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Abstract

When experiments are performed on social networks, it is difficult to justify the usual
assumption of treatment-unit additivity, due to the connections between actors in the
network. We investigate how connections between experimental units affect the design
of experiments on those experimental units. Specifically, where we have unstructured
treatments, whose effects propagate according to a linear network effects model which we
introduce, we show that optimal designs are no longer necessarily balanced; we further
demonstrate how experiments which do not take a network effect into account can lead
to much higher variance than necessary and/or a large bias. We show the use of this
methodology in a very wide range of experiments in agricultural trials, and crossover trials,
as well as experiments on connected individuals in a social network.

1 Introduction

We investigate how the structure of relationships between experimental units affects the design
of experiments on these experimental units. We consider examples where the treatment applied
to a single experimental unit has an effect on further experimental units which have some
relationship to the one given the treatment. Previous research has focused on agricultural trials,
where the treatment applied to an experimental unit (a plot) also has an effect on neighbouring
experimental units within a block, and on cross-over experiments where a treatment continues
to have an effect on the subject when measured at subsequent time periods. That research
generally considers a class of experiments in which the subjects are related according to some
regular pattern. Here we remove any restrictions on the regularity of the relationships.
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Our primary application is in investigating experiments on social networks. These networks
are prevalent in virtual online communities, such as Facebook or Twitter, but the methodology
also encompasses networks in real world communities, such as friendship, familial relationship,
or geographical networks. We consider the case where an experiment is to be performed on a
known social network and it is expected that the treatments applied will affect not only the
nodes of the network to which they are applied, but also all those nodes which are attached
to them. This makes it difficult to make the usual assumption in randomized experiments
that treatment effects are additive, i.e. the treatment effects have the same distribution no
matter which experimental unit they are applied to. This idea is familiar from cross-over
trials with carry-over effects and agricultural field experiments with neighbour effects, but the
neighbour structures in these applications are usually very regular. Social networks typically
have irregular, unbalanced patterns of connections and dealing with this requires some new
design methodology. We also adapt this research on social networks to non-standard examples
in finding the optimal design of experiments for agricultural trials and crossover trials.

1.1 Motivating examples

Both examples are intended to be illustrative, and are simplified versions of experiments from
personal communications of the authors with (1) a marketing consultancy and (2) an academic
public health researcher.

1.1.1 Online marketing

In online marketing experiments different advertisements, or different versions of the same
advertisement, are investigated to find out which are most effective. For example, an adver-
tisement for a product may describe it as either “half price” or “50% off”, or some other
alternative phrasings, which we define as treatments in the usual terminology. In other cases
the treatments might have a factorial structure, though we will not deal with that case here.

We assume we have a network of 10000 customers, and want to assess the effectiveness
of sending 4 different adverts to four subsets each of 25 customers (before we send the best
advertisement to the rest of the customers). An advertisement is deemed effective if more
customers click on a hyperlink in a message. The advertisements will be released to a test
panel of subjects, with each subject being allocated a single treatment. The response of these
subjects to the advert will be measured as the number of times that hyperlinks are clicked in
the advertisement. (Alternatively we might choose to measure a longer term response, such as
a measure of changes in the behaviour of the subjects.)

The standard randomised experiment requires that responses from subjects are indepen-
dent; in reality, especially with online marketing, advertising to one person will often mean that
the advertisement is passed to a second person. Indeed, this viral effect is sometimes exactly
what marketers wish to encourage: advertisers pay for distribution to an original population,
with popular adverts distributed for free to those in the original target’s social network.



1.1.2 Public Health Experiment

In a public health experiment, nutritionists were interested in the effect of different interven-
tions for promoting weight loss amongst a group of volunteers that knew each other socially,
according to some friendship network structure. For example, some subjects might be sent
daily information by text message about healthy eating, and some might be sent a weekly
magazine with low fat recipes. As well as the effectiveness of the interventions, researchers
were interested in whether the message sent to one subject had an effect on other subjects
within the trial who were connected within the original subject’s social network.

1.2 Outline of this paper

We set out in this paper to investigate how experimental design might take into account
the structure of a social network, to obtain the optimal information about which adverts are
best when experimental units are not independent. We see that these social networks readily
generalise to enable us to consider a framework which applies to many situations for designing
experiments on connected experimental units.

In Section 2 we set out the model considered in this paper, and review previous work in
design for connected experimental units. We introduce terminology and the methodology for
designing experiments on this model in Section 3, before showing the effect of misspecification
of the model in Section 4. The importance of the network structure is discussed in Section 5,
and algorithms for finding an optimal design in Section 6. We present a collection of examples
in Section 7, before we conclude briefly in Section 8.

2 Models Considered and Previous Work

We consider networks of subjects; a network G = (N, F) is an undirected graph, a collection
of nodes N and edges F C (N x N) where the nodes represent experimental units (typically
subjects) on which we apply some treatment. The edges represent relationships between the
subjects.

We assume that if a relationship exists between two subjects, the response of each subject
is dependent on the treatment applied to the other according to a linear network effects model
which we specify below.

We have |N| = n subjects, and m treatments. The relationship between subjects is specified
by the n x n adjacency matrix A where A;, = 1 if and only if ¢ and k are related and A;p; =0
otherwise. By convention, A;; = 0. For ease of exposition in this paper, we assume initially
that links are non-directional, such that A;; = A, i.e. A is a symmetric matrix.

We assume there is a “subject effect” on the response from subject ¢ of 7; when treatment
j is given to that subject, and a “network effect” of 7; if treatment [ is given to a connected
subject k (if A; = 1). We assume that each subject receives exactly one treatment.



2.1 Linear network effects model

We measure the response Y; for each of our subjects. Let ¢(i) be the treatment applied to
subject 4; then our response is modelled as

Y =p+ 7+ > Ay + € (1)
pst

We assume that errors ¢; are independent and identically distributed with mean 0 and constant
2. We assume we wish to estimate the subject and/or network effects, or some
contrast of them.

We let u; be the indicator vector with i-th element equal to 1 when treatment j is applied
to subject 7, and otherwise 0. (This terminology is derived from that used section 2.7 of Bailey
(2008), for example.) In matrix form,
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where F' is our design matrix, and our vector of parameters is

B=(n T ’yT)T:(,u Lo Tm Y- Ym)L. (3)

We let the design space, the set of possible experiments we may perform, be

X ={[t),....tM)tE) € {1,....,m}i=1,...,n},

such that we give one and only one treatment to each subject. We calculate the Fisher infor-
mation matrix as [ = FTF.

2.2 Previous work in design for connected experimental units

Previous work in experimental design for connected units has been limited, and focused on
agricultural trials, where consideration is occasionally given to how the response of one plot
is affected by the treatment given to neighbouring plots, as well as the treatment given to the
plot itself (which is often called the “direct treatment effect”, though we refer to it in this
paper as the subject effect).

Besag and Kempton (1986) review the analysis of field experiments where responses in a
plot are affected by the treatments applied to neighbouring plots.

Druilhet (1999) considers designing experiments in linear blocks, with block effects and
with left and right neighbour effects only in the direction of the blocks, in the context of both
agricultural trials, and crossover trials. The model used is E(Y) = b8 + TT + LA + Rp
where 3 are block effects, T are treatment effects, X are left-neighbour effects, p ( sometimes
assumed to be zero for uni-directional effects) are right-neighbour effects, and B, T, L, and
R, are incidence matrices for block, treatment, and neighbour effects. He discusses circular
neighbour-balanced designs, where the number of times treatment ¢ is to the left of treatment



j is constant, for ¢ # j, and shows these are optimal for the estimation of treatment effects
under certain conditions.

These two previous papers both assume that there is an edge plot, or guard plot, such
that each plot of interest (the interior plots) has two neighbours. Kunert and Martin (2000)
relax this assumption, but still assume that there are one-dimensional arrangements of plots
in each block (i.e. that a field trial has a left and right neighbour effect, but no up or down
effect). They present criteria for designs to be optimal and, for certain examples with block
size up to four, demonstrate that there are designs which fulfill these criteria, but do not
show how to construct optimal designs. Kunert and Mersmann (2011) extend this to larger
block sizes. Azais and Druilhet (1997) considers minimising bias in this model, and shows that
neighbour-balanced (randomized) designs minimize bias.

The models considered in Druilhet (1999), Kunert and Martin (2000), and Kunert and
Mersmann (2011) are, with left and right neighbour effects assumed to be equal and neglecting
the block effects, a special case of the Linear Network effects model (equation (1)) we consider
in this paper.

Pearce (1957) assumes a treatment affects the plot it is applied to (a “local effect”), and
also other plots in the same block (a “remote effect”). He allows interaction between these
effects, i.e. the remote effect of a treatment on a plot depends on the treatment applied locally
to that plot. He shows orthogonal designs no longer guarantee all effects are estimable, and
proposes balanced incomplete block designs with restrictions of the number of treatments to
maintain estimability.

In designs for cross-over trials, subjects receive sequences of treatments, and a carry-over
effect is often assumed to the next time period. We show in this paper how to represent these
cross-over designs using a generalisation of our model; particular examples have been studied.
e.g. Hedayat and Zhao (1990) considers two period cross-over designs, and show in particular
that optimal designs for estimating the carry-over effects are not always balanced.

These temporal effects can be thought of in the same framework as treatments affecting spa-
tially neighbouring subjects in agricultural experiments. See, for example, Jones and Kenward
(2003).

There has been little work discussing designing experiments on subjects that are connected
by a social network. In McConnell et al. (2010), the stable unit treatment value assumption
(Rubin 1978) is discussed, and the assumption is questioned by detecting whether there is a
“spillover effect” in an experiment on voter mobilization where voters are sent mailings before
an election. Here a multilevel model is applied and household and neighbourhood effects are
detected, where the household and neighbourhood effects have a regular pattern within nested
blocks.

2.3 Previous work on inference for social networks

A review of modelling social influence was performed by Leenders (2002); the problem con-
sidered is to infer relationships between actors (nodes) in a social network by measuring some
response on those networks. This paper considers two different types of models. The first class
is of the form

y=pWy+XB+e, e~ N(0,02I). (4)



Here p is a scalar, and W a matrix representing the strength of relationships between actors.

In this model an actor in a social network forms his response from the (weighted) responses
of actors connected to him. This is the network effects model of Doreian et al. (1989), sometimes
called a spatial autoregressive model. In a social network, this corresponds to an actor basing
his opinion (response) on his own innate response, which is modified by the actual response of
his peers. The second class of model considered is

y=XB+e, e=pWe+v, v~ N(0,). (5)

Here the response of an actor in a social network depends on the change in response of actors
connected to him. This network is sometimes called a spatial moving average model. In social
networks, these correspond to an actor altering his opinion (response) due to a change in opinion
of his peers; as we demonstrate below, this paradigm seems to be valuable in experiments where
changes in responses of an experimental unit may also propagate somewhat to its neighbours
because of some spillover or neighbourhood effect caused by applying a treatment.

These two form a wide class of models, and mathematical interest is found in calculating
the strength of actors’ relationships (the weight matrix W). The non-network effects 3 can be
inferred using maximum likelihood and appropriate hypothesis testing carried out to investigate
whether a particular network structure exists. The review paper, Leenders (2002), emphasizes
the large effect that W has on any conclusions, and the importance of correct model choice.

2.4 Experiments covered in our model and possible generalisations

We focus on the Linear Network effects model (1). Although a relatively simple model, this al-
lows us to demonstrate clearly the optimal design of experiments on networks, a novel method-
ology. In the methodology described in this paper, and unlike in much previous research in
designing experiments, we do not impose any restrictions or symmetries in the relationships
between subjects, such that any two subjects may be related or not. We present a linear
network effects model for unstructured treatments within this framework, and discuss finding
optimal designs for experiments in this case.

This setting admits many experiments, for example in our first motivating example the
nodes are subjects in a marketing experiment, and the links are a social relationship, such
as being “friends” on Facebook or some other social network. The treatments are different
adverts, and the responses the number of hyperlinks clicked by a subject. If a subject is exposed
to marketing, their friend may be affected by this marketing and the friend’s response may be
altered (positively or negatively). If a subject is given some information about a product in a
marketing campaign, he may tell a friend about it, which may affect the number of times the
friend clicks a hyperlink.

As in our second motivating example, the nodes may be subjects in a public health experi-
ment. The links may be some friendship relationship, some geographical relationship, or some
familial relationship. The treatments may be different messages given in the campaign (e.g.
“Eat five fruit or vegetables a day”) and the response the change in fruits or vegetables eaten
after the campaign.

A subject receives a treatment and, whether or not they alter their own behaviour, it may
bring about a change in their friend’s response.



These examples show that the network effect in the Linear Network effect model is a
particular way of representing a social influence, in a similar way to described in section 2.3
above. See section 7 for further examples of the method in agriculture, medicine, and social
networks. It is relatively simple to consider generalisations of the Linear Network Effects
model. For example, we could normalise the network effect by the number of links, on the
basis that the effect of a neighbour on someone with a high number of links is probably smaller
than for a sparsely connected individual. We might also impose the restriction that v; = k7;
for some 0 < x < 7 and all 4, i.e. that the network effect is a fixed multiple of the subject
effect.

We do not consider autoregressive models here. For example, we do not consider exper-
iments where an experimental unit’s response is directly affected by its neighbours response,
and not affected by the treatment applied to a neighbour. Examples of these include

e a marketing experiment where a subject changes his behaviour based on the response
of another customer, and not the treatment applied to a customer. For example, when
customers are queueing at the ticket counter of an airport in order to check in their
luggage, the service one customer receives is observed by those who are in the queue near
him (a directional tie) and is potentially discussed by the by-standers. This affects their
perception of the service provided to them by the airline.

e where a child copies his parent’s behaviour in response to a public health campaign,
this is described by a spatial autoregressive model as the parent’s response (and not the
parent’s treatment) affects the child’s response.

Although these generalisations and extensions are, of course, interesting, we seek in this pa-
per to introduce the general technique of designing experiments on social networks with a
relatively simple, yet flexible, model, whilst maintaining clarity, and hope that future work
will include generalisations to this model. In particular, the generalisation to the spatial au-
toregressive model adds complexity to the design problem, requiring techniques in non-linear
optimal design.

3 Designing Experiments

Writing n; as the number of subjects given treatment ¢, n;; as the number of connections
between subjects given treatment ¢ and those given treatment j, and nZ(JQ) as the number of
connections between subjects given treatment ¢ and subjects given treatment j with a path of
length 2, including trivial paths that use the same edge twice, then we can write the Fisher

information matrix as
n 17X 1TAX
I=FTFr=| XxT1 XTXx XTAX (6)
XTA1 XTAx XTA2X



where we recall that as A is symmetric, AT = A. This form is useful as it separates the
information due to the subject effects and the network effects. Expanding this gives
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We find the optimal design by maximising some optimality function of this matrix (see sec-
tion below) subject to some constraints (such as Y ;- n; = n, and other constraints particular
to the network). Algorithms for finding optimal designs are considered in section 6.

3.1 Optimality Criteria

We seek an optimal design, which we define as minimising the variance of some function of the
parameter estimates in our model described in equation (1). The optimal design is therefore
equivalent to a particular function of the covariance matrix of the parameter estimates. For
any possible design X € X we could reasonably seek to minimise the average variance

1. of all pairwise differences of treatment effects,

m
Z Var( Tj — 7).
:J +1

-1

m
-1 =11

This is defined to be Ag-optimality for estimating the differences in the treatment effects.
We call this criterion function ¢ .

2. of all pairwise differences of network effects, ;.
This is defined to be As-optimality for estimating the differences in the network effects.

We call this criterion function ¢o.

Let ¢(a,b) be a length 2m + 1 vector which is a vector of zeroes, except the a-th element is
1 and b-th element is —1. Recall that I is a (2m + 1) X (2m + 1) matrix, the first row/column
corresponding to the mean pu, the next m elements to the subject effects 7, and the final
m elements to the network effects v. Then the optimality criteria above are equivalent to
minimizing over all possible designs X € X

1. (bl - Z;n:2 ernjilc <]7 l)Iilc(jJ)'

2. 2 =30 Mty € (G DI el 1),



Other criteria may be appropriate depending on the aims of the experiment (e.g. a weighted
sum of criteria 1 and 2). We call the values of these optimised functions at the optimal design
the optimal function values, and represent them as ¢7 = }(Iu% @1, etc.

€

We consider primarily the first criterion in the examples presented in this paper. Note that
if we have n; subjects given treatment j, we could (ignoring the network effect) estimate 7;
with variance 02 /n;. Thus we can estimate each difference 7; — 7, with variance o2 /n; +02/n.
If we have an equi-replicate design such that n; = n/m for all j, then the minimum possible
variance for the subject effects is 202 /n; = 20?m/n.

3.1.1 Heuristic interpretation of information matrix

We can interpret our As-optimality criteria above in order to gain some heuristic insight about
which designs (allocations of treatments) are likely to be optimal. As our information matrix
I defined in (7) represents the information we can gain about the experiment performed with
design matrix F', we wish this matrix I in some senses to be as “large as possible”. We can
also see this by noting that in calculating our optimality criteria ¢; and ¢o we take a linear
function of the inverse of I.

In general, det [ is large and designs seem to have better optimality criterion function values
when they have

e an approximately balanced number of subjects given each treatment;

e a large number of occasions where the same treatment is applied to two neighbours of a
subject;

e and a small number of occasions where the same treatment is applied to neighbours.

Of course, these features can conflict, but this gives an idea as to which properties are important
in a good design.

3.2 Estimability

In practical situations, we are interested in the (variance of) the difference between treatments:
whether advert 1 is more effective than advert 2, for our first motivating example. As is common
in this situation, we will always have to impose some additional constraint on our parameters
B = (u,7,7)T to ensure they can be estimated uniquely. Without loss of generality, for the
rest of this paper we have assumed that 7, = 0.

Even with this assumption, not all networks allow all effects to be estimated; consider the
network where each node is connected to every other node. Then if subject ¢ is given treatment
J the response is

E (Yilt(i) = 1) = p+ 71+ (n1 — 1)1 + na2ye,
E (Yilt(i) =2) = p+ 72 + iy + (n2 — ).
As 7 = 0, we have only two different equations with which to estimate four unknowns (the

mean u, subject effect 71 and network effects 77 and v2,) and thus these are not estimable.
Less extreme examples exist, with a number of edges less than the maximum possible.



In general for a linear model, Lg is estimable if and only if there is a K such that L = K F'.
A special case for all elements of 8 to be estimable, where L is the identity matrix, implies that
K must be a generalised inverse F~ of F. A sufficient condition for this is that (FT F)~! = !
exists such that F~ = (FTF)~'FT ie. that I can be inverted, hence det(I) # 0.

From the definition of I in equation (7), it is not clear what properties of a given network
structure combined with a design lead to estimability; we can show trivially that n; must be
greater than zero (that all treatments must be given to at least one subject) otherwise a row
and column of I will be zero, but further general statements applicable to all networks may not
be possible. All the networks described in this paper are estimable with the sole assumption
that 7,,, = 0, but further assumptions may have to be made for particular networks.

Figure 1: An example network: optimal design for estimating the subject effect 7 for two
treatments. Node numbers are shown above with treatment allocation for optimal design
shown below in brackets

3.3 Example 1

Let us suppose we have a network of 10 subjects, where some subjects are related to other
subjects as shown in Figure 1. For example, subject 7 is connected to subjects 1 and 2 only,
but subject 8 is not connected to any other subject.

By exhaustive search over all possible designs, we find that the optimal design for the m = 2
treatment case is {1,1,1,2,2,1,2,1,1,1} for optimality in estimating 7 via criterion ¢; (i.e.
we give treatment 1 to subjects 1,2,6,8,9, and 10 and treatment 2 to the other subjects). This
design is that shown on Figure 1, and has optimal criterion value ¢] = 0.4186. The design
{1,1,1,2,2,2,1,1,1,2} is As-optimal for estimating the difference in the network effects vy, —~2
via criterion ¢9, with optimal criterion value ¢35 = 0.2369.
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The optimal designs are different depending on what we wish to measure, with the result
that the experimenter must think carefully about their experimental aims and the shape of
the network before starting their experiment. This is a standard feature of optimal design.

The optimal designs are unbalanced; i.e treatments 1 and 2 are not applied to an equal
number of subjects. This is an unusual property in optimal design.

The design which is optimal for ¢ is very close to optimal for ¢, with criterion value
0.4187. The design which is optimal for ¢; does not do so well for the ¢ criterion, with
criterion value 0.4000.

3.4 Example 2

Figure 2: A second example network: optimal design for estimating the subject effect 71 for
two treatments. Node numbers are shown above with treatment allocation for optimal design
shown below in brackets

We demonstrate another connectivity graph in Figure 2. This network again has 10 subjects
connected by a friendship relationship, but the subjects are more likely to be connected to other
subjects than in the previous network. Design {1,1,2,2,2,1,2,1,2,1} is As-optimal for esti-
mating 71. This design is shown on Figure 2, with ¢} = 0.406. Design {1,2,1,2,1,2,2,1,2,1}
is optimal for estimating the difference in network effects v2 — 1, with ¢35 = 0.1257.

Again, the designs which are optimal for ¢ and ¢- are different. However for this network
the optimal design for both criteria are balanced, such that 5 subjects are given each treatment,

11



but that for estimating the network effects (¢2) is not.
The design which is optimal for ¢o has criterion value for ¢; of 0.4643. The design which
is optimal for ¢, has criterion value for ¢o of 0.2073.

4 Misspecification of model: Efficiencies and biases

We now consider whether we need to take network effects into account at the design stage for
an experiment. It may be that designs which do not consider a network effect are as good
or only a little worse than designs that do; in this section we show that ignoring a network
effect can lead to very poor designs in terms of low efficiency (high variance) and/or bias in
our estimators.

4.1 Simulation to find efficiencies of designs

Let us now suppose we design an experiment in which we wrongly assume that there is no net-
work effect, but the network effect acts according to the linear network effects model described
above in equation (1).

L L L L L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 3: Efficiencies of balanced designs ignoring network effects. Efficiency (vertical axis)
for 10 random networks of 12 nodes with probability of connection 0.6 and (left) 2 and (right)
3 treatments. Each boxplot represents all possible balanced designs on a given social network.

We consider ¢; here. For n = 12 subjects and both m = 2 and m = 3 treatments, we
generate 10 Erdés-Renyi random networks where two nodes are connected fixed probability
p = 0.6 and calculate the efficiencies of all possible balanced designs (there are W of
these as m divides n, so 924 for m = 2 and 6930 for m = 3 ), compared to the optimal design
for that random network if there is a network effect. The results are shown as Figure 3.

We see that, for instance, for the right plot in Figure 3 (n = 12,m = 3,p = 0.6) that the
median efficiency of the set of balanced designs is typically around 0.6. For all networks we
can find a balanced design with very bad efficiency (for m = 3 network 5, for example, has a
balanced design with efficiency of 0, where all subject effects are not estimable). The range
and interquartile range of efficiencies are always large; we conclude that if there is a network
effect, it is vital to include it for an efficient design.

12
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Figure 4: Efficiencies of balanced designs ignoring network effects. Efficiency for random
networks of 12 nodes with varying probability of connection for (left) 2 and (right) 3 treatments.
Each boxplot represents 10 randomly chosen social networks.

We plot in Figure 4 how the mean efficiency varies with connection probability. Each box-
plot now represents mean efficiencies on each of 10 randomly generated Erdos-Renyi networks
with fixed connection probability. We see that as the connection probability increases, the
efficiency decreases; also the efficiencies of the balanced design for m = 3 treatments are less
than those for m = 2, confirming the pattern seen for p = 0.6. We see that one of the networks
with p = 0.1 has mean efficiency of 0, which means that there are no balanced designs which
allow all parameters to be estimated.

4.1.1 Example 1 revisited

Consider example 1 (see Figure 1), where m = 2. If we believed there is no network effect
in the model, we would conclude that balanced designs with 5 subjects chosen at random
given each of treatments 1 and 2 were optimal. We might chose an arbitrary balanced design
{1,1,1,1,1,2,2,2,2,2}. The design for estimating the subject effects using model (1) with this
design has ¢1 = 0.4502. We saw that the optimal design had value ¢] = 0.4186. The efficiency
of this arbitrary balanced design is thus 0.4180/0.4502 = 92.99%. The average variance of
estimates for 7 is slightly bigger than with the optimal design when the network effect is
accounted for.

4.2 Bias of design

Now let us consider the bias of the design. If we know the adjacency matrix, and assume that
there is a network effect v # 0, such that the true model is as specified in equation (1), we can
find the optimal design matrix X by exhaustive search as above and hence form the extended
design matrix Fo = (1 X+ AX ), where X* is the design matrix X without its last column
to impose the constraint 7,,, = 0. From the Gauss-Markov Theorem, we find a best linear
unbiased estimator for B under these assumptions as ,@C = (Fg Fc)_ng Y.
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If we perform an experiment where we wrongly assume there are no network effects,
then our model is Y = Fr(u 7°)7 +¢€, € ~ N(0,0%J,), with J, being the n x n iden-
tity matrix; then the least squares estimator of the mean, subject, and network effects 3 is
Br = |(F TER)"'FTY  0,,])7, where the extended design matrix for any design which we
would believe to be optimal for estimating the subject effects with no network effect can be
found as Fr = (1 X}'%). Here X%, is defined as Xp with the last column deleted to impose
the constraint 7, = 0. The biases in our estimators, under the assumption there is a network
effect and we do not account for it, is E(Br) — B8 =E (Br) —E(Bc) =E(Br — Bc) as B¢ is
an unbiased estimator. We can thus find the bias as

(FEFp)~'FE

BBy~ o) = | (1 )Y - (R LY |

Om><n
T 1T
= [(\Frgn) )~ (rre) 8| B 1Y
(FEFp)~'FE _
[( RX R) — (FEFe) 1F2§] FoB,

which is not in general zero, and neither are the elements corresponding to just the subject
effects (elements 2 to m of this expectation vector). In general, the bias of any contrast of an
estimate of a subject effect 7; — 7; will also not be zero, and thus ignoring the network effects
in calculating a design will produce a biased estimator of the subject effects.

In examples 1 and 2, if we wrongly assumed there was no network effect when in fact
it existed, then for the balanced design {1,1,1,1,1,2,2,2,2,2} which is optimal in the case
there were no network effects, we can calculate the bias in terms of unknown parameters 3 for
examples 1 and 2 as

0 0 06 038 ! 0 0 28 16 W

. 10 0 =02 -0.2 T1 . 10 0 —-1.2 1.2 T
Bias(Ex 1) = 00 -1 0 E Bias(Ex 2) = 00 -1 0 ”
00 O -1 Y2 00 0 -1 Y2

We of course see that the biases in the network effects (71 and ~2) are equal to the negative
of the effects themselves, as we have ignored them; there is no bias in the estimate of ™ as we
have assumed this to be zero and it is not included in 3. The biases for p and 7; are (different)
linear combinations of the unknown values of the network effects.

Our main interest will often be in the (difference in) treatment effect. In Example 1 we
find Bias(m1) = —0.2y; — 0.272. If the true value of the network effects are zero (such that
v1 = 72 = 0) then our design will produce unbiased estimators. If our network effects have
similar magnitudes, but of opposite directions, the bias will be close to zero.

Except in particular cases, which vary across different networks and are likely to be outside
the control of the experimentor, the network effects are substantial compared to the subject
effects, ignoring network effects might generally lead to the subject effects being estimated with
very large bias. Thus by not taking into account a network effect in our design, we produce
an experiment which has higher variance than necessary, and/or biased estimators.
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4.3 Misspecification of network

We are also interested in the case where the network is misspecified- that is we do not know
with certainty whether there is a link between two subjects. We simulate this situation by again
considering Example 2 for a social network. For any two nodes in the network for example
2 given by adjacency matrix A, we flip A;; = Aj; from 1 — 0 with probability p, and from
0 — 1 with the same probability. We calculate the efficiency of using the optimal design for
the mispecified network when the network is really as described in example 2, and do this for
1000 simulated networks.
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Figure 5: Efficiencies of misspecified networks. Efficiency (y-axis) for 1000 random networks
with probability that each link is misspecified given on x-axis.

We see in Figure 5 that efficiency tends to decrease with increasing probability of misspeci-
fication. There is a large variation in efficiencies even for small probabilities of misspecification,
but the typical (median) design is generally reasonably efficient. In practice, simulations such
as this could help experimenters to find designs robust against misspecification.

5 Effect of network structure on optimal design

We consider how the macroscopic properties of the network affect the design. One way of
assessing the macroscopic properties of the graph is through the graph’s spectrum, which is
the set of eigenvalues of the adjacency matrix A. The Laplacian spectrum is also often studied,
i.e the eigenvalues of the Laplacian L where L. = D — A. The degree matrix D specifies the
number of neighbours each node has: D;; = Zj Aij, Dij =0 for i # j.

These eigenvalues have various interpretations and summarise important macroscopic prop-
erties of the graph; for example, the second smallest eigenvalue of the Laplacian matrix is the
algebraic connectivity of our network. This gives a measure of how densely connected the
graph is.

We wish to test the belief that the macroscopic properties of the network to the optimal
design for that network. We do this through two examples.
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Algebraic Design
Connectivity | A B C D E F G H 1 ]
3.6977 7T 2 9 5 1 3 8 4 10 6
3.7046 5 9 7 6 10 2 3 8 1 4
4.3028 8 7 2 5 6 9 1 10 3 4
4.3174 8 3 7 4 5 6 9 2 1 10
4.5392 3 3 6 7 1 1 8 3 9 9
4.5494 9 5 2 7 3 10 8 4 6 1
4.8631 0 4 3 6 1 8 2 5 9 6
5.3028 6 4 1 3 2 9 7 10 5 8

Table 1: For 8 different networks, with different algebraic connectivities, 10 different designs
denoted A to J are ranked from best (1) to worst (10). A better design has lower ¢;. Note
that two designs are equally good, they both take the higher rank.

5.1 Example: Graph Spectra

We test the hypothesis that the algebraic connectivity, calculated through the spectra, affects
the optimal design for that network. To test this hypothesis we formed seven Erddés-Renyi
random graphs with n = 6 nodes, where each pair of nodes is connected with equal probability
0.5. We calculated the spectrum and the Laplacian spectrum.

We tabulate the results for this as Table 1. Each row of the table corresponds to one of
eight different networks. For each of ten (randomly chosen) designs labelled A to J, we rank
the designs in terms of the best (lowest) value of ¢1, such that 1 indicates the best design
for that network, and 10 the worst design. Consider, for example Design F. It is the best of
the ten designs for the network with algebraic connectivity 4.5392, but worse for that network
with algebraic connectivity only slightly higher at 4.5494.

We see that each different design may be good, bad, or indifferent for each particular
network. There seems to be no fixed ordering, such that designs tend to be better for all
networks. There seems to be no correlation between the quality of a design and the algebraic
connectivity.

We see similar patterns for other eigenvalues and Laplacian eigenvalues, but omit them for
conciseness and as their physical interpretation is less clear.

5.2 Co-spectral Graphs

As a further example to show that macroscopic properties of a network do not determine the
design, consider the two graphs pictured as Figure 6. These graphs are clearly very different,
although they have the same spectrum (-2,0,0,0,2). However, the first graph has an optimal
design with As-optimality function value 2; in fact, of the 16 distinct designs for n = 5 subjects,
8 of them are optimal, and 8 are sub-optimal, and in this case lead to inestimability of the
subject effects. For the second graph all designs lead to an inestimable difference in subject
effects; i.e. there is no optimal design, or rather all designs are equally ineffective.
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Figure 6: Two co-spectral graphs

Wilson and Zhu (2008) consider graphs which are co-spectral in their adjacency matrix,
Laplacian, as well as two other criteria (sign-less Laplacian, and normalised Laplacian). We
compare the pair with upper-right triangle matrices of A

011111010101010111010000100010111001101011011
and 110100101111100000011011011010100111001111010

For example, with m = 3, the ¢] are 0.6263 and 0.6274 respectively. The ¢35 are also
different (1.158 and 1.350 respectively), with different optimal designs for the two co-spectral
networks. We again see that knowing the spectrum or Laplacian spectrum does not allow us
to determine which design is optimal without also knowing the detailed network structure.

5.3 Summary of relationship between network properties and optimal de-
sign

We wanted to test the hypothesis that there is a relationship between the large-scale properties
of the network and the optimal design for that network; as many of the large-scale properties
of the networks are encoded in the spectrum of the graph (and e.g. Laplacian spectrum), it is
surprising that two graphs which are co-spectral produce very different designs. Thus we can
be sure that the large-scale properties alone of the graph do not determine the optimal design.
It may be that the large-scale properties of a graph do not determine the design absolutely,
but there is an association between these properties and the design; Table 1 shows clearly that
even simpler properties, such as algebraic connectivity, do not have a strong effect on deter-
mining the design. Thus for any network, it is important to know the connectivity structure
of the graph exactly in order to be confident of a good design, and we cannot hope to find a
good algorithm for finding design simply by knowing large scale properties of the network.
For some online social networks, such as Twitter, the structure of the network is publicly
available, whereas for others, such as Facebook, user privacy prevents anyone but an admin-
istrator knowing the global connectivity structure of the network. For less well defined social
networks, such as friendship networks, there may be uncertainty in a connection. Finally,
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the strength of connections on a network (corresponding to a non-binary matrix A) may also
strongly affect the design. Future work will include generalising this work to the case where
we do not know the complete network structure, but have some information on it.

6 Algorithms for finding optimal design

Recall from section 3.1 that we wish to find an optimal design by finding the best design
(an allocation of treatments to experimental units) to minimise some (linear) function of our
information matrix, I, defined in equation (7). The criteria ¢; and ¢, contained in that section
define reasonable optimality criterion.

As the information matrix I depends on some summary statistics of the design, we might
consider a constrained optimisation to find the optimal design. However, in all except trivial
networks, the function to be optimised is complicated (even for m = 2 it is a quartic) and,
computationally, we consider other methods for finding the optimal design.

For small networks, we exhaustively consider each design within the design space X, calcu-
late its Fisher information matrix, and hence the value of the design criterion. The design which
yields the best value of the design criterion function is our optimal design for that criterion.
The exhaustive search is computationally expensive; |X| = m', which becomes unmanageable
for moderate network sizes n or treatments m. We can reduce the size of the search region by
two methods: considering symmetry of labels in the design, and symmetries in the graph.

6.1 Symmetry of labels

For our criteria we are only interested in differences between treatments, the treatment ef-
fects themselves are irrelevant, and treatments are equivalent up to relabelling. For example,
1,2,2,3,1 and 1,3,3,2,1 are equivalent. We can thus reorder any design so that we only evaluate
designs where the first occurrence of label j must come before the first occurrence of label
j + 1. Without loss of generality, we assign treatment 1 to experimental unit 1.

6.2 Symmetry of graphs

In Figure 7, subgraphs 1 and 2 are exchangeable; i.e if we consider subdesign A on subgraph
1, and subdesign B on subgraph 2 (call this [A1,B2]), we need not also consider [A2,B1] as by
symmetry this design has the same criterion value.

We can thus reduce our design space greatly if we can identify subgraphs where the designs
are exchangeable. This is equivalent to finding an automorphism for our network, a relabelling
or permutation of the set IV such that the edges E are preserved. This is known as the Graph
Automorphism Problem. Unfortunately, it is not known whether this problem is NP-complete
or not (Lubiw 1981), and no general algorithm for reducing the design space is available.

In practice, we suggest that, except in the m = 2 case, it is generally quicker computation-
ally to find graph automorphisms to reduce the design space before performing an exhaustive
search.
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Subgraph 1 Subgraph 2

Figure 7: Demonstration of automorphism.

6.3 Non-exhaustive search

For large networks, exhaustive search may be difficult due to the number of possible designs
(|X] = m™). We have constructed an algorithm (a type of Fedorov exchange algorithm inspired
by Fedorov (1972)) to find an efficient design which may be near optimal.

1. Pick a random balanced design and evaluate the information function for that design.
2. Either

e with probability p = 0.9: swap two randomly chosen labels

e otherwise pick a label randomly and relabel it with a randomly chosen label.
3. Evaluate the information function for the new design;

e if it is smaller (better), accept the new design.

e if it is larger (worse), accept the new design with small probability 6=0.05.

4. Repeat from step 2 until a fixed number of iterations are completed.

We find 10,000 iterations to be effective for the examples presented here. Step 3 ensures
that we can sometimes pick a locally worse design in the hope of eventually finding a globally
optimal design.

Extending this simple algorithm is an area for future work; for example simulated annealing
algorithms for finding optimal designs such as described by Wit et al. (2005) would also an
effective solution to avoiding finding locally optimal designs which are not globally optimal.
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7  Further examples

We present further examples to show how this method can find optimal designs for a wide
class of experiments where the treatment applied to a subject affects other subjects.

7.1 Example 3: A Social Network

Suppose we design an experiment to determine the effectiveness of a new advertisement. Ten
people are sent a video advertisement for a type of soft drink (treatment 1), and ten are shown
no advertising (treatment 2). The amount of soft drink each person buys in the following
week is then monitored. The marketing executives are interested not only in how effective
the advertisement is, but also how effective it is at being conveyed to friends of those in the
group which originally saw the advertisement (this is known as viral marketing), so 20 people
are chosen such that the connectivity structure of an online social network of the subjects is
known.

Figure 8: Optimal design for estimating subject(top) and network(bottom) effects of an advert

We see in Figure 8 the shape of the social network for these people. The top figure for each
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node presents the optimal design (for ¢;) for estimating (with minimum variance) how much
extra soft drink people buy as a direct result of having been sent the advert. If our linear
network effects model is true, we find ¢7 = 0.2002. The bottom number in each node shows
the optimal design for ¢, for estimating the network effect (the viral effect of the advert), with
#%5 = 0.0284. This design is also not bad for estimating the subject effects (variance 0.200752).

7.2 Example 4: Block Designs for left and right treatment effects

Druilhet (1999) shows that this example design is optimal for estimating m = 4 treatment
effects:

4 2 3 4 2
3 1 4 3 1
2 4 1 2 4
1 3 21 3

Each number represents a treatment applied to a plot, and the treatment will affect its left
and right neighbours within the block, each block being a horizontal line of plots. There is a
block effect for all subjects in a block. The plots in the left and right brackets are “guard”
plots, and no response is gathered from these plots.

gt

Figure 9: A blocked experiment with left and right treatment effects. Top numbers are plot
labels (nodes in the network) and bottom numbers the optimal allocation for m = 4 treatments.

We represent the plots as a network with a connectivity structure as shown in Figure 9.
We also plot the m = 4 optimal design for criterion 1 on that figure. Without guard plots, it is
interesting to note that the optimal design is not balanced, let alone neighbour balanced; for
instance, treatment 2 appears 4 times, but treatment 1 only twice. However, Druilhet’s model
assumes a block effect which we do not have in our present model, so a direct comparison may
not be fair; with our method we can design an experiment without guard plots.
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7.3 Example 5: Non-rectangular field trials

Most field trial experiments focus on rectangular fields. Let us assume we have an irregularly
shaped field divided into plots as shown in Table 2. An integer represents the number of a

1123
4 )
6 | 781910
1111213 |14 | 15

Table 2: An irregularly shaped collection of plots in a field.

plot. We wish to perform a trial on different fertilisers, to estimate the difference between
fertilizer (treatment) effects with minimum average variance. We assume that any fertiliser
applied might leach to any of the 8 plots that touch the treated plot, including those only
touching at corners.

Here, we can represent the connectivity structure by a network as shown in Figure 10,
together with the optimal design for ¢;. This design is balanced, with all treatments equally
replicated. Here, ¢] = 0.4052. The minimum average variance possible with no restriction on
comparisons 2 X UZTm = 0.402. Tt is interesting to note how close we can get to the variance for
the unrestricted case with this unusual shape of field.

7.4 Example 6: Extension to a crossover trial with planned dropouts

Usually in a crossover trial, including a dropout in the design could be tricky. Let us assume
we are performing a crossover trial on four subjects (a, b, ¢, and d) over four periods with
three treatments (labelled 1 to 3), each of which is believed to have a wash-out time of one
period. Assume further that it becomes clear that participant b will not be able to take the
treatment in the third period of the trial. This is represented by Table 3.

Period Period
1 2 3 4 1 2 3 4
a| 1 2 3 4 all 1 1 2
. b| 5 6 7 ) b|2 1 2
Subject cls 9 10 11 Subject cls 1 3 3
d|12 13 14 15 d|{3 2 2 3

Table 3: A crossover trial. Left: Experimental units numbered as subject/period combinations.
Right: Optimal design.

We use each subject/period combination as a node in our network, and we modify our
methodology such that links are uni-directional by relaxing the restriction that A is symmetric;
our Linear Network Effects Model in Equation (1) is still valid, and we perform an exhaustive
search as before to minimise ¢y.
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Figure 11: Cross-over trial with planned dropout. Nodes in network as subject/period com-
binations.



The network for this experiment is shown as Figure 11. The optimal design found by
considering this experiment as a network is presented as Table 3. The optimal design has
@] = 0.4128. Note that it is quite different in form from usual cross-over designs.

7.5 Example 7: Motivating example revisited

Recall that we assume we have a network of 10000 customers, and want to assess the effec-
tiveness of sending 4 different adverts each to a subset of 25 customers, so that 100 customers
in total were selected. After the experiment, the best advertisement would be sent to the rest
of the customers. An advertisement is deemed effective if more customers click on a hyperlink
in a message. It can be determined which customers click on a hyperlink. Although in this
example 9900 customers are not directly sent an advert, they may see a test advert sent to one
of the subsets (perhaps one of the customers sends to them or shares it publicly) and respond,
so all customers are measured.

Marketers on many online social networks (e.g. Facebook and Twitter) pay per “impres-
sion”, for each time that a message is displayed to a user. It is common in marketing to assess
the effectiveness of an advert on a small group of people, before paying for it to be promoted
to a much larger network. Each user may be exposed to their assigned advert many times.

To generate a typical network of 10,000 customers; we start with two linked nodes and
add 9998 further nodes individually according to a preferential attachment (Barabési-Albert)
model, such that each node adds two links with probability of attachment to an existing node
proportional to the degree of the existing node.

We then wish to assess designs with four adverts. We use five treatments: treatments 1
to 4 are coded to mean that adverts 1 to 4 are sent to a customer, and we invent a special
treatment 0 which means that the customer is not selected. It is important that we include
customers that are not given an advertisement in our experiment, as even though we do not
show them an advertisement directly, the advertisement may be passed to them virally and
they may click on the hyperlink.

As our network of n = 10000 does not allow us to perform an exhaustive search, we
compare two methods: 1) the lowest information function found from a number of iterations
of the exchange algorithm presented in section 6.3; 2) the lowest information function found
after evaluating a number of randomly chosen designs.

The results are presented as Figure 12 by a plot of the lowest (best) information function
value for both ¢; and ¢o against the number of designs evaluated for each algorithm, on a
log-log scale.

For both algorithms, the algorithm converges to find designs with function values close to
optimal. In this example, choosing random designs seems to work better than an exchange
algorithm, although the difference in efficiencies between the two designs finally found (noting
the log scale) is minimal. The results are similar for both ¢; and ¢s.

We investigated for this example whether there was any correlation between the degree
of a node and the probability of receiving any treatment. We found the linear correlation
to be 0.03 for ¢; and 0.0381 for ¢o. Performing a t-test showed that this correlation was
significant but tiny at the 1% level of significance. It is clear that for our network effect, by
giving a treatment to a highly connected node, we will be able to measure the effect more
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effectively as the network effect will propagate to all neighbours of the highly connected node.
For calculating the subject effect, it is also advantageous to select highly connected nodes as a
highly connected node will experience many more network effects from its neighbours, which
will allow the network effect to be estimated more precisely, which in turn will allow the subject
effect of the treatment applied to the highly connected node to be estimated more precisely.

8 Conclusions

We have presented a new methodology for designing experiments on social networks, an area
which has seen little research. We introduced a linear network effects model that encompasses
a wide class of experiments where the treatment on one subject affects the other subjects.
We have shown how one can readily find optimal designs for these experiments, and described
some techniques to make this exhaustive search procedure faster.

We have shown the problems in inflated bias and variance that may be experienced when
we neglect a network effect in an experiment where one is present. Finally, we have presented
examples from a wide area of experiments to demonstrate the flexibility of our method, focusing
on marketing experiments on social networks, but also showing examples on agricultural and
crossover trials. The method seems to be widely applicable and simple to implement, and we
hope this paper serves as an introduction to a very wide class of models which can benefit from
experimental design techniques.
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