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Abstract

We review reliability computation undertaken variously in the literature, to
identify concerns with existing approaches; such concerns distort decisions about
usability of a given test/survey, and are triggered with increased number of test items,
and with increasing non-uniformity of the inter-item correlation structure. Another
underlying assumption in these approaches is that the test/survey measures a single
ability/trait, but a real test is likely to be multi-dimensional. To address such concerns,
we advance new frequentist and Bayesian methods, that are not restricted by unrealistic
assumptions about uni-dimensionality, homogeneity of inter-item correlations, or small
to moderate number of test items. In our methods, uncertainty of test scores is
parametrised by variance of the difference between the score obtained in an item in one
subtest, and the corresponding item in the other subtest, where the two subtests arise
from the splitting of the given test. Thus, our methods offer new ways of accomplishing
such splitting. We illustrate our methods on three real datasets (with responses that
are binary as well as on a Likert scale), and four different simulated datasets. We
undertake thorough comparison of our results to those obtained by other techniques.

Key words: Mathematical psychology: 91Exx; Measurement and performance: 91E45;
Partitions of sets: 05A18; Markov chains (discrete-time Markov processes on discrete
state spaces): 60J10
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New Combinatorial & Bayesian Uncertainty Estimation of Tests &

Surveys

1. Introduction

Estimation of uncertainty of a test score data is extensively studied within Classical Test Theory,

with the complementary test reliability defined as the proportion of observed score variance that

is attributable to the true score. This theoretical definition then naturally poses the

fundamentally difficult problem that the true score is itself unknown (Rudner & Schafes, 2002;

Webb, Shavelson & Haertel, 2006). To circumvent this problem, various methods of obtaining the

error variance have been advanced. In principle, the sought uncertainty in a set of test scores can

be treated as a distance between two datasets, where the datasets could be the outputs achieved

on administering the same test/survey to the given cohort, at two different time points, although

such is expected to result in some learning during the inter-administration time, potentially

driving the reliability to depend on the time gap as well as the homogeneity amongst the

examinees (Gualtieri, Thomas & Lynda, 2006). Another possibility is to administer similar

tests/surveys to a given cohort, though it is difficult to design such similar tests that maintain

(quantified) sameness of quality. Then a better alternative is to avoid multiple administrations,

and split the only test/survey administered to the cohort (Meadows & Billington, 2005), into two

“subtests” comprising equal number of items, such that (s.t.) distance between score matrices

obtained by the cohort in each of the subtests, is sought. Then the reliability of the whole test

depends on how the test is dichotomised (Lord & Novick, 1968). Guttman (1945) suggests

experimentally identifying the splitting of items, s.t. the split-half reliability is maximised, though

a specific algorithmic protocol for finding this optimal splitting is not provided, and this

reliability is shown by Ten Berge & Socan (2004) to be an overestimate when the number of test

items is large, or the examinee sample size is small. Thompson, Green & Yan (2010) have shown

that the maximal split-half coefficient obtained from the splitting method of Callendar & Osburn

(1977), to be anything but robust – ”badly” overestimating the reliability under some conditions

and underestimating it, given other conditions. Increased non-uniformity in the distribution of

true scores across items in the test/survey, implies increased inefficiency of an ad hoc splitting of
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this test/survey; thus, splitting by including odd items in one subtest and even items in another

(Murphy & Davidshofer, 1994; Gulliksen, 1987), fails if true scores in some items are likely to be

higher than in others, owing to (for example), such items being easier than others. Indeed it is a

hard problem to determine how to split a single test/survey into 2 subtests, where the aim is to

ensure that the quality of each subtest is the same, and distance between the scores obtained in

the 2 subtests by the cohort, is not an artefact of the splitting, but reflects only the uncertainty of

the test/survey. There exists another school of thought though (Kaplan & Saccuzzo, 2001), in

which reliability computation of the entire test is recommended, using the Spearman-Brown

formula (Gulliksen, 1987; Suen, 1990; Eisinga, Te Grotenhuis & Pelzer, 2012).

Maintenance of quality between the 2 subtests is formalised by suggesting that the subtests

be “parallel”, where parallelity demands that all items of the test/survey, measure the same

latent examinee ability, and the true score of each item is the same constant. Maintaining the

very restrictive condition for parallelity in real-life tests/surveys is difficult, and often breached.

The “tau-equivalent” model relaxes this restriction by allowing item-specific errors, though true

scores of all items are held equal to each other still. The more relaxed, “essential tau-equivalent”

model allows item scores to differ from each other by an item-specific additive constant. The

congeneric model is the least restrictive in that it allows a linear relationship between scores s.t.

true scores differ from each other by an additive constant, and a scale (Graham, 2006).

In this paper, we advance novel frequentist and Bayesian methods, that can be used to

partition realistic, large to small tests/surveys that do not necessarily measure a single trait, nor

manifest non-uniform inter-item correlation structures. The partitioning is done into

optimally-split subtests that: minimise the absolute difference between the mean subtest item

scores; or equivalently, maximise the inner product of subtest item score vectors; or comprise

items with indices that are Bayesianly learnt, (with likelihood of these unknown indices, defined

as a decreasing function of the distance between subtest item score vectors). Subsequent to

splitting the test by our methods, we compute reliability as complementary to the test

uncertainty that we define as proportional to the variance of the variable that is the difference

between item scores in these optimally-split subtests.

If assumptions of the aforementioned essentially tau-equivalent model are violated (eg. items
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measure the same latent variable in different scales), Cronbach alpha will underestimate the

reliability of a given test score data, (Graham, 2006), leading to the test/survey instrument being

criticised (and perhaps discarded) for not producing reliable results (Tavakol, 2011). An even

greater worry regarding the applicability of Cronbach alpha – as well as interpretability of its

computed value given a test/survey – is the fact that while increased internal consistency value

(i.e. alpha) necessarily implies a higher measure of uni-dimensionality of the test/survey (i.e. the

test/survey measures a unique latent variable), multi-dimensional tests do not necessarily imply a

lower alpha than a uni-dimensional test (Cortina, 1993; Green, Lissitz & Mulak, 1977).

Limitations of Cronbach’s alpha have been discussed extensively by Panayides (2013);

Eisinga, Te Grotenhuis & Pelzer (2012); Ritter (2010); Sijtsma (2009); Boyle (1991); Streiner

(2003). Thus, alpha computed for the whole of heterogeneous test/survey, can distort our

understanding of its reliability in a data-dependent way, s.t. a blind correction is not possible.

Reliability computed using either of our frequentist splitting methods, is higher than reliability

computed using any other splitting, including Cronbach alpha. Our Bayesian learning of the

splitting, offers 95% Highest Probability Density credible regions on the computed reliability, and

alpha may or may not be included within this credible region.

Our frequentist splitting by minimising difference of subtest item means, (Section 3.2)

borrows from solutions advanced for the “knap-sack” problem in the literature by Hayes (2002);

Borgs, Chayes & Pittel (2001); Mertens (2006); Garey & Johnson (1997, among others). Mertens

(2006) defines the problem as partitioning a list of positive integers into a pair of partitions, while

minimising the difference between the sum of entries in the 2 partitions. This method produces

the same splitting, as partitioning by maximising the inner product of the two partitioned vectors

(Section 3.3), though robustness to outliers of these methods of partitioning are not the same.

Details of our Bayesian method of learning the partitions is discussed in Section 3.4. Our splitting

techniques are compared to existing number partitioning methods in Section 8 of Supporting

Documents.

Comparison of our reliability computation to Cronbach alpha is discussed in Section 4.1,

contextualised to an applications made on a real test data comprising 50 items, administered to

about 1000 examinees (Section 4), as well as on the real Yelp restaurant review data consisting of
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676 items, collated from 8848 responders (Section 6). We demonstrate the efficacy of our

Bayesian method, to compute the reliability of a dataset that comprises responses from 1022

responders, to a 32-item questionnaire that is on a 5-point Likert scale (Section 5).

2. Background

Let us consider a test such that (s.t.) the total number of test items is P ∈ N, and number of

examinees is N ∈ N. Here we first consider multiple-choice tests, s.t. score obtained by the i-th

examinee, in the j-th item is X
(j)
i ∈ {0, 1}. Item-score of the j-th item is τj =

n
∑

i=1

X
(j)
i . Here

i = 1, . . . , n, j = 1, . . . , p. Let the item score vector of a given test be τ = (τ1, τ2, . . . , τp)
T . Let the

p items be arranged so that half of these comprise one subtest (that we refer to as the g-th

subtest) that the given test is split into, with the remaining p/2 items, comprising the h-th

subtest. Thus, the methodology exposition that we undertake, is done by considering an even P ;

generalising applicability of our methods to odd P will be discussed in Section 3.1 and Section 8

of Supporting Documents. Item scores of items that are assigned to the m-th subtest are

τ
(m)
1 , . . . , τ

(m)
p/2 ; m = g, h. Similarly, the score of the i-th examinee across all the items of the m-th

subtest is X
(m)
i ; i = 1, . . . , n. The examinee score vector in the m-th subtest is

Xm = (X
(m)
1 , . . . , X

(m)
n )T . For the i-th examinee, the error ǫi in their score is defined as the

difference between scores attained in the g-th and h-th subtests, i.e. ǫi := X
(g)
i −X

(h)
i .

The methodologies that we advance below for attaining optimal-splitting of a given test into 2

subtests, effectively seek to minimise the absolute difference between sums of subtest item scores
∣
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, where the first of these equalities stems from

Theorem 3 below, and the second from the definition ǫi := X
(g)
i −X

(h)
i . Our classically defined

uncertainty is complementary to the reliability rtt as

1− rtt =
S2
ǫ

S2
X

=

n
∑

i=1
ǫ2i

n
−









n
∑

i=1
ǫi

n









2

, (1)

where uncertainty in the i-th examinee’s response is ǫi := X
(g)
i −X

(h)
i , (2)



5

and the test variance of the observed test scores is S2
X :=

n
∑

i=1
(Xi)

2

n
−









n
∑

i=1
Xi

n









2

, (3)

=⇒ rtt = 1−

‖ Xg ‖2 + ‖ Xh ‖2 −2
∑N

i=1X
(g)
i X

(h)
i −

[

n
∑

i=1

(

X
(g)
i −X

(h)
i

)

]2

/n

nS2
X

. (4)

We will discuss the connection of the data-driven reliability defined above, and the general,

model-driven reliability measures, for example as discussed by Cho (2016) in Section 7 of the

Supporting Documents. Also, in Section 5, the splitting of the test is extended to responses to a

survey that is on a k-point Likert scale, where k ∈ N.

3. Our methods

3.1. Splitting a test by exchanging items in the same row of the 2 subtests

We seek to split a given test (constituting p items), into the two subtests g and h, s.t. sum of

absolute differences between the scores attained in the items of subtests g and h, is minimised, i.e.
∣

∣

∣

∣

∣

p/2
∑

j=1
(τ

(g)
j − τ

(h)
j )

∣

∣

∣

∣

∣

is minimised, where the same number of items (p/2) constitute each subtest.

If we face a test with an odd number of items, we ignore the last item for the purposes of test

dichotomisation. This is not to say that our splitting algorithm cannot deal with partitioning of

an odd-number of elements into the two subtests; while our partitioning algorithm can deal with

such a situation, it is our application-specific requirement of maintaining a same number of items

in each subtest that drives us to work with even p values only.

Theorem 1 equates minimisation of the absolute difference between sums of item scores in

the g-th and h-th subtests, with minimisation of absolute difference between sums of examinee

scores attained in these 2 subtests. Theorem 2 discusses implication of this minimisation on the

absolute difference between the sum of squares of examinee scores attained in these two subtests.

Theorem 1. Minimising the absolute sum S of differences between item scores attained in the

p/2 items of the pair of subtests that are generated by splitting the given test into subtests g and

h, implies minimising the absolute difference between means of scores attained by n examinees in
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the g-th and h-th subtests. In other words,

minimising

p/2
∑

j=1

|τ
(g)
j − τ

(h)
j | =⇒ minimising

∣

∣

∣

∣

∣

n
∑

i=1
X

(g)
i

n
−

n
∑

i=1
X

(h)
i

n

∣

∣

∣

∣

∣

.

The proof of this theorem is provided in Section 1 of the Supportig Documents.

Theorem 2. In a test with binary responses, absolute difference between sums of squares of

examinee scores in the g-th and h-th subtests is of the order of ǫ2 ∓ 2Tǫ∓ (p/2)2TP ǫ
′

, if absolute

difference between sums of examinee scores is ǫ; difference between the sum of probabilities of

correct examinee response to items in one subtest and another is ǫ
′

, where TP is the sum of

probabilities of correct examinee response to items in one subtest, and T is the sum of scores in

one of the subtests, s.t. the total score in the other subtest if T ± ǫ.

The proof of this theorem is provided in Section 2 of the attached Supporting Documents.

3.2. Splitting using minimisation of absolute difference between sums of subtest item scores

Partitioning a set of positive integers into two groups, s.t. difference between sums of elements in

the two groups is minimised, has been addressed before; (Section 8 of Supplementary Materials).

Putting this into the context of our problem, one partition is the subtest g and the other h, which

contains an equal number of elements as in g. Our method of splitting is akin to the differencing

method (or the KK-heuristics method) presented by Karmakar & Karp (1982).

In Algorithm 1 of the Supporting Documents, we present our algorithm for identifying the 2

constituent subtests of a given test, by minimising the sum S of absolute difference between the

scores obtained in these 2 subtests, i.e. by minimising S :=
p/2
∑

j=1
|τ

(g)
j − τ

(h)
j |. We implement such

splitting, by using an accept-reject idea based on differencing between the item-wise scores in the

two subtests, over the Niter iterations that we undertake, where the ℓ-th iteration comprises a

total of p/2 “swaps”. Here, a “swap” constitutes the exchange of the j-th item in the current g-th

subtest, with the j-th item of the current h-th subtest; j = 1, . . . , p/2; ℓ = 1, 2, . . . , Niter. Value of

S at the j-th swap during the ℓ-th iteration is s(ℓ−1)p/2+j .
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Definition 1. In the 0-th iteration, the item-wise scores are sorted in an ascending order,

resulting in the ordered sequence {τ1, τ2, . . . , τp}. Following this, the item with the highest total

score is identified and allocated to the g-th subtest. The item with second highest total score is

then allocated to the h-th test, while the item with the third highest score is assigned to h-th test

and the fourth highest to the g-th test, and so on. Thus, initial allocation of items is as follows.

subtest g subtest h difference in subtest scores

τ1 τ2 τ1 − τ2 ≥ 0

τ4 τ3 τ4 − τ3 ≤ 0
...

...
...

Subtests obtained after this very first dichotomisation of the sequence {τj}
p
j=1, following this

suggested pattern, are called the “seed subtests”.

Definition 2. Once all Niter iterations are undertaken, we identify values of (ℓ− 1)p/2 + j

that minimise S, using: (ℓ̃− 1)p/2 + j̃ := arg
(ℓ−1)p/2+j

[

min
(

s(ℓ−1)p/2+j

)]

, and define

r
(minS)
tt := r

(ℓ̃−1)p/2+j̃)
tt , as the maximal reliability of the given test obtained by minimising S.

3.3. Splitting a test by swapping items across rows

We have considered splitting of a given test, using other methods as well, namely, splitting of a

given test, while maximising the correlation between the item scores of the resulting subtests, i.e.

maximising Sρ :=

p/2
∑

j=1

τ
(g)
j τ

(h)
j . It is clear that swapping the j-th item of g-th subtest, with j-th

item of h-th subtest will not produce any change in Sρ, for j ∈ {1, . . . , p/2}, as Sρ is symmetric in

the j-th item of either subtest, by definition. However, swapping the j-th item of the g-th subtest

with the j/-th item of the h-th subtest, will induce a change in Sρ, if j
/ 6= j, j, j/ ∈ {1, . . . , p/2}.

Thus, the maximisation of Sρ is brought about by exchanging differently-indexed items between

the 2 subtests. The algorithm for implementing splitting using the maximisation of the item score

vector inner product, is given in Algorithm 2 of the Supporting Documents.
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Definition 3. As in Definition 2, once the iterations are done, identify the (ℓ− 1)p/2 + j

values that maximise Sρ, using: (ℓ̃− 1)p/2 + j̃ := arg
(ℓ−1)p/2+j

[

max
(

s(ℓ−1)p/2+j

)]

, and define

r
(maxSρ)

tt := r
(ℓ̃−1)p/2+j̃)
tt , as the maximal reliability of the given test obtained by maximising Sρ.

Theorem 3, holds minimisation of S, equivalent to maximisation of Sρ.

Theorem 3. Splitting a given test into the g-th and h-th subtests by maximising the absolute

of the inner product of the item score vectors τ g and τ h in these 2 subtests is equivalent to the

splitting of the test by minimising the absolute sum of differences between the components of

these item score vectors, where item score vector in the m-th subtest is τm = (τ
(m)
1 , . . . , τ

(m)
p/2 )

T ,

with τ
(m)
j :=

n
∑

i=1

X
(mj)
i ; m ∈ {g, h}. In other words, maximising

∣

∣

∣

∣

∣

〈τ g, τ h〉
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∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p/2
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τ
(g)
j τ

(h)
j

∣

∣

∣

∣

∣

is

equivalent to minimising

∣

∣

∣

∣

∣

n
∑

j=1

(

τ
(g)
j − τ

(h)
j

)

∣

∣

∣

∣

∣

.

Proof of this theorem (using Cauchy Schwartz), is in Section 3 of the Supporting Documents.

It is to be noted that the S-minimisation strategy, causes the same subtest-pair to be

generated after every (p/2 + 2)(p/2 + 1)/2 swaps. This periodicity stems from the fact that the

total number of possible splittings of a test with p items is (p/2 + 1) + p/2 + . . .+ 1 =

(p/2 + 2)(p/2 + 1)/2. Thus, there is a repetition in the value of S (and reliabilities), with a

maximal period of (p/2 + 2)(p/2 + 1)/2. We identify this as the maximal period, since it is

possible even prior to the undertaking of all the (p/2 + 2)(p/2 + 1)/2 swaps, that 2 distinct

subtest-pairs result in the same value of S. A similar repetition is then noticed in results obtained

using splitting by maximising Sρ.

3.4. Our new Bayesian splitting of a given test to attain minimum S

In our Bayesian approach, we learn the indices g1, g2, . . . , gp/2 of items that comprise the g-th

subtest that a given test of p items is split into, s.t. the remaining p/2 items constitute the h-th

subtest. We learn indices g1, g2, . . . , gp/2, given the test score data {x
(j)
i }n;pi=1;j=1, using MCMC

(Independent Sampler Metropolis Hastings). In any iteration, with indices of the items of the test
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delineated in ascending order, the test item with the smallest value that is not identified as

member of the g-th subtest, is the first item of the h-th subtest, (designated h1), and so on, till all

the left-over test items have been pulled into the h-th subtest.

We define the likelihood of these index parameters, given the data, as a smoothly declining

function of the Euclidean norm of the difference between the item score vector of the current g-th

and that of the current h-th subtests, s.t. likelihood of the index parameters given the data is a

maximum when this distance is 0, and the likelihood is 0, when this distance approaches infinity.

Given these constraints, we define the likelihood as L ∝ exp

(

−
(‖ τ g − τ h ‖)2

2σ2

)

, where ‖ · ‖

denotes the Euclidean norm, and σ2 is the experimentally fixed variance of this Gaussian

likelihood.

Thus, L ∝ exp






−

(

τ
(g)
1 − τ

(h)
1

)2
+ . . .+

(

τ
(g)
p/2 − τ

(h)
p/2

)2

2σ2






=

p/2
∏

j=1

exp






−

(

τ
(g)
j − τ

(h)
j

)2

2σ2






. Here,

τ
(g)
j :=

n
∑

i=1

x
(gj)
i ; ∀j = 1, . . . , p/2, where gj is an unknown parameter that we attempt to learn.

τ
(h)
j is similarly defined. We place Binomial(p, 0.5) priors on gj , ∀j = 1, . . . , p/2, in one set of

chains, and Uniform[1.p] priors in another set. The likelihood and the priors are used in Bayes

rule to define the joint posterior probability π(g1, . . . , gp/2|{x
(j)
i }n;pi=1;j=1), of the unknown indices

g1, . . . , gp/2, given the test score data. We generate posterior samples using Metropolis Hastings.

Then using the values of g1, . . . , gp/2 that are current at the end of the k-th iteration, the

h1, . . . , hp/2 indices are identified. This is equivalent to identifying the g-th and h-th subtests in

the k-th iteration. Here k = 0, 1, . . . , Niter. Having identified the items that comprise each of the

2 subtests, the score attained by the i-th examinee in each of the items in either of the current

subtests, is identified in the k-th iteration, ∀i = 1, . . . , n. This allows us to compute the reliability

r
(k)
tt in the k-th iteration, using our definition of the reliability, as per Equation 4.

In the k-th iteration, let the current value of the parameter gj be g
(k−1)
j , and its value

proposed in this iteration is g
(k⋆)
j , where we propose g

(k⋆)
j ∼ Binomial(p, ψ(k⋆)), where the rate

parameter of this Binomial proposal pmf is the parameter ψ, the current value of which is ψ(k−1)

and the proposed value of ψ(k⋆), where ψ(k⋆) ∼ Uniform[0.5− a, 0.5 + a], with a fixed to 0.4 and

0.2 in two separate sets of experiments. Thus, the proposal density for all sought index
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parameters, i.e. ∀j ∈ {1, . . . , p/2} is the same in a given iteration. Thus, for a given j, the

acceptance ratio includes the ratio of the Binomial pmf with rate parameter ψ(k−1), to the

Binomial pmf with rate parameter ψ(k). To compute (the logarithm of) these Binomial pmfs, we

use Stirling’s approximation. Thus, in the k-th iteration, the acceptance ratio of Metropolis

Hastings includes this ratio of the proposal densities at the current values (g
(k−1)
1 , . . . , g

(k−1)
p/2 ), to

the proposed values (g
(k⋆)
1 , . . . , g

(k⋆)
p/2 ), of the index parameters, as well as the posterior

π(g1, . . . , gp/2|{x
(j)
i }n;pi=1;j=1) of the proposed to the current values of the parameters.

As diagnostics, traces of the joint posterior, and of the current reliability are included. Tests

are carried to check on results of varying a, σ2 and the priors.

The algorithm for implementation of the Bayesian learning of indices of one of the subtests,

and the resulting test reliability, is provided in Algorithm 3 of the Supporting Documents.

4. Empirical illustration on a real data set

In this section, we present results of applying our frequentist number partitioning methods, as

well as the Bayesian method of splitting a real test into a pair of subtests, to then compute values

of the reliability parameter. We undertake a direct comparison of our results with the Cronbach

alpha reliability that is computed for the given test.

This real test data was obtained by examining 912 examinees in a multiple choice

examination that was administered with the aim of achieving selection to a position. This test

has 50 items, the response to which could be either correct or incorrect, and maximum time

allowed for answering this test was 90 minutes. This test data has a mean score of about 10.99

and a variance of about 19.63. We refer to this dataset as DATA-I. For this real test data

DATA-I, the results obtained by splitting the test via minimisation of the absolute difference S

between the sum of components of the item score vectors in the resulting subtests, are shown in

Figure 1. The results of splitting by maximisation of the inner product Sρ of the item score are

depicted in Figure 2. Again, results of splitting this real dataset using the Bayesian learning of

the indices of the items of the g-th subtest, are depicted in Figure 3.
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4.1. Comparing our results to Cronbach alpha

As discussed in Section 1, an underlying assumption for Cronbach alpha is uni-dimensionality of

the test, i.e. the test measures one single latent ability/trait variable. We undertake a Principle

Component Analysis (PCA) of the test dataset DATA-I to probe the relevance of a Cronbach

alpha computation for the internal consistency of the real test data DATA-I. The results of this

PCA are presented in Figure 4. These results demonstrate that for the dataset DATA-I, multiple

components are relevant; in fact, the score of each of the 4th and 6th components, is in excess of

half of that of the 3rd component, with other components also relevant (2nd, 5th, 7th, 8th). This

indicates that this real test is not uni-dimensional. Equivalently, the figure indicates that the 20th

centile of the variance in this dataset is explained by the first 3 to 4 eigenvalues, ranked by

weight. Thus, the PCA of DATA-I helps us appreciate that the assumption of uni-dimensionality

that underlies the correct usage of Cronbach alpha, is violated in this real-world example.

In Figure 5, we compare the Cronbach alpha value for test data DATA-I, with reliability

obtained by minimising the absolute difference S between sums of components of the item score

vectors of the subtests that result from the splitting of test data DATA-I. We also undertake such

a comparison with reliabilities obtained from all other possible splittings of this test data. There

are in fact, (p/2 + 1)(p/2 + 2)/2 number of splittings possible in total for a test with p number of

items. For DATA-I then, 26× 27/2 = 351 splittings are possible in total. We undertake each of

these distinct 351 splittings of DATA-I into 2 subtests, and for each splitting – indexed by a

“splitting index” – we compute values of S; Sρ; and reliability rtt (using Equation 4). Cronbach’s

alpha for this real test dataset is compared to such computed reliabilities in Figure 5.

One way of establishing the advantage of a method, is to seek its robustness to outliers. With

the aim of identifying the robustness of reliability computed using our methods and Cronbach

alpha to outliers in the test data, we undertook computation of – at each deletion of the q-th

highest scoring pair of items from the test data DATA-I – reliability by minimising S; reliability

by maximising Sρ; reliability learnt Bayesianly; and Cronbach alpha. Thus, this exercise

comprises p/2 = 25 steps for our real data DATA-I, s.t. in the q-th step, i.e. for “deletion index”

q, the q-th highest scoring item pair is omitted from the data; q = 1, . . . , 25. Thus, there are 48
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items in the data DATA-I at any step. The reliability values computed using the 4 different

methods, at each item-pair deletion, are plotted against deletion index q, in Figure 6.

5. Generalisation to reliability, with responses on a Likert scale

In this section, we generalise our methods for computing reliability, to a survey, responses to the

items of which are on a k-point Likert scale. However, we will continue to refer to this instrument

as a “test” and the responders as “examinees”. That the Likert scale is not equidistant does not

affect our reliability computation (defined in Equation 4), since our parametrisation of

uncertainty of a test is the variance of the variable X(g) −X(h). We demonstrate the Bayesian

learning of the indices g1, . . . , gp/2 ∈ {1, . . . , p/2} of the g-th subtest, using the method discussed

in Section 3.4, and the publicly available data that is reported by Martin et. al (2003), where this

data comprises responses to an online questionnaire called the “Humour Styles Questionnaire” (or

HSQ) that was formulated to collect responses (on a 5-point Likert scale) to questions on

responders’ attitudes towards humour in different contexts. The exact statements of the questions

can be found in the file codebook.txt that is a component of the package submitted with the

HSQ data, available at https://openpsychometrics.org/_rawdata/. The responses are

assigned ranks 1,2,3,4,5 following this scheme: 1=”Never or very rarely true”, 2=”Rarely true”,

3=”Sometimes true”, 4=”Often true”, 5=”Very often or always true”. In the original dataset with

1037 responders, there was the rank -1 assigned to an item for which a responder did not select an

answer. However, for our empirical demonstration, we deleted responses from any responder who

left one or multiple items unanswered. This left us with n=1022 responders. There were 32

questions, i.e. 32 items in this dataset. Thus, for this application, p = 32, and the responses from

the i-th responder is x
(j)
i ∈ {1, 2, 3, 4, 5} ∀j = 1, . . . , p = 32 and ∀i = 1, . . . , n = 1022.

We use the generic term “test” to refer to this survey, and “examinees” as responders to this

survey. In Figure 7, we depict the results obtained by splitting this real test dataset HSQ, using

our Bayesian learning of g1, . . . , gp/2, leaving the remaining test items to build up the h-th

subtest. All parameters of the Metropolis Hastings chain are as used for the Bayesian learning

given DATA-I (Section 3.4). As in Figure 3, in Figure 7, we depict traces of the likelihood, and

the reliability that is computed at each iteration from the splitting of the full test into the g-th
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and h-th subtests, done at each iteration. We also display the histograms of the examinee scores

in the g-th and h-th subtests that are identified during the last iteration of this MCMC chain.

Ultimately, we compare the results we get for reliability for this test with the Cronbach alpha

that can be computed even for tests, responses of which are on a k-point Likert scale. This

computed value for the Cronbach alpha (of about 0.88) falls close to the left edge of the 95%

Highest Probability Density credible region of about [0.847,0.915] on our Bayesianly learnt

reliability; at about 0.88, alpha is less than the Bayesianly learnt modal reliability of about 0.907.

Marginal posterior probability density of g1, g5, g9, g13, given the data HSQ are represented as

histograms, and displayed in Figure 8.

5.1. Heterogeneous correlation of real test data DATA-I and HSQ

In this section we present Figure 9 that displays surface plots of inter-item variance-covariance

values of the test data DATA-I (left panel of the figure) and HSQ (right panel), for the j-j/-th

item pair, where j/ ≤ j, j = 1, 2, . . . , p. p = 32 for HSQ and p = 50 for DATA-I. Thus, the figure

displays the lower triangles of the variance-covariance matrices of these datasets. The two real

datasets DATA-I and HSQ are differently heterogeneous in their inter-item covariance values.

One way that we choose to parametrise the non-uniformity of the sample covariance of two

item scores, is to compute the sum C of frequencies of those inter-item covariance values that

occur in the sample, with ≤0.05 times the frequency of the modal inter-item covariance in the test

data – normalised by the sum of frequencies of all sample covariance values. Then the ratio C

gives the normalised sum of covariances of the outlying items in the given test. The extent of

heterogeneity in inter-item correlation structure of the HSQ data is manifest in outlier covariance

values that contribute to about 20% of the weighted average of the inter-item covariance of the

full test. The sample inter-item covariance in DATA-I corresponds to C ≈2.3 times lower in HSQ.

6. Reliability of a very large binary test data using minimisation of S and

comparison to Cronbach alpha

With the aim of demonstrating our splitting method on a very large test dataset (or a survey)

that comprises binary responses, we looked for such large real life test data in the literature. We
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found this in an attempt by Sajnani et. al (2016), that is designed to address the problem of

classifying reviews about restaurant businesses written on Yelp, which is a business directory and

review service, enabled with social networking capacity. The ulterior aim of building this classifier

is that an independent user can then use the categorised information that they are presented

with, to make an informed decision about considered restaurants, without wading through wordy

textual reviews. This addressed problem is an example of multi-label classification, since the aim

in this work is to classify the Yelp restaurant reviews into the categories: “Food”, “Service”,

“Ambience”, “Deals/Discounts” and “Worthiness”. Textual features of 10,000 Yelp reviews are

extracted as 375 unigrams (that occur with frequency in excess of a pre-set threshold); 208

bigrams; 108 trigrams. Star ratings input by the reviewers were also extracted, into 3 binary

features for the ratings: “1 to 2” stars; “3 stars”; “4 to 5” stars. In the training data that exists

at http://mondego.ics.uci.edu/projects/ yelp/files/train.arff, the extracted features

are used to define p = 676 binary attributes. Values of each such binary attribute, for n = 8848

reviews are included in the training data. We refer to this data that contains information about

Yelp restaurant reviews, as DATA-YELP. A pdf of the technical report of the work exists at

http://mondego.ics.uci.edu/projects/ yelp/files/technical_report.pdf.

Here we use the reference “test” to this dataset, in the general sense of referring to a

test/survey data as “test data”, as stated above in Section 2. For this real data DATA-YELP, the

mean of the examinee scores is about 162415 and the sample variance of the examinee scores is

717.

We undertook a PCA of the test data DATA-YELP, to check for the correctness of Cronbach

alpha for the computation of the internal consistency of such a very large real dataset. The

results of this PCA are indicated in the lower panels of Figure 10. The histogram of the

eigenvalue weights indicate that the 1st and 2nd eigenvalues are almost of comparable

magnitudes, with the 3rd to the 6th eigenvalue not of negligible weights either. So this real test

data DATA-YELP is not uni-dimensional. In fact, when we sort the eigenvalues by weights, we

find that the first 3 eigenvalues contribute to about 20% of the total variance. The Cronbach

alpha for this data is computed to be about 0.91.

From our splitting of the data DATA-YELP, using the minimisation of S, we obtain results
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in r
(mins)
tt ≈ 0.9258. The splitting that corresponds to the minimum S, gives rise to the examinee

score vectors in the 2 resulting subtests. Histograms of the examinee scores in the 2 subtests are

overplotted in the upper left panel of Figure 10. Difference between the examinee score attained

in the j-th item of the g-th subtest, and the j-th item of the h-th subtest, are plotted against the

item pair index, in the upper right of this figure.

7. Conclusions

We have advanced 3 different methods of splitting a test, (or a survey) into 2 subtests, s.t.

variance of the difference between examinee scores attained in the 2 subtests, normalised by the

test variance, is defined as uncertainty of the test data; the test reliability is then complementary

to this uncertainty. (Here, by “examinees”, we include responders of a survey). The 3 methods

are essentially equivalent, and operate by splitting a given test into 2 such subtests: by minimising

the absolute difference S between the means of the subtest item score vectors, or; maximising the

inner product of subtest item score vectors, or; by Bayesianly learning the positive-definite,

integer-valued indices of the items in one of the identified subtests, with the likelihood defined as

a smoothly declining function of the Euclidean distance between subtest item score vectors.

We conclude that the advanced splitting methods are not affected by messiness that typifies

test data, and the practical limitations of test design, as evidenced by our implementation of the

splitting of a very large real test data; of real-world multidimensional tests; and of real tests with

non-uniformly correlated items. Tackling such existent problems, is however what limits

implementation of existing reliability models, (including that of Cronbach alpha). In fact, we split

a real test data in all ways possible, and illustrate our frequentist method of splitting to be such,

that the computed reliability is the highest. We also illustrate that the Bayesian learning of the

reliability of this test is more robust to outliers amongst the test items, when compared to

Cronbach alpha, while splitting by minimisation of S is comparably robust.

We present these data-driven splitting methods that enable the computation of reliability of

large/small, heterogeneous, multi-dimensional real-life test data, that is binary or on a Likert

scale, without needing to invoke restrictive model assumptions that cannot be practically adhered

to.
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Figure 1: Results of splitting of the real test data DATA-I, into g-th and h-th subtests of equal (=25) number

of items, using minimisation of S, i.e. minimisation of the absolute difference between sum of components of

item score vectors in the 2 subtests. Lower left: plot of value s of S at the t-th splitting of the test into the

g-th and h-th subtests, where the current splitting index t := 25(ℓ− 1) + j, where ℓ is the current iteration

number, and j the current swap number; ℓ = 1, . . . , 50, j = 1, . . . , 25. An iteration comprises 25 distinct

swaps, where each swap is affected by exchanging the j-th item of the current g-th subtest with the j-th

item of the current h-th subtest; a proposed swap may or may not be accepted depending on whether it

results in a lower s or not (see Algorithm 1 in Supporting Documents). Lower middle: plot against t of value

sρ of Sρ which is the inner product of item score vectors of g-th and h-th subtests. Lower right: plot of

linearly transformed S and Sρ values, against splitting index t, to empirically verify the equivalence between

maximisation of Sρ and minimisation of S; such is evident from the peaks of the linearly transformed S (in

thin solid lines) that are noted to occur around the same t values, at which the scaled Sρ values (in broken

lines) are smallest. Here, the scaling and translation of S and Sρ are undertaken to allow the transformed

variables to be plotted within a given interval that allows for their easy visual comparison. Also, to enable

such visualisation, we focus on a sub-interval of the values of t relevant to this run (≥ 500). Upper right:

plot of reliability rtt as computed by our definition (Equation 4), against splitting index t. Upper middle:

histogram of the rtt values obtained from this run that attains splitting of the given DATA-I test dataset,

using minimisation of S. Mean r̄tt of this sample distribution of rtt is about 0.6119 and its sample standard

(min )
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Figure 2: As in Figure 1, but in this run, splitting of real test data DATA-I is undertaken to maximise

the value sρ of the inner product Sρ of item score vectors in the g-th and h-th subtests. The sample mean

reliability achieved by this method of splitting is about 0.5829 and the empirical standard deviation is about

0.0394. We identify r
(maxSρ

)

tt ≈ 0.6596. Here, the lower right panel displays a plot against the splitting index

t, of the value s2 of the absolute difference between sum of squares of components of the item score vectors in

the current g-th and the current h-th subtests. N.B. Due to the permitted swapping of the j-th item of the

current g-th subtest by the j/-th item of the current h-th subtest, (j 6= j/), under splitting by maximisation

of Sρ, sum of components of the 2 subtest item score vectors, can be more different, than when swapping

across rows of the 2 subtests is not permitted, as under splitting by minimising S.



22

Figure 3: Figure representing results of splitting the real test dataset DATA-I that comprises responses

of n = 912 examinees in 50 items, using Bayesian learning of the indices of the items in the g-th subtest.

The remaining items constitute the h-th subtest. Likelihood is defined as a Gaussian in the Euclidean norm

between the item score vectors of the 2 subtests, with a mean of 0 and a variance that is fixed. These results

are obtained for Binomial(50, 0.5) priors placed on the sought indices of the items of the g-th subtest.

Posterior sampling is performed with Independent Sampler Metropolis Hastings, in which each item index of
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Figure 4: Figure showing results of a PCA done with the real test data DATA-I. The panel on the right

displays the histogram of the eigenvalues, while the left panel depicts the eigenvalues (ranked by weights)

needed to explain the fraction of the total variance.
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Figure 5: Figure showing results for each of the 351 possible splittings of the read test data DATA-I, where

the said results include the absolute difference S between sums of components of the item score vectors

in the 2 subtests that result from the splitting (left panel); inner product Sρ of the subtest score vectors

(middle panel); reliability rtt computed using the examinee score vectors implied by the current splitting of

the test data, in Equation 4 (right panel). These results are plotted against the splitting index, which takes

values of 1, 2, . . . , 351 for DATA-I. Our results by minimising S are overplotted on these results, in solid line.

Cronbach alpha for DATA-I is also computed and overplotted upon the computed reliability values in the

right panel, in broken lines.
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Figure 6: Left: figure showing reliability computed using our 3 methods, namely minimisation of S (in black

filled circles, joined by a black solid line); maximisation of Sρ (in open circles joined by a broken line – in

blue in the electronic version); Bayesianly learning the indices of the items that comprise the g-th subtest

(in filled circles joined by a grey solid line – in green in the electronic version), and Cronbach alpha (in

filled triangles joined by a broken line – in red in the electronic version). For each case, reliability computed

at a given deletion index is plotted against this index, where at the q-th deletion index, the q-th highest

scoring pair of items is deleted from the test data, and Cronbach alpha as well as reliability of this data then

computed, using our 3 different methods. The fractional change in reliability (over the reliability computed

using a given method/definition for the whole test data DATA-I comprising 50 items), is plotted in the right

panel, in corresponding line type and symbols (and colour). Variance of this fractional change (expressed as

a percentage) is then computed for each of the 4 cases, and the Bayesianly identified reliability is the most

robust, with a variance of about 2.452, while the reliability computed using splitting by maximising Sρ is the

least robust (with a variance of about 3.252 in the percentage change in reliability with sequential deletion

of highest-scoring item pairs). The reliability computed by minimising S and Cronbach alpha are nearly

equally robust, with variances of about 2.962 and 2.952 respectively.
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Figure 7: Figure representing results of Bayesian splitting the real survey (that we generically refer to as a

“test”) dataset HSQ that comprises responses on a 5-point Likert scale. We use responses from n = 1022

responders (who we refer to generically as “examinees”) who answered every one of the 32 items of this test.

Here we Bayesianly learn the indices of the items that comprise one of the subtests that the full test data is

split into – we refer to this as the g-th subtest. The remaining items constitute the h-th subtest. Likelihood

is defined as a Gaussian in the difference between the L2 norms of the item score vectors of the 2 subtests,

where this Gaussian is assigned a mean of 0 and a variance that is fixed. These results are obtained for

Binomial(32, 0.5) priors placed on the sought indices of the items of the g-th subtest. Posterior sampling

is performed with Independent Sampler Metropolis Hastings, in which each item index of the g-th subtest

is proposed from a Binomial(32, ψ), with ψ ∼ Uniform[0.5 − a, 0.5 + a]; in this run, a = 0.2. At every

iteration, reliability is computed using (Equation 4). Traces of this reliability, and of the likelihood are

presented in the lower right, and lower left panels respectively. Histogram of learnt reliability is presented in

the top left, where the learnt 95% Highest Probability Density credible region is about [0.847, 0.915], with

the modal reliability of about 0.907. Cronbach alpha for this test is 0.879. Histograms of examinee scores in

the 2 subtests identified in the last iteration of our Bayesian inference, are shown in solid and broken lines

on the top right.
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Figure 8: Marginal posterior probability density of the 1st, 5th, 9th and 13th item indices of an identified

subtest between the subtest pair that real test data HSQ is split into. The marginals are represented as

histograms here.
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Figure 9: Surface plot of covariance between pairs of items in the given test data (DATA-I on the left, and

HSQ in the right panel), plotted against item indices. Here only the lower-triangle of the inter-item variance-

covariance matrix is plotted, i.e. covariance between the j-th and j/-th item is plotted ∀j/ ≤ j; j = 1, 2, . . . , p;

p = 50 for DATA-1 and p = 32 for HSQ. Non-uniformity in the covariance values are displayed in the

plots. Outlying inter-item covariance values are parametrised by C, which gives the the normalised sum of

frequencies of those (outlier) covariance values that occur with frequency ≤ 0.05 times the frequency of the

modal covariance in the test data, with the normalisation given by the sum of frequencies of all inter-item

covariance values in the given test data. For HSQ, C ≈ 20%, while the inter-item covariance sample of

DATA-I, causes C to about 8.7%.
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Figure 10: Figure representing results obtained using the very large real dataset DATA-YELP that comprises

binary responses on 676 variables (or items), by 8848 responders (or examinees). The eigenvalue weight

distribution is shown by the histogram plotted on the lower right. Relevance of at least 6 of the eigenvalues

is indicated by this result. Indeed, when eigenvalues, ranked by their weights, are monitored, (lower left

panel), it is found that to explain 20% of the total variation, about 3 eigenvalues need to be used. This plot

of eigenvalues against fractional variation explained, is drawn by undertaking the PCA for the first half of

the dataset, (i.e. for 4424 rows of the data), and then for the full dataset; results from the latter analysis is

plotted in black full circles and results for half the dataset is then overplotted in open grey (or red in the

electronic version) circles. The upper panels display results of the splitting done by minimising S. In the

upper left panel, histograms of the examinee score vectors in the 2 subtests that result from the splitting of

DATA-YELP test data, are overplotted in black broken lines and grey (or red in the electronic version) solid

lines. The upper right panel then displays the differences between the examinee scores in the j-th items of

the g-th and h-th subtests, plotted against j; here j = 1, . . . , 676/2 = 338. Reliability corresponding to the

minimisation of S is about 0.93, while Cronbach alpha for this data is about 0.91.


