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Abstract

Since the 2008 �nancial crisis Government bond yields in US, Europe

and elsewhere have been historically low and challenged term structure

models that cannot rule out negative yields. This paper uses US and

German Government yields to test three factor Gaussian models that do

and that do not rule out negative yields, namely a¢ ne models, quadratic
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models, extensions of the Black and Black-Karasinski models. Quadratic

models and a Vasicek-type model best �t observed yields when the sto-

chastic factors driving the short rate are correlated. However the Black-

Karasinski model for the US and the Black model for both US and Ger-

many can best �t yields when interest rates are lowest, i.e. after 2008,

despite the restriction of independent factors driving the short rate. A

new linear-quadratic model whereby the central tendency of the short

rate is a non-negative quadratic function of Gaussian factors performs

particularly well for German yields. All models �t German yields better

than US yields. All models �t the one year yield worse than longer term

yields.

Key words: quadratic model, Black model, Vasicek model, Black-Karasinski

model, method of lines, Extended Kalman Filter.

JEL classi�cation: G12; G13.

1 Introduction

Since the 2008 �nancial crisis, due to strongly expansionary monetary policies,

Government bond yields in US, Europe and elsewhere have been historically low

almost to resemble Japanese Government bond yields. This setting challenges

a¢ ne Gaussian term structure models (AGTSM) that do not rule out negative

yields. Therefore this study uses US and German Government bond yields to

test term structure models that do and do not rule out negative yields, and

in particular models in which the instantaneous short interest rate is a non-

negative function of Gaussian latent factors, such as quadratic term structure
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models (QTSM) and extensions of the Black (1995) and Black-Karasinski (1991)

models. Black and Black-Karasinski models are hereafter referred to as BBKM.

AGTSM, QTSM and BBKM are all driven by Gaussian latent factors. Gaussian

factors are tractable and do not su¤er from the admissibility restrictions that

a¤ect more general a¢ ne stochastic di¤erential equations. As a result market

prices of risk can be freely speci�ed and the pricing models better �t observed

yields as explained in Dai and Singleton (2002) for the case of AGTSM. Hence

this paper concentrates on Gaussian latent factors driving the short rate.

In AGTSM and QTSM the short interest rate is either an a¢ ne or quadratic

function of the latent Gaussian factors. Instead in BBKM the short rate is a

more general non-negative function of the latent Gaussian factors. QTSM and

BBKM can rule out a negative short interest rate and negative yields, unlike

AGTSM. BBKM require numerical solutions for bond valuation, which become

burdensome when the latent factors are not independent, therefore this paper

concentrates on three independent factors driving the short interest rate for

BBKM. AGTSM and QTSM have closed-form or quasi-closed form solutions

for bond prices even when the latent factors are not independent. Unlike in

AGTSM, in QTSM and BBKM the conditional variance of yields increases with

the level of yields; in this sense yields are "hetero-schedastic".

The main empirical �nding is that quadratic models and a Vasicek-type

a¢ ne model with non-independent factors generally �t US and German bond

yields better than BBKM with independent factors. The "non-independence" of

the factors generally seems more important than the "non-negativity" of model
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predicted yields over the sample period 1999-2011. However BBKM can best �t

yields when central bank interest rates are lowest, especially after 2008, despite

independence of the factors driving the short rate. When interest rates are

lowest, a variant of the Black model �ts US and German yields particularly well

and the Black-Karasinski model �ts US yields particularly well. The paper also

tests a new linear-quadratic model whereby the short rate may turn negative,

while the central tendency of the short rate is a quadratic non-negative function

of Gaussian latent factors. This quadratic model �ts German yields particularly

well. All models �t German yields better than US yields. All models �t yields

for short maturities of one or two years less well than yields of longer maturities.

The paper is organised as follows. The next section reviews the most relevant

literature. Then two sections present the theoretical pricing models. Another

section illustrates the empirical performance of the models. The conclusions

follow.

2 Literature

The literature on dynamic term structure models is too vast to be summarised

in this paper. A good survey is Dai and Singleton (2003). Here we refer only

to Gaussian term structure models that simply rule out arbitrage and abstract

from the macro-economy. Vasicek (1977) and Langetieg (1980) �rst studied

a¢ ne Gaussian models. Babbs and Nowman (1999) used the Kalman �lter

to estimate a¢ ne Gaussian models. Dai and Singleton (2002) tested general

4



a¢ ne Gaussian models. Nowman (2010) successfully �tted a two factor a¢ ne

Gaussian model to Euro and UK Sterling yield curves using the Kalman Filter.

Joslin et al. (2011) studied a¢ ne Gaussian models whereby the factors are

observable portfolios of yields. Du¤ee (2011) used a¢ ne Gaussian models to

show that yields cannot detect variation in US Government bond risk-premia.

QTSM were studied already in the nineties and then in Ahn et al. (2002),

Leippold and Wu (2002, 2003) and Chen et al. (2004). Ahn et al. (2002)

illustrated the empirical advantage of general QTSM over a¢ ne models due to

the unrestricted correlation between the factors driving the short interest rate.

Gourieroux and Sufana (2005) and Realdon (2006, 2011) presented discrete time

QTSM. Li and Zhao (2006) used a QTSM to provide evidence of un-spanned

stochastic volatility in the pricing of interest rate derivatives. Jiang and Yan

(2009) provided evidence of "jumps" in the short rate using a linear-quadratic

model.

Other notable Gaussian models outside the families of a¢ ne or quadratic

Gaussian models are those of Black and Karasinski (1991), Black (1995), Pe-

terson et al. (2003). Gorovoi and Linetski (2004) provided an eigenfunction

expansion for pricing a discount bond according to Black�s model. Using the

Japanese term structure of interest rates, Realdon (2009) tested a two factor

version of the Black model. Kim and Singleton (2012) tested various non-

a¢ ne Gaussian term structure models with two latent factors using Japanese

Government bond yields. Instead this paper tests multifactor versions of the

a¢ ne Gaussian model, Black model, Black-Karasinski model and discrete time
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quadratic models using US and German Government bond yields.

3 Extended Black and Black-Karasinski Models

(BBKM)

The paper tests an extension of the Black (1995) model in which the time t

default-free instantaneous short interest rate rt is a function of the time t value

of three latent factors x1;t; x2;t; x3;t so that

rt =
P3

i=1max (xi;t; 0)
q
: (1)

q is a constant and will be set equal to 1 or 2. When q = 1 we have a three

factor generalisation of Black�s (1995) model. We consider the case where q = 2

because unreported tests show good empirical performance in comparison to

other cases where q di¤ers from 2. Given a �ltered probability space with the

usual properties, we assume

dxi;t = �i (�i � xi;t) dt+ �idwQi;t

for i = 1; 2; 3. dxi;t is the stochastic di¤erential of the factor xi and dw
Q
i;t the

stochastic di¤erential of a Wiener process in the risk-neutral measure Q over

the in�nitesimal time interval [t; t+ dt]. The Wiener processes are independent

unless otherwise stated, therefore dwQ1;tdw
Q
2;t = dwQ1;tdw

Q
3;t = dwQ2;tdw

Q
3;t = 0.

�i; �i; �i for i = 1; 2; 3 are all constant parameters. Equation 1 implies that rt
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cannot turn negative and bond yields for maturities longer than the instanta-

neous maturity are guaranteed to be positive, even when xi;t are negative.

The paper also tests an extension of the Black-Karasinski (1991) model

whereby rt =
P3

i=1 exp (xi;t) and a special case of the a¢ ne Gaussian model

of Langetieg (1980) whereby rt =
P3

i=1xi;t. We refer to this version of the

Langetieg model as the three factor Vasicek model.

Let V denote the value at time t of a discount bond with face value 1.

V (T ) = 1 is the terminal value of the discount bond at maturity T . Absent

arbitrage and assuming for example equation 1, we obtain the pricing equation

V = V1 � V2 � V3 (2)

@Vi
@t

+
@2Vi
@x2i

1

2
�2i +

@Vi
@xi

�i (�i � xi)� Vi �max (xi; 0)q = 0

lim
xi!�1

@2Vi
@x2i

! 0; lim
xi!1

@2Vi
@x2i

! 0; Vi (T ) = 1 for i = 1; 2; 3:

For i = 1; 2; 3, Vi is a function of xi and time t. Vi tends to be linear in the

factor xi as that factor tends to plus in�nity, in which case Vi tends 0. Vi

also tends to be linear in the factor xi as that factor tends to minus in�nity,

in which case Vi tends to 1. Discount bond yields are computed as � lnV
T�t ,

where again T is the bond maturity date and t the current date. The fact

that the three factors are independent considerably simpli�es the numerical

solution to the bond pricing equation. Instead of solving for V on a grid with

three "space" dimensions, we simply solve for V1; V2; V3 on three grids, each

grid having one "space" dimension. In the empirical tests below, the partial
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di¤erential equations for V1; V2; V3 are each solved through the vertical method

of lines.

3.1 Vertical method of lines (MOL)

Vertical MOL discretises the pricing equation in the "space" dimensions, but

not in the "time" dimension. When the pricing equation is linear, vertical

MOL reduces to a system of ordinary di¤erential equations (ODE�s), which

can quickly be solved by computing a matrix exponential. Khaliq, Voss and

Yousuf (2007) proposed vertical MOL for option pricing and explained its sta-

bility and accuracy. This paper uses vertical MOL as unreported simulations

show that vertical MOL is quicker and more accurate than the implicit �nite

di¤erence method, with no stability problems because the "time" dimension is

not discretised. With vertical MOL we compute V1 on a grid of nodes in the

space dimension x1. Each node is x1;j = j � �x1 + x1;0 for j = 1; 2; ::; J and

�x1 =
x1;J�x1;0

J . Therefore the pricing equation satis�ed by V1 is solved on each

node over the �nite region [x1;0; x1;J ] where x1;0 and x1;J are respectively the

lower and upper boundaries of the solution region in the x1 dimension. Vertical

MOL discretises the pricing equation in the x1 dimension, but not in the time

dimension. We de�ne � = T � t, where again T is the bond maturity date and

t the current date. Over the interval [0; � ] at the grid points [x1;1; ::; x1;J ] we

approximate V1 with the vector u = (u1; ::; uJ)
0 and at the same grid points we
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approximate the pricing equation for V1 with the system

@uj
@�

=
uj+1 � 2uj + uj�1

(�x1)
2

�21
2
+
uj+1 � uj�1
2 � �x1

�1 (�1 � x1;j)�max (x1;j ; 0)q uj for j = 1; 2; ::; J:

(3)

We can rewrite this system of ordinary di¤erential equations as

@u

@�
=M � u (4)

u(� = 0) = 1J

@u

@�
=

0BBBBBB@
@u1
@�

::

@uJ
@�

1CCCCCCA (5)

where 1J�1 is a J � 1 vector whose elements are all equal to 1 and

M =

0BBBBBBBBBBBBBB@

2A1 + B1 C1 � A1 0 :: 0 0 0

A2 B2 C2 :: 0 0 0

:: :: :: :: :: :: ::

0 0 0 :: AJ�1 BJ�1 CJ�1

0 0 0 :: 0 AJ � CJ BJ + 2CJ

1CCCCCCCCCCCCCCA
Aj = 1

2

��
�1
�x1

�2
� �1(�1�x1;j)

�x1

�
Bj = �max (x1;j ; 0)q �

�
�1
�x1

�2
Cj = 1

2

��
�1
�x1

�2
+

�1(�1�x1;j)
�x1

�
:
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The solution to system 4 is

u (�) = exp (� �M) :

This matrix exponential can be computed very quickly, for example with Matlab,

which employs the Padé approximation of Higham (2005). Unreported numeri-

cal exercises for the Black1 model with one stochastic factor showed that, using

parameters similar to those estimated in the empirical tests, the implicit �nite

di¤erence solution to the partial di¤erential equation for Black1 approaches the

vertical MOL solution as the number of time steps per year is increased. This

implies that the error of the �nite di¤erence solution due to time discretisation

is almost absent from the vertical MOL solution, as the Padé approximation in

Matlab is extremely accurate to compute a matrix exponential. For example,

as J = 200, x1;0 = �1, x1;J = 1, the di¤erence on the same nodes between the

implicit �nite di¤erence solution with 2000 time steps per year and the vertical

MOL solution is typically less than 1 basis point of a discount bond yield; such

is the di¤erence between the two solutions on most of the nodes and for most

bond maturities up to 10 years. The implicit �nite di¤erence method and verti-

cal MOL employ similar �nite di¤erences to approximate the derivatives in the

"space" dimension.
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3.2 Vasicek with correlated factors

The empirical tests compare BBKM with a three factor Vasicek-type model with

correlated factors, such that

rt =
P3

i=1xi;t

dxi;t = �i (�i � xi;t) dt+ �idwQi;t

for i = 1; 2; 3 and dwQ1;tdw
Q
2;t = �12 �dt, dw

Q
1;tdw

Q
3;t = �13 �dt, dw

Q
2;tdw

Q
3;t = �23 �dt.

�12; �13; �23 are correlation parameters. For this model the value of a discount

bond is

V = eA+
P3

i=1Bixi;t

Bi =
e��i(T�t) � 1

�i

and

A =
�12�1�2
2 � �1�2

�
1� e�(�1+�2)(T�t)

�1 + �2
� 1� e

��2(T�t)

�2
� 1� e

��1(T�t)

�1
+ T � t

�
+

+
�13�1�3
2 � �1�3

�
1� e�(�1+�3)(T�t)

�1 + �3
� 1� e

��3(T�t)

�3
� 1� e

��1(T�t)

�1
+ T � t

�
+

+
�23�2�3
2 � �2�3

�
1� e�(�2+�3)(T�t)

�2 + �3
� 1� e

��3(T�t)

�3
� 1� e

��2(T�t)

�2
+ T � t

�
+

+
P3

i=1 (Bi + T � t)
�
�2i
2�2i

� �i
�
� �

2
i

4�i
B2
i :
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Hereafter this model is referred to as "Vasicek correlated", while the special

case whereby �12 = �13 = �23 = 0 is referred to as "Vasicek".

3.3 Processes in the real measure and Kalman Filter

For all the above models we assume that in the real probability measure

dxi;t = �
�
i (�

�
i � xi;t) dt+ �idwi;t (6)

for i = 1; 2; 3, where dwi;t are di¤erentials of Wiener processes in the real mea-

sure and dw1;tdw2;t = �12 � dt, dw1;tdw3;t = �13 � dt, dw2;tdw3;t = �23 � dt. For

all models except "Vasicek correlated" the correlation parameters are zero, i.e.

�12 = �13 = �23 = 0.

Let t = 1; 2::;M , denote the set ofM dates on which we observe Government

discount bond yields. x1;t; x2;t; x3;t denote the values of the three latent factors

on day t. � is the time between consecutive observations and is approximately

equal to one divided by the number trading days in one year. Therefore � = 1
261

since we observe about 261 daily prices per year in the data. The number of

trading days in one year varies between 260 and 262. Let l (xt j xt�1) denote

the real measure conditional transition density of xt = (x1;t; x2;t; x3;t)
0 given
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xt�1 = (x1;t�1; x2;t�1; x3;t�1)
0. It can be shown that

l (xt j xt�1) s N
�
���� + (I� ��)xt�1;��0

�
(7)

�� = I3�

0BBBBBB@
e��

�
1� 0 0

0 e��
�
2� 0

0 0 e��
�
3�

1CCCCCCA , �
� =

0BBBBBB@
��1

��2

��3

1CCCCCCA ,

��0 =

0BBBBBB@
�21
2��1

�
1� e�2��1�

�
�12�1�2
��1+�

�
2

�
1� e�(��1+��2)�

�
�13�1�3
��1+�

�
3

�
1� e�(��1+��3)�

�
�12�1�2
��1+�

�
2

�
1� e�(��1+��2)�

� �22
2��2

�
1� e�2��2�

�
�23�2�3
��2+�

�
3

�
1� e�(��2+��3)�

�
�13�1�3
��1+�

�
3

�
1� e�(��1+��3)�

�
�23�2�3
��2+�

�
3

�
1� e�(��2+��3)�

� �23
2��3

�
1� e�2��3�

�

1CCCCCCA .

I3 is the 3� 3 identity matrix. N
�
���� + (I� ��)xt�1;��0

�
is the multivari-

ate normal density with mean ���� + (I� ��)xt�1 and covariance ��0. The

empirical tests use the Extended Kalman �lter (EKF) to estimate the models

on US and German yields. Two are the main reasons why EKF is used instead

of Maximum likelihood (ML) estimation. The �rst reason is that ML requires

"inferring" the latent factors from the observed yields on any observation date.

This is complicated to do for BBKM and quadratic models with three latent

factors and also requires the arbitrary assumption that some of the yields be ob-

served without error. EKF estimation does not require this assumption, since

it assumes that all yields are observed with error. The second reason to use

EKF is that the Gaussian processes of the latent factors make EKF suitable for

estimation. Details about EKF are provided in the Appendix. EKF is also used

to estimate the linear quadratic models hereunder.
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4 Discrete time linear-quadratic pricing models

This section illustrates the linear-quadratic model in discrete time that will also

be tested on US and German yields. We employ the discrete time version rather

than the continuous time version of the linear-quadratic model because of fewer

constraints to model parameters as explained below. Moreover in discrete time

the conditional transition density of the factors, as opposed to the continuous

time transition density, remains Gaussian, which simpli�es EKF estimation.

Again we set each time step equal to � = 1
261 and employ the following de�ni-

tions:

- Vn;t is the time t value of a zero coupon bond with n trading days to

maturity, thus the bond matures on trading day t+ n;

- rt is the continuously compounded risk-free interest rate for one trading

day observed on day t, such that

V1;t = e
���rt ; rt =

� lnV1;t
�

:

The no-arbitrage risk-neutral valuation equation is

Vn;t = E
Q
t

�
e���rt � Vn�1;t+1

�
(8)

where EQt [::] denotes conditional expectation on day t under the risk-neutral

14



measure Q. Following Realdon (2011) we further assume that

rt = x
0
t	xt + �yt (9)

xt = (x1;t; ::; xm;t)
0 (10)

xt+1 � xt = � (�� xt) +��Qt+1 (11)

xt+1 � xt = �� (�� � xt) +��t+1 (12)

yt+1 � yt = �y (�y + x0tLxt � yt) +
�
�0yx;�y

�0BB@ �Qt+1

"Qy;t+1

1CCA (13)

yt+1 � yt = ��y
�
��y + x

0
tLxt � yt

�
+
�
�0yx;�y

�0BB@ �t+1

"y;t+1

1CCA (14)

�
�Q0t+1; "

Q
y;t+1

�0
v N (0m+1; Im+1) (15)

�
�0t+1; "y;t+1

�0 v N (0m+1; Im+1) (16)

� = S
p
�; �yx = Syx

p
�; Syx = (�yx;1; ::; �yx;m)

0
; �y = sy

p
� (17)

� = � � �; �y = � � �y; � = � � ��; �y = � � ��y; L = � � 1m�m (18)

Vn;t = exp (An +B
0
nxt + x

0
tCnxt +Dnyt) : (19)

xt; �; �
�; �Qt+1; �t+1;Bn;�yx;Syx arem�1 vectors. 	; �; �

�; �; ��;Cn;�;S;L;1m�m

are m � m matrices. In particular 1m�m is an m � m matrix whose ele-

ments are all equal to 1. rt; An; A0; yt; �y; �y; �y; �
�
y; "

Q
y;t+1; "y;t+1; Dn;�y; sy

are scalars. N (0m+1; Im+1) denotes the multivariate normal density with mean

0m+1 and covariance matrix Im+1. 0m+1 is a (m+ 1) � 1 vector of zeros.

Im+1 is the (m+ 1)� (m+ 1) identity matrix, while �Qt+1 =
�
"Q1;t+1; ::; "

Q
m;t+1

�0
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and �t+1 = ("1;t+1; ::; "m;t+1)
0. "1;t+1; ::; "m;t+1 and "

Q
1;t+1; ::; "

Q
m;t+1 are scalar

Gaussian random shocks respectively in the real and risk-neutral measures.

�,��,�,��,�,��,�, S,�y,�y,�y,��y,�,�yx,Syx,�y,sy are parameters. The factor

processes x and y are speci�ed under both the real measure and the risk-

neutral measure Q. x follows a Gaussian auto-regressive process, where the

random terms �Qt+1 in the risk-neutral measure are normally distributed with

mean of 0m�1 and covariance Im. The time t conditional covariance matrix

of (xt+1 � xt) is ��0. The discount bond value Vn;t is exponential linear in yt

since the short rate rt is linear in yt. The conditional mean of yt+1 is quadratic

in xt, which causes the discount bond value Vn;t to be exponential quadratic in

xt. The conditional covariance of
�
x0t+1; y

0
t+1

�0
is

EQt

2664
0BB@ xt+1

yt+1

1CCA � �x0t+1; yt+1�
3775 =

2664 ��0 ��yx

�0yx�
0 �y�y

3775 : (20)

This discrete time linear-quadratic model is a special case of Realdon (2011),

who shows that we can recursively compute An;Bn;Cn; Dn appearing in 19 by

solving the following system of Riccati di¤erence equations:

An = An�1 +B
0
n�1��+Dn�1�y�y + (��)

0
Cn�1��+ ln

jj
abs j�j+ (21)

+
1

2

�
Gn�1 +Dn�1�

0
yx�

�1� 0 �Gn�1 +D
0
n�1�

0
yx�

�1�0 + 1
2
Dn�1�y�

0
yDn�1
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B0n = B
0
n�1 (I2 � �)+2 (��)

0
Cn�1 (I2 � �)+2

�
Gn�1 +Dn�1�

0
yx�

�1� 0C 0n�1 (I � �)
(22)

Cn = ��	+(I2 � �)0Cn�1 (I2 � �)+Dn�1L+2 (I2 � �)0Cn�10C0n�1 (I2 � �)

(23)

Dn = ��� +Dn�1 (1� �y) (24)

with Gn�1 = B
0
n�1+2 (��)

0
Cn�1 and  =

��
��0

��1 � 2Cn�1��1=2. On day
t the one day yield is

rt =
� lnV1;t
�

= �A1 �B01 � xt � x0tC1xt �D1yt = x0t	xt + �yt (25)

since A1 = 0, B1 = 0m�1, C1 = ��	 and D1 = ���. rt � 0 if 	 is symmetric

and � = 0. When the stochastic factors are latent, parameter identi�cation

restrictions are needed. In this paper we:

- either set � = 1 and 	 = 0m�m, where 0m�m is an m�m matrix of zeros;

hereafter we denote this model speci�cation as DTQM1;

- or set � = 0 and 	 = Im, which makes the model a pure quadratic model;

hereafter this model speci�cation is denoted as DTQM2 (or DTQM3 when all

the latent factors are independent).

In DTQM1 rt may turn negative, unlike in DTQM2 and DTQM3.
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4.1 DTQM1

The empirical tests below consider DTQM1 where � = 1, 	 = 0m�m andm = 2

so that rt = yt, and where

0BB@ x1;t+1

x2;t+1

1CCA=
0BB@ x1;t

x2;t

1CCA+
0BB@ �1;1 0

�2;1 �2;2

1CCA
0BB@
0BB@ �1

�2

1CCA�
0BB@ x1;t

x2;t

1CCA
1CCA�+S �

0BB@ "Q1;t+1

"Q2;t+1

1CCAp�

S =

0BB@ �1 0

�12 � �2
p
1� �212 � �2

1CCA

� =

0BB@ �1

�2

1CCA ; �� =
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�1; �2; �y; �1;1; �2;1; �2;2; �y and �yx;1; �yx;2; sy are parameters and "
Q
1;t; "

Q
2;t; "

Q
y;t

are the random shocks. �12 is the conditional correlation between x1;t+1 and

x2;t+1, �1y between x1;t+1 and yt+1, �2y between x2;t+1 and yt+1. �1; �2; �y are

volatility parameters. �2;1 is the element of the second row and �rst column

of �. The other indexed parameters have similar interpretation. DTQM1 is of

interest since only the factor yt drives the short interest rate rt, while x1;t and

x2;t only drive the "drift" of the short rate. Thus the model can match very

low and even negative short term yields and at the same time also the relatively
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higher long term yields. Short term yields are mainly driven by yt while longer

term yields are also driven by x1;t and x2;t. Thus short term and long term

yields can move quite independently according to DTQM1. rt tends to revert

toward the level �y+(x1;t + x2;t)
2, therefore long term yields tend to be positive

when �y > 0. We also assume, without loss of generality, that

(�yx;1; �yx;2; sy) =

0@�1y � �y; �2y � �12 � �1yp
1� �212

� �y;

s
1� �21y �

(�2y � �12 � �1y)2

1� �212
� �y

1A :
The Appendix explains that the parameters of DTQM1 are identi�able.

4.2 DTQM2 and DTQM3

DTQM2 is a special case of the linear-quadratic model where � = 0 and 	 = I3,

so that rt = x21;t + x
2
2;t + x

2
3;t. Therefore DTQM2 is a three factor quadratic

model that does not depend on yt. DTQM2 also assumes
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�12 is the conditional correlation between x1;t+1 and x2;t+1, �13 between x1;t+1

and x3;t+1, �23 between x2;t+1 and x3;t+1. �1; �2; �3 are volatility parame-

ters. The value of a discount bond according to DTQM2 appeared in Re-

aldon (2006) and is a special case of the above linear-quadratic model, i.e.

Vn;t = exp (An +B
0
nxt + x

0
tCnxt) with

An = An�1+B
0
n�1��+(��)

0
Cn�1��+ ln

jj
abs j�j+

1

2
Gn�1

0G0
n�1 (26)

B0n = B
0
n�1 (I3 � �) + 2 (��)

0
Cn�1 (I3 � �) + 2 �Gn�1

0Cn�1 (I3 � �) (27)
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Cn = ��	+ (I3 � �)0Cn�1 (I3 � �) + 2 � (I3 � �)0Cn�10C0n�1 (I3 � �) .

(28)

The quadratic model canonical form in Ahn, Dittmar and Gallant (2002) re-

quires that 	 = I3, � � � �0, �� � ���0, S be diagonal and �; �� be triangular.

DTQM2 imposes these same conditions as in Ahn-Dittmar-Gallant, but with S

lower triangular.. Therefore, unlike in Ahn-Dittmar-Gallant, in DTQM2 both

� and S are lower triangular at the same time, rather than just S (when � is

diagonal) or just � (when S is diagonal). This greater freedom is due to the

fact that the quadratic model in this paper is in discrete time, rather than in

continuous time as in Ahn-Dittmar-Gallant, and that the conditional covariance

of xt+1 in discrete time only depends on � and not on �. Other things as in

DTQM2, DTQM3 assumes that the three factors are independent, so that

� =

0BBBBBB@
�1;1 0 0

0 �2;2 0

0 0 �3;3

1CCCCCCA ; �
�=

0BBBBBB@
��1;1 0 0

0 ��2;2 0

0 0 ��3;3

1CCCCCCA ; S =
0BBBBBB@
�1 0 0

0 �2 0

0 0 �3

1CCCCCCA :

The Appendix proves that the parameters of DTQM2 and DTQM3 are identi-

�able in estimation.
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4.3 The continuous time limit

As we observe about 261 trading days per year, when estimating the above

discrete time model we set � = 1
261 . Instead, if �! 0 then xt+��xt tends to

dxt and yt+� � yt tends to dyt such that

dxt = � � (�� xt) � dt+ S � dwQ
t

dxt = �
� � (�� � xt) � dt+ S � dwt

dyt = �y � (�y + x0t1m�mxt � yt) � dt+ (Syx; sy) �

0BB@ dwQ
t

dwQy;t

1CCA

dyt = �
�
y �
�
��y + x

0
t1m�mxt � yt

�
� dt+ (Syx; sy) �

0BB@ dwt

dwy;t

1CCA

where dxt is a m�1 column vectors of stochastic di¤erentials, dwQ
t and dwt are

m�1 column vectors of stochastic di¤erentials of independent Wiener processes

under the risk-neutral measure Q and under the real measure respectively. Sim-

ilarly dyt is a stochastic di¤erential, while dw
Q
y;t and dwy;t are stochastic di¤er-

entials of a Wiener process under the risk-neutral and real measures. Thus dxt

follows a vector Ornstein-Uhlenbeck process. Continuous time quadratic models

are special cases of discrete time quadratic models as � ! 0. The Appendix

shows that as � ! 0 the discrete time quadratic model of equations 26, 27,

28 tends to the continuous time model of Ahn, Dittmaer and Gallant (2002)

whereby a system of Riccati ordinary di¤erential equations needs solving.
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5 Empirical tests

This section empirically tests the models illustrated above. The data consists of

3; 188 daily observations of the discount functions derived from German Gov-

ernment bonds and US Government bonds over the period 1/1/1999-22/3/2011.

The data is provided by Datastream. For any observation date the continuously

compounded discount bond yields are computed from the discount function for

the maturities of one, two, three, four, �ve, six, seven, eight, nine and ten years.

Table 1 provides summary statistics of these yields in the sample period.

[Table 1 about here]

We estimate and test the following three factor Gaussian models:

- the �rst is the "Black-Karasinski" model (BK) whereby rt = exp (x1;t) +

exp (x2;t)+ exp (x3;t); for BK the MOL solution region in each space dimension

is [xi;1; xi;J ] for i = 1; 2; 3, with J = 200, xi;1 = � (20� 0:1) and xi;J = 0;

- the second is "Black1" and assumes rt = max (x1;t; 0) + max (x2;t; 0) +

max (x3;t; 0); the single factor version of this model was �rst proposed by Black

(1995); for Black1 the MOL solution region in each space dimension is [xi;1; xi;J ]

for i = 1; 2; 3, with J = 200, xi;1 = � (1� 0:01) and xi;J = 1;

- the third is "Black2" and assumes rt = max (x1;t; 0)
2
+ max (x2;t; 0)

2
+

max (x3;t; 0)
2; for Black2 the MOL solution region in each space dimension is

[xi;1; xi;J ] for i = 1; 2; 3, with J = 200, xi;1 = � (1� 0:01) and xi;J = 1;

- the fourth is "Vasicek", with rt = x1;t + x2;t + x3;t; for this model we have

closed form solutions for bond prices and impose the restrictions �1 = �2 = �3,
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��1 = �
�
2 = �

�
3;

- the �fth is "Vasicek correlated", with rt = x1;t + x2;t + x3;t; also for this

model we have closed form solutions for bond prices and impose the restrictions

�1 = �2 = �3, ��1 = �
�
2 = �

�
3;

- the sixth is a "Mixed 1" model whereby rt = max (x1;t; 0)+x2;t+x3;t and

�2 = �3 = �
�
2 = �

�
3 = 0; for Mixed 1 the MOL solution region in the x1 space

dimension is [x1;1; x1;J ], with J = 200, x1;1 = � (1� 0:01) and x1;J = 1; the

solution for "Mixed 1" is partly numerical through MOL and partly exploits the

Vasicek formulae;

- the seventh is a "Mixed 2" model whereby rt = max (x1;t; 0)+max (x2;t; 0)+

x3;t and �3 = ��3 = 0; for Mixed 2 the MOL solution region in the x1 and x2

space dimensions are [x1;1; x1;J ] and [x2;1; x2;J ], with J = 200, x1;1 = x2;1 =

� (1� 0:01) and x1;J = x2;J = 1; the solution for "Mixed 2" is partly numerical

through MOL and partly exploits the Vasicek formulae.

Only the �fth of these Gaussian models, i.e. "Vasicek correlated", has non-

independent factors. We also test versions of the linear-quadratic model, namely

DTQM1 with rt = yt described above, DTQM2 and DTQM3 with rt = x21;t +

x22;t + x
2
3;t described above. We compute Vn;t = e

An+B
0
nxt+x

0
tCnxt+Dnyt where

An;Bn;Cn; Dn solve equations 26, 27, 28 with 261 steps per year, since there

are approximately 261 "trading days" in our sample period.

As in Kim and Singleton (2012), estimation of all models employs Quasi-

Maximum-Likelihood estimation through the Extended Kalman Filter (EKF).

Estimation uses yields of maturities from one year to ten years and requires the
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maximisation of the log-likelihood function lk. Such maximisation is carried out

with the Nelder-Mead simplex method. hj , for j = 1; ::; 10, denotes the standard

deviation of the observation errors for the time series of the yield for maturity of

j years. Setting the starting values of each hj equal to few basis points ensures

faster convergence to the optimal simplex solution. As the Kalman Filter is

sensitive to the prior probability density of the starting values of the latent

factors x0 and y0 at time t = 0, x0 and y0 are treated as parameters to be

estimated. This avoids arbitrary assumptions about the said prior probability

density. Moreover unreported evidence shows that most models �t yields better

when x0 and y0 are treated as parameters rather than assuming that x0 and

y0 be distributed according to the unconditional densities of x and y. Table

2 presents the estimation results for US yields and Table 3 for German yields

(the Euro was introduced on 1/1/2002). The BHHH estimator provides the

estimates of the standard deviations of the parameter estimates.

5.1 Results for US

Table 2 summarises the estimation results for the US. The columns headed

"param" provide the parameter estimates and those headed "stdev" provide

the corresponding standard deviations of the parameter estimates. Risk-premia

drive the di¤erence between the real measure and the risk-neutral measure,

hence the di¤erence between estimates of �; � and of ��; �� for all models.

All models �t short term yields less well than long term yields. This is

highlighted by the standard deviation of the errors for the one year maturity,
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which is the standard deviation of the daily di¤erence between model predicted

yields and observed yields for the one year maturity. Such standard deviation is

measured by h1 and is 0:0019 and 0:0021 for the two Vasicek models (i.e. 19 and

21 basis points), between 0:0020 and 0:0023 for BK, Black1 and Black2, 0:0044

and 0:0036 for the "Mixed" models, 0:0045 for DTQM3, 0:0018 for DTQM2,

0:0020 for DTQM1. Therefore DTQM2 seems the best on this metric and

DTQM3 the worst, which highlights the shortcoming of independent factors

driving the short rate, as DTQM3 is the same as DTQM2 except that it assumes

independent factors driving the short rate. According to h1 only DTQM2 beats

"Vasicek correlated" in �tting one year yields, although "Vasicek correlated"

allows the short rate rt to turn negative. All models �t ten year yields much

better than one year yields: h10 = 0:0001 for all models except the Mixed models

and DTQM3. Also the �gures for "Average h", each of which is computed asP10
i=1hi=10, show that DTQM2 and "Vasicek correlated" best �t observed US

yields with "Average h" of 0:0003, closely followed by DTQM1. By contrast

"Average h" is highest for DTQM3 and for the Mixed models. The Mixed

models, which mix Black1 and Vasicek models, seem inferior to both Black1

and Vasicek models. The bene�ts of mixing models are not apparent. Note

that the Vasicek models and the Mixed models have fewer parameters than

the other models. All models have di¢ culty in �tting short term yields. As

a term of comparison, Babbs and Nowman (1999) used the Kalman Filter to

test a three-factor a¢ ne Gaussian model on US yields of similar maturities over

a di¤erent period and estimated standard deviations of the observation errors
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between 1 and 23 basis points.

The last raw in Table 2, named AIC, shows the results of the Akaike informa-

tion criterion (AIC) for each model. AIC compares the empirical performance of

non-nested models with di¤erent numbers of parameters. The lowest AIC �gure

for DTQM2 (�444:410) again suggests that DTQM2 is the "winner" of the race,

closely followed by "Vasicek correlated" (�444:123) and DTQM1 (�443:173).

AIC penalises models with more parameters. For each model also the starting

values of the three latent factors are parameters.

[Table 2 about here]

5.2 Results for Germany

Table 3 presents the estimation results for Germany. All models �t German

yields better than US yields. For each single model the value of the log-likelihood

function lk is higher and "Average h" is lower for Germany than for the US,

while the time window is the same for the two countries. The lowest h1 is 0:0009

for Black1, followed by 0:0010 for Black2, "Vasicek correlated", DTQM1 and

DTQM3, while h1 is particularly high for the BK and Mixed models. As for the

US, also for Germany all models �t one year yields less well than yields of longer

maturities. As for the US, also for Germany "Vasicek correlated" �ts observed

yields well, even though it allows r to turn negative. For Germany the lowest

"Average h" is 0:0019 for the Black models and for DTQM2, closely followed by

"Vasicek correlated" and DTQM1 with "Average h" of 0:0020, while BK and

Mixed models are the worst according to this metric. DTQM3 is less unsuitable
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for Germany than it is for US.

The last raw in Table 3, named AIC, shows the results of the Akaike in-

formation criterion (AIC) for each model for Germany. The lowest AIC �gure

for the DTQM2 model (�468:214) makes it the "winner", closely followed by

"Vasicek correlated" (�465:173) and DTQM1 (�465:461). This ranking for the

top three models according to AIC almost mirrors the AIC ranking for the US.

DTQM2, "Vasicek correlated" and DTQM1 have a common feature not shared

by the other models: the factors driving the short rate are not independent,

a feature that seems more important than the ruling out of negative yields, in

order for a model to better �t observed yields.

[Table 3 about here]

5.3 More measures of empirical �t to observed yields

Table 4 for US and Table 5 for Germany display three other measures of how

well model predicted yields match observed yields: the R2 measure, MAPE

(mean absolute percentage errors) and RMSE (root mean squared errors). R2,

MAPE and RMSE are calculated using daily yield observations for all ma-

turities, from one year to ten years, excluding the �rst observation date which

is 1/1/1999. For any maturity R2 is the square of the correlation coe¢ cient

between observed yields and model predicted yields. R2 measures the fraction

of the variation of the observed yields that is explained by the model. MAPE

is the mean absolute value of the daily di¤erence between model predicted yield

and observed yield divided by the observed yield. RMSE is the standard devi-
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ation of the daily di¤erence between model predicted yield and observed yield.

In the columns headed "Average" we compute the average R2, average MAPE

and average RMSE across all maturities of the corresponding row.

[Table 4 about here]

5.3.1 Results for US

According to R2 DTQM1, DTQM2 and the Vasicek models again best explain

the variations of US yields of almost all maturities, but BK and Black1 follow

closely. The average R2 across all maturities for DTQM2 and "Vasicek corre-

lated" is 0:9969, for DTQM1 and Vasicek is 0:9968, for BK and Black1 is 0:9966.

By contrast average R2 for the other models is clearly worse. For all models

R2 for the one year maturity is lower than for longer maturities and signals

the di¢ culty of models to �t short term yields. The one year maturity R2 for

"Vasicek correlated", which is 0:9930, is the best, while the R2�s for DTQM3

and for the Mixed models are the worst.

MAPE and RMSE tell stories similar to that of R2. The average MAPE

of 1:9% for DTQM2 and of 1:96% for BK are the lowest, followed by 2:05% for

Black1 and for "Vasicek correlated", and by 2:08% for DTQM1. According to

averageMAPE the Mixed models and DTQM3 are again the worst. MAPE for

the one year maturity are lowest for DTQM2 (6; 94%), for BK (7; 34%) and for

the Black models (7; 72% for Black2 and 7; 85% for Black1), while the Vasicek

models are less competitive on this metric. For all models MAPE are highest

for the one year maturity. This is due, beside the natural di¢ culty of models
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in �tting short term yields, to the fact that percentage errors tend to be higher

if observed yields are lower, and short term yields tend to be lower than long

term yields.

DTQM1, DTQM2, BK and the Vasicek models also have the lowest average

RMSE of 0:0008, followed by the average RMSE for Black1 at 0:0009. For

one year yields DTQM2 has the lowest RMSE (0:0018), followed by "Vasicek

correlated" (0:0019), DTQM1 and Black1 (0:0020).

Overall, according to average R2, MAPE and RMSE for the US, DTQM2

appears to "win", but is closely followed by "Vasicek correlated", DTQM1 and,

to a lesser extent, by BK. The relatively good performance of BK may ex-

plain why the BK model has been popular in industry. The Mixed models and

DTQM3 tend to be the worst models. The bene�ts of mixing Black1 and Va-

sicek models are not apparent. Black1 tends to prevail over Black2. DTQM1

performs slightly worse than DTQM2, but fares well, which supports the idea

of a quadratic model where one factor drives the short rate and the other two

factors drive the "drift" of the short rate, as explained above.

[Table 5 about here]

5.3.2 Results for Germany

The results for German yields are somewhat di¤erent from the US. The best

average R2 is 0:9972 for "Vasicek correlated" and DTQM1, followed by 0:9970

for Vasicek and DTQM3, 0:9968 for DTQM2, while the Mixed models and

Black1 are worst on this metric. The best R2�s for the one year maturity are
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0:9938 for DTQM1 and 0:9937 for "Vasicek correlated", both of which do not

rule out negative yields.

The best average MAPE are 0:47% for DTQM1 and "Vasicek correlated",

0:51% for DTQM2, while the Mixed models perform worst with the highest

average MAPE. The best MAPE for the one year maturity are 2:94% for

DTQM3 and "Vasicek correlated", and 2:95% for DTQM1.

The average RMSE for DTQM1, DTQM2, DTQM3 and for the Vasicek

models are the best at 0:0002. For the one year maturity, the RMSE of

DTQM1, DTQM3, Black2 and "Vasicek correlated" are the best at 0:0010.

Overall, according to average R2, MAPE and RMSE for Germany, DTQM1

and "Vasicek correlated" seem the best models for German yields. Both models

do not rule out negative yields and assume non-independent factors driving the

short rate. DTQM1 performs better than DTQM2, therefore German yields

provide even more support than US yields for a quadratic model where one

factor drives the short rate and the other factors drive the "drift" of the short

rate. DTQM2 performs well also on German yields, while the BK model seems

more suitable to US yields than to German yields. Even according to average

R2, MAPE and RMSE for both US and Germany, the non-independence of

the factors seems more important than the ruling out of negative yields.

5.4 Sub-periods with unusually low interest rates

As stated above, the sample covers the period 1/1/1999-22/3/2011, but now

we consider the performance of models in two sub-periods when yields were
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unusually low because of unusually expansionary monetary policies in US and

in "Euroland".

5.4.1 Results for US

From 06/11/2001 to 14/12/2004 (�rst sub-period) the US FED set the Federal

Funds Target rate at or below 2% and again the FED set the Target rate at

or below 2% since 13/04/2008 (second sub-period). Indeed the Target rate has

not exceeded 0:25% since 16/12/2008 until 22/3/2011, which is the end of the

sample period. Table 4 also presents R2, MAPE and RMSE for these two

sub-periods with Target rate at or below 2%. For all models the R2 in the two

sub-periods is lower than it is across the whole sample period, meaning that

the models are less capable to explain observed yield changes during the two

sub-periods.

DTQM2, Black1 and "Vasicek correlated" have the highest average R2: re-

spectively 0:9854, 0:9840 and 0:9840 for the �rst sub-period; respectively 0:9850,

0:9854 and 0:9850 (together with BK�s 0:9855) for the second sub-period. For

the one year maturity in the �rst sub-period again DTQM2 (0:9778), Black1

(0:9671) and "Vasicek correlated" (0:9638) have the highest R2, while in the

second sup-period Black1 (0:9711), BK (0:9699), "Vasicek correlated" (0:9675)

and DTQM2 (0:9663) and have the highest R2. During these sub-periods with

lowest levels of the Target rate Black1 and BK can even beat DTQM2 and "Va-

sicek correlated", which seems due to the zero lower bound of the short rate in

BK and Black1.
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During the �rst sub-period the lowest averageMAPE are 1:9% for DTQM2,

1:96% for BK and 2:05% for Black1 and "Vasicek correlated". During the second

sub-period the lowest averageMAPE are 3:49% for BK, 3:62% for DTQM2 and

3; 77% for Black1. For the one year maturity during the �rst sub-period "Vasicek

correlated" and the quadratic models (except DTQM3) have the lowestMAPE,

while during the second sub-period BK, Black1 and DTQM2 ahve the lowest

MAPE. These results con�rm that BK and Black1 are more competitive when

the Target rate is lowest. For all models and all sub-periods MAPE for the

one year maturity tend to be the highest. MAPE are higher after 13/04/2008,

as all models �nd it more di¢ cult to �t the low yields after the 2008 �nancial

crisis. The high MAPE for DTQM3 and for the Mixed models for the one year

maturity after 13/04/2008 highlight that such models are particularly unsuitable

for US yields.

During the �rst sub-period the quadratic models (except DTQM3), the Va-

sicek models and Black2 have the lowest average RMSE at 0:0008, while during

the second sub-period DTQM2, "Vasicek correlated", BK, Black1 and Black2

have the lowest average RMSE at 0:0009. For the one year maturity, Black2

and "Vasicek correlated" have the lowest RMSE at 0:0014 in the �rst sub-

period, followed by 0:0015 for the quadratic models (except DTQM3), while

BK (0:0016), DTQM2 (0:0018) and Black1 (0:0019) have the lowest RMSE for

the second sub-period, with "Vasicek correlated" (0:0021) not faring well after

2008 for the one year maturity. Again BK and Black1 seem very competitive

after 2008.
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Overall during the two sub-periods with lowest Target rate DTQM2, "Va-

sicek correlated", Black1 and BK best �t US yields, with no clear winner. When

the Target rate is lowest, models that rule out negative yields can compete and

even beat DTQM2 and "Vasicek correlated", which are the best performers

across the entire US sample.

5.4.2 Results for Germany

On all dates in the sample the ECB�s Euro Main Re�nancing Operations middle

rate, or "main Re� rate", was above 2%, except for two sub-periods. The �rst

sub-period is from 06/06/2003 to 05/12/2005, when the "main Re� rate" was

at 2%, and the second from 21/01/2009 to the end of the sample period, when

it was at or below 2%. Since 13/5/2009 until the end of the sample the "main

Re� rate" was at 1%. Table 5 presents R2, MAPE and RMSE for all models

for the two sub-periods in which the "main Re� rate" was at or below 2%.

According to R2 all models perform worse during the two mentioned sub-

periods, particularly for one year yields. For the �rst sub-period "Vasicek corre-

lated" and DTQM1 have the highest average R2, respectively 0:9788 and 0:9785,

and the highest R2 for the one year maturity, respectively 0:9300 and 0:9275.

For the second sub-period the highest average R2�s are 0:9718 for Black1, 0:9715

for DTQM1 and Black2, 0:9714 for "Vasicek correlated", while the highest R2�s

for the one year maturity are 0:8812 for Black1, 0:8771 for Black2, 0:8733 for

DTQM1 and 0:8728 for "Vasicek correlated". According to R2 the Black models

seem the best models after the �nancial crisis of 2008, as the merits of ruling
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out negative yields become more apparent after the crisis.

According to MAPE all models perform worse after 2009 than during the

�rst sub-period with low Re� rate (2003-2005). For the �rst sub-period the

lowest average MAPE are 0:32% for DTQM1 and "Vasicek correlated" and

0:34% for DTQM2, while the lowestMAPE for the one year maturity are 1:75%

for DTQM2, 1; 82% for "Vasicek correlated" and DTQM1. For the second sub-

period the lowest average MAPE are 0:86% for DTQM2, 0:89% for Black1,

0:94% for "Vasicek correlated" and 0:95% for DTQM1, while for the one year

maturity the lowest MAPE are 5:67% for Black1, 5:79% for DTQM2, 6:03%

for DTQM3 and 6:38% for "Vasicek correlated".

Average RMSE for all models except the Mixed models are 0:0001 in the

�rst sub-period. In the second sub-period the lowest average RMSE are 0:0002

for the Black, the Vasicek and the quadratic models (except DTQM3). RMSE

for the one year maturity are better able to discriminate the models: for the

�rst sub-period the quadratic models (except DTQM3) and "Vasicek correlated"

have the lowest RMSE at 0:0005 followed by the Black models at 0:0007; for

the second sub-period the lowest RMSE are for Black1, DTQM2 and DTQM3

at 0:0010, followed by Black2, DTQM1 and "Vasicek correlated" at 0:0011.

Overall for German yields DTQM1, DTQM2 and "Vasicek correlated" seem

the best even in sub-periods with lowest main Re� rate, but after 2009 Black1

seems an equally good alternative.
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5.5 Discussion of results

This section quali�es the above results. Unreported statistics document that the

"errors", i.e. the daily di¤erences between observed yields and model predicted

yields of all maturities, do not follow a white noise process. There is overwhelm-

ing evidence of auto-correlation of daily "errors" and also of cross-correlation

between the errors for the di¤erent maturities. These facts characterise all mod-

els and all maturities and inevitably point to the mis-speci�cation of the models.

To overcome mis-speci�cation, future research may want to consider four factor

models.

As the optimisation routine searches for the parameter values that maximise

the likelihood function, the latent factors may occasionally be "pushed" by the

Kalman Filter outside the �nite solution region used by vertical MOL. Therefore

latent factors were constrained to move within the solution region by placing a

high penalty on the likelihood function whenever the factors were "pushed" by

the Kalman Filter outside the solution region.

Mixed Black1-Vasicek models did not show advantages over the "pure"

Black1 and "pure" Vasicek models. Mixed models perform worse than Black1

partly because of the restriction �2 = �3 = ��2 = ��3 = 0, which is absent in

"pure" Black1. This restriction makes Mixed models estimation easier by pre-

venting the coexistence of "very negative Vasicek factors" and "very positive

Black 1 factors" even beyond the MOL grid upper boundary. Less clear is why

Mixed models perform worse than Vasicek models, although this again con�rms

that ruling out negative yields may not always be of primary importance to �t
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observed yields.

We could also mix the above models in many other ways, but this is left for

future research.

6 Conclusion

Using US and German Government bond yields, this paper has tested a¢ ne and

quadratic Gaussian models, multi-factor extensions of the Black model and of

the Black-Karasinski model. All models �t the German yield curve better than

the US yield curve. All models �t short term yields, such as one-year yields,

less well than yields of longer maturities. The empirical �t of quadratic models,

namely DTQM2 for US and DTQM1 or DTQM2 for Germany, seems the best

together with that of a Vasicek-type a¢ ne model with correlated factors. The

reason is that these quadratic and a¢ ne models are driven by non-independent

stochastic factors. However when interest rates are lowest, a variant of the

Black model (Black1) �ts German and US yields particularly well and a variant

of the Black-Karasinski model �ts US yields well: although these models assume

independent factors, they can best �t bond yields when central bank interest

rates are lowest. DTQM1 is a relatively new linear-quadratic model, whereby

the short rate may turn negative, while the central tendency of the short rate is

a non-negative quadratic function of two Gaussian factors. It seems promising

for future research to further test this model as well as extensions of the Black

model.
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A Estimation with Extended Kalman �lter (EKF)

This Appendix describes how EKF is implemented to estimate all the mod-

els in the text, except for DTQM1. For DTQM1 the details of how EKF is

implemented are only slightly di¤erent from this Appendix. We introduce the

following notation and assumptions:

- xt = (x1;t; x2;t; x3;t)
0 for all models except for DTQM1;

- bxt� is the estimator of xt conditional on information at time t� 1; - bxt is
the estimator of xt conditional on information at time t;

- Et�1 [::] is the real measure expectation operator conditional on time t� 1

information; Pt� = Et�1
�
(xt � bxt�) (xt � bxt�)0�;

- ot = (o1;t; ::; o10;t)
0 are the discount bond yields observed in the market at

time t for maturities of 1; ::; 10 years;

- z (xt) = (z1;t (xt) ; ::; z10;t (xt))
0 is the time t vector of discount bond yields

computed using a model; for example z2;t (xt) = � ln V2 ;

- �t is the vector of observation errors at time t, which is normally distributed

such that �t s N (010;H10); 010 is a 10 � 1 column vector of zeroes; H10 is a

10� 10 diagonal matrix;

- the observation errors �t are uncorrelated with the latent process xt and

with all lags of xt; x0 denotes the initial values of the latent factors and are

parameters to be estimated.
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The measurement equation is

ot w z (bxt�)�Dtbxt� +Dtxt + �t (29)

Dt =

�
@z (xt)

@x0t

�
xt=bxt� : (30)

Dt is a 10 � 3 matrix, z (xt) is a 10 � 1 vector and xt is a 3 � 1 vector. Then

the EKF equations are

bot� = Et�1 [ot] = z (bxt�) (31)

bxt� = ���� + (I� ��)xt�1 (32)

bPt� = ��bP0t�1��0 +��0 (33)

Ft = DtPt�D
0
t +H (34)

bxt = bxt� + bPt�D0
tF

�1
t (ot � bot�) (35)

bPt = bPt� � bPt�D0
tF

�1
t Dt

bPt� : (36)

The approximate conditional likelihood function of ot is

l (ot j Ot�1) s N (bot� ;Ft) (37)

where Ot�1 = fot�1;ot�2; :::;o1g and N (bot� ;Ft) denotes the multivariate nor-
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mal density with mean bot� and covariance Ft. Then we can write
ln (l (ot j Ot�1)) = �

10

2
ln 2� � 1

2
ln (abs (jFtj))�

1

2
(ot � bot�)0F�1t (ot � bot�) :

(38)

abs (jFtj) denotes the absolute value of the determinant of Ft. The approximate

log-likelihood to be maximised in order to estimate the model parameters is

lk = �Mt=1 ln l (ot j Ot�1) : (39)

whereM is the number of observation dates, which is 3; 188. The time step � is

the time between consecutive observations. We observe about 261 daily prices

per year in the data, therefore � = 1=261.

B Identi�cation of parameters for the quadratic

and linear quadratic models

B.1 Identi�cation of DTQM2

This section derives the parameter identi�cation conditions for DTQM2. We

consider the linear transformation xt = 
f t +�, where �;x and ft are 3 � 1

vectors and 
 is a 3 � 3 matrix. 
�1 is assumed to exist. xt are the latent

factors and ft are "rotations" of xt. The linear transformation is invariant if
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and only if 
 = I3 and � = 03. Since in DTQM2

rt = x
0
t	xt

xt+1 = (I3 � �)xt + ��+��t+1

we can employ the linear transformation to write

rt = �
0	�+ f 0t


0	�+�0	
f t + f
0
t


0	
f t

ft+1 � ft = 
�1� (����
f t) +
�1��t+1:

The said transformation is invariant only if�0	�+f 0t

0	�+�0	
f t = 0, i.e.

only if � = 03. The fact that � = 03 entails that � can be uniquely identi�ed.

Then we can re-write

rt = f
0
t


0	
f t

ft+1 � ft = 
�1� (��
f t) +
�1��t+1.

Hereafter we need to impose conditions that imply that 
 = I3. As in DTQM2

� is lower triangular, 
�1� needs to be lower triangular too, which implies

that also 
 be lower triangular. Then as in DTQM2 	 = I3 is a diagonal

matrix, 
0	
 needs to be a diagonal matrix too, which implies that also 


needs to be a diagonal matrix. In DTQM2 � is lower triangular. Then 
�1�


and 
0	
 imply that the diagonal elements of 
 be all equal 1, in order for
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the said transformation to be invariant.

B.2 Identi�cation of DTQM1

This section derives the parameter identi�cation conditions for DTQM1. We

consider the linear transformations yt = 
yfy;t +�y and xt = 
f t +�, where

�;xt and ft are 2 � 1 vectors and 
 is a 2 � 2 matrix. 
�1 is assumed to

exist. xt are the latent factors and ft are "rotations" of xt. �y; yt; fy;t and


y are scalars. yt is a latent factor and fy;t is a "rotation" of yt. The linear

transformations are invariant if and only if 
 = I2, � = 02, 
y = 1 and

�y = 0. Then we can employ these linear transformation to rewrite DTQM1 as

rt = 
yfy +�y (40)

ft+1 � ft = 
�1� (����
f t) +
�1��t+1 (41)

fy;t+1 � fy;t = 
�1y �y

0BB@�y + (
f t +�)0
0BB@ 1 1

1 1

1CCA (
f t +�)��y � 
yfy;t
1CCA�+

(42)

+
�1y

�
�yx;1 �yx;2 sy

�
0BBBBBB@
"Q1;t+1

"Q2;t+1

"Qy;t+1

1CCCCCCA
p
�: (43)

Since rt = yt invariance of the transformation implies that �y = 0 and 
y = 1.

As in DTQM1 � is lower triangular, 
�1� needs to be lower triangular too,
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which implies that also 
 be lower triangular. Then the transformation xt =


f t +� is invariant if

�y + (
f t +�)
0

0BB@ 1 1

1 1

1CCA (
f t +�) = �y + (x1 + x2)2


�1

0BB@ �1;1 0

�2;1 �2;2

1CCA
 =
0BB@ �1;1 0

�2;1 �2;2

1CCA
which implies that � = 02 and 
 = I2 so that the the parameters of DTQM1

are identi�able.

B.3 Quadratic model in continuous time as special case of

quadratic model in discrete time

This appendix shows that as the time step �! 0, the discrete time quadratic

model of equations 26, 27 and 28 tends to the continuous time model of Ahn,

Dittmaer and Gallant (2002), whereby

dxt = � (�� xt) dt+ SdwQ
t

rt = �+ �
0xt + x

0
t	xt

@V

@�
=
1

2
tr

�
@2V

@x@x0
SS0

�
+

�
@V

@x

�0

� (�� x)�(�+ �0x+ x0	x)V; s:t: V (0) = 1
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V (0) = exp (A+B0x+ x0Cx)

@C

@�
= �	�C�� �0C+2C0SS0C: (44)

@B

@�
= �� � �0B+ 2C��+2CSS0B (45)

@A

@�
= ��+B0��+ tr

�
CSS0

�
+
1

2
B0SS0B (46)

A (0) = 0; B (0) = 0; C (0) = 0

with � = 0; �0 = 003. 03 is a 3� 1 vector of zeros. tr
�
CSS0

�
denotes the trace

of CSS0. First we note that as �! 0

Cn = �	�+(I3 � �)0Cn�1 (I3 � �)+20Cn�1 (I3 � �) (I3 � �)0Cn�1 (47)

can be re-written as

Cn �Cn�1 = �	�� �0Cn�1 �Cn�1�+ 20Cn�1 (I3 � �) (I3 � �)0Cn�1

= �	�� �0Cn�1 �Cn�1�+ 2Cn�10Cn�1

44



since lim�!0
�0�
� ! 0. Then since 0=

��
��0

��1 � 2Cn�1��1= ��0

I3�2C��0

and since
��
��0

��1 � 2Cn�1� 0= I3, it follows that
0 = 0

��
��0

��1 � 2Cn�1� 0
=0

�
��0

��1
0�20Cn�10

=
��0

�
��0

��1
��0 � 2 ���0Cn�1��0�

I3 � 2Cn�1��0
�2

=��0� 2 ���0Cn�1��0�
I3 � 2Cn�1��0

�2
and it also follows that lim�!0 

0! ��0 since lim�!0��
0� 2���0Cn�1��

0

(I3�2Cn�1��0)
2! ��0.

By similar arguments

An = An�1+B
0
n�1��+(��)

0
Cn�1��+ln

jj
abs j�j+

1

2

�
B0n�1 + 2 (��)

0
Cn�1

�
0

�
B0n�1 + 2 (��)

0
Cn�1

�0

B0n = B
0
n�1 (I3 � �)+2 (��)

0
Cn�1 (I3 � �)+2�

�
B0n�1 + 2 (��)

0
Cn�1

�
0Cn�1 (I3 � �)

can be re-written as

B0n �B0n�1 = �����B0n�1�+2 (��)
0
Cn�1+2Cn�1��

0Bn�1

An �An�1 = ����+B0n�1��+ ln
jj

abs j�j+
1

2
B0n�1��

0Bn�1:
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Then as �! 0

Cn �Cn�1
�

= �	� �0Cn�1 �Cn�1�+ 2Cn�1SS0Cn�1

B0n �B0n�1
�

= �� �B0n�1�+2 (��)
0
Cn�1+2Cn�1SS

0Bn�1

An �An�1
�

= ��+B0n�1��+
1

�
ln

jj
abs j�j+

1

2
B0n�1SS

0Bn�1

become di¤erential equations 44, 45 and 46.

Notice that lim�!0

�
ln

���������0��1 � 2Cn�1�� 1
2

������ ln (abs j�j)�! tr
�
C��0

�
.
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