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Abstract  

It has been reported that long-term use of continuous-flow mechanical circulatory support 

devices (CF-MCSDs) may induce complications associated with diminished pulsatility. 

Pulsatile-flow mechanical circulatory support devices (PF-MCSDs) have the potential of 

overcoming these shortcomings with the advance of technology. In order to promote in-

depth understanding of PF-MCSD technology and thus encourage future MCSD 

innovations, engineering perspectives of PF-MCSD systems, including mechanical 

designs, drive mechanisms, working principles and implantation strategies, are reviewed 

in this article. Some emerging designs of PF-MCSDs are introduced and possible 

elements for next generation PF-MCSDs are identified. 

Keywords: Mechanical circulatory support device; Pulsatile blood pump; Pumping 
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Introduction 

Six and half million adults have been diagnosed with heart failure (HF) with 960,000 

new cases annually in the US alone 1. The 1-year and 5-year mortality of end-stage HF is 

30% and 50%, respectively 2. Heart transplantation remains the gold standard to treat end-

stage HF (survival of 9.5 years) but available donors are far too few to meet the need. 

From September 1987 to December 2012, over 40,000 patients were waiting for heart 

transplants with a survival of 2.3 years; only about 27,000 received donor hearts 1. Thanks 

to the smaller size , simplicity, and reliability of the rotary blood pump technology, CF-

MCSDs), known as the second and the third-generation blood pumps, have shown a much 

improved survival (81% in 1 year) and patient outcomes compared to the first generation 

predecessors which generated pulsatile flow 3-5. However, the operation of CF-VADs 

reduces the intrinsic pulsatility in the circulatory system, which could be linked to a lower 

cardiac recovery rate (< 2%) than with pulsatile-flow VADs (PF-VADs) and 

complications including aortic insufficiency (AI), thromboembolic events, impaired 

microcirculation, right heart failure (RHF), and acquired von Willebrand syndrome 

(AvWS) and bleeding events 6-14. 

To date, pulsatile flow seems to provide more long-term benefits over purely continuous 

flow. Attempt has been made to generate pulsatile flow by incorporating speed 

modulation in the CF-MCSDs 6, 15. More research is required to examine that if these 
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control algorithms are capable of providing adequate pulsatility 8. Furthermore, there is 

no guarantee that with the frequent speed change of the impeller, hemocompatability will 

remain the same with current pump designs.  

Even though the issues related to the design of the first-generation pulsatile devices have 

effectively prevented their use in clinical arena, the physiological benefits are still 

promising. It is worthy to take a retrospective overview on current engineering foundation, 

the design principle, and related complication in order to revisit the need and stimulate 

next-generation design. 

The devices included in this review are categorized into four groups - left ventricular 

assist devices (LVADs) before 2008, LVADs after 2008, counter-pulsation devices, and 

total artificial hearts (TAHs). The year 2008 was used in consistence with introduction of 

the first FDA approved continuous flow device, emphasizing the transformation of the 

pump designers’ strategy with the accumulating experience. The technical specifications 

are summarized in Table 1 and the focus of the following paragraphs is to describe the 

engineering perspectives. 

 

Devices review 

Generally speaking a PF-MCSD consists of a volume-displacement pump unit, a control 

unit, and a powering unit. The pump units differ from each other in the driving mechanism 

- mechanically, pneumatically or hydraulically. The pump units are controlled by either 
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controllers or consoles depend on patients’ mobility demand. Power is supplied by 

percutaneous driveline (PD) connecting to the external battery or other power sources or 

transcutaneous energy transfer (TET) systems. The overview of the mechanical 

specifications is summarized in table 1, while following paragraph focus on the 

distinguished design, pumping mechanism and clinical performance of each pump. 

 

Table 1. Parameters of the implantable PF-MCSD 
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N/A: Not Applicable; CA: Cardiac Assistance; CR: Cardiac Replace; SV: Stroke Volume; ED: 

Electriclly Driven; PD: Pneumatically Driven; PET: Percutaneous energy transmission; TET: 

Transcutaneou energy transmission. 

1. LVADs up to 2008 (Not in clinical use) 

  Novacor, HeartMate I (Fig.1), LionHeart (Fig.2) systems were devices that had been 

developed before 2008, among them Novacor was the first FDA approved mechanical 

circulatory assist system. These three systems included volume-displacement pump units, 

drive units, controller and batteries, detailed parameters were included in table 116-20. All 

three pump units contained blood sacs, which were either driven electrically (deformed 

by pusher plates) or pneumatically16, 19-21. Blood contacting surface of HeartMate I was 

textured with sintered titanium microspheres on the titanium surfaces and fibrillar 

textured surface on the sac diaphragm22. Instead of using percutaneous driveline (PD), 

LionHeart was the first VAD incorporating Transcutaneous Energy Transmission (TET) 

system23. 

  These pulsatile pumps operated in synchronize with native heart24, 25. However, the big 
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volume of those pumps required invasive implantation surgeries and patients with big 

body surface area (>1.5m2)21, 26, 27. Infection around the PD (48% readmission) and 

embolic accident around the inflow valve area (2 out of 8 paatients, from Feburary 1992 

to April 1994) were the main complications with the Novacor device16, 28. Device 

malfunction rate of HeartMate I decreased from 4.6% in 1995 to 1.1% in 1999, due to 

device improvements29. With all the efforts LionHeart had made, 37% decrease in sepsis 

incidence and 26% decrease in death attributed to sepsis were achieved. However, it also 

brought in the device-related infections (35%), including 7 pocket infections and 1 

compliance chamber infection out of 10 events, with Dincreased invasiveness and 

complexity of implantation30-32. 

 

Fig.1 HeartMate VE system 
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Fig.2 LionHeart system 

2. LVADs after 2008 

TORVAD (research device, not in clinical use) 

  TORVAD device is a valveless pulsatile blood pump with two rotary pistons, 

eliminating the thromboembolic risk around the artificial valves. The innovative 

driving/pumping mechanism involves rotating one piston around a toroidal-shaped 

chamber while maintaining the other piston between inlet and outlet ports. These two 

pistons exchange roles when one stroke circle finishes, facilitating unidirectional flow 

without the presence of one-way valves. Normally, the TORVAD device synchronizes 
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with native cardiac cycle, providing 30ml output per stroke. When under asynchronous 

operation, the device is able to provide 1 to 8L/min flow output to suit the patient’s 

demand. This unique working principle allows smaller size, allowing for the pre- or 

intraperitoneal implantation 33-35. Superior hemocompatibility was reported. 

 

Soft Robotic Sleeve (research device, not in clinical use) 

Soft Robotic Sleeve is a non-blood-contacting pump to be implanted in the pericardial 

space and wrapped around the heart. This device contains soft pneumatically driven 

artificial muscles arranged in helical and circumferential patterns same as the outer two 

layers of heart muscle fibers, and silicon sheets that incorporate the actuators. Muscle 

patterns (helical or circumferential) and part of the actuator (right or left) can be 

controlled independently to provide customized assistance for various heart diseases.  

The soft robotic sleeve is designed to synchronize with the native cardiac cycle during 

which the device contracts and twists in systole and relaxes during diastole. Since there 

is no foreign material in contact with blood, the need for anticoagulation is eliminated for 

this device. The in-vivo results proved an increased ejection output in the porcine cadaver 

hearts and reestablishing cardiac output (from 45% to 97%) in an acute porcine asystole 

model 36.  
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3. Counter-pulsation devices 

Intra-Aortic Balloon Pump 

  Intra-aortic balloon pump is the first-in-line resuscitation therapy and the most 

commonly used left ventricular assist devices for its low cost and ease of 

insertion/removal/replacement 37, 38. It contains intra-aortic balloon, percutaneous 

driveline, console, and helium tank. The intra-aortic balloon is a dual-lumen catheter - the 

inner lumen connected to a pressure sensor and the outer lumen to a gas supply. A standard 

balloon has a volume of 40ml 39and mounted on a 7 or 8-Fr catheter. The balloon inflates 

during native heart diastole, after the aortic valve closure, to increase the coronary 

perfusion. Then deflates quickly in early systole, prior to the opening of the aortic valve, 

to create a temporary vacuum in the descending aorta which reduces afterload thereby 

helps left ventricle unloading 40, 41.  

The pump is implanted through arterial access to the descending aorta. The balloon 

should be placed above the renal artery and about 2cm below the subclavian artery. Its 

insertion site requires patients to remain supine position during the whole therapy, leading 

to circumscribed mobility 42. The effect of the balloon shape was investigated by Kolyva 

et al, due to the diminished benefits when the patient is nursed in the semirecumbent 

position. A lanceolate shaped IAB with 2/3 conical segments was less affected by 

angulation and even exceeded the performance compared to a cylindrical IAB during 

inflation 43. 

IABP SHOCK I trial demonstrate no significant effect on 30 day mortality, this results 
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was further strengthened by SHOCK II trial with only slight improvement in 12 month 

mortality. The minor hemodynamic effects could be attributed to the similarity in 

mortality between IABP and control group for both SHOCK trials. What’s also similar in 

both trials was about 90% of survivors were in NYHA class I/II 44, 45. 

 

NuPulseCV intravascular ventricular assist system (iVAS) (research device, not in 

clinical use) 

  NuPulseCV iVAS (Fig.3) may be considered as a long-term version of IABP to provide 

partial yet adjustable support for advanced HF. The design is intended to combine features 

of IABP and LVAD to promote minimally invasive approach but still allow patient 

mobility. The system consists a 50 c.c. balloon pump, skin interface device (SID), three 

subcutaneous electrodes and a portable driver. The counter-pulsating balloon pump is to 

be placed in the descending aorta through the subclavian artery 46. The SID is an 

electromechanical and pneumatic conduit with a chimney that allows for shuttling of air 

between the pump and external driver and communication of the captured ECG signals 

that are transmitted to the driver from 3 subcutaneous electrodes 47.  

In the first-in-human trial, 13 out of 14 patients were ambulatory within 24 hours and 

successfully transplanted after. One patient needed escalation of support and received 

Impella 5.0 then CentriMag blood pump for ECMO before transplanted. There was no 

pump thrombosis, stroke, and gastrointestinal bleeding in this single center study 47. 
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Fig.3 NuPulseCV iVAS 

 

The Kantrowitz CardioVAD (KCV) (research device, not in clinical use) 

  Another attempt for long-term pulsatile balloon pump is the Kantrowitz CardioVAD, 

which utilizes extra-aortic placement and provides partial support for HF patient not 

qualified for transplant 48, 49. The KCV consists of a 60cc Cardioplus pump, percutaneous 

driveline and a portable controller. The 60 c.c., super lightweight balloon pump (< 0.03 

kg) is to be attached on the descending aorta via surgical procedure. The invasive 

implantation potentially increases the risk of morbidity and mortality; however, the non-

blood-contacting design of the KCV does allow the device to be turned on/off as needed 

without increasing the risk of thromboembolism and does not require any anticoagulation 

49, 50. 



12 
 

 

C-Pulse (Not in clinical use) 

  C-pulse(Fig.4) is also an extra-aortic balloon pump 51. The C-pulse system comprises 

an extra-aortic cuff/balloon, sensor heads, a percutaneous driveline, a driver and batteries 

52. The pre-shaped balloon is wrapped around the ascending aorta right above the 

sintubular junction by an aortic cuff, and connected to the gas tank with a percutaneous 

driveline. With the same inflation/deflation mechanism as of the IABP, the C-pulse 

increases left ventricle diastole pressure and coronary perfusion during diastole and 

reduces ventricular afterload during systole. Nevertheless, like other non-blood-

contacting device, the C-Pulse system eliminates the requirement for anticoagulation, 

potentially reducing the risk of bleeding and device-related thrombosis.  

 

Fig.4 C-pulse pump 

Symphony (research device, not in clinical use) 

  Symphony is a valveless pneumatically driven pump placed in the pacemaker pocket, 
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eliminating the need of open chest surgery and providing partial cardiac support 48. The 

Symphony device consists of a 30 c.c. volume displacement pump body made of 

polyurethane membrane, a console, an electrocardiogram leads, and percutaneous 

pneumatic driveline 49, 53. The pump body is to be placed in the pacemaker-like pocket in 

the infraclavicular fossa of the right side of the patient and connected to the subclavian 

artery with a single short graft 48, 53, 54.  

  The counterpulsation of the pump was controlled by ECG signals 53. The Symphony, 

in comparison to a 40-mL IABP, was capable of providing higher overall coronary, carotid, 

and aortic flows and eliminating retrograde flow 11 55. 

4. TAHs 

Abiocor TAH 

Abiocor is the first available (approved as humanitarian device) electrohydraulic driven 

TAH, and the world’s first fully implantable artificial heart with a TET system 56. The 

external coil can be connected to the bedside console or the external batteries 57. The 

external battery could provide approximately 1 hour operation, and the internal battery 

up to 20 minutes 58, 59. The Abiocor pump unit consists of two chambers that replace the 

position and function of two native ventricles. In between the two chambers is a hydraulic 

pump which displaces the blood sac membrane by actuating fluid56. An additional atrium 

chamber is connected to the left chamber to address the flow imbalance between left and 

right ventricles. A compensating chamber is separated from the atrium chamber by 
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flexible diaphragm and connects to the right chamber. When left chamber is in the diastole, 

the hydraulic fluid flows to the right chamber and the compensating chamber, exerting 

less volume displacement than that in the left chamber systole. The process is reversed 

during left chamber systole 60.   

Implantation of the Abiocor system required highly invasive thoracotomy in patients 

with BSA  2 m2. Two out of 14 patients died during the surgical procedure and the 

longest survival of the remaining patients was 512 days 61-63. Multiple complications were 

reported, including 9 cerebrovascular accidents, 11 non-device-related infections, 2 

device failure led death, 3 multiple organ failure, and 4 device related infections 62-64.  

 

Syncardia CardioWestTM TAH 

  Syncardia TAH (Fig. 5) is the very first mechanical circulatory support device used as 

destination therapy 65. Two pneumatically driven pump units (approximately 160 g each), 

which differs in the integrated valves, are connected to the atria through velcro after 

excision of the native ventricles 66 67. The external driver, connecting to the pump units 

via a pneumatic driveline, comes in hospital-based (about 180 kg) and portable discharge 

(about 6 kg) versions 66, 68. The portable driver can supply 3-hour operation without 

connecting to the main 69. 
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Fig.5 Syncardia TAH 

  During cardiac systole, the driver system pushes air into the artificial ventricles through 

the pneumatic drivelines, and forces diaphragms deform towards the superior aspect of 

the blood chamber, ejecting blood out of the chamber. During cardiac diastole, the driver 

system sucks the air out, and creates temporary vacuum to help the blood chamber get 

filled. 

Unfortunately, the 70ml stroke volume of each ventricles still limits the device use in 

patients with BSA  1.7m270. A multi-center study demonstrated a 79% bridged to 

transplant rate of the patients who received Syncardia TAH with an overall 1-year, 5-year, 

and 8-year survival of 70%, 50%, and 45%, respectively 71, 72. Infection and 

hemocompatibility related complications were significant with the Syncardia TAH - 53% 

systemic infections, 27% driveline infections, 19% thromboembolic events and 14% 
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hemorrhagic events were reported in 47 patients 73.  

CARMAT TAH 

  Similar to the Abiocor TAH, the CARMAT TAH is also an electrohydraulic driven 

pulsatile blood pump. The CARMAT TAH differ in its blood contacting surfaces 

consisting of bovine pericardial tissue and expanded polytetrafluorethylene (ePTFE). The 

CARMAT pump is separated into a left ventricle and a right ventricle; each ventricle has 

a blood chamber and a hydraulic chamber by hybrid membrane. The silicone fluid driven 

by two electro-hydraulic pumps, exerting forces on the membrane and thus displacing 

blood out of the blood chamber into circulation. A short-term animal study demonstrated 

the ability of CARMAT pump to provide 7.3 to 10 L/min flow output 74. Like any other 

TAHs, CARMAT pump has four valves navigating blood flow, a percutaneous driveline 

supplying power and controlling pump unit 70. 

An intelligent control algorithm enables the device to response to preload and afterload 

spontaneously. Together with the use of prosthetic materials, these features gives more 

potential for a bio-compatible TAH device 75. However, the integrated electronics and 

microprocessor in the implanted pump result in a bigger size (> 750 ml) which fits in 86% 

of male patients and only 14% of female patients 70.  

 

ReinHeart TAH 

ReinHeart is a totally implantable TAH with a TET system and is driven completely 

electrically by a linear motor, eliminating complex mechanical bearings and gears. Both 
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blood chambers of the pump unit have 60 ml stroke volume and can provide up to 7.5 

L/min flow output 76, 77.  

The main aspect that distinguishes the ReinHeart TAH from other TAHs is the 

passively filling pump unit (Fig.6). The slider of the linear motor is connected to two 

pusher plates that exert forces on the blood chambers. Yet the pusher plates are separated 

from the blood chambers, which allow the blood chambers to fill passively during diastole, 

eliminating the need for preload detecting pressure sensors 76. A compliance chamber, 

connected to the pump unit by a tube, cuts down pressure peaks and prevents suction 

events 77, 78. The internal controller controls the pump unit and compliance chamber and 

provides system status information. Furthermore, a control algorithm in response to 

preload and afterload was developed to address the imbalance between pulmonary 

circulation and system circulation 79. Therefore, the ReinHeart device could provide 

customized assist for different physiological conditions. 

The TET system allows the coil misalignment of 30 mm, potentially increasing the 

usability in daily care 76. The two external packable batteries can provide up to 12 hours 

operation through the TET system and the internal battery can supply 45 mins operation 

in case of the TET system’s failure 77. The pump design is proved to have comparable 

washout (99.4% of blood will be washed out after 3 cardiac cycle), and durability (5 years) 

80-82. 
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Fig. 6 ReinHeart System 

Discussion 

 This is the first systemic review on the engineering perspective for pulsatile devices in 

recent 20 years. In the era of CF-MCSD, the superior outcome has promoted the 

prevalence of mechanical circulatory support, allowing us to gain insights into clinical 

care, physiological demands, and the underlying mechanisms for various complications. 

The benefits of pulsatile flow are getting more understood and pronounced, encouraging 

more researchers to develop next-generation devices which bring in pulsatility. The effort 

of bringing proper pulsatility with continuous flow ventricular assist devices has been 

made to keep the advantage of their compactness. The artificial pulse of HeartMate 3 
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provides some pulsatility to blood flow83. CFD analysis indicated good washout flow 

field inside HeartMate 3 pumps with artificial pulse84. HVAD Lavare cycle is a speed 

modulation algorithm, and has shown promising clinical performance with significantly 

lower stoke, sepsis and right heart failure rate85. However, speed modulation of 

continuous flow blood pumps doesn't generate sufficient pulsatility (Slaughter2014). 

Furthermore, the drastic acceleration and deceleration will introduce additional shear 

stress, which may increase blood damage. NIH is highly influenced by the pump design 

and speed modulation controller. However, continuous flow blood pumps have been 

optimized to nominal constant flow condition only. Further studies are still needed to 

investigate the influence of speed modulation on both hydraulic and hemolysis 

comprehensively. 

 The design philosophy has altered considerably. The LVADs before 2008 tend to provide 

full support, which requires a blood sac larger than the native heart. Therefore, the large 

size and invasive implantation limit their use in wide patient population, not to mention 

other complications persisting harm the survival and patient quality of life, such as 

infection and hemocompatibility-related issues. The LionHeart device symbolized an 

ambitious attempt in solving the complications; however, the failure was quite detrimental. 

With the knowledge with modern VADs where high unloading may not be preferred in 

most of the application, the development starts shifting to offer partial or sub-full 

circulatory support. Furthermore, various advances in engineering fields such as material, 

electronics, and nano-technology have risen in the past decades. This opens up the room 



20 
 

for more design possibilities on selection of new pumping mechanisms and system 

configuration. For example, the NuPulse iVAS serves as an attempt to combined the 

advantages of IABP and LVAD – to preserve the mobility of the patient in long-term use 

while keeping a minimally invasive and short implantation procedure.  

Since the compromise/balance is always to be made, it is worthy to evaluate different 

important factors for PF-VAD to facilitate understanding for designers. 

1.  Anatomical fitting 

  For volume displacement pumps, decreasing pump size and, in the meanwhile, meet 

the high flow assistance demand of patients is always a problem. As indicated by SHOCK 

II trial, 90% of the survivors are NYHA class I/II patients, early engagement of the pump 

could be one possible solution for decrease flow demands and increase mortality in the 

meantime. 

  Although it might be always the smaller the better for VADs, it does not hold true for 

TAHs. An appropriate size is required to keep the thorax cavity occupied so that the tissue 

and other organs don’t grow or displace into the wrong places. To accommodate patients 

with small BSA and not eligible with normal TAHs, smaller TAHs have been designed, 

such as Syncardia TAH 66, by simply scaling down the pump size. A numerical study of 

the effect of the size on stress accumulation showed that the platelets in smaller devices 

will suffer from higher stress accumulation, which could be attributed to reduced size and 

higher pumping frequencies 80.  
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2. Wireless technology 

Percutaneous driveline is a shared problem faced by PF-MCSDs and CF-MCSDs, yet it 

will be much difficult for PF-MCSDs to address due to system design resulted low 

efficiency. Temptations to eliminate the driveline have been made before 2008. Around 

2000, LionHeart 19, Abiocor 59, HeartMate 2 86, reopened the TET research. But the 

technology back then was immature with problems like low long-term reliability, low 

implantability and skin complications 23. Waters et al. developed a Free-Range Resonant 

Electrical Energy Delivery System (FREE-D) for powering left ventricular assist devices 

87, 88 , and the feasibility was demonstrated by Agari et al. 89. However, the FREE-D 

system is still sensitive to the coil alignment and the environment, the need of battery 

implantation, and the transmission distance is no more than 0.7 meter 89. The 

improvement of the reliability and transfer distance of wireless transfer will make the 

future of mechanical circulatory support. 

3. Valves, or valve-less 

Artificial valves in the first-generation MCSDs contribute to the major risk of thrombosis 

of patients (1-2% per year) even with aggressive anticoagulation therapy 90. Regions near 

the valves exist flow abnormality, such as turbulence, stagnation, and recirculation, 

resulting in blood cells exposed under non-physiological shear stress in various degrees. 

Thus, mechanical blood trauma can be induced, including hemolysis, thrombosis, and 

platelet/particle activation or degradation 91. Using bioprosthetic valves may bring in a 
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more physiological flow field, but the high closing pressure shock induces calcification 

or valve failure within months92. To mediate the shock loading, the CARMAT device uses 

a kind of filled oil behind the pericardial membrane while the ReinHeart pump modulates 

the drive speed of the piston.  

Since valves for blood pumps do not encounter as many anatomical constraints as in the 

prosthetic valves for valvular diseases, it seems natural to put in more effort on the design. 

Blood pump valves can resist higher gradients and worse closing volumes and actually 

moderate leakage. These leads to more work to provide sufficient cardiac output, but for 

blood pumps power is not an unsolvable problem and the leakage could serve as kind of 

purge flow for the blood chamber. This is not directly applicable for the inflow valve but 

certainly the outflow valve. The inflow could have 2 valves, one (could be mechanical) 

to take up the main closing pressure with leakage and another behind it (could be flexible) 

to seal and protect the patient. 

However, these designs no doubt complicated pump construction. Until a super 

biocompatible material to come to solve the longevity issue, another innovative solution 

for the next generation pulsatile blood pumps could be the valveless design. This requires 

completely re-considering the design (sometimes the pumping principle) at a system level, 

as seen in the TORVAD device or those counter-pulsating devices employing the native 

heart valves. 
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4. Blood contacting, or not 

Like other blood-contacting devices, the interface between the device and blood is crucial 

for the biocompatibility of blood pumps. Most blood pumps have blood in direct contact 

with artificial material surfaces, so long-term anticoagulation therapy is required. In these 

devices, the chemical and morphological characteristics of artificial material (biomaterial) 

surfaces are crucial for improving biocompatibility. Fibrillar textured blood contacting 

surface had already been used before 2008 on HeartMate I pumps. Various coatings were 

applied to improve the hemocompatibility. Thanks to the modern computational and 

experimental fluid dynamics technologies, flow field in the chamber/sac or in the conduits 

can be comprehensively optimized before the devices are put into resource intensive in-

vivo tests82.  

On the other hand, possibility to incorporate non-blood-contacting pump is unique for 

PF-MCSDs. Varies of new designs have been made after 2008, such as the C-pulse 

devices and the soft robotic sleeve pump. The idea for these non-blood-contacting devices 

is to completely eliminate the use of life-time anticoagulation medicine and thus improve 

the quality of life and drug associated complications.  

However, these new pumps normally require active pressing on tissues using foreign 

materials, potentially leading to rejection reaction and immune suppressing intervention. 

With the suppressed immune system, patients will be more vulnerable to infectious 

diseases, which could lead to severe medical problems. Constant deforming certain 

organs may cause irreversible organ damage. Therefore, the biocompatibility of the 
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materials and the compressing motions should be carefully optimized to maximize the 

benefits. 

Conclusion 

Notwithstanding the fact that continuous flow blood pumps show better clinical 

performance than the first generation of pulsatile blood pumps, they still have some 

adverse effects that may cause clinical problems, which could be addressed by 

introducing pulsatile flow. Pulsatility control algorithm of CF-MCSDs is being 

researched, yet the quantity and morphology of the pulsatility is still unknown to provide 

optimized assistance. PF-MCSDs could produce stronger pulsatility, operate on 

accordance with the natural heart operation, which provides physiological assistance. The 

development of new PF-MCSDs should be focused on reducing the pump size, eliminate 

the need of percutaneous driveline, improve or eliminate the need of prosthetic valve and 

blood-contacting surfaces. The next generation PF-MCSDs need physiologically and 

hemodynamically favored assistance mechanism, less or minimally invasive implantation 

procedure. With the advance of the technology and the emergence of new designs, 

pulsatile blood pump may stage a comeback and provide better support for heart failure 

patients. 
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