Fumero, Marrero, Voltes, & Pen˜ate, 2018) shows that personal factors
have a greater impact on IAD.

Machine learning has been widely used in bioinformatics, brain-
machine interfaces, medical diagnosis and other medical areas (Baldi &
Brunak, 2001; Choi et al., 2018; Müller et al., 2008; Zhang et al., 2018;
Kononenko, 2001; Giger, 2018; Guo & Nandi, 2006). However, there
are few studies about how to detect IAD using machine learning
methods. (Wang, ZHANG, & ZHANG, 2008) proposed a Fuzzy Neural
Network (FNN) method to forecast pattern of network addiction, where
the number of layers is 3 and the features used are online-hours, fre-
quency, the reason for the Internet, determination, socialization, the
Internet skills, the attitude to the Internet and whether surf on the
Internet all night. The dataset used in the work is not mentioned and
the number of subjects is 10. (Gong et al., 2016) used clustering
methods including K-Means (Hartigan & Wong, 1979; Wagstaff, Cardie,
Rogers, Schro¨dl, et al., 2001), Hierarchical Clustering (Johnson, 1967;
Navarro, Frenk, & White, 1997) and Fuzzy C-Means Clustering (Bezdek,
Ehrlich, & Full, 1984) and personality data to predict Internet Game
Disorder (IGD) among Chinese college freshmen. The dataset used
comes from 580 freshmen from the University and the features used
include Self-Control, Attention, Motor, Non-planning, Extraversion,
Agreeableness, Conscientiousness, Neuroticism and Openness. Based on
the same dataset, (Di, Gong, Shi, Ahmed, & Nandi, 2017) used Support
Vector Machines (SVMs) and personality questionnaire data to detect
IAD among Chinese college students. The author compared the per-
formance of C-SVM and ν-SVM and did some work to find the influence
of sex and age on IAD. Their work indicated that IAD can be detected by
personality questionnaires and SVMs.

In IAD detection, Chen Internet Addiction Scale (CIAS) is one of the
standard questionnaires used as criteria of IAD. It has been frequently
used in many areas related, such as resting state fMRI study, task-re-
lated fMRI study, the correlation studies of IAD with other factors. The
internal reliability is in the range from 0.79 to 0.93, which shows its
effectiveness in statistic research (Ko et al., 2009; Chen et al., 2015;
Dong, Lin, & Potenza, 2015; Liu et al., 2014; Chen, Weng, Su, Wu, &
Yang, 2003; Mak et al., 2014; Yen, Ko, Yen, Wu, & Yang, 2007; Mo
et al., 2018; Chern & Huang, 2018; Lei, Li, Chiu, & Lu, 2018; Lau, Wu,
Gross, Cheng, & Lau, 2017; Chang, Chiu, Lee, Chen, & Miao, 2014).

So far, many works (Dieris-Hirche et al., 2017; Geng, Han, Gao, Jou,
& Huang, 2018; Lam, 2015; Mahapatra & Sharma, 2018; Robertson
et al., 2018; Romano, Truzoli, Osborne, & Reed, 2014) of IAD only
investigate the effect of a single factor or feature, which brings some

limitation to study this multi-dimension disorder completely. One of the
distinctive and important aspects of the current study is the use of
several questionnaires and multiple factors simultaneously.

1.3. The current study

To test the reliability of machine learning methods in IA detection,
this work used a larger dataset, compared the performance of multi-
SVM methods and FNN, and uses grid search to optimize the para-
meters. Different from other works, the data of several related ques-
tionnaires was collected to find the most distinguished features in the
following steps, which includes Brief Self Control Scale (BSCS), the 11th
version of Barratt Impulsiveness Scale (BIS-11), Chinese Big Five
Personality Inventory (CBF-PI) and CIAS. The details of these ques-
tionnaires are given in the next section. After data acquisition, Student's
t-test was used for feature selection to obtain several datasets, each with
the same set of students but different features. Then the performance
from these datasets using Support Vector Machines (SVMs) (Cortes &
Vapnik, 1995) with grid search for parameter selection were compared
and 10-fold cross validation was used to avoid the overfitting problem.
Furthermore, the runtime of the proposed method and others was
compared. Finally, a model for IA detection using C-SVM with the ac-
curacy of about 96.3% was found.

2. Materials and methods

2.1. Questionnaires

2.1.1. The 11th version of Barratt Impulsiveness Scale (BIS-11)
BIS-11 (Barratt, 1959; Patton, Stanford, et al., 1995) is a 30-item

questionnaire to evaluate one's impulsivity by summing sub-scale va-
lues which are Attention, Motor and Non-planning impulsivity, which is
wildly used around the world to measure one's impulsivity for fifty
years. Each item is scored according to the Frequency scale (1 is for
never; 4 is for Almost Always/Always). The internal consistency coeffi-
cients of BIS-11 total score is from 0.79 to 0.83 (Mayhew & Powell,
2014) and Cronbach's α is 0.794 in Chinese children (Li, 2006) and its
validity is also confirmed among Chinese (Cao, Su, Liu, & Gao, 2007;
Yang, 2007; Yao et al., 2007).

2.1.2. Chinese Big Five Personality Inventory (CBF-PI)
CBF-PI (McCrae & John, 1992; Poropat, 2009; Zhou, Niu, & Zou,

2000) is a restricted version of Big Five Inventory (BFI) to evaluate
Openness, Conscientiousness, Extraversion, Agreeableness and Neuro-
ticism in one's personality, which works well for Chinese college stu-
dents (Costa & McCrae, 1992; Thompson, 2008). It consists of 44-item
and the object rated each item on a 5-point scale where 1 stands for
strongly disagree and 5 is for strongly agree. The higher score indicates
higher level in the specific sub-dimension. The internal consistency
coefficients are from 0.78 to 0.85 (Wang, Dai, & Yao, 2011; Wang,
Jackson, Zhang, & Su, 2012) and Cronbach's α is in the range from
0.721 to 0.777 among Chinese (Carciofo, Yang, Song, Du, & Zhang,
2016). It is reported that Big Five Inventory can help BIS-11 evaluate
one's impulsivity and give a more specific evaluation result (Whiteside
& Lynam, 2001).

2.1.3. Brief Self Control Scale (BSCS)
BSCS (Tangney, Baumeister, & Boone, 2004) is a 13-item ques-

tionnaire to measure dispositional self-regulatory behaviors using 13
items rated on a 5-point scale, ranging from 1 (Not at all like me) to 5
(Very much like me). The internal consistency coefficient is from 0.73 to
0.84 (Mathews, Youman, Stuewig, & Tangney, 2007). Cronbach's α of
Self Control Scale (SCS) is 0.89 (Mei et al., 2016) and the SCS in Chinese
fit better (χ2/df= 3.96, GFI= 0.94, TLI= 0.81, RMSEA=0.06) (Qu
& Zou, 2009). BSCS has a very good reputation in self-control assess-
ment and BSCS has been widely used in many studies, especially in the
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domains of school/work, eating/weight, interpersonal functioning, and
wellbeing/adjustment (Malouf et al., 2014).

2.1.4. Chen Internet Addiction Scale (CIAS)
CIAS (Chen et al., 2003) is a 26-item self-report measure for the

Internet Addiction Evaluation whose score is from 1 (Does not match my
experience at all) to 4 (Definitely matches my experience). The total score
is in the range from 26 to 104. Compared with The Internet Addiction
Test, CIAS shows its priority for Chinese Students. Cronbach's α of the
CIAS for the sample is 0.94 (Chang et al., 2014). Higher CIAS score
indicates that increased severity of addiction to Internet activity. As for
the cut-off points of CIAS, the screening cut-off point is 57 while the
diagnostic point is 63 (Ko, Yen, Chen, Chen, & Yen, 2005). To make the
study accurate and general, we used the intersection of two versions.
Those with score upper than 63 are considered very likely to suffer with
IAD while whose score lower than 57 are not, which is also consistent
with the suggested threshold score of 63/64 to provide good diagnostic
accuracy with respect to Internet Addiction among adolescents (Chang
et al., 2014; Ko et al., 2005)

2.2. Participants

3123 college undergraduate students participated in the study,
where ethics approval was obtained from the Human Research Ethics
Committee of the University for data acquisition. Among these 3123
participants, 2397 students gave valid questionnaire answers. The re-
sults from those participants who did not finish all questionnaires or
give the straight same answers of the whole questionnaire test were
considered as invalid data. The age of the participants ranges from
16.91 to 25 years old. The details about the participants and the valid
ones are shown in Table 1, which can be found that characteristics of
the valid dataset and the whole dataset are the same in age and gender
generally. As for Sex in Table 1, the male was labelled as 1 while the
female was-1. Sex in Table 1 and Table 2 is processed in the same way
and has the same meaning to illustrate the sex ratio, which is for the
convenience of feature selection and calculation in our experiments.
Because all the values of Sex are integer, standard deviation (std.) has
no meaning for Sex and we cancelled the std. in Table 1 and Table 2.

2.3. Methods

In this study, we tried to explore IA detection using machine
learning methods. First, we selected the valid ones from the collected
questionnaires. After that, we applied Student's t-test for feature se-
lection and 2 linear normalizations so that we got several datasets.
Then, we compared the performance of C-SVM and ν-SVM on different
datasets with or without grid search. FNN was chose as comparison
method with SVM. Finally, we analyzed the relationship among grid
search parameters, accuracy and computation time. The whole process
is illustrated in Fig. 1.

2.3.1. Data pre-processing
After data acquisition, we summed the score up individually based

on 4 questionnaires. For BIS-11 and CBF-PI, we calculated the score of
each subset feature, including Attention, Motor, Non-planning,
Openness, Conscientiousness, Extroversion, Agreeableness,

Neuroticism, and the total score of 4 questionnaires. Then the dataset
was divided into two groups according to the CIAS scores. Those whose
score is less than 57 are regarded as the low IA (1598 participants)
group while those with score over 63 belong to the high IA group (799
participants). The mean value and standard deviation value are shown
in Table 2.

2.3.2. Normalization
After the data pre-processing, two linear normalizations were ap-

plied to the dataset to avoid the impact of great attributes numeric
value on those small ones and decrease the calculation cost, which
mapped the range of every feature to [−1, 1] and [0, 1] respectively.

Thus, we had gotten three kinds of datasets with different value

Table 1
The details about the participants and the valid ones.

Name Participants The valid

Male 2004 (64.17%) 1686 (60.98%)
Female 1119 (35.83%) 1079 (39.02%)
Total 3123 (100.00%) 2765 (100.00%)
Age 19.17 ± 0.70 19.17 ± 0.68
Gender 0.21 0.22

Table 2
Mean value and standard deviation of every feature between two groups used in
the experiments.

Name Normal IA

Gender 0.24 0.17
Age 19.19 ± 0.67 19.13 ± 0.73
Attention 37.98 ± 9.44 35.79 ± 4.69
Motor 20.16 ± 5.81 25.41 ± 5.94
Non-planning 22.39 ± 6.81 27.70 ± 5.55
Openness 51.66 ± 9.97 48.83 ± 9.19
Conscientiousness 50.92 ± 9.64 43.84 ± 9.44
Extroversion 50.71 ± 10.28 47.09 ± 9.69
Agreeableness 51.43 ± 10.15 47.49 ± 10.40
Neuroticism 48.82 ± 9.44 56.90 ± 10.58
BIS-11 total score 80.53 ± 18.07 88.89 ± 16.17
CBF-PI total score 253.55 ± 49.49 244.12 ± 49.30
Self-Control Scale 22.18 ± 6.81 27.70 ± 5.54
CIAS score 39.74 ± 10.44 76.42 ± 11.05

Fig. 1. The Framework of the present study.
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ranges: original datasets, the datasets ranged in [0, 1] and the datasets
ranged in [−1, 1].

2.3.3. Student's t-test for feature selection
We applied Student's t-test for feature selection. The results of

Student's t-test are h, p and Ci. If h is 0, it indicates that the null hy-
pothesis at significance level is rejected and vice versa. p is the prob-
ability of observing the validity of the null hypothesis. Small p shows
doubt on the validity of the null hypothesis. Ci is the confidence interval
containing the lower and upper boundaries of the 95% confidence in-
terval.

2.3.4. Grid search
For SVM using radial basis function (RBF) function introduced in

the following part, there are two parameters to choose (C and g) and we
don't know the best parameter in advance. Grid search is a method
where various pairs of (C, g) in certain range are tried to find the best
pair according to the best cross-validation accuracy. C and g both are in
the range of [2−8, 28]. The smaller the steps of C (C− step) and g
(g− step) are, the more accurate results we can get. The original rule of
C and g in the following range:

…C = 2 2 2 2 ,{ , , , , }C C C step C C step C+ +2×min min min max

…g = 2 2 2 2 ,{ , , , , }g g g step g g step g+ +2×min min min max

To make the result as accurate as possible, we set the updating rule
as:

…C C step C step= 2 2 + 2 + 2 × 2 ,{ , , , , }C C C Cmin min min max

…g g step g step= 2 2 + 2 + 2 × 2 ,{ , , , , }g g g gmin min min max

where C-step and g-step both are 1 in these two rules.

2.3.5. Support vector machine
Support Vector Machine (SVM) is widely used in binary classifica-

tion because its original idea is to find a hyperplane to separate the two
classes with the maximum margin (Mu & Nandi, 2007) (See Fig. 2). The
main advantage of SVM is its classification ability to solve the non-
linear problem using kernel function. The kernel function we used in

the research is RBF function to nonlinearly map samples into a higher
dimensional space, which also helps to decrease the hyper-parameter in
calculation (Hsu, Chang, Lin, et al., 2003). The kernel function we used
is:

=x x
x x

exp( , )
2i j

i j
2

2 (1)

where σ is the RBF function width adjusted by user.
In practice, most of the sample spaces cannot be separated com-

pletely. So, a parameter ξ is added to modify the classifier when there
are some non-separable cases. To adjust the ability of modification, a
new parameter C is defined as a matter of experience, often from range
(0, +∞) and its minimization of error function is:

+
=
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i
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which is what so-called C-SVM.
Like C-SVM, ν-SVM can control the number of support vectors by

adding two parameters ν and ρ. The error function is:

+
=m

1
2
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i

m

i
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2.3.6. Cross validation
In every iteration, the dataset is split randomly, so it is reasonable to

get different classifiers and results. However, we are more interested in
the stable performance and its generalization on the whole dataset ra-
ther than the training set to avoid over-fitting. Among several methods
in evaluation, k-fold cross validation is the most common method in
statistics and machine learning (Kohavi et al., 1995; Seni & Elder,
2010).

In theory, k can be set randomly as long as k is bigger than 1 and
smaller than the number of samples n in the dataset. However, it is
meaningless to set k too big or too small. For example, if k is 2, the
dataset is just split equally and the classifier is likely not to be trained
well to learn the characters of the dataset to give correct prediction
results. Meanwhile, if k is (n− 1), k-fold cross validation is exactly the
leave-one-out cross-validation (Stone, 1974). In this experiment, we
used 10-fold cross validation.

2.3.7. FNN
FNN combines the strengths of neural network and fuzzy logic while

overcomes the weaknesses of their own like difficulties in explaining
how they reached their decisions, acquiring the rules they use to make
decisions automatically, which proves its effectiveness in many aspects
for a long time, such as pattern recognition, regression and density
estimation (Fuller, 1998; Kruse, 2008).

2.3.8. Experiment platform
In this study, the experimental platform is MATLAB R2017 on a PC

with Intel (R) Xeon (R) CPU E5–2665 (2.4GHz) and the RAM is 64GB
using the Microsoft Windows 10 Operating System.

3. Result

3.1. Feature selection

To find the most distinct features among 13 features, we applied
Student's t-test on the dataset. In Table 3, Age and Sex had the largest p-
value and their h are 0, which implied these two features are not so
distinguishable. Except Age and Sex, an 11-feature dataset was ob-
tained whose h is 1, the p-value of Extraversion, CBF and Openness
were bigger than 1e-20. Compared with the p value of each feature in
the 11-feature dataset, we separately acquired 5 datasets with different
features using Student's t-test according to h and p-value for detection

Fig. 2. The illustration of SVM in 2-feature dataset. The filled points on the
dashed line indicate the support vectors.
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and they were the following:

• 6 Features: BIS, BSCS, Motor, Neuroticism, Non-planning and
Conscientiousness
• 7 Features: 6 Features and Attention
• 8 Features: 7 Features and Agreeableness
• 11 Features: 8 Features, Extraversion, CBF-PI and Openness
• 13 Features: 11 Features, Sex and Age

3.2. IA detection performance

In this study, we made a systematic comparison of IA detection
performance among SVM methods and FNN methods as presented in
(Wang et al., 2008). We also compared the performance of C– SVM and
ν-SVM with and without grid search. For SVMs, 10-fold cross validation
was applied to avoid over-fitting. All the experiments were repeated for
1000 times to increase the reliability.

3.2.1. IA detection performance of SVM (without grid search) and FNN
In Table 4, the detection performance of C-SVM, ν-SVM, and FNN

without grid search on different datasets are shown. The parameters of
SVMs without grid search were set as the default values, where C and g
both were 1. In 13-feature and 8-feature datasets, the best performances
are from FNN with the accuracy of 69.73% and 75.58%, respectively. It
can be observed that feature selection helped improve the performance
of three methods. C-SVM had the largest increment (27.7%) and then

followed FNN (20.6%). ν-SVM had the least, which was 20.5%.
Two types of normalization were also examined in this work. But

among all the five datasets, these two ways of normalization did have
much difference. Compared with the datasets without normalization,
normalization made little contribution to the performance improve-
ment.

3.2.2. IA detection performance of SVM with grid search
SVM algorithms were shown more flexible of our datasets. The next

step of this study focused on the optimization of the parameters in SVM.
Grid search is a method to optimize the parameters of RBF function in
SVM to improve the detection performance. The comparison results are
shown in Table 5. Based on 13-feature and 11-feature datasets, we
found that the detection performance was not improved by the grid
search. While in 8-feature datasets, C-SVM performed best and the best
was from the dataset normalized in [0, 1] with the accuracy of 78.90%,
which was increased about 3% by grid search. In 7-feature datasets, C-
SVM also performed best and the best one was from the dataset nor-
malized in [−1, 1], whose accuracy was 84.78%. In 6-feature datasets,
C-SVM performed best in the dataset without normalization, which was
also the best in this study and its accuracy and standard deviation were
96.32% and 0.18% respectively. It can be observed that grid search
improved the performance in a large scale. Meanwhile, the normal-
ization still made little contribution to the performance improvement
and Student's t-test succeeded to select the features and improve the
performance in a large scale. As for the increment, C-SVM (45.32%)
was larger than ν-SVM (24.03%).

3.2.3. Accuracy, parameters and computation time in grid search of 6-
feature dataset without normalization

Grid search is a time-consuming task to find the best parameters.
Among these five datasets, 6-feature datasets were achieved with the
best IA detection performance the least features. The following step of
this study focused on extracting the best parameter value which can
save the computation cost most. The smaller C-step and g-step are, the
more time will be consumed. All the experiments were repeated 100
times to increase the dependency.

The relationship between (C-step, g-step) pair and accuracy in 6-
feature datasets without normalization can be found in Figs. 3 and 4.
There are 256 lines in the plots and each line with a different color
stands for different g-step in Fig. 3 and different C-step in Fig. 4 which
are both from 1 to 256.

Table 3
Student's t-test results for feature selection according to p-value degressively.

Feature h p Ci

BIS 1 1.34e-130 [7.71, 8.99]
BSCS 1 8.74e-127 [4.16, 4.86]
Motor 1 1.02e-99 [4.78, 5.71]
Neuroticism 1 9.04e-84 [−8.76, −7.19]
Non-planning 1 2.66e-82 [4.71, 5.74]
Conscientiousness 1 8.32e-67 [−7.66, −6.13]
Attention 1 7.33e-23 [1.70, 2.53]
Agreeableness 1 4.59e-21 [−4.76, −3.13]
Extraversion 1 1.57e-17 [2.72, 4.33]
CBF-PI 1 1.81e-16 [7.00, 11.34]
Openness 1 3.08e-12 [−3.56, −2.00]
Sex 0 0.14 [−0.11, −0.00]
Age 0 0.50 [−0.01, 0.07]

Table 4
Detection results of C-SVM, ν-SVM and FNN without grid search on every da-
taset.

Dataset C-SVM (%) ν-SVM (%) FNN (%)

13F0 51.00 ± 1.49 67.51 ± 1.53 69.73
13F1 51.46 ± 0.83 54.47 ± 1.32 57.41
13F2 51.95 ± 0.66 65.71 ± 1.91 57.39
11F0 52.66 ± 1.14 56.93 ± 0.73 54.98
11F1 51.30 ± 1.08 57.42 ± 1.30 57.35
11F2 51.59 ± 0.30 62.74 ± 2.81 57.73
8F0 72.51 ± 0.07 60.65 ± 0.79 75.58
8F1 77.52 ± 0.33 75.00 ± 0.72 74.91
8F2 77.23 ± 0.37 75.00 ± 0.71 74.67
7F0 74.89 ± 0.32 73.79 ± 0.68 74.45
7F1 77.60 ± 1.28 76.04 ± 0.28 73.89
7F2 78.72 ± 1.46 77.43 ± 1.23 72.47
6F0 76.05 ± 0.74 75.03 ± 0.73 71.74
6F1 75.15 ± 0.78 75.76 ± 0.71 72.47
6F2 75.08 ± 0.73 75.79 ± 0.72 72.39

F0 refers to the dataset without normalization. F1 refers to the dataset with the
normalization in [−1, 1]. F2 refers to the dataset with the normalization in [0,
1].
The bold emphases the best detection accuracy by different classifiers.

Table 5
Detection results of C-SVM, ν-SVM and FNN without grid search on every da-
taset.

Dataset C-SVM (%) ν-SVM (%) The best in Table 3 (%)

13F0⁎ 51.00 ± 1.48 67.77 ± 2.01 69.73c

13F1 51.46 ± 0.83 56.91 ± 1.14 57.41c

13F2 51.95 ± 0.66 65.71 ± 2.78 65.71 ± 1.91b

11F0 51.16 ± 1.14 57.40 ± 1.65 56.93 ± 0.73b

11F1 51.30 ± 1.10 57.42 ± 1.32 57.42 ± 1.30b

11F2 51.59 ± 0.30 65.16 ± 2.81 62.74 ± 2.81b

8F0 78.27 ± 0.41 73.70 ± 0.29 75.58c

8F1 78.74 ± 0.35 77.34 ± 0.38 77.52 ± 0.33a

8F2 78.90 ± 0.19 77.06 ± 0.53 77.23 ± 0.37a

7F0 72.28 ± 0.34 75.08 ± 0.29 74.89 ± 0.32a

7F1 84.78 ± 1.31 80.94 ± 0.47 77.60 ± 1.28a

7F2 84.58 ± 1.47 78.33 ± 1.11 78.72 ± 1.46a

6F0 96.32 ± 0.18 78.32 ± 0.36 76.05 ± 0.74a

6F1 76.05 ± 0.74 78.54 ± 0.44 75.76 ± 0.71b

6F2 76.02 ± 0.59 78.74 ± 0.43 75.79 ± 0.72b

The bold emphases the best detection accuracy by different classifiers.
⁎ The feature is the same as that in Table 3.
a This indicates that the best results in Table 3 is C-SVM.
b This indicates that the best results in Table 3 is ν-SVM.
c This indicates that the best results in Table 3 is FNN.
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In Fig. 3, point A shows the overall best performance and the ac-
curacy is 96.32%, where C-step is 35 and g-step is 12. It can be found
that all lines are overlapped together from point B (C-step ∈ [1, 256], g-
step=16) to C (C-step ∈ [1, 256], g-step=17).

In Fig. 4, point A corresponded to the overall best performance in
Fig. 3. It was found that the accuracy did not vary a lot with the C-step
and two part of lines were separated based on different g-step. Ac-
cordingly, compared with the C-step value, g-step was shown as the key
parameter rather than C-step in this experiment.

According to the results we got above, the next step was to study the
relationship among g-step, the calculating time and the accuracy when
C-step was ignored to inspect the effect of key parameter g-step on cal-
culating time and accuracy, which can be found in Fig. 5. Point E is the
“compromised” point whose average accuracy is 96.06% and g-step is
37 while its average time is 33.94 s. Point D is the best point with the
average accuracy 96.32% and g-step is 1 and took about 228.7 s, which
is reasonable because the smaller step can lead to a larger chance to find
the best result in grid search. Thus, an appropriate parameter pair was
found (C-step ∈ [1, 256], g-step= 37) to balance the classification per-
formance and calculating time of our IA detection task.

4. Discussion

In the previous works, the researchers used questionnaire and sta-
tistic methods to find the relationship between IAD and the features
they used (Kuss, Griffiths, & Binder, 2013; Orsal, Orsal, Unsal, & Ozalp,
2013). Statistical methods can only give the degree of correlation,
which cannot be used to predict whether the patients have IA or not
directly. This work utilized machine learning using more questionnaires
and a relative larger dataset (Di et al., 2017; Gong et al., 2016; Wang
et al., 2008) and our results show its efficiency in this kind of task,
which provided a new view for the researchers in this area.

In the works using multiple questionnaires (Kim et al., 2006; Tsai
et al., 2009; Xin et al., 2018), some questions maybe are duplicated or
some features maybe are correlated. It is necessary to find the re-
lationship among these features. This work supports the previous works
that the features which are found correlated with IA will lead to or
prevent IA in some scale (Fumero et al., 2018; Robertson et al., 2018).
Meanwhile, it also plays a role as supplement to find the relationship
among features in the task using several questionnaires, which our re-
sults demonstrated.

As for the data collection and experiment design, it is important to

Fig. 3. The relationship between g-step and accuracy
when g-step is fixed for C-SVM in 6-feature dataset
without normalization. Each line with different color
stands for different g-step from 1 to 256. The x-axis is
the g from 1 to 256 while the y-axis is the accuracy.
Point A has the best performance whose C-step is 35
and g-step is 12. Point B (g-step is 16) and C (g-step is
17) are the tuning points, which shows that g-step is
the key parameter.

Fig. 4. The relationship between C-step and accuracy
when C-step and accuracy when C-step is fixed for C-
SVM in 6-feature dataset without normalization.
Each line with different color stands for different C-
step from 1 to 256. The x-axis is the C-step from 1 to
256 while the y-axis is the accuracy. Point A has the
best performance whose C-step is 35 and g-step is 12,
which corresponds to Point A in Fig. 3.
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do some data pre-processing including de-duplication and de-noising. It
is better to use a larger dataset in a large age range. Cross validation is
also necessary in the experiment, which will improve the generality and
performance of the classifier especially when the dataset is relatively
small (Kohavi et al., 1995; Seni & Elder, 2010). Parameter selection can
provide a suitable parameter pair to balance the computation cost and
performance, which provides possibility for engineering and usage in a
really large scale.

Questionnaire is a kind of structured data which consists of numeric
value according to the features it has. The results in this work de-
monstrated the efficiency of machine learning methods to deal with
questionnaire data in IA.

For future study, researchers can refer to our work to build an IA
prediction system. Although the dataset we used is relatively large,
more participants in different ages and more questionnaires will make
our work more general. SVM is a classical method and always plays a
role as baseline of classification methods. However, the development of
deep learning makes the performance of classifier much better than
before, which is also a choice for IAD detection (Goodfellow, Bengio, &
Courville, 2016).

As for practical meaning, this work provides a new choice to detect
IA among teenagers in advance in a simple and quick way. People can
use online or offline simple questionnaires mentioned above to detect
IA more efficiently and precisely, allowing them to diagnose and cure
IA among Chinese college students in time.

5. Conclusion

In this study, we carried out systematic experiments to detect IA
using SVMs and FNN. The results proved the feasibility of using ma-
chine learning methods to detect IA. SVM methods were found more
flexible for our questionnaire datasets. With grid search, a best para-
meter pair of C-SVM was achieved (C-step ∈ [1, 256], g-step=37,
t=33.94 s, accuracy= 96.06% at the 6-feature dataset without nor-
malization) and g-step is more important to the accuracy than C-step as
the key parameter in this experiment. More interestingly, BIS-11, BSCS,
Motor, Neuroticism, Non-planning and Conscientiousness are shown as
a better detection feature combination of IA detection. This indicates
the researchers may make more effort to study the relationship between
these 6 features and IA. Based on these features to predict the IA risk, it
may be a future research interest.
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