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Stefan Problems

A common-place physical phenomenon is the melting of a block of
ice by raising its surface to a temperature above 0°C. The two phases,
water and ice, are separated by a boundary on which melting occurs
at 0°C and which moves further into the ice as time progresses. In the
mathematical treatment, the motion of the boundary has to be determined
and the usual equations of heat flow solved in the water and the ice.
The solutions and the boundary movement are dependent on each other.
The melting of ice is just one example of a whole class of problems
commonly referred to as Stefan Problems. They include the propagation
of phase changes in metals diffusion with absorption and processes

controlled by discontinuous diffusion coefficients.

Methods of Solution

In some cases analytical solutions can be obtained. () Several
numerical methods, all based on finite-difference replacements of
the original partial differential equation, differ in the way they
cope with the movement of the boundary. As usual, in a one dimensional
problem the region is covered by a grid of equally spaced lines.
The various numerical methods have really explored all possible
ways of using the grid. Special finite-difference formulae based
on Lagrangian interpolation formulae for unequal intervals have

been used in the neighbourhood of the boundary when it falls between

two grid lines.(z) Unequal time intervals have been used, calculated

so that the boundary moves always from one grid time to the next in

one time step. A) The grid has been deformed so that the number of

space intervals between the outer surface and the moving boundary

(4)

remains constant, with suitable transformation of the basis equation.



Another method employs an apparent specific heat modified to
include the latent heat in the appropriate region.(s) Finally,

the whole grid has been moved with the velocity of the moving

(6)

boundary in a method incorporating interpolating splines.
Recently a novel way of handling heat flow problems has been
proposed which is especially useful for tracking a moving boundary
that occurs at a fixed temperature. In the usual heat flow

equation in one dimension the temperature is expressed as a
function of the independent space variable x, and time t

i.e. u =u(x,t). An alternative, however, is to seek a solution
in which x is expressed as a function of u and t i.e. x =x(u,t)
so that x becomes the dependent variable. We calculate the
positions of a given temperature, that is of an isotherm at known

times. Hence, the method is known as the Isotherm Migration

Method(7) (IMM). Philip (S)dealt with a problem in concentration

dependent diffusion by making concentration an independent
variable but he did not transform the diffusion equation in the

same way as Dix and Cizek. Rose ®) derived a related transformed
equation but did not develop a numerical method. The idea of

tracking the moving isotherms in media with phase changes was

published by Chernoua'ko (10)

(1

in 1969, though the English version

appeared only in 1970.

Melting Ice

Suppose a plane sheet of ice initially occupies the region
0 <x <a and is being melted by the application of a constant

temperature, uy, on the surface x = 0. At any time, t, let the



moving boundary separating the water from the ice be at x,(t). The
region 0 <x <x,(t)then consists of water with specific heat,

density and thermal conductivity denoted by p, C and K respectively. The

temperature, u, of the water satisfies the heat flow equation

2
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where k = K/cp, the heat diffusivity.

o
We take the ice to be initially at 0 ¢ throughout. Otherwise
we should have an equation similar to (1) for the temperature in

the ice phase and containing appropriate heat parameters.

At the melting boundary, x,(t), the heat flowing per unit

area from the water into the ice in a short time, dt,

is —(Kou/ox)dt. If the boundary moves a distance 8x, in

time dt, the heat required to melt the mass p8x0 of ice per
unit area is Lp 6 x; where L is the latent heat of fusion for ice.

Equating these two amounts of heat and proceeding to the limit
0t = 0, we see that the first condition to be satisfied on the

boundary is

o _ g . @)
dt ox

o
A second condition, since ice melts at 0 C is
u=0, x=x5, t=0. 3)
Commonly used variables

X =x/g T=kt/;2, Xo =Xg/a, s== @
’ 0



lead to the following system of equations
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daT X

U=0, X=Xy, T>0, %
U=Ug X=0, T>0, )
u=0, 0<X<1l, T=0. )

Isotherm Migration Equations

We wish to re-write the heat flow equation (5) so that X

is expressed as a function of u and T. Remembering that

ou oX -1 OX ou ([ oX
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we readily see that
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The other equations (6) - (8) become

1

Mo _ () 0,720 (1)
dT ou

X=Xg., U=0, T> 0, (12)

X=0, U=U, T>0. (13)

We can approximate the derivatives in (10) by finite

difference, in; the usual way and obtain an explicit expression
for X', the value of X at u=idu, T=(n+ 1) 8T in

terms of values already available at (idu, noT).

We find
xoo_oxD 4 xh
X}H_l :X? 145t 1(+ln 1 - 1—1 ) (14)
X - X
1—1 1+1

The corresponding finite-difference replacement of

(11) is

oT ou

n+l _ n
o™ = )" -

(15)

A rigorous analysis of the stability of the non-linear

finite difference scheme has not been attempted.

Dix and Cizek(7) consider instead the coefficient of



Xin in (14). In order that the isotherms should move with

time in the manner expected Xin+1

i.e. the coefficient of X must be positive. This leads

to the criterion

1 >
or << (X = X))

which allows 0t to change as the solution proceeds.

The truncation error” of the IMM is proportional to

At and (Au).

Example

The method has been applied to the problem of a block

of ice, of unit thickness and initially at zero temperature

throughout. One face is maintained at 10° C.

There is a well known analytical solution of this problem. I

Itis
1

2
u=u0—uo% , 0<X<X, T=>0

u=0. X,<x<I, T>0

where ¢is given by

1

n2 ¢ erf g exp (¢°)=u,/s.

The analytical solution provides a means of checking the

should increase with X?

(16)

(17)

(18)

(19)



accuracy of other methods of solution. It can also be used
as a starting solution since all finite-difference methods
present difficulties at small times when the surface

temperature has changed discontinuously at T = 0. Equation (17)
is used to start the IMM method at time 0.1 and for isotherms
2°C apart .

In order to advance the solution from T = 0.1, the
requirement (16) is used. A least upper bound of the dT's
for the different isotherms is adopted as the next time step.
In this way the method selects its own time steps as the
solution proceeds. In fact, in this example the time step
is found to increase in an arithmetic progression every
0.1 units of time, rising from 0.0005 at 0.1 to 0.019 at 3.8.
We note in passing that at approximately this latter time the
whole block of ice has melted. In Table 1 isotherm positions
at selected times calculated by the IMM are compared with
those obtained from the analytical solution.

Table 2 compares the positions of the moving boundary

at several times given by the analytic solution with those
calculated. by the IMM and by the methods of Crank (2) and
Goodman (lz)The latter two solutions are tabulated by
Coldrey.(13)Crank ) uses Lagrangian interpolation

formulae to track the moving boundary. Goodman's method(lz)
is an approximate analytic method in which the temperature
profile is assumed in this example to take the form of a
second degree polynomial satisfying the boundary conditions
at any time. This profile is substituted into an integrated
form of the heat flow equation to give an ordinary differential
equation expressing the position of the moving boundary as a

function of time.



Table 1.

For each time the upper entry shows the isotherm position (10*X)

Selected Isotherm Positions.

obtained from the IMM and the lower Talues from the analytical solution.

The 10°C isotherm remains at x=0 throughout.

Time

0.1005

0.1570

0.3500

0.6260

0.9655

1.5720

2.0225

2.6030

3.2020

3.8411

8°C

317
317

397
396

594
592

795
791

983
983

1257
1254

1427
1422

1619
1613

1797
1789

1968
1690

6°C

636
635

796
794

1191
1186

1594
1586

1970
1969

2520
2513

2860
2850

3247
3233

3602
3586

3947
3928

4°C

956
957

1199
1197

1794
1787

2401
2389

2698
2967

3796
3787

4306
4295

4891
4872

5427
5404

5945
5919

1283
1281

1608
1601

2406
2390

3221
3197

3982
3970

5092
5065

5780
5746

6561
6518

7280
7229

7976
7918

0°C

1617
1617

2026
2021

2032
3017

4058
4035

5017
5011

6416
6394

7283
7253

8267
8228

9173
9126

10050
9995



Table 2. Comparison of positions 10° x, (T) of the moving boundary.

Time IMM Goodman Crank Analytic
0.5 362 367 392 361
1.0 510 520 513 510
1.5 627 636 628 625
2.0 725 735 725 722
2.5 810 822 810 807
3.0 888 900 887 884

3.5 959 972 958 955

3.8 1000 1000 998 995



Advantages of IMM

The relative ease with which the IMM copes with a
moving boundary occurring at a prescribed temperature is obvious.
The boundary is always on a grid line in the (u,T) plane (in
this example the line u = 0). It's position X,(T) is evolved
by the solution with no special treatment other than the use
of (15).

Another strong advantage arises if the heat parameters
are temperature dependent. These need only be known for the
temperatures corresponding to the grid lines chosen. The
evaluation of new values at each time step, which can be

time consuming when working in the (x,t) plane, is avoided.

Other applications of the IMM are being explored.
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