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Abstract

Prediction of a random variable, at test data on another associated variable, follows from
the learning of the (generally high-dimensional) functional relationship between the two
variables. Such learning often comprises modelling this sought (tensor-valued in general)
function with a (high-dimensional) stochastic process - typically, a tensor-variate Gaussian
Process (GP). We review three ways of learning covariance matrices of the resulting tensor
Normal likelihood, including kernel parametrisation of its covariance matrices. Notwith-
standing prevalent deep-learning techniques that treat the number of layers of the learning
scheme as a chosen parameter, here we prove that two layers suffice, even when data on the
observable is distributed discontinuously, as long as a completely generic covariance kernel
function is employed. Such generality manifests in modelling each kernel hyper-parameter
as a random function of the sample path of the tensor-variate GP, where each such function
can be modelled with a scalar-variate GP, that is proven to be stationary. Thus our learning
strategy includes an outer-layer of a non-stationary tensor-variate GP, that is compounded
with multiple scalar-variate, stationary GPs in the inner-layer, and we implement Bayesian
inference throughout. As an aside, we advance the (Generalised Wishart) generative pro-
cess of a non-stationary, temporally-evolving covariance matrix. An empirical illustration
of this dual-layered learning method is made to a real astronomical dataset, and model
checking undertaken.

Keywords: Compound Tensor-variate Scalar-variate GPs, Covariance Kernel parametri-
sation, Lipschitz continuity, Deep learning

1. Introduction

Real-world applications often demand learning the functional relationship between a random
variable S, and another variable V' that bears influence on S, s.t. we can state V =
&(S), where this inter-variable functional relation £(-) that we seek to learn, can itself
be modelled as random. The ulterior aim behind the uncertainty-included learning of
&(+), is the uncertainty-included prediction of values of either variable, at which noise-
included test data on the other has been realised. The sought function can be modelled
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as a realisation from an adequately chosen stochastic process, (where uncertainties in the
learning are explained by such a generative process, in addition to the noise in the training
data). Typically, S is a system parameter vector, and the observed variable V' can be tensor-
valued in general, such that data comprising its multiple measurements, is hypercuboidally-
shaped.

Hypercuboidally-shaped data show up in multiple real-world applications, including
those reported by Mardia and Goodall (1993); Bijma et al. (2005); Werner et al. (2008);
Theobald and Wuttke (2008); Barton and Fuhrmann (1993). For example, in computer
vision, the image of one person might be a matrix of dimensions a x b, i.e. image has a
resolution of a pixels by b pixels. Then, repetition across n persons, inflates such image
data to a cuboidally-shaped dataset. Examples of handling high-dimensional datasets within
computer vision exist (Dryden et al., 2009; Fu, 2016; Pang et al., 2016; Wang, 2011; Qiang
and Fei, 2011). In health care, the p number of health parameters of n patients, when
charted across k time-points, again generates a high-dimensional data, which gets further
enhanced, if the experiment involves tracking for changes across £ groups of n patients each,
where each such group is identified by the level of intervention (Chari et al., 2010a; Clarke
et al., 2008; Oberg et al., 2015; Chari et al., 2010b; Sarkar, 2015; Wang et al., 2015; Fan,
2017). Again, in ecological datasets, there could be n spatial locations at each of which, p
traits of k species could be tracked, giving rise to a high-dimensional data (Leitao et al.,
2015; Warton, 2011; Dunstan et al., 2013).

It is a shortcoming of traditional modelling strategies, that these groupings in the data
are treated as independent — or for that matter, even the variation in parameter values
of any group across varying time points, is ignored, and a mere snapshot of each group
is considered, one at a time. In this article, we focus on methodologies that permit the
consideration of parameters across all relevant levels of measurement, within one integrated
framework, to enable the learning of correlations across all such levels, thus permitting
the prediction of the system parameter vector, with meaningful uncertainties, and avoid
information loss associated with categorisation of data.

While discussing the generic methodologies that help address the problem of learning
the inter-variable relationship £(-), given general hypercuboidally-shaped data, we focus on
such learning when this data displays discontinuities. Then, the generative tensor-variate
Gaussian Process (GP) of this function £(-), is ascribed a non-stationary covariance func-
tion, Acknowledgement of non-stationarity in correlation learning is not new (Paciorek and
Schervish, 2004). In some approaches, transformation of the input variable is suggested to
accommodate non-stationarity (Sampson and Guttorp, 1992; Snoek et al., 2014; Schmidt
and OHagan, 2003). When faced with learning the dynamically varying covariance struc-
ture of time-dependent data, others have resorted to learning such a covariance, using
Generalised Wishart Process (Wilson and Ghahramani, 2011). In another approach, latent
parameters that bear information on non-stationarity, have been modelled with GPs and
learnt simultaneously with the sought function (Tolvanen et al., 2014), while others have
used multiple GPs to capture the non-stationarity (Gramacy, 2005; Heinonen et al., 2016).

What is currently missing, is a template for including non-stationarity in high-dimensional
data, via a flexible and generic model of the correlation structure of the generative stochas-
tic process underlying the sought function, s.t. this correlation structure adapts to the
discontinuities of the function sampled from this process. We prove the need for modelling
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the correlation as dependent on this process’ sample path in Section 3.1, and show that this
can be undertaken by modelling each length scale of the correlation structure of this high-
dimensional stochastic process, as a new random function of the sample path of the process.
This random function then, can in turn be modelled as a realisation from a scalar-variate
stochastic process, such as a scalar-variate GP (Section 2). Interestingly, each such random
function is proven to be continuous, by rephrasing it as a function of the discrete-valued
time step variable that the aforementioned sample path is generated at. Hyperparameters
of this function’s generative scalar-variate process are then rendered data-driven constants
(Section 3.2), that we learn. Illustration of the same, using Bayesian inference techniques
(Metropolis-within-Gibbs) is given below. The covariance structure of the resulting likeli-
hood is then dependent on this time step variable, and its probability distribution at any
time, is presented (as a Generalised Wishart distribution) in Section 4.

Thus, in this paper we forward a method that performs uncertainty-included learning
of a high-dimensional functional relationship between the system parameter S and a high-
dimensional observable V', given discontinuities in the hypercuboidally-shaped data that
comprises measurements on V', by nesting multiple lower-dimensional, stationary Gaussian
Processes, within a tensor-variate,non-stationary GP (Section 2 and Section 3), with in-
ference based on the Metropolis-within-Gibbs technique, as discussed in Section 6. In this
paradigm, learning of the sought functional relation £(-) is then double-layered, in which
multiple scalar-variate GPs inform a high-dimensional (tensor-variate) GP. To contextualise
the implications of these results to contemporary deep learning strategies, we include the
proof (in Section 5) that no more than 2 such layers in the learning strategy are needed.

These results are then empirically illustrated on a cuboidally-shaped, real-world dataset
(Section 7, Section 8); one reason for choosing to work with this particular high-dimensional
dataset is that results of its analysis exist in the literature, and comparison (in Section 9.3),
of results of the application undertaken here, to those in the literature, showcases the
methodology that is forwarded in this paper. The ulterior interest in prediction of the
system parameter values, (at which test data on the observable is measured), is under-
taken for this application (Section 9, Section 8). Convergence diagnostics of chains run
with the Metropolis-within-Gibbs algorithm are presented within these sections, and fur-
ther diagnostics are included in Appendix A. Additionally, flexibility in the design of the
presented model, permits both inverse and forward predictions; this flexibility is exploited
to predict new data at chosen system parameter values, given the learnt model, to permit
model checking, by comparing such generated data against the empirically observed data
(Appendix B).

2. Model

Let system parameter vector S € X C R?, affect, or be affected by observable V', where V'
is (k — 1-th ordered) tensor-valued in general, i.e. V' € 9 C R™M>Xm2X-XMe—1 ', € N Vi =
1,...,k—1. That S and V exist in a state of relatedness, is expressed by: V = &(S)
where £ : X C R? — o C R™>xm2xxmi—1 While this equation expresses the functional
relationship between a r.v. called S and another called V', when we seek realisations or
values of either r.v. at which test measurement on the other r.v. is recorded, we invoke
measurement errors in V' and X, as well as uncertainty in the learnt £(-) given noise in the
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training data. In other words, information about measurement error in either r.v. can be
considered to be subsumed into the unknown form of £(-), that we aim to learn.

Now, it may appear that the model V' = £(S) is less preferred over the model that
expresses the relationship between S and V' as S = f(V'), because in the latter model, the
task of learning the unknown functional relationship is easier, in light of f(-) being vector-
valued, and therefore lower-dimensional than the tensor-valued function £(-). However,
difficulty in learning the functional relation between 2 r.v.s increases with dimensionality of
the input variable, more than that of the output variable. Thus, the f(-) suggested above
is harder to learn than &(-). Hence we persist with V' = &(S) as our model equation. The
reason for this dependence of difficulty of functional learning, ties in with the kernel-based
parametrisation of the covariance structure of the stochastic process that generates the
sought function f(-); higher-dimensional kernel functions render functional learning more
difficult. We will review this issue in Section 7.

Definition 1 We define functional relationship &(-), between vector-valued S, and the k—1-
k-1

th ordered tensor-valued r.v. V', as a tensor-valued function, with [] m;-number of com-
i=1

ponent functions, each of which is a function of vector S, with these component functions

correlated to each other.

Ultimately, we want to predict the value of either r.v. (V or S), at which a new or test
data on the other variable is observed. For example, the inverse prediction of the value s(test)
of S, at which test data vt on V is realised, is given as sltest) — 5(_1) (V) ‘V:v(test)’ within
the conventional paradigm. Such a scheme however does not allow for easy propagation of
the uncertainty in learning &(+), into the prediction of S, or of incorporation of measurement
noise in V', in the prediction. These problems are supplemented by the obvious concerns
related to the inversion of the learnt function; computational complexity of a prediction
in this conventional framework increases with dimensionality. Another crucial drawback
of these methods — irrespective of dimensionality of the sought function — is that there is
no organic way of quantifying the smoothness of the sought &(-) directly from the data.
Parametric approaches are additionally deficient in high-dimensions. As V' = £(S), the
function £(-) has the same dimensionality as the tensor-valued V' variable. Given the
training data D := {(s;,v;)}~, the correlation between a pair of component functions of
this tensor-valued &() function, computed at 2 given design values of S, is the same as
that between the corresponding components of V. Thus, the function &(-) that we seek,
will have to acknowledge all such data-driven correlation constraints. However, parametric
fitting methods (such as fitting with splines, etc) cannot convey correlation information to
the sought function. These concerns are mitigated by modelling the sought function as a
stochastic realisation from a generative Process.

So we choose the sought tensor-valued &(-) function to be a random realisation from
a tensor-variate Gaussian Process(GP). Then by definition of the GP, joint probability
density of n realisations of a sampled tensor-valued £(-), is given by the correspondingly
high-dimensional equivalent of the Multivariate Normal, namely a Tensor Normal density.

Thus, the joint probability of n realisations of the sampled function &(-), at the n design
points sy, ... s, follows the k-variate Tensor Normal distribution (Kolda and Bader, 2009;
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Richter et al., 2008; McCullagh, 1987; Manceur and Dutilleul, 2013):

[£(s1),- ., &(sn)] ~ TN(M, 2y, , ),

where mean of this density is a k-th ordered mean tensor M of dimensions mj X...Xxmy, and
33; is the mj x mj;-dimensional, j-th covariance matrix; j = 1,..., k. Here £(S) outputs the
variable V', so that the joint probability above is the joint of the n values of V' that comprise
the training data D. In other words, probability of the data comprising measurements of
V is Tensor Normal, i.e. likelihood of the Process parameters, given the data, is a Tensor
Normal density.

Definition 2 Likelihood of model parameters M, 3, ..., 3, given data D, is the k-variate
Tensor Normal density:

L(M, 2y, ..., 3|D) o exp(—[(Dy — M) x1 AT! xo A1 x AL?/2), (1)

where n observed values of the k — 1-th dimensional tensor-valued V' are collated to form
the k-th ordered tensor Dv . Dependence on S in the RHS of Equation 1, is borne by the
covariance matrices. Here Aj is the unique square-root of the positive definite covariance
matriz X, i.e. X; = AjA;F.

One way to compute the square root of a matrix, is to use Cholesky decomposition'.

The notation x; in Equation 1 presents the j-mode product of a matrix and a tensor
(Oseledets, 2011).

Then in the Bayesian approach, this likelihood can be employed in Equation 1 to write
the joint posterior probability density of the mean tensor and covariance matrices, given the
data. But before doing that, we identify those parameters — if any — that can be estimated
in a pre-processing stage of the inference, in order to reduce the computational burden of
inference. Also, it would be useful to find ways of (kernel-based) parametrisation of the
sought covariance matrices, thereby reducing the number of parameters that we need to
learn. To this effect, we estimate the mean tensor M € R™1*™M2--XMk a9 the sample mean
v of the sample {vy,...,v,}, However, if necessary, the mean tensor itself can be regarded
as a random variable and learnt from the data (Chakrabarty et al., 2015), The modelling
of the GP covariance structure, is discussed in the following subsection.

Our aim is to predict, subsequent to the functional learning.

test)

Remark 3 To perform Bayesian inverse prediction of value s of the input variable S,

at which test data vt on V is realised, we

test) test)
’

— sample from the posterior probability density of s given test data v and
(modal) values of parameters of the Tensor Normal likelihood, subsequent to the MCMC-
based inference on the marginals of each such unknown given the training data, or,

(test)

— sample from the joint posterior probability density of s and all other unknowns

parameters of the Tensor Normal likelihood, given training, as well as test data.

1. As Hoff (1997); Manceur and Dutilleul (2013) suggest, a k-th ordered random tensor 3 € R™1 X2 X"k
can be decomposed to a k-th ordered tensor Z and k£ number of covariance matrices 31, ..., 3 by Tucker
decomposition, (Hoff et al., 2011; Manceur and Dutilleul, 2013; Kolda and Bader, 2009), according to
X=Z X1 21 X9 22,.. Xk Ek,
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Computational speed of the first approach is higher, as marginal distributions of GP pa-
rameters are learnt separately, namely, before the prediction exercise is undertaken. When
the training data is small, or if the training data is not representative of the test data,
prediction of s(*¢5!) via the second method may affect the learning of the GP parameters.

2.1 Three ways of learning covariance matrices

When possible, covariance matrices of the GP that is invoked to model the sought function

&(+), are kernel-parametrised. Let the ij-th element of p-th covariance matrix Eém” M) b

®) G i=1,...my pe{l,... k}

O'Z»J

(»)

Definition 4 Let covariance matriz 3, = [Uij |, bear information about covariance between
the i-th and j-th “slice”s of the k-th ordered data tensor Dy = (vi,...,Vn,), where the
My X. .. XMp_1 XMpy1 X...Xmg-dimensional i-th “slice” of data tensor Dy is the measured
value v; of the k — 1-th ordered tensor-valued r.v. 'V, where the i-th slice is realised at the

i-th design point s;.

A simple model of the covariance between the i-th and j-th slices of data Dy, suggest
that Jg)) is a decreasing function Kp(-,-) of || s; — s; ||, where || - ||z is the Ly norm.
Then K (s;, s;) is the covariance kernel function, computed at the i-th and j-th values of
input variable S. In such a model, the number of distinct unknown parameters involved
in the learning of 3, reduces from m,(m, + 1)/2, to the number of hyper-parameters that
parametrise the kernel function Kp(-,-).

However, kernel parametrisation is not always possible.

—Firstly, such parametrisation may cause information loss and this may not be acceptable
(Aston and Kirch, 2012).

—More fundamentally, we can undertake kernel parametrisation of covariance between a pair
of relevant realisations of the output variable (V'), only when information exists on values
of the input space variable S, at which a realisation of the output variable is identified.
When such information is unattainable,

—we can learn elements of the covariance matrix directly using MCMC; such direct learning
of all distinct elements of 3, is feasible, as long as total number of all unknowns learnt by
MCMC £ 200. If X, is even higher-dimensional,

-we can use a “plugin estimate” for each element of the covariance matrix 3,. Such a
plugin estimate can be computed as follows. We collapse each of the m, number of k —1-th
ordered tensor-shaped slices of the data, onto the ¢-th axis in the space 9 of V', where

q € {1,...,k —1}. This will reduce each slice to a mg-dimensional vector, so that the
empirical estimate of ag ), is the covariance computed using the i-th and j-th such mg-
dimensional vectors.

Indeed such an empirical estimate of any covariance matrix is easily generated, but it
indulges in linearisation amongst the different dimensionalities of the observable V', causing
loss of information about the covariance structure amongst the components of these high-
dimensional slices. This approach is inadequate when the sample size is small because then,
the plugin estimate will tend to be incorrect; indeed discontinuities and steep gradients in

the data, especially in small-sample and high-dimensional data, will render such estimates
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of the covariance structure incorrect. Importantly, such an approach does not leave any
scope for identifying the smoothness in the function &(-) that represents the functional
relationship between the input and output variables. Lastly, uncertainties in the estimated
GP covariance structure, remain inadequately known.

Remark 5 Covariance matrices of the tensor normal likelihood density that represents the
probability of the data given model parameters (i.e. the likelihood function), can be obtained
using training data, as

— kernel parametrised, or as

— empirically-estimated, or as

— learnt directly using MCMC-based inference schemes.

An accompanying computational worry is the inversion of any covariance matrix; for a
covariance matrix that is an m, x m,-dimensional matrix, the order for matrix inversion is
well known to be O(m3) (Knuth, 1997).

3. Kernel parametrisation

Definition 6 When kernel parametrisation of a covariance matrix is undertaken, i.e. we
set Xy, = [ag?)] = [K,(si,85)], different forms of the covariance kernel Ky(-,-) can be used,

such as the simple Squared Exponential (SQE):
Kp(Si, 8]) = AO [exp (_(SZ - Sj)TQ_1<8i - 8]))] ) VZ,j - 17 cee 7d7 (2)

where Q(dXd) 1s a diagonal matriz, the diagonal elements of which are the length scale
hyperparameters £y, ..., 0q € Rsq, where £, is the length scale that we need to move along the
c-th direction in input space X, for correlation to fade by a threshold factor; herec=1,...,d,
i.e. there are d-directions in the space X that hosts the input variable S. Then Q™! is also

diagonal, with the diagonal elements given as 7T where q. := 1/L. is the smoothness
1 d

hyperparameter along the c-th direction in X, ¢ € {1,...,d}. We learn these d unknown
parameters from the data. Here Ag is the global amplitude, that is subsumed as a scale
factor, in one of those covariance matrices, distinct elements of which are learnt directly
using MCMC.

Remark 7 The model of the covariance kernel used in Definition 6 avoids using amplitude
parameters that depend on the locations at which covariance is computed, i.e. Definition 6
avoids the model: K(s;, sj) = a;; [exp (—(si —8;)TQ™" (si—s;))]. Instead, the model
that is advanced, is endowed with a global amplitude Ag. This helps avoid learning a very
large number (d(d+1)/2) of amplitude parameters a;; directly from MCMC.

A loose interpretation of this amplitude modelling is that we have scaled all local amplitudes
a;j using the global factor = max{a;;}, and these scaled local amplitudes (that are < 1),
ij

are then subsumed into the argument of the exponential in the definition of the SQE kernel
function, s.t. reciprocal of the correlation length scales, that are originally interpreted as
the elements of the diagonal matrix Q !, are now interpreted as the smoothing parameters
modulated by such local amplitudes. This interpretation is loose, since the same smoothness
parameter cannot accommodate all scaled local amplitudese (0, 1], for all s; — s;.
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3.1 Including non-stationarity, by modelling each hyperparameter of the
covariance kernel using a Stochastic Process

It is possible that the distribution of the tensor-valued r.v. V' across the space of the input
r.v. §is s.t., decline in the correlation between realisations v; and v; of V', can no longer
be modelled by a declining function of the Euclidean distance || s; —s; ||; i,/ = 1,...,n.
Then the function £(S) sampled from the high-dimensional GP, may not be continuous.
However v; is a measured value of V', so v; is always finite Vi = 1,...,n.

Measured values vy, . .., v, of the output variable V' in a training data set, though always
finite — implying &(s;)(= v;) is always finite, at the i-th design point s; — the distribution
of v across values of S can be s.t. the function sampled from the GP given this training
data, is rendered Lipschitz continuous or discontinuous. Indeed, the continuity response of
the sample function of the GP in such contexts, is adequately captured by the Lipschitz
condition. This motivates us to address continuity-related questions raised below, in light
of Lipschitz continuity.

Definition 8 When the data on the output variable V' measured at the different locations
m input space, is s.t. no sampled function is Lipschitz continuous, we refer to such a
distribution to imply there exist discontinuities in the data.

Below, we prove results that reflect on the nature of Lipschitz continuity of the sam-
pled function, given different types of data distributions, and on the effect of the same on
hyperparameters of the correlation function of the kernel parametrised covariance matrix
of the GP. We show below that when the distribution of v across s, renders the sampled
function, not Lipschitz continuous, the applicability of stationary covariance kernels (such
as that invoked in Equation 2) is challenged. When a function £(-) sampled from the tensor-
variate GP, is not Lipschitz continuous, it implies that similarity between s; and s; does
not imply similarity between £(s;) and £(s;), Vs;, s; € X. Therefore, then it is wrong to
adopt a stationary definition of the correlation between the function at pairs of points in
its domain, (as in Equation 2), since a stationary kernel function employs the same length
scale hyperparameters (1, ..., ¢4, (and global amplitude Ap).

Put alternatively, if in the general case of discontinuous data distribution, we still wish
to persist with a parametric form of kernel parametrisation suggested in this equation, then
we will need to re-interpret the hyperparameters of such a parametric form as adapting to
discontinuities in the data. Thus, for a choice of an SQE kernel, the length-scales /1, ..., {4
can no longer be treated as data-driven constants, but then we will need to model ¢, as
adapting to the discontinuities in the data Ve =1,...,d. A generic way of ensuring this is
to model /. as a function of the sample-path of the high-dimensional GP that is invoked to
model &(+), Ve =1,...,d.

That discontinuities in the data defined above, can be accounted for, by modelling the
kernel hyperparameters as dependent on the sample function of this high-dimensional GP,
follows from Lemma 13 according to which, if a function sampled from the high-dimensional
GP is discontinuous, there is a lack of universality in values of the correlation hyperparam-
eters of the kernel-parametrised correlation matrix of this high-dimensional GP, where by
“universal” hereon, is implied: a constant, (albeit unknown), irrespective of the form of the
sampled function. On the other hand, Lemma 12 states that continuity in the data implies
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universality of these hyperparameter values. Lemma 13 uses the conclusion summarised
in Remark 10 that follows from Theorem 9, which states that for a random tensor-valued
function — that is sampled from a tensor-variate GP — to be Lipschitz continuous, the corre-
lation length scale hyperparameters of this GP need to depend on the form of this sampled
function. Thus, Remark 10 summarises that in the absence of discontinuities in data distri-
bution, GP that £(-) is sampled from, can be stationary. In the presence of discontinuities
in the data however, any tensor-valued &(-) sampled from a tensor-variate GP will be ren-
dered a continuous function, if this GP is modelled as non-stationary, by ensuring that
hyperparameters of its correlation vary with the sampled function.

Theorem 9 Given the model V = £(S), with S € X C R?; tensor-valued r.v. V € ; and
the tensor-valued function &€(-) modelled as a random realisation from a high-dimensional
Gaussian Process (GP), a sample function &(-) of this GP is a Lipschitz-continuous map
over the bound set X, if the vector q of correlation hyperparameters of the correlation
structure of the GP is s.t. each element of q is €-dependent, i.e.

a(€) = (@1(8), ..., qa(§)" e R

This correlation structure is defined s.t. absolute value of correlation between €(s1) and
&(s2) is
|corr(&(s1), &(s2))| = K ({(s1 — 82),4)°), V81,82 € X,
with
K (s1,82) :=exp [—((31 — 82), q)2].

Proof Here, £(-) is a sample function of a high-dimensional GP. For S € X, where X
is a bounded subset of R, and V € 9, we recall that € : X — 9 is defined to be
Lipschitz-continuous map, if

dy (&(s1) — &(82)) < Ledx(s1,82), Vs1,82 € X, (3)

~where, L¢ € R is the infinum over all values that permit inequation 3 to hold for this given
&, (and it is the Lipschitz constant for &(+)),
~where (X,dx) and (9, dy) are metric spaces.

Let metric dx(-,-) be the Ly norm:

dx(s1,82) :=| 81 —s2 ||, Vs1,82 € X,

and the metric dy (£€(-),&(+)) be defined as (square root of the logarithm of) the inverse of
the correlation:

d?’(g(sl)ag(SQ)) = \/_ log |COTT(£(31>7£(32))’7 Vs1, 82 € X,

—where correlation being a measure of affinity, log |1/corr(,-)|, transforms this affinity into
a squared distance for this correlation model; so the transformation /log|1/corr(-,-)| to a
metric is undertaken;

—and the given kernel-parametrised correlation is:

|corr(€(s1), &(s2))| == exp[—((s1 — 82),q)°], Vs1,82 € X, g € R,
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so that
doy (§(s1),&(s2)) = ((s1 — 82),q).

Then for the map & to be Lipschitz-continuous, from inequation 3, we require:

d d
ST g3s — s9)? < ZZ ) sy, (4)
=1 =1

where the vector of correlation hyperparameters, ¢ = (q1,...,qq)" .
Let

dmazx = maX(q17 cee >Qd)' (5)

Then ¢q. exists for finite correlation hyperparameters. Let

. 2
(q))? = <q> <1,¥i=1,....d

qmam

Inequation 4 is valid, if we choose to define the &-specific constant L¢ as:
2 2
L{ = Umaz> (6)

since (q,i/)2 <1

Thus a sample function &(-) of the given high-dimensional GP, is rendered Lipschitz-
continuous by the choice suggested in equation 6.

But this equation also implies that ¢, varies with the form of &, since the LHS of this
equation is £-dependent. So gmqr is €-dependent by this choice.

Then recalling definition, ¢4, from Equation 5, it follows that in general, g; is €&-dependent,
Vi=1,...,d.

Thus, any sample function &(-) of the given high-dimensional GP, is rendered Lipschitz-
continuous, for &-dependent ¢;. [

Remark 10 Theorem 9 states that if a universal value of L¢ can allow for inequation 3
to hold for distinct realisations of the random function &(-) (as distinct samples taken from
a high-dimensional GP), then LHS of FEquation 6 is independent of the sampled forms of
&(+). This implies, RHS of this equation is independent of &(-) too, i.e. the mazrima Gmay
amongst components of the correlation hyperparameter vector, is independent of the form
of the sampled function. On the other hand, if a universal L¢ is not valid for all sampled
functions, and LHS of Equation 6 is dependent on the sample function, then qmaz s &-
dependent.

We anticipate sample function &(-) of the high-dimensional GP, to be locally or globally
discontinuous, as delineated in Definition 11.

Definition 11 The Lipschitz continuity of a sample function &(-) can be s.t.

Case(I) ¥s; € X, Asy € X, 8; # 8o, s.t. P finite Lipschitz constant Lg,z) > 0, for which
dy(&(s;) — &(s2)) < Léi’Q)dx(si, 82). Here the bounded set X C R,

10
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Case(Il) Vs; € X, dsg,83 € X, with || so — s; ||#] 83 — si ||, s.t. dy(&(si) — &(s2)) <
L¢P dx (s, 52), but do(€(s;) — €(53)) < LV dx(si, 83), and L{™ # LYY . In such a
case, the Lipschitz constant used for the sample function &(-) is defined to be

Lg = maX{Lg7J)}i7éj;si,sj€X' (7)

Lemma 12 Let n realisations of a random function sampled from a high-dimensional GP,
be elements of the set {&,(-),...,&, ()}, whereVi=1,...,n, &(-) is s.t. it is

—either globally Lipschitz, or is as described in Case II of Definition 11,

—and Case I (of Definition 11) is not true.

Then 3 a universal correlation hyperparameter vector that parametrises the GP that sample
functions &;, i =1,...,n are sampled from.

Proof Vi€ {1,...,n}, 3 a finite Lipschitz constant L¢, defined as in Equation 7, for §;(-).
Then Vs1,s2 € X, da finite Lyq: > 0, where

Loz = mEaX{Lgl,LQ, oy Le, }, (8)

i.e. J a finite Lipschitz constant for all forms of the function sampled from the high-
dimensional GP,
= J a universal correlation hyperparameter vector that parametrises the GP that all n
sample functions are sampled from (by Remark 10 on Theorem 9), where such universality
refers to the same value of this vector, independent of the sample function from this GP.
By Theorem 9, (Equation 5), the maxima of the d components of this universal correlation
hyperparameter vector, is then L;,q,. U

Thus we see from Lemma 12 that adherence to Lipschitz continuity of all forms of the
function &(-) sampled from the high-dimensional GP, implies that a universal correlation
length-scale vector can describe the GP that all of these sampled functions are selected from.
Equivalently, in absence of discontinuities in the data that comprises measured values of
the observable V| a universal correlation length-scale vector can describe the correlation
structure of the GP that the function £(-) is sampled from.

Next we examine the implication of sampled function(s) that is (are) not Lipschitz
continuous.

Lemma 13 Let n forms of a random function sampled from a high-dimensional GP, be
elements of the set {&,(-),...,&,(")}, s.t. 3&() € {&(),...,&,(-)} that is not Lipschitz
continuous.

Then correlation hyperparameters are dependent on the sample path &(-) of this GP.

Proof 3¢;(-) € {&(-),...,&,(-)} that is not Lipschitz continuous.

— sampled function &, () is defined by Case I of Definition 11.

= # a universal (i.e. constant) L., irrespective of the sample function of this high
dimensional GP.

Then by Remark 10 that follows from Theorem 9, the maxima ¢4, of the d components
of the hyperparameter vector (of the correlation structure of the GP that the sample func-
tions are modelled by), is no longer universal, but dependent on the sample function of this

11
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high-dimensional GP.

— components of the correlation hyperparameter vector are £&-dependent in general, from
Equation 5. [ Lemma 13 then suggests that discontinuities in the data that comprise mea-
sured values of V', would imply that the correlation hyperparameter of the high-dimensional
GP that the random function &(-) is sampled from, is dependent on the sample function of
this GP.

Remark 14 Above, qi,...,qq are hyperparameters of the correlation kernel; they are in-
terpreted as the reciprocals of the length-scales ly, ..., lq, i.e. {; =1/q;,Vi=1,...,d.

Remark 15 If the map & : X — 9 is Lipschitz-continuous, (i.e. if hyperparameters
q1,.--,qq are &E-dependent, by Theorem 9), then by Kerkheim’s Theorem (Kerkheim, 1994),
€ is differentiable almost everywhere in X C RY; this is a generalisation of Rademacher’s
Theorem to metric differentials (see Theorem 1.17 in Haglasz (2014)). However, in our
case, the function &(-) is not necessarily differentiable given discontinuities in the data on
the observable V' € ', and therefore, is not necessarily Lipschitz.

3.2 Re-interpretation of dependence of correlation hyperparameters on
sample function, as dependence on a discrete time index

Theorem 9 and Lemma 13 negate usage of a universal value of the correlation length scale
of the correlation structure of the high-dimensional GP that &(-) is a sample function of,
in anticipation of discontinuities in the data, and this leads us to model these correlation
hyperparameters as dependent on the sample function &(+) of this GP. However, one random
sample is taken from this GP, in each step (or iteration) of the iterative (Bayesian) inference
scheme that is undertaken. We employ this fact, to re-interpret the variability of the
correlation length parameters.

Proposition 16 For V = £(S), with S € X C R and V €  C Rmx-xmx)

lcorr(£(s1),€(s2))] = exp [~((s1 — 82),q(€))°],  Vs1,82 € X,

where &(+) is a sample function of a tensor-variate GP. In this updated model, c-th compo-
nent g. = 1/¢. of correlation hyperparameter q(&) is modelled as randomly varying with the
sample function, €(+), of the tensor-variate GP, Ye=1,...,d.

In the iterative inference that is undertaken, one sample function of the tensor-variate GP
18 generated in every iteration

= q., 1s dependent on sample function of the GP, where a sample is
generated per iteration

= q. is dependent on iteration number T € {0,1,... ,tmaz} C Z>o0,

= We model (.= g.(t), c=1,....d,

where this scalar-valued random function gc : {0,1,...,tmaz} C Zso —> R>q, is modelled
as a realisation from a scalar-variate GP.

12
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It is important to remember that the scalar-variate GP that ¢.(-) is sampled from, is inde-
pendent of the GP that gu(-) is sampled from; ¢ # ¢/;¢,¢ = 1,...,d. Thus, the distinction
between these scalar-variate GPs that generate the iteration-number dependent functions
along the d different directions of input space X, will be brought out via the dependence in
the notation for the sample function of the c-th scalar-variate GP, as g.(-), c=1,...,d.

In addition, the correlation structure of the generative scalar-variate GP — that generates
sample functions along a given direction in input space — can vary. In other words, values
of parameters that define the (SQE) kernel used to parametrise the scalar-variate GP that
generates sample functions along the c-th direction in input space, may vary. This variation
can happen with time, if the correlation structure along one/multiple directions in input
space, is varying with time; a temporally-evolving data that comprises measurements of
the random variable V', where discontinuities in the data are present, can cause such a
variation. Parameters that define the covariance kernel include the amplitude A and scale
0. Thus, scalar-valued functions sampled from GPs that are distinguished by values of the
amplitude A and length-scale hyperparameter § of the invoked SQE covariance kernel —
even for a given ¢ value — should be marked by these descriptor variables: A > 0 and 6 > 0.

Proposition 17 We restate relationship between iteration number T' and correlation length
scale hyperparameter £, in the c-th direction in input space as:

le = geax(t), where vector of descriptor variables is X := (A, NI, with

—A. the amplitude variable of the SQE-looking covariance function of the scalar-variate GP
that geo(-) is a realisation of. A. takes the value a. > 0;

—0. the length scale variable of the SQE-looking covariance function of the scalar-variate
GP that gez(-) is a realisation of; 6. € Rxg.

Then the scalar-variate GPs that geq(-) and e/ (+) are sampled from, have distinct corre-

lation functions for © # x/. Here c=1,...,d.

Definition 18 Value of correlation length scale hyperparameter £, at the t-th iteration,
acknowledges information on only the past to number of iterations:

le = gealt—1t), ift>to, c=1,...,d;t =1,... t,
b = Leomst) =01, tg—1, c=1,....,d, (9)
where ngmt) 1s an unknown constant that we learn from the data, during the first ty itera-

tions.

As g.o(t) is a realisation from a scalar-variate GP, the joint probability distribution of
to number of values of the function g.(t), at a given = = (a,d)?, is Multivariate Normal,
with fp-dimensional mean vector M., and ty X tp-dimensional covariance matrix W, ..
This follows from the definition of a scalar-variate GP from which ¢y samples have been
generated. Thus, the joint probability of the 3 number of samples from this Process is

[gc,m(t - 1)a e 7gc,a:(t - 2)1 gc,m(t - tO)] ~ MN(Mc,ma ‘I’c,w)- (10)

13
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Definition 19 ty is the number of iterations that we look back at, to collect the dynamically-
varying “look back-data” D((ft”g) = {let—ty,- - let—1} employed to learn parameters of the
scalar-variate GP that geq(-) is modelled with.

— The mean vector M . 5 is empirically estimated as the mean of the dynamically varying
look back-data, s.t. at the t-th iteration it is estimated as a ty-dimensional vector with
each component m?&, = leg—ty + ...+ Les—1]/to-

— to X tg-dimensional covariance matrix is dependent on the iteration-number and this
is now acknowledged in the notation to state:

ti —t;)?
W () = [acexp <—m>} s hj=t—1,...,t—tp.

C

In the t-th iteration, upon the empirical estimation of the mean as given above in Defini-
tion 19, the mean is subtracted from the “look back-data” D((:O: 9) 5o that the subsequent

mean-subtracted look back-data is D¢t = {lc ¢, — m&ﬂ’c, coisler1 — m%} It is indeed
this mean-subtracted sample that is used.

Definition 20 In light of this declared usage of the mean-subtracted “look back-data” D,
we update the likelihood over what is declared in Equation 10, to:

[gc,:n(t_1)7---7gc,m(t_2)7gc,z(t—t0)] NMN(Q,‘I’C’m(t)), Ve = 1,...,d. (11)

Then Equation 11 states that the joint probability of the ¢y realisations of the correlation
length-scale parameter £. — that informs on how quickly correlation is fading along the c-th
direction in the input space of the r.v. S, in the tensor-variate GP that &(-) is sampled
from, in each iteration — is a Multivariate Normal density, parametrised by a zero mean
vector, and an iteration step-number dependent, i.e. a time-dependent correlation matrix,
(which is additionally, chosen to be SQE kernel-parametrised, distinguished by amplitude
and length-scale hyperparameters that are the components of X).

As we have seen, the correlation structure of a GP that generates sample functions along
a given direction in input space, may be evolving with time — as parametrised by evolution
in the amplitude and scale parameters of its correlation structure. This motivates the
need for undertaking study of temporally evolving correlation structures, and in particular,
an application may seek to make inference on the parameters that determine the temporal
evolution of such a correlation structure. The distribution of such a time-varying correlation
matrix, is advanced in the next section.

4. Temporally-evolving covariance matrix

To summarise the modelling strategies discussed above, we model £(-) as a random reali-
sation from a high-dimensional, tensor-variate GP, s.t. each hyperparameter of the kernel-
parametrised correlation matrix of the resulting Tensor Normal likelihood, is modelled as
an unknown function of the iteration step-number, i.e. of the discrete-valued time variable
T. Here, each such unknown function is modelled as a realisation from a scalar-variate GP
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that has a temporally-evolving, (i.e. T-dependent) covariance structure, resulting in a Mul-
tivariate Normal likelihood, with a time-dependent covariance matrix. In Theorem 21, we
identify the generating stochastic process of this time-dependent matrix-valued covariance
function, as a Generalised Wishart Process.

Theorem 21 The dependence on time T, of the dynamically varying covariance matric
W, .(T) of the Multivariate Normal likelihood in Equation 11, at iteration number t > to,
is modelled by a Generalised Wishart Process (GW?P):

W, (t) ~ GWP(d, G, k(-,-)), where

— tg is the number of iterations we look back to;

—k(-,-) is the covariance kernel parametrising the covariance function of the scalar-variate
GP that generates the scalar-valued function g.(-), at the vector = (a.,d.)T of descriptor
variables, s.t. k(t;, t;) = exp (—(ti;%)g) Vit =t—1,...,t—to;

- G, is a positive definite squarecscale matriz G. of dimensionality tog, containing the
amplitudes of this covariance function;

—c=1,...,d, with the space X of input variable S d-dimensional.

Proof The covariance kernel k(-, -) that parametrises the covariance function of the scalar-
variate GP that generates g. . (t), is s.t. k(t;,t;)=1Vi=1,...,to.

At each time point, i.e. at each iteration, a new value of the vector x. of descriptor
variables in the c¢-th direction in the space X of the input variable S, is generated, s.t. in
the t — t;-th iteration, it is @.; = (aci,600) 5t —ti=t—1,...,t — 1o

=at T=t {gea:(t), -, 9cm, (t)} Iisasample of the random variable g (t).

Now, corr(gea(t — ti), 9o/ o/ (t — t5)) = k(ti,t;)d(c, ¢/)(x,x/), where §(-,-) is the Delta
function.
= sample estimate of Cov(gez(t — ti), gex(t —t;)) is

to
Cov(gea(t—ti), gew(t—t;) =D Geibe e, (t = ti)gea, (t — t;), Vi—tit—t; =t—1,... t—to,
k=1

which is the ij-th element of matrix W, ,(¢). This definition of the plugin estimate of the
covariance holds, since mean of the r.v. g. () is 0, as we have sampled the function g. . (-)
from a zero-mean scalar-variate GP.

Let gc,:l:k(t) = (gC,wk(t_tl)u"wgc,wtk (t_tO))Tv k= 17"°7t0'

Let G, be a tg x tg-dimensional diagonal matrix, the i-th diagonal element of which is
aii. Then factorising the scale matrix G. = Lg, Lgc, L, is diagonal with the i-th diagonal
element ac;; i =1,...,%. This is defined for every ¢ € {1,...,d}.

Then at iteration number T' = t, we define the current covariance matrix

to
T
‘I,C,‘L' (t) = Z LGC (gc,mk (t)) gg:l:k (t)Lgc .
k=1
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Then ¥, ,(t) is distributed according to the Wishart distribution w.p, G and d (Eaton,
1990), i.e. the dynamically-varying covariance matrix is:

‘I’c,w(t) ~ gW(d, Ge k(-,-)).
g

Remark 22 If interest lies in learning the covariance matrix at any time point, we could
proceed to inference here from, in attempt of the learning of the unknown parameters of
this GWP, given the lookback-data D.;. Our learning scheme then would then involve
compounding a Tensor-Variate GP and a GWP.

The above would be a delineated route to recover the temporal variation in the correlation
structure of time series data (as studied, for example by Wilson and Ghahramani (2011)).

Remark 23 In our study, the focus is on discontinuities in data, where such data is also
high-dimensional, and on learning the relationship €(-) between the observable V' that gen-
erates such data, and the system parameter S—with the ulterior aim being parameter value
prediction. So learning the time-varying covariance matrixz V(t) is not the focus of our
method development.

We want to learn £(-) given training data D. The underlying motivation is to sample a
new g (-) from a scalar-variate GP, at new values of ay,...,aq,d1,...,dq, to subsequently
sample a new tensor-valued function £(-), from the tensor-normal GP, at a new value of its
d-dimensional correlation length scale hyperparameter vector £.

5. 2-layers suffice

It may be argued that just as we ascribe stochasticity to the length scales /1, ..., /¢, that
parametrise the correlation structure of the tensor-variate GP that models £(-), we need
to do the same to the descriptor variables a, § that parametrise the correlation structure
of the scalar-variate GP that generates g.,(t). Following this argument, we would need
to hold a, § — or at least model the scale § — to be dependent on the sample path of the
scalar-variate GP, i.e. set ¢ to be dependent on ge ().

However, we show below that a global choice of ¢ is possible irrespective of the sampled
function gez(-), given that gep : {t — 1,...,t —to} C Z>9 — R>¢ is always continuous
(a standard result). In contrast, the function &(-) not being necessarily Lipschitz (see
Remark 15), implies that the correlation kernel hyperparameters q., are £&-dependent, Ve =
1,...,d.

The argument posed above within Section 5, is indeed motivating scrutiny of the number
of layers in the learning strategy that needs to be included. Deep learning in general suggests
multiple such layers, but in the last paragraph, sufficiency of 2 layers is being indicated.
Below we address this immediate concern for limiting the layering of our learning scheme
to only 2.

Theorem 24 Given {; = ge4(t), with T € N C Z>o and L. € R, the map ge gz : L>o —
R>¢ is a Lipschitz-continuous map, Ve =1,...,d. Here N :={t —t1,...,t — o}
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The proof of this theorem is a standard proof of the basic result that the map from the
set of natural numbers to reals, is continuous.
Proof Distance dy, , between t,ty € N is [t1 — ta].

Similarly, distance dg, , between g (1), gex(t2) € R>0 i [gez(t1) — gea(t2)]-

d
Assume 22 >d,,,, M >0, M is finite Vt;,ts € AL
: dgl 2 .
Consider o = 1/2 = |t; —t2| < 1/2 by our assumption,

i.e. for this choice of the LHS of the assumed inequation, the only solution for [t; —ta| < 1/2
is t] =19, as ty,t2 € Zzo.

But t1 = ts = ge.x(t1) = gea(t2) for injective geg(-), i.e. LHS of the assumed inequation
is then 0.

This is a contradiction (contradicts our choice of 1/2 for the LHS).

.. our assumption is wrong,

—>, the correct inequation is:

d
]’QQ <dy,, M>0, M isfinite V1,15 € N,

i.e.
’ng(tl) — gc,w(t2)| < M|t1 — tg’, M > 0, M is finite th,tg € N C Zzo

i.e. gex(-) is Lipschitz continuous. O

Now that we have proved continuity of any iteration-number dependent function that
outputs the correlation hyperparameter ¢. along the c-th direction of input space, what
follows is proof of existence of a universal scale hyperparameter of the correlation structure
of the scalar-variate GP from which any such function is sampled from, where “universality”
as defined above, implies existence of a unique scale hyperparameter irrespective of the
difference amongst the sampled functions of this GP, for this given direction in input space
(Theorem 26). This result in fact follows from Theorem 25, that proves the existence of a
unique minima amongst the Lipschitz constants that define the Lipschitz continuity of the
sample functions of this scalar-variate GP, where the continuity of any such sample function
is already established by Theorem 24.

Theorem 25 For any sampled function geq : N — R realised from a scalar-variate
GP that has a covariance function that is kernel-parametrised with an SQE kernel function,
parametrised by amplitude and scale hyperparameters, the Lipschitz constant that defines
the Lipschitz-continuity of gez(), 15 gex-dependent, and is given by the reciprocal of the
scale hyperparameter, s.t. the set of tg values of scale hyperparameters, for each of the tg
samples of gez(-) taken from the scalar-variate GP, admits a finite minima.

Proof For 4. = geo(T), gew : N C Z>9 — G C R is a Lipschitz-continuous map,
(Theorem 24), with T' € AL and £, € G. (A is defined in Theorem 24). Distance between
any t — t1,t — to € N[ is given by metric

doc(t = t1,t — t2) := |t — ta].
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Distance between g (t — t1) and ge »(t — t2) is given by metric

dg(gc,m(t - tl)a gc,w(t - tQ)) = \/* log |CO’I“7“(gC7w(t - tl)agc,w(t - t2))|7

s.t. dg(gea(t —t1), ge,x(t —t2)) > 0, and is finite (since t — 1, — o live in a bound set, and
gex(+) is continuous). The parametrised model of the correlation is

t1 —t2)? bt — t2)?
eorr(geat = )0t — )] 1= K€ ({52 ) = e | (0520
s.t. |corr(gem(t —t1), gex(t —t2))| € (0,1], where §; > 0 is the scale hyperparameter.

Now, Lipschitz-continuity of g .(-) implies

dg(gcm(t —11),Gex(t —t2)) < Lgdm[(t —t1,t —t2), (12)

where the Lipschitz constant L is gcz-dependent (Theorem 9). As dy(t — t1,t — t2) =
|t1 —t2| < to, where tq is a known finite integer, and as dg(-, ) is defined as [t; —t2[/dg, g > 0
(using definition of dg(-,-)), Ly exists for ¢1,t2, and is finite. We get

Ly=—. (13)
O
As t —t,t —ty is any point in A/, L, exists for all points in AL.
Let set L := {Lg,,...,Lg, }, where Ly, defines the Lipschitz-continuity condition (in-
equation 12) for the i-th sample function g;(-) from a scalar-variate GP.

ILmay = max[L] = max{Lg,,..., Ly, }, where Ly >0 and is finite.
9 9

Thus, L is a Lipschitz constant that defines the Lipschitz continuity for any sampled
function in {gex(t — 1), ..., gex(t —to)}, at any iteration number ¢ in a chain of finite and
known number of iterations.

Then by Equation 13, 36 > 0, s.t.

1 1
§:=maxq —,...,— ¢ =min{dg,...,dg, }; wheredy, >0vi=1,... 1.
591 69t0 9

Here Ly, = i =1,...,t. O

1
-3
591"

Theorem 26 Given l. = gc »(t), where geo : N — G is a Lipschitz-continuous function,
sampled from a scalar-variate GP, the covariance function of which, computed at any 2
points t — t1,t — to in the input space N, is kernel parametrised as

Cov(t1,t2) = acK <(t152t2)2) =ac <exp [—WD,

Cc C

where (a., the amplitude hyperparameter and) the scale hyperparameter of this kernel is .
that is independent of the sample function geq(-); ¢ € {1,...,d}.
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Proof By Theorem 25, d. := min{dg, ,,..., 0., } exists for any ¢ € {1,...,d}. Then the
ge ‘ ’

scalar-variate GP that models the sample function g..(-) has a covariance kernel that is
marked by the finite scale hyperparameter ¢, independent of the sample function. [J
That a universal scale hyperparameter § that is independent of the sample path can
define the covariance kernel of the scalar-variate GP that g. . (-) is sampled from, owes to
the fact that any such sample function g. () is continuous given the nature of the map
(from a subset of integers to reals). However, when the sample function from a GP is not
continuous, (such as &(-) that is modelled with the tensor-variate GP discussed above), a
set of values of the sample function-dependent scale hyperparameter(s) of the covariance
kernel of the corresponding GP, will not admit a minima, and therefore, in such a case, a
global scale hyperparameter cannot be ascribed to the covariance kernel of the generating
GP. This is why we need to retain the correlation length scale hyperparameter /. to be
dependent on the tensor-valued sample function &€(-), but the scale hyperparameter J. is no
longer dependent on the scalar-valued sample function g (-). In other words, we do not
require to add any further layers to our learning strategy, than the two layers discussed.
We now revisit the issue of opting to express the relation between V and S as V' = &(S),
over the model in which S = f(V), that we examined earlier in Section 2. As we had
said in that section, learning the vector-valued function f(-) within a Stochastic Process-
based approach would suggest the need to learn many more length-scale hyperparameters
of the kernel parametrised covariance matrix of the ensuing Matrix Normal likelihood; for
example, a matrix-valued V' with dimensionality m X mq, would imply that mims length-
scale hyperparameters are relevant to the kernel-parametrised covariance function. This is
more than the d hyperparameters that we would need to learn if the model V' = £(S) is
pursued, as long as d < myms. This alternative model gets even more discouraged when
we decide to model the hyperparameters as unknown functions of the iteration number.

5.1 Learning with Compound Tensor-Variate & Scalar-Variate GPs

We find inference defined by a sequential sampling from the scalar-variate GPs (for each of
the d directions of input space), followed by that from tensor-variate GP, directly relevant to
the purpose at hand. Here, learning involves a Compound tensor-variate and multiple scalar-
variate GPs; we refer below to such a Compound Stochastic Process, as a “nested — GP”
model.

Remark 27 As d.,a. are not stochastic, hereon, we absorb the dependence of the function
g(+) on the direction index, via the descriptor parameters, and refer to this function as

Ga.(t); c=1,...,d.

Definition 28 Nested — GP model:

for V = &(9),
&(+) ~ tensor-variate GP,

s.t. joint probability of n observations of k — 1-th ordered tensor-valued variable V' (that
comprise training data D), is k-th ordered Tensor Normal, with k covariance matrices—
which are empirically estimated, or learnt directly using MCMC, or kernel parametrised, s.t.
length scale parameter £, ..., g of this covariance kernel, is each modelled as a dynamically
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varying function €. = gz, (t), where
9z.(t) ~ ¢ — th scalar-variate GP,

=>joint probability of the last ty observations of £. (that comprise “lookback data” D), is
Multivariate Normal, the covariance function of which is parametrised by a kernel indexed
by the c-th, stationary descriptor parameter vector x. = (ac,d.)", where a. is the amplitude
and d. the scale-length hyperparameter of the SQE-looking covariance kernel; ¢ =1,...,d.

Definition 29 Nonnested — GP model:
for V.=¢€(8S),

&(+) ~ tensor-variate GP,

s.t. joint probability of observations of V is k-th ordered Tensor Normal, with k covari-
ance matrices—which are empirically estimated, or learnt directly using MCMC, or kernel
parametrised, s.t. length scale parameter {1, ...,Lq of this covariance kernel, is each treated
as a stationary unknown. All learning is undertaken using training data D.

6. Inference

Bayesian inference with Metropolis-within-Gibbs lends itself readily to this high-dimensional
inferential exercise that relies on sequential updating of the relevant parameters. Below,
we suggest inference that permits learning in the nested and non-nested models. Here §(**)
indicates the proposed value of parameter  in the t-th iteration, while 8®) refers to the
value that is current in the ¢-th iteration, for any parameter 6 that is being learnt.

e Nested — GP:

1. In t > to-th iteration, propose amplitude and scale-length of c-th scalar-variate
GP as:
a((f*) ~ 7?7\[(@?_1), 0, vc(f)), Ve=1,...,d,

5((}*) ~ N(é((:t_l)a 07 U((SC))v Ve = 1’ e ’d’

where A[(+) is Normal, and TA((+, 0, -) is a Truncated Normal density left-truncated
at 0.
(c) , (c)

va ,vs  refer to constant, experimentally-chosen variances.

2. As length scale hyperparameter £ = g (t) ~ GP(0,exp (—(- — -)%/262)), proba-
bility of the current lookback data D, given parameters of this c-th scalar-variate
GP, is Multivariate Normal with mean vector 0 and a current covariance matrix
\Ilgt_l) = ag_l) exp (—M)] st tj =t —1,...,t —1to. Similarly, the like-
lihood of the proposed parameters can be defined. These enter computation of
the acceptance ratio in the first block of Metropolis-within-Gibbs.

3. At the updated parameters d., a., at T' = t, length scale hyperparameters ¢1, ..., {4
are rendered Normal variates s.t.

Eté* ~ N(Egtfl)’ a(t*))7

c
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under a Random Walk paradigm, when the mean of this Gaussian distribution
is the current value of the /. parameter; Ve =1,...,d.

4. The proposed and current values of /1, ..., ¢; inform on the acceptance ratio in
the 2nd block of our inference, along with other, directly learnt parameters, of
the covariance structure of the tensor-variate GP that x(-) is sampled from.

e Nonnested — GP:

1. In the first block of Metropolis-within-Gibbs, /1, ..., ¢; are updated, once pro-
posed as Normal variates, with experimentally chosen constant variance of the
respective proposal density.

2. Updating of directly-learnt elements of relevant covariance matrices is under-
taken in the 2nd block, and the acceptance ratio that invokes the tensor-normal
likelihood, is computed to accept/reject these proposed values, at the /. variable
values that are updated in the first block of Metropolis-within-Gibbs.

7. Application
7.1 Background

Astronomical theory tells us that if a set of stars is evolved from some primordial time, in
the disk of the Milky Way galaxy, then the velocity vectors of the stars that land in an
identified region of the Milky Way disk, at the current time, are affected by the feature
parameters of the Milky Way. Thus, if the velocity vectors of these stars are collated to
form the velocity matrix V', then V is affected by the feature parameter vector S of the
Galaxy. So we model that V' and S exist in a relationship, and express this by stating
V =£(S), where £(-) is an unknown function. Focusing on the immediate neighbourhood
of the Sun in the Milky Way disk, the velocity matrix of a sample of our stellar neighbours
was observed by the Hipparcos satellite, though we have no measurement on the value
of S at which this observed value of V' was recorded. On the other hand, astronomical
simulations (Chakrabarty, 2007) can generate the value of the matrix V', at a chosen value
of S, though astronomical simulations/models cannot predict the value of S at which a value
of V is realised, i.e. reliable estimation/astronomical-modelling of the feature parameters
of the Milky Way is not possible, given the observed velocity matrix that comprises velocity
information of some of our stellar neighbours. Then to undertake the prediction of this
value of S, we aim to first learn £€(-) — by modelling it as a random realisation from a GP —
and then undertake the inverse prediction of the value of S at which the observed value of
V (test data) is realised. The training data used to learn &(-) is provided by astronomical
simulations that generate the value V' = v; at the i-th design point S =s;;¢1=1,...,n.
In these astronomical simulations, the sought Milky Way feature parameters include the
angular speed of the bar — which is an elongated (triaxially-shaped) structure built of stars,
that rotates, pivoted at the centre of the Galaxy, affecting the dynamics of the Milky Way.
In fact, the spiral pattern of the Milky Way is considered rotating at a fraction of the bar’s
angular speed, where this fraction is fixed (to about one-third) in the astronomical base
model used to undertake these simulations. The second sought feature parameter is the
angular distance of the long-axis of the bar, to the line that joins the Sun to the Milky Way
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centre, as this angle also affects Milky Way dynamics. All other Milky Way parameters
are input as known constants in the base astronomical model that is used to undertake
these simulations. In fact, galactic astronomy allows for the existence of a known relation
between the bar angular speed at the radial distance of the Sun from the centre of the
Milky Way (discussed in Section 9.4). So, the sought Milky Way feature parameters are:
(bar rotational frequency =) radial location S; of the Sun from the Milky Way centre, and
the angular separation So of the Sun from a fiduciary axis in the Milky Way disk, namely
the bar long-axis.

Data on values of velocity matrix V', generated at the n different values of the solar
location vector S = (S1,52)7 in the astronomical simulations, are s.t. there are disconti-
nuities in the data distribution of the generated V' values in the space of S, as displayed in
Figure 8 of Chakrabarty (2007).

7.2 Detalils

In this application, the aim is to learn location vector of the Sun in the Milky Way modelled
as a 2-dimensional disk. The training data D is cuboidally-shaped, and is of dimensionalities
m1 X mo X ms, where dimension of a stellar velocity vector is m; = 2; number of stars for
which velocity vectors are generated at each design point is ms = 50; number of design
points is m3 = n = 216, i.e. the 3-rd ordered tensor Dy comprises of n = 216 matrices
of dimension 50 x 2, where i-th value of the matrix-variate observable vV (50%2) i realised
at i-th value of system parameter vector S, s.t. D = {(s;,v;)}" ;. The 3rd-ordered tensor

(m1xmaxn) : :
D,, = (v1,5...,:0p)

Numerical simulations are conducted with n = 216 different astronomical models of the
Galaxy, with each such model of the Galaxy distinguished by a value of the Milky Way
feature parameter vector S € RY, d=2 (Chakrabarty, 2007). Thus, V = wv; at the i-th
design point s;, 1 =1,...,216.

In particular, there exists the test data v that comprises the m; = 2-dimensional
velocity vectors of the 50 identified, stellar neighbours of the Sun, as measured by the
Hipparcos satellite (Chakrabarty, 2007). It is the same 50 stars for which velocity vectors
are simulated at each design point. However, we do not know the real Milky Way feature
parameter vector s(¢st) at which V = v{test) ig realised.

Chakrabarty (2007) generated the training data by first placing a regular 2-dimensional
polar grid over a chosen annulus in an 2-dimensional astronomical model of the MW disk.
In the centroid of each grid cell, an observer is then placed. There are n grid cells; so there
are n observers placed in this grid, such that the i-th observer measures velocities of mo;
stars that land in that grid cell, at the end of a simulated evolution of a sample of stars that
are evolved in this model of the MW disk, under the influence of the feature parameters
that mark this MW model. The mg; number of stars are indexed by their location with
respect to the observer inside the grid cell, and a random sample of mo = 50 stars from this
collection of my; stars is taken; ¢ = 1,...,n = 216. Thus, each observer records a matrix
(or sheet) of 2-dimensional velocity vectors of mgy stars. The test data measured by the
Hipparcos satellite is then the 217-th sheet, except we are not aware of the value of S that
this sheet is realised at.
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In Chakrabarty et al. (2015), the matrix of velocities was vectorised, so that the ob-
servable was then a vector. In this application, the observable V' is a matrix. The process
of vectorisation, causes Chakrabarty et al. (2015) to face loss of correlation information
since vectorisation of the stellar velocity matrix implies the same correlation assigned to
all velocity components of all stars, which may be a misrepresentation. However, the high-
dimensional learning strategy that we discuss above, allows for clear quantification of such
covariances. More importantly, such a strategy provides a clear template for implementing
learning given high-dimensional data that comprise measurements of a tensor-valued ob-
servable. As mentioned above, the empirical estimate of the mean tensor is obtained, and
used as the mean of the Tensor Normal density that represents the likelihood.

To learn &(-), we model it as a realisation from a high-dimensional GP, s.t. joint of
n values of &(-)-computed at si,...,8,—is 3rd-order Tensor Normal, with 3 covariance
matrices: that inform on:

. . 216x216
—amongst-observer-location covariance (2:()) ));
. . . . 50x50
—amongst-stars-at-different-relative-position-w.r.t.-observer covariance (Zg ));

—amongst-velocity-component covariance (X 52 x2) ).

The elements of 39 are not learnt by MCMC.
—Firstly, there is no input space variable that can be identified, at which the ij-th element
of 39 can be considered to be realised; 7,7 = 1,...,50, where this ij-th element gives the
covariance amongst the i-th and j-th, 216 x 2-dimensional matrices within the 3-rd ordered
tensor Dy . Effectively, the 41st star could have been referred to as the 3rd star in this
stellar sample, and the vice versa, i.e. there is no meaningful ordering in the labelling of the
sampled stars with these indices. So we cannot use these labels as values of an input space
variable, in terms of which, covariance between i-th and j-th 216 x 2-dimensional velocity
matrices can be kernel-parametrised.
—Secondly, direct learning of the 50(51)/2 distinct elements of g, using MCMC, is ruled
out, given that this is a large number.
—Given this, we will perform the plugin, i.e. the empirical estimation of 3.

Definition 30 Covariance between the 216 x 2-dimensional stellar velocity matriz Wi =
[vz(,?] of the sampled star labelled by index i, and the matriz W ; := [U,(,é)} of the star labelled
(2)

as j, (p=1,...,216;q = 1,2), is estimaled as 0,5, where:
— 1 2 1 216
oy = 51X a1 < | 22 =) x () = o) ||
q=1 p=1
216 (4)
o _ (TE) - 0
where Vg’ = ~————2 is the sample mean of the q-th column of the matriz V; = [vpq].

216

The 3 distinct elements of the 2 x 2-dimensional covariance matrix 3, are learnt directly
(1)
from MCMC. These include the 2 diagonal elements aﬁ), U%) 012

/(1) _(a
‘7%1)‘7%2)

33 is kernel-parametrised, using the SQE kernel such that the jp-th element of X3 is
kernel-parametrised as [0j,] = exp (—(sj — sp)TQfl(sj — sp)) j,p =1,...,216. Since S

and p =
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is a 2-dimensional vector, @ is a 2x 2 square diagonal matrix, elements £, £ of which,
represent the correlation length scales.

Then in the “nonnested—GP” model, we learn the (modelled as stationary) ¢1, {2, along
with O'ﬁ), Ué? and p.

Under the nested — GP model, (. is modelled as ¢, = g, (t), where at iteration number
T =t gz (t) is sampled from the c-th zero-mean, scalar variate GP, amplitude a. and

(1)

correlation length scale d. of which we learn, for ¢ = 1,2, in addition to the parameters oy,
aé? and p.
The likelihood of the training data given the covariance matrices of the tensor-variate

GP, is then given as per Equation 1:

3
LD, by, 01y, 0%, p) = 2m) ([T 1%l /2 "
=1

. .1 _
XeXp(—H(Dv—M) X1 Alil X9 Ay X3 A31||2/2).

where ¥, = ApAZ7 p =1,2,3 and M is the empirical estimate of the mean tensor and

252 is the empirical estimate of the covariance matrix 3o such that 232 = AQAQT. Here
mg = 216, mo = 50, m1 = 2, and m = mymsems. One or more of the covariance matrices is
kernel parametrised, where the kernel is a function of pairs of values of the input variable
S—this explains the dependence of the RHS of this equation on the whole of D, with the
data tensor Dy contributing partly to training data D.

This allows us to write the joint posterior probability density of the unknown parameters
given training data D. To write this posterior, we impose non-informative priors 7y(-) on
each unknown (Gaussian with wide, experimentally chosen variances, and mean that is the
arbitrarily chosen seed value of £.; Jeffry’s priors on 31). The posterior probability density
of the unknown GP parameters, given the training data is then

(01, b2,0\) 0, pID) o L(Dy|S1,E5) % m0(£1)m0(E2)m0(1). (15)

The results of this learning and estimation of the covariance and mean of the GP invoked
in the modelling, are discussed below in Section 9.

Definition 31 The joint posterior probability density of the unknown parameters given the
training data D that comprises the velocity tensor Dy, under the nested — GP model is
given by

3
7r(51,62,al,ag.ﬁl,ég,aﬁ)?a%),MD) X (27T)7m/2 (H ’ZZ‘m/2m1>
i=1

x exp(—|[(Dv — M) x1 A~} xo Ay x5 A7 Y[2/2)% (16)

C

2

1
e —— R RN
1 det(27r\Irmc)eXp 2(6 ) (Pa) ( ) mo(21)
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(to) ._ (ggt—to) E((:t—l)>T

where £ , and ij-th element of the covariance matriz ¥y, is

t:—t.)2

[ac exp [(;(5)]2)”’ 1,7 = 1,...,tg. N.B. the t-dependence of the covariance matriz
&

W is effectively suppressed, given that this dependence comes in the form t —t; — (t —t;).

We generate posterior samples using Metropolis-within-Gibbs, to identify the marginal pos-
terior probability distribution of each unknown. The marginal then allows for the compu-
tation of the 95% HPD.

8. Inverse Prediction—2 Ways

We aim to predict the location vector s(t¢st) of the Sun in the Milky Way disk, at which real
(test) data v(*¢st) on the 2-dimensional velocity vectors of 50 identified stellar neighbours
of the Sun, measured by the Hipparcos satellite. We undertake this, subsequent to learning
of relation &(-) between solar location variable S and stellar velocity matrix-valued variable
V', using astronomically-simulated (training data).

Definition 32 The tensor that includes both test and training data has dimensions of 217 x
50 x 2. We call this augmented data D* = {vq, ...,v5o,v(t65t)}, to distinguish it from the
tensor Dy that comprises the training data. v; is realised at design point s;, but st at
which vt s realised, is unknown.

Remark 33 This 217-th sheet of (test) data is realised at the unknown value s of S,
and upon its inclusion, the updated covariance amongst the sheets generated at the different
values of S, is renamed 37, which is now rendered 217 x 217-dimensional. Then 37 includes
information about s\**Y) via the kernel-parametrised covariance matriz X5. The effect of
inclusion of the test data on the other covariance matrices is less; we refer to them as
(empirically estimated) X5 and 33. The updated (empirically estimated) mean tensor is
M.

The likelihood for the augmented data is:

3
L(D* |50, 53, 555) =(2m) (H = m) ’
i=1 (17)
exp [~[|(D* — M) x1 (A7) x5 (A3)"! x5 (43)71/2]

where A§ is the square root of 235 Here my = 217, mo = 50, m3 = 2, and m = mimams.
Here A} is the square root of X7 and depends on s,
The posterior of the unknowns given the test+training data is:
ﬂ_(sgtest)’ Sgtest)’ Z}T, E§|D*) KL(D* Sgtest), Sgtest)7 T’ Eg) %

es es * * (18)
wo(s ) mo (55 mo (g5 ) mo (¢ ) o (25).
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Remark 34 In this application, we use the prior probability density Wo(sl(,t%t)) = U(lp,up),p =

1,2, where l,, and u, are chosen depending on the spatial boundaries of the fized area of the
Milky Way disk that was used in the astronomical simulations by Chakrabarty (2007). Re-
calling that the observer is located in a quadrant of a two-dimensional polar grid, Chakrabarty
(2007) set the lower boundary on the angular position of the observer to 0, and upper to 7w /2
radians, where the observer’s angular coordinate is the angle made by the observer-Galactic
centre line to a chosen line in the MW disk. The observer’s radial location is maintained
within the interval [1.7, 2.3] in model units, where model units for length are related to
galactic unit for length, as discussed in Section 9.J.

(test) by sampling from the posterior of

(1)

given the test data and the modal values of the parameters ¢, g2, O'ﬁ), 0, 022 that were

learnt using the training data. Let modal value of 33, learnt using D be [(J:(,)M)) jp]iljl’,z;il,

Similarly, the modal value EgM) that was learnt using the training data, is used. The

posterior of (¢! at learnt (modal) values is then

In the second method for prediction, we infer s

g(test)

7_[_(Sgtest), Sgtest) |D*, ng)’ Eg) O(
L(D*lsgtest)’ Sgtest)’ ng)’ Eg) « ﬂ_o(sgtest))ﬂ_o(sgtest)) % (19)
mo(gs")mo(ai™ )mo(Bs)| V).

where L(D*|s§t68t), sgtm), 1 EgM)) is as given in Equation 14, with 33 replaced by X3,
and 3; replaced by its modal value agM). The priors on sgt%t) and sgesﬂ are as discussed

above. For all parameters, we use Normal proposal densities that have experimentally
chosen variances.

9. Results

In this section, we present results of the learning methodology described above, implemented
within the considered application. Thus, results of learning the unknown parameters of
the 3rd-order tensor-normal likelihood, given training as well as training+test data, are
discussed here.

While Figure 1 in the in Appendix A, and Figure 1 depict results obtained from using
the nonnested — GG P, in the following figures, results of the learning of all relevant unknown
parameters, using the nested — G P model, are included. Figures that depict results from the
nested—G P model include results of the learning of amplitude a. and smoothing parameters
d. := 1/0. parameters. Also, our modelling under the nested — GP paradigm relies on a
lookback-time tp which gives the number of iterations over which we gather generated /.
values.

9.1 Effect of discontinuity in the data, manifest in our results

One difference between the learning of parameters from the nested — GP, as distinguished
from the nonnested — GP models is the quality of the inference, in the sense that the
uncertainty of parameters (i.e. the 95% HPDs) learnt using the nested — GP models, is less
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Figure 1: Results from chain run with training data D with the nonnested — GP model,
are shown in grey (or red in the electronic version), while results from chain un-
dertaken with training and test data, D*, in this nonnested — GP model, are
depicted in black. Traces of the logarithm of the likelihood are displayed from
the two chains in the top left panel. Reciprocals of length scale parameters are
the shown in the top middle and right panels; here ¢. = £, !, ¢ = 1,2. Histograms
representing marginal posterior probability density of the learnt diagonal ele-
ments Jﬁ) and Ug), of the covariance matrix X1, are shown in the mid-row, left

and middle panels (given respective data). Histograms representing marginals of
012 . . . . o
parameter p = ———— are displayed in the mid-row right panel. Prediction

o1 os)
of the values of the input parameter S = (S7,52)7 is possible only in the run
performed with both training and test data. Marginals of S and Sy values learnt
via MCMC-based sampling from the joint of all unknown parameters given D*,

are shown in the lower panel, as approximated by histograms.

than that learnt using the nonnested — GP models. This difference in the learnt HPDs is
most marked for the learning of values of ()1 and S1, and S to a lesser extent.

To analyse possible discontinuities in the training data used in the application, we refer to
Figure 8 of Chakrabarty (2007), page 152 of the figure that is available at https://www.aanda.org/
articles/aa/pdf/2007/19/2a6677-06.pdf. This figure informs on the following. Com-
patibility of the value v of the stellar velocity matrix variable, realised in these astronomical
simulations at a given s, to the test velocity matrix v(test) (recorded by the Hipparcos satel-
lite), is parametrised. This compatibility parameter is plotted as a function of the two
components s; and sy of the vector s, and plotted as a contour plot in the space D, where
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Figure 2: Results from chain run with test+training data D* within the nested—G P model,
are shown in black, as distinguished from the results of learning given the same
data, using the nonnested — GP model, that are depicted in grey (or red in the
electronic version). Here the used value of Tj is 200 iterations. Histograms ap-
proximating the marginal posterior probability densities of each sought unknown
is depicted. Here, sought hyperparameter values a. and d. are relevant only to

the nested — GP model (¢ = 1,2). Here, we have undertaken sampling from the

joint posterior of all parameters, including the input parameter values sgteSt) and

sgte‘St), at which the test data are realised. Histograms approximating marginal

posterior of each learnt unknown are presented.

S € D C R?. Here, the 2 components of S are represented in polar coordinates, with S; the
radial and S the angular component. We see clearly from this figure, that the distribution
across S1 is highly discontinuous, at given values of Sy (i.e. at fixed angular bins). In fact,
this distribution is visually more discontinuous than the distribution across S», at given
values of Sy, i.e. at fixed radial bins (each of which is represented by the space between two
bounding arcs). In other words, the velocity matrices that are astronomically simulated at
different S values, are differently compatible with a given reference velocity matrix, (such
as v(*)). Distribution of the velocity matrix variable V', is discontinuous across values
of S, and in fact, less smoothly distributed at fixed so, than at fixed s;. Thus, this figure
brings forth the discontinuity with the input-space variable S, in the data tensor Dy, that
is part of the training data.

Then, it is incorrect to use a stationary kernel to parametrise the covariance 33, that
informs on the covariance between velocity matrices generated at different values of S. Our
implementation of the nested — GP model tackles this shortcoming of the model. Thus,
when we implement the nonnested — G P model, Metropolis needs to explore a wider volume
of the state space to accommodate parameter values, given the data at hand—and even then,
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Figure 3: Traces of parameters learnt using the training data D, in the run performed
with the nonnested — GP model, are compared to traces of the corresponding
parameter obtained in the run performed with the nested — GP model. Traces
of parameters learnt within the nonnested — GP model are in grey (or red in the
e-version) while the traces obtained using the nested — GP model are shown in
black.

there is a possibility for incorrect inference under the stationary kernel model. This explains
the noted trend of higher 95% HPDs on most parameters learnt using the nonnested — GP
model, compared to the nested — G P model, as observed in comparison of results from runs
done with training data alone, or both training and test data; compare Figure 2 to Figure 3,
and note the comparison in the traces as displayed in Figure 3. Indeed, this also explains
the bigger difference noted in these figures when we compare the learning of ¢; over ¢o, in
runs that use the stationary model, as distinguished from the non-stationary model. After
all, the discontinuity across S is discussed above, to be higher than across Ss.

9.2 Effect of varying lookback times, i.e. length of historical data

To check for the effect of the lookback time ¢y, we present traces of the covariance parameters
and kernel hyperparameters learnt from runs undertaken within the nested — GP model,
with different ¢g values of 50 and 100, in Figure 4, which we can compare to the traces
obtained in runs performed under the nested — GP model, with tg = 200, as displayed in
Figure 3.

It is indeed interesting to note the trends in traces of the the smoothness parameters
g = 1/¢ parameters; values of the amplitude (a1, az) parameters; and values of the length
scale hyperparameters (01, d2), evidenced in Figure 4 and in black in Figure 3). A zeroth-
order model for these parameters that are realisations from a non-stationary process, is
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Figure 4: Comparison of traces of unknown smoothness parameters of 33 and hyperparam-
eters of GPs invoked to model these parameters, obtained in runs performed with
training data D and ¢ty = 50 (in grey, or red in the e-version) and ¢ty = 100 (in
black).

a moving averages time-series model — M A(ty) to be precise. We note the increase in
fluctuation amplitude of the traces, with decreasing ty. For smaller values of lookback
time tp, the average covariance between ¢z, (t1) and g, (t2) is higher, than when ty is
higher, where the averaging is performed over a tp-iteration long interval that has its right
edge on the current iteration; here x. = (ac,éc)T, ¢ = 1,2 and as introduced above, we
model the length scale parameter of the kernel that parametrises X3, as ¢, = g4.(t). Here
gz.(+) is modelled as a realisation from a scalar-variate GP with covariance kernel that is
itself kernel-parametrised using an SQE kernel with amplitude a. and correlation-length
dc. Then higher covariances between values of gz, (-) at different ¢-values in general would
suggest higher values of global amplitude of this parametrised kernel, and higher values of
length-scales of this SQE kernel.

Indeed an important question is, what is the “best” tg, given our data. Such question
is itself of relevance, and discussed intensively under distributed lag models, often within
Econometrics (Shirley, 1965). An interesting trend noted in the parameter traces presented
in Figure 4 for tg = 50,100, and to a lesser extent for {5 = 200, in the results in black in
Figure 3, is the global near-periodic existence of crests and troughs in these traces. This
periodic fluctuation is more marked for smoothness ¢; (=1/¢1) and the hyperparameters of
the scalar-variate GP used to model g, (+), than for g2 (and a2 and J2).

From the point of view of a polynomial (of order ¢y) model for the lag operator — that
transfers information from the past ¢y realisations from a stochastic process to the current
iteration — the shape of the trace will be dictated by parameters of this model. If this
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polynomial admits complex roots, then coefficients of the relevant lag terms will behave
like a damped sine function with iterations. For a different value of ¢y, such a pronounced
oscillatory trend might not be equally apparent. Loosely speaking, the value of . in any
iteration, represented by a moving average, will manifest the result of superposition of the
different (discontinuous) modal neighbourhoods present in the data. The more multimodal
the data, i.e. larger the number of “classes” (by correlation-length scales) of functional form
&(+) sampled from the tensor-variate GP, s.t. superposition of the sample paths will cause
a washing-out of the effect of the different modes, and a less prominent global trend will be
manifest in the traces. However, for data that is globally bimodal, the superposition of the
two “classes” of sampled functions &(-) will create a periodicity in the global trend of the
generated /. values (and thereby of the smoothness parameter values q., where ¢ = £, 1).
Again, the larger the value ty of the lookback-time parameter, the moving average is over a
larger number of samples, and hence greater is the washing-out effect. Thus, depending on
the discontinuity in the data, it is anticipated that there is a range of optimal lookback-time
values, for which, the global periodicity is most marked. This is what we might be noticing
in the trace of ¢; at tg = 100 displaying the global periodicity more strongly than that at
to = 200 (see Figure 4 and Figure 3).

Another point is that the strength of this global periodicity will be stronger for the
correlation-length scale along that direction in input-space, the discontinuity along which
is stronger. Indeed, as we have discussed above, the discontinuity in the data with varying
S1 is anticipated to be higher than with S5. So we would expect a more prominent periodic
trend in the trace of ¢; than ¢o. This is indeed what to note in Figure 4. A simulation
study can be undertaken to explore the effects of empirical discontinuities.

The arguments above qualitatively explain the observed trends in the traces of the
hyperparameters, obtained from runs using different ¢y. That in spite of discrepancies in a,
and J., with tg, values of the length scale parameter /. (and therefore its reciprocal ¢.) are
concurrent within the 95% HPDs, is testament to the robustness of inference. Stationarity
of the traces betrays the achievement of convergence of the chain.

Table 1 below, and Table 1 in Appendix A include results on the learning of each
parameter, under every considered model, and parameter prediction undertaken, tabulated
as 95% HPD credible regions. In addition, Table 2 in Appendix A presents the effect of
inference made with 3 different values of the lookback time.

We notice that the reciprocal correlation length scale ¢ is a couple of orders of magnitude
higher than go; correlation between values of the sampled function £(-), at 2 different S
values (at the same s2), then wanes more quickly than correlation between sampled functions
computed at same s; and different Sy values. Here s = (31,32)T and given that S is
the location of the observer who observes the velocities of her neighbouring stars on a
two-dimensional polar grid, S; is interpreted as the radial coordinate of the observer’s
location in the Galaxy and Sy is the observer’s angular coordinate. Then it appears that
the velocities measured by observers at different radial coordinates, but at the same angle,
are correlated over shorter radial-length scales than velocities measured by observers at
the same radial coordinate, but different angles. This is understood to be due to the
astro-dynamical influences of the Galactic features included by Chakrabarty (2007) in the
simulation that generates the training data that we use here. This simulation incorporates
the joint dynamical effect of the Galactic spiral arms and the elongated Galactic bar (made
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of stars) that rotate at different frequencies (as per the astronomical model responsible for
the generation of our training data), pivoted at the centre of the Galaxy. An effect of this
joint handiwork of the bar and the spiral arms is to generate distinctive stellar velocity
distributions at different radial (i.e. along the S; direction) coordinates, at the same angle
(s2). On the other hand, the stellar velocity distributions are more similar at different
Sy values, at the same s;. This pattern is borne by the work by Chakrabarty (2004), in
which the radial and angular variation of the standard deviations of these bivariate velocity
distributions are plotted. Then it is understandable why correlation length scales are shorter
along the 57 direction, than along Ss.

Furthermore, for the correlation parameter p, physics suggests that the correlation will
be zero among the two components of a velocity vector. These two components are after
all, components of the velocity vector in a 2-dimensional orthogonal basis. However, our
results indicate a small (negative) correlation between the two components of the stellar
velocity vector.

9.3 Predicting s(t¢s?)

Figure 1, displays histogram-representations of marginal posterior probability densities of
the solar location coordinates sgteSt), séteSt); qi and g5 that get updated once the test data
is added to augment the training data, and parameters o}, o4 and p*. 95% HPD credible
regions computed on each parameter in this inference scheme, are displayed in Table 1
in Appendix A. These figures display these parameters in the nonnested — GP model.
When the nested — GP model is used, histogram-representations of the marginals of the

aforementioned parameters, are displayed in Figure 2.

Prediction of s(*¢st) using the nested — GP models gives rise to similar results as when
the nonnested— G P models are used, (see Figure 2 that compares the marginals of the solar
location parameters sampled from the joint of all unknowns, given all data, in nested — GP
models, against those obtained when nonnested — G P models are used).

The marginal distributions of sgte‘gt) indicates that the marginal is unimodal and con-

verges well, with modes at about 2 in model units. Distribution of sgteSt) on the other

hand is quite strongly skewed towards values of sgteSt) < 1 radians, i.e. séteSt) < 57 degrees,

though the probability mass in this marginal density falls sharply after about 0.4 radians,
i.e. about 23 degrees. These values tally quite well with previous work (Chakrabarty et al.,
2015). In that work, using the training data that we use in this work, (constructed using the

the astronomical model sp3bar3_18 discussed by Chakrabarty et al. (2015)), the marginal

distribution of sgteSt) was learnt to be bimodal, with modes at about 1.85 and 2, in model

units. The distribution of séteSt) found by Chakrabarty et al. (2015) is however more con-
stricted, with a sharp mode at about 0.32 radians (i.e. about 20 degrees). We do notice a
mode at about this value in our inference, but unlike in the results of Chakrabarty et al.
(2015), we do not find the probability mass declining to low values beyond about 15 de-
grees. One possible reason for this lack of compatibility could be that in Chakrabarty et al.
(2015), the matrix V' of velocities was vectorised, rendering the data a matrix, rather than
the 3-tensor as we know it to be. Such vectorisation triggers loss of correlation information,
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possibly explaining their results. Model checking of our models and results is undertaken
in Appendix B.

9.4 Astronomical implications

The radial coordinate of the observer in the Milky Way, i.e. the solar radial location, is
dealt with in model units, but will need to be scaled to real galactic unit of distance, which

is kilo parsec (kpc). Now, from independent astronomical work, the radial location of the
Sun is set as 8 kpc. Then our learnt value of SYM)
8kpc
learnt value of S, (test)
the solar location, is to learn frequency 2pq Wlth Wthh the Galactic bar is rotating, pivoted

is to be scaled to 8 kpc, which gives 1

model unit of length to be m := < . Our main interest in learning

at the galactic centre. Here Q. = —, where vy = 220 km/s (see

1 model unlt of length
Chakrabarty (2007) for details). Here, Sy is the angular distance between the Sun-Galactic

centre line, and long axis of the bar, and informs on the angular location of the Galactic
bar (see Table 1).

Table 1: 95% HPD on each Galactic feature parameter learnt from the solar location co-
ordinates learnt using the two predictive inference schemes listed above and as
reported in a past paper for the same training and test data.

95% HPD for Q,, (km/s/kpc) | for angular distance of
bar to Sun (degrees)

from posterior predictive [48.11,57.73] [4.53,43.62]
from joint posterior [48.25,57.244] [2.25,46.80]
from Chakrabarty et. al (2015) | [46.75, 62.98] [17.60,79.90]

Table 1 displays the Galactic feature parameters derived from the learnt solar location
parameters, under the nonnested — GP model, using sampling from the joint posterior
probability of all parameters given all data, and from the posterior predictive of the solar
location coordinates given test data and GP parameters already learnt from training data
alone. Derived Galactic feature parameters are: bar rotational frequency 34, in the real
astronomical units (km/s/kpc), and angular distance between the bar and the Sun, in
degrees. The table includes results from Chakrabarty et al. (2015).

10. Conclusions

We discuss a supervised learning method for learning tensor-valued functional relations be-
tween a sytem parameter vector, and a tensor-valued observable, multiple measurements
of which build up a hypercuboidally-shaped data, that is in general not continuous, thus
demanding a non-stationary covariance structure of the invoked tensor-variate GP that this
sought high-dimensional function is modelled with. We prove the need for generalising a
stationary, kernel-parametrised covariance function of this high-dimensional GP, into one,
in which each of the hyperparameters of this covariance kernel is treated as dependent on
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the sample function of the invoked tensor-variate GP. This model of each sample-path de-
pendence of each kernel hyperparameter is rephrased to model each kernel hyperparameter
as a random function of the time-step at which a sample-path of the tensor-variate GP is
generated. Each such an unknown scalar-valued random function is treated as a realisation
from a distinct scalar-variate GP, that we learn. There are as many such scalar-variate GPs
involved, as there are hyperparameters of the covariance kernel of the tensor-variate GP.
We prove stationarity of each such scalar-variate GP. Thus our learning strategy comprises
two layers, namely an outer layer made of a non-stationary (in general) tensor-variate GP,
that lies compounded with multiple stationary scalar-variate GPs that build the inner layer.
We prove sufficiency of this dual-layered learning, even when the data n the tensor-valued
observable is discontinuously distributed. In our learning, we undertake Metropolis-within-
Gibbs-based inference, that allows comprehensive and objective uncertainties on all learnt
unknowns. Ultimately, we make an inverse Bayesian prediction of system parameter values
at which test data on the observable is realised. The Generalised Wishart nature of the
generative process underlining temporally-evolving covariance matrices is proved. While
in this work we focussed on the learning given discontinuities in the data, the inclusion
of non-stationarity in the covariance is a generic cure for data that bears discontinuities;
applications to temporally varying, datasets are posible using such a learning strategy.
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Appendix A: Results

Figure 5 display traces of the sought parameters learnt using the nonnested —GP model. In
Figure 6, histogram representation of marginal posterior probability density of the sought
parameters, given training data, are obtained using the nonnested — GP model. These
results are compared to the corresponding result obtained from the nested — GP model.
In this nested — GP model, the covariance matrix 33 (that bears information about the
covariance structure between sheets of data generated at different values of the input variable
S = (81,9)7), is parameterised using a kernel, each length-scale hyperparameter of which,
is itself modelled as a dynamically-varying function that is considered sampled from a GP.
For each such scalar-variate GP that generates the length-scale ¢., ¢ = 1,...,d = 2 the
covariance matrix is itself kernel-parametrised using a stationary kernel, with an amplitude
parameter value a. and length-scale parameter d..

95% HPD credible regions computed on each learnt parameter given the nonnested—G P
model, are displayed in Table 2. Again, a similar set of results from the chains run with
the nested — GP models are displayed in Table 3. The results on prediction of s(*!) are
also presented in Table 2 and Table 3.

Table 2: 95% HPD credible regions on each learnt parameter, from the nonnested — GP

model
Parameters | using only training data | sampling from posterior predictive | sampling from joint
Q [3492.1,4198.1] [3573.2,4220.8]
q2 [68.92,76.88] [68.37,77.33]
ol [0.9837,1.0380] [0.9797,1.0338]
p [-0.0653,-0.0275] [-0.0798,-0.0261]
o) [0.3747,0.4234] [0.3703,0.4237]
51 - [1.8212,2.1532] [1.8038,2.1960]
59 - [0.0421,1.2052] [0.0157,1.2172]

Appendix B: Model Checking

One way to check for the model and results, given the data at hand, is to generate data
from the learnt model, and then compare this generated data with the observed data. Now,
the model that we learn, is essentially the tensor-variate GP that is used to model the
functional relationship &€(-) between the observable V' and the input-space parameter S.
By, saying that we want to generate new data, we imply the prediction of a new value of
V', given the learnt model of this GP.

This prediction of new datum on V, is fundamentally different from the inverse pre-
diction of the value s(t¢s) of the input-space parameter S that we have undertaken — as
discussed above — where the sought s(*¢s%) is the value of S at which test data v(*s") on V'
is recorded. There is no closed-form solution to the posterior predictive of s(*¢s*) given the
test data and the learnt GP parameters.
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Figure 5: Results from run done with training data D with the nonnested — GP model,
are shown in grey (or red in the electronic copy of the paper) while results from
run undertaken with training and test data, D™, in this nonnested — G P model,
are depicted in black. Traces of logarithm of the likelihood are displayed from
the two runs in the top left panel. Reciprocal of the length scale parameters are
shown in the top middle and right panels; here q. = ;1 ¢ = 1,2. Traces of the

(1) (1)

learnt diagonal elements o,;" and 055, of the covariance matrix 3, are shown
012

PR COMCY
11922

is displayed in the mid-row right panel. Prediction of the values of the input

parameter S = (51, 59)7 is possible only in the run performed with both training

and test data. Traces of S; and Ss values learnt via MCMC-based sampling from

the joint of all unknown parameters given D*, are shown in the lower panel.
J 1% s p

in the mid-row, left and middle panels. Trace of the correlation p =
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Figure 6: Marginal posterior probability densities of unknown parameters, given training
data D, are depicted as histograms. Histograms obtained from the run done with
only within the nested — GP model, shown in black, as distinguished from the
results of learning given the same data, and the nonnested — GP model depicted
in grey (or red in the electronic copy of the thesis). Given the data used here,

test test
sg “t) and sg ° ), are not learnt.

Table 3: 95% HPD credible regions on each learnt parameter, from the nested — GP model

Parameters | tog = 200 to = 100 to = 50

q1 [3740.96, 3917.32] | [3710.4, 4011.66] | [3650.92, 4033.51]
q2 [70.34, 75.70] [70.42, 76.43] [68.94, 76.22]
ay [78.67, 124.02] [43.82, 167.35] [48.27, 219.37]
as [1.88, 3.03] [2.12, 3.57] [1.64, 6.16]

dy [155.64, 301.65] [78.47, 521.67] [123.42, 828.37]
ds [0.10, 0.15] [0.12, 0.46] [0.10, 0.52]

031 [0.97, 1.02] [0.97, 1.03] [0.98, 1.02]

039 [0.37, 0.41] [0.37, 0.41] [0.38, 0.41]

P [-0.076, -0.031] [-0.073, -0.03] [-0.075, -0.032]
$1 [1.83, 2.16] [1.77, 2.22] [1.76, 2.24]

S9 [0.138, 1.15] [0.112, 1.16] [0.071, 1.15]
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Here we discuss our undertaking of the checking of the model and the results that
were presented in the last section, in the context of the Galactic application discussed
above in Section 7 of main paper, using the training data used in this application. At
chosen values of S — chosen to be the design points in this training data, for convenience —
the kernel-parametrised covariance function X3 of the 3rd-order Tensor Normal likelihood
GP, is known, given the learnt values of the parameters of the kernel used to parametrise
33. However, in our Bayesian inference, we learn the marginal posterior of each unknown
parameter, given the data. Thus, in order to pin the value of each element of X3, we identify
the parameter value corresponding to a selected summary of this posterior distribution. For
example, we could choose to define 33 at pairs of known design points s;, s;, and the modal
value of /. — identified from the marginal posterior of /. inferred upon, given the data. Here
i,7 € {1l,...,n=216}. The resulting value of the ij-th element of 33 will then provide one
summary, of the covariance between the 50 x 2 stellar velocity matrix v; realised at S = s;,
and v; realised at § = s;. Similarly, the learnt modal values of the parameters agll), o%) and
p define one summary of the covariance matrix ¥; that informs on the covariance between
the 2 216 x 50-dimensional sheets of data on each component of the 2-dimensional stellar
velocity vector. Again, other summaries of the parameter values could be used as well, for
example, the parameter value identified at the mean of the marginal posterior density of
this parameter, as learnt given the training data, is also used.

In this model checking exercise, the unknowns are certain elements of the cuboidally-
shaped data comprising the 216 number of 50 x 2-dimensional stellar velocity matrices
generated by astronomical simulation, at chosen design points s, ..., s216, i.e. the 3rd-order

tensor Dy := {v1, w9, ..., v216}. In the first attempt to model checking, we generate all
elements of the g-th such simulated stellar velocity matrix v,, (that is generated at the

known design point s;), i.e. generate values of 50 x 2 = 100 unknown elements of matrix

vy. We refer to these unknown elements of v, as fug),vg%) , vg{), e ,vé%g. The 3rd-ordered

tensor without the ¢-th slice, is referred to as DE/_q) = {1, 09,5, Vg1, Vi1, V216 )

The joint posterior probability density of the 100 unknowns, at the learnt modal values

qngdE) (mode) O_(l,mode)’ Ué;,mode)yp(

mode
) 011 )

is
- S de) & d
™ (Uﬁ)v”g)v vé‘i), ces Ué%)g‘D%/ q)) o TN 95 50x216( M, 25”“’ e): 3, ngo e))7

where,

—~the 3rd-ordered tensor-valued data that enters the parametric form of the 3rd-ordered
tensor-normal density on the RHS, has elements of its ¢-th slice, (out of a total of 216
slices), unknown. All other elements of this 2 x 50 x 216-dimensional tensor are known;

—uniform priors are used on the unknowns; fﬁngde) is the learnt modal value of the 2 x 2-
dimensional covariance matrix ¥ s.t. its 1,1-th element is aﬁ’m()de), 2,2-th element is

Uéé’m0d6)7 1,2-th element is p(™mede) \/ U%’m()de)aﬁ’mwe), and the 2, 1-th element is equal to
the 1,2-th element (as this is a covariance matrix);
fEi(,,mOde) is the learnt modal value of the 216 x 216-dimensional covariance matrix Xg, s.t.

its ij-th element is exp [—(si - sj)TQ(mode)(si —s;)|, with the non-zero elements of the
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Figure 7: Left: Comparison of the observed and predicted values of elements of the ¢-th
50 x 2-dimensional stellar velocity matrix v,, where 216 such matrices constitute
the training data Dy (on velocities of 50 stellar neighbours of the Sun) that
is generated by astronomical simulations. The predicted or learnt values are
obtained from a RW-MCMC chain undertaken with the all elements of the 3rd-
order tensor Dy known, except for the elements of its ¢-th slice, and the learnt
values of the parameters of the GP used to model the data at hand, at a chosen
summary, namely the mode, of the marginal posterior density of each such learnt
GP parameter. Here ¢=200. Equality of the observed and predicted values of he
elements of v, is indicated by the point lying on the drawn straight line with unit
slope; the predicted values are found to lie close to this line. Middle: Depicts a
similar comparison, as displayed in the left panel, but for 20 distinct values of ¢,
namely for ¢ = 190, 191, ...,210. Right: Depicts the same comparison of observed
and predicted values of elements of 20 slices vigg, ..., V219, but this time, the
employed GP parameters are the means of their respective marginals. Thus, this
model-checking exercise checks for the used models and results obtained (given
the data at hand) at the mean of the respective posterior.

diagonal 2 x 2-dimensional Qm0de)_matrix given by q§m0de) and qémOde). s; being the i-th
design point, is known Vi,5 = 1,...,216.
To learn the 100 unknowns vﬁ),vg),vg{), e vé%),Q, we run a RW Metropolis-Hastings

chain, with the data defined as above, the known 216 number of design points, and all
the learnt, modal parameter values. The joint posterior of the unknowns that defines the

acceptance ratio in this chain, is given as in the last equation. The chain is run for 20,000

iterations, for g=200, and the mean of the last 1000 samples of (200

ij
Z(Jgoo) then constitute the learnt value of the

100 elements of the 200-th stellar velocity matrix vsgg. We plot the pairs of learnt value

_(200)

U, of elements of the vopy matrix, against the empirically observed value of this element,

Vi=1,...,50,Vj = 1,2. The plot is presented in the left panel of Figure 7. Thus, each point
on this plot is a pair (empirically observed value Ofvgoo)’@goo))’ and there are 50 x 2 = 100
points in this plot. The points are found to lie around the straight line with slope 1. In

other words, the values of the elements in the g-th (=200-th) slice of the training data that

is recorded, where

i=1,...,50, 5 = 1,2. These sample means v
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we learn using our model, are approximately equal to the empirically observed values of
these elements. This is corroboration of our models and results.

We attempt a similar prediction of elements of the training data for other values of ¢,
namely for ¢ = 190,...,210. The learnt values of elements of v,, for each ¢, is plotted
against the empirically observed elements of v,. We have superimposed results for all 20
values of ¢ in the same plot, resulting in the middle panel of Figure 7. Again, the values
predicted for all 20 slices, are found to be close to the empirical observations, as betrayed
by the points lying close to the straight line of unit slope.

Lastly, we wanted to ensure that the encouraging results from our model checking ex-
ercise is robust to changes in the posterior summary of the learnt GP parameters. Thus,
we switch to using the mean of the parameter marginal posterior from the posterior mode,
and carry out the same exercise of predicting elements of slices v1gg, ..., v219. Results are
displayed in the right panel of Figure 7. Again, very encouraging corroboration of our used
models and results (of learning the GP parameters) is noted. Indeed, in such model checking
exercises, encouraging match between the predictions and the empirical observations lends
confidence in the used models and results obtained therefrom, given the data at hand—such
models and results are the inputs to this exercise. However, if lack of compatibility is noted
in such a model checking exercise, between empirical observations and predictions, then it
implies that either the used modelling is wrong, and/or the results obtained therefrom given
the data are wrong. However, the model checking exercise that we undertake, vindicates
our models and results, given the data at hand.
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