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Abstract  Behavioral “traditions”, i.e. behavioral patterns that are acquired with the aid of social learning and that are relatively 

stable in a group, have been observed in several species. Recently, however, it has been questioned whether non-human social 

learning is faithful enough to stabilize those patterns. The observed stability could be interpreted as a result of various constraints 

that limit the number of possible alternative behaviors, rather than of the fidelity of transmission mechanisms. Those constraints can 

be roughly described as “internal”, such as mechanical (bodily) properties or cognitive limitations and predispositions, and “ex-

ternal”, such as ecological availability or pressures. Here we present an evolutionary individual-based model that explores the re-

lationships between the evolution of faithful social learning and behavioral constraints, represented both by the size of the beha-

vioral repertoire and by the “shape” of the search space of a given task. We show that the evolution of high-fidelity transmission 

mechanisms, when associated with costs (e.g. cognitive, biomechanical, energetic, etc.), is only likely if the potential behavioral 

repertoire of a species is large and if the search space does not provide information that can be exploited by individual learning. 

Moreover we show how stable behavioral patterns (“traditions”) can be achieved at the population level as an outcome of both 

high-fidelity and low-fidelity transmission mechanisms, given that the latter are coupled with a small behavioral repertoire or with a 

search space that provide substantial feedback. Finally, by introducing the possibility of environmental change, we show that in-

termediate rates of change favor the evolution of faithful social learning [Current Zoology 58 (2): 307318, 2012]. 
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Examples of behavioral “traditions”, i.e. behaviors 
acquired with the aid of some forms of social learning, 
and which are relatively stable in groups, have been 
found in several species (Laland and Galef, 2009). The 
existence of these traditions has been usually considered 
as a strong indication of the presence of faithful social 
transmission mechanisms that guarantee both the suc-
cessful diffusion and the stability of the behaviors in-
volved (Huffman, 1996; Horner et al., 2006; Marino et al., 
2007). In particular, since imitation - i.e. the high-fidelity 
copy of novel behaviors through the reproduction of 
action sequences of observed individuals (Call and 
Carpenter, 2002; Tennie et al., 2006; Whiten et al., 2009) 
- has often been viewed as the learning mechanism that 
best explained the emergence of human traditions (Boyd 
and Richerson, 1996; Tomasello et al., 1993; Tomasello, 
1999), it is assumed that also non-human traditions are 
supported by similar imitative capacities (Claidière and 
Sperber, 2010).  

However, it has been recently questioned whether 
non-human social learning is actually faithful enough to 
produce such stable behavioral patterns. For example, it 
has been shown that in experimental settings great apes 
tend to scarcely use imitation (Tennie et al., 2006; Tennie 
et al., 2009; Tennie et al., 2010). On a more theoretical 
side, Claidière and Sperber (2010) argued that the fidelity 
of social learning, as deduced by transmission chain 
studies in different species, may explain the propagation, 
but not the stability, of non-humans behavioral traditions. 

Accordingly, researchers have begun to examine 
whether, and how, non-human animals, unequipped with 
faithful social learning capacities, could be able to de-
velop behavioral traditions (Huber et al., 2009; Shea, 
2009). It has been suggested that stable behavioral pat-
terns could also result from transmission mechanisms 
less faithful than imitation, such as emulation, social and 
local enhancement, or even from trial-and-error learning 
(Caldwell and Millen, 2009; Franz and Matthews, 2010; 
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Heyes, 1993; Laland and Hoppitt, 2003; Matthews et al., 
2010; Whiten et al., 2003). Finally, it has been proposed 
that the observed stability could be the result of con-
straints that limit the number of possible alternative be-
haviors, more than the result of the fidelity of transmis-
sion mechanisms (Tennie et al., 2009; Claidière and 
Sperber, 2010).   

In this paper we investigate the relationship between 
behavioral constraints and faithful social learning 
through an evolutionary individual-based model in 
which a hypothetical “species”, first unequipped with 
high-fidelity copying mechanisms, may evolve them 
under different conditions. More specifically, we as-
sumed that increasing the fidelity of social learning had 
some costs (e.g. cognitive, energetic, etc.) and also that 
the behavior of this species was variously constrained. 

We introduced two kinds of constraints into our model. 
The first series of constraints limited the variety of indi-
viduals’ behavioral repertoires. In real-life those con-
straints would translate into a set of “internal” factors, 
such as cognitive limitations (e.g. poor working memory 
capacities limit the number of behavioral sequences a 
species can plan or copy; van Leeuwen et al., 2009), 
cognitive biases (e.g. preference for certain classes of 
stimuli or certain types of demonstrators towards which 
one directs its behaviors; van de Waal et al., 2010), or 
bodily (biomechanical) architecture of acting individuals 
(e.g. limited degrees of freedom of effectors restrict the 
flexibility by which one can interact with external objects; 
Desmurget et al., 1995). In our model those constraints 
determined the number of the possible  behavioral al-
ternatives a species was provided with. Note that this 
indicates the distribution of potential behaviors, limiting 
the space in which the search for the optimal behavior is 
made, while the actual behaviors a population will show 
is a subset of those.  

The second series of constraints pertained to the spe-

cific task one has to resolve and can be exemplified by a 

set of “external” factors (e.g. ecological) that shape the 

structure of the search space in which the candidate so-

lutions takes place (Acerbi et al., 2011; see also Gold-

stone et al., 2008). For example, finding the ripest fruits 

on a tree is a very different problem with respect to 

choosing an edible fruit among different (perhaps in-

cluding poisonous) fruits. In the former case an indi-

vidual can try different fruits and, given adequate sensory 

and cognitive capacities, can choose to eat the sweetest 

ones; a strategy that is clearly not efficient in the latter 

situation. Here, we identified three distinct search spaces 

(see Fig. 1), distinguished by the way payoffs were dis-

tributed among possible behaviors and, by consequence, 

by their tendency to enable individual search strategies. 

In the Methods section we describe the three spaces used 

in the model in detail and provide a real-life example for 

each.  

The model we developed is individual-based (Grimm 
and Railsback, 2005), meaning that we simulated inter-
actions at the level of single individuals, and evolutionary, 
i.e. an evolutionary algorithm (Holland, 1975) is used to 
optimize the behavior of individuals. The evolutionary 
algorithm acted on a variable that encoded the fidelity of 
social learning of each individual. Individuals that per-
formed better resulted in proportionally more “offspring” 
than others. Even though they generally represent sim-
plifications of reality, the use of evolutionary individual- 
based models is increasing in animal behavior studies. 
The reason is that they enable the identification of dif-
ferent selective pressures under varying ecological con-
ditions, thus helping researchers to select the data needed 
to understand otherwise opaque phenomena (see also 
Acerbi and Nunn, 2011). 

 

Fig. 1  Search spaces used in the simulations 
Schematic representation of the three payoff distributions used in the simulations determining the three different search spaces. a. Smooth space. b. 
Rugged space. c. Peaked space (See text for details). 
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In the next section, we describe the implementation 
and the features of the model in detail, before presenting 
the results. We first investigated in which conditions a 
species, starting from completely unreliable social 
learning capacities, and thus relying upon individual 
learning only, was likely to evolve costly faithful social 
learning mechanisms. Secondly, we analyzed how 
population behavioral homogeneity (i.e. behavioral tra-
ditions) could be reached under different behavioral 
constraints, i.e. varying the size of the behavioral reper-
toire as well as the tasks' search spaces. Finally, we run 
other simulations allowing the possibility of environ-
mental change, and we tested its effect on the evolution 
of faithful social learning. In the last section, we discuss 
the relevance of our results for the study of animal social 
learning and culture, limitations and possible extensions 
of our model, as well as some broad implications for 
modern human culture.  

1  Materials and Methods 

1.1  General description of the model 
All simulations involved populations of individuals 

(n=100) that interacted in discrete time steps (until 
T=10000). At the beginning of the simulations each 
individual was assigned a behavior, randomly chosen 
among all possible behaviors characterizing its popula-
tion. Populations varied with respect to the size of their 
behavioral repertoire (S): we distinguished three differ-
ent experimental conditions, with populations disposing 
of a repertoire of 10, 100, or 200 possible behaviors. 

At each time step, individuals interacted in pairs. Each 
individual (the learner) was paired with another indi-
vidual (the demonstrator) randomly chosen among the 
ten individuals of the population with the highest payoffs 
(see below for how payoffs were calculated). Thus, each 
learner attempted to copy the behavior of its paired 
demonstrators. The accuracy of social learning depended 
on an individual characteristic, determined by the pa-
rameter α (fidelity of social learning). At the beginning 
of the simulations, α was initialized equal to zero for all 
individuals (making social learning completely unreli-
able for all individuals) and its value evolved through 
time.  

Evolutionary dynamics resulted from a death-birth 
process in which newborns inherited the value of α from 
fittest individuals. Below we describe the details of the 
model's implementation. 

1.2  Behavioral repertoire and search spaces 
Experimental conditions varied with respect to the 

size of the population's behavioral repertoire (S=10, 100, 

and 200 possible alternative behaviors) as well as to how 
payoffs were distributed among possible behaviors, de-
termining three different “search spaces”. Behavioral 
payoffs varied between 0 and 1, and only a single be-
havior, randomly selected, brought the maximum payoff 
to individuals in all spaces.  
1.2.1  The smooth space  In smooth spaces (see Fig. 
1a), different behaviors laid on a payoff gradient, and the 
“closest” a behavior was to the optimal one, the higher its 
payoff. Payoffs were modeled as a Gaussian distribution 
(as in Boyd and Richerson, 1985 and Mesoudi and 
O'Brien, 2008). Smooth spaces represent tasks for which, 
even if an optimal solution exists, sub-optimal alterna-
tives are similar in terms of payoff returns. Moreover, the 
existence of a payoff gradient provides a way to orient 
individual searches so that individual learning (e.g trial 
and error learning) can potentially be as effective as 
social learning (Acerbi et al., 2011). Even complex be-
haviors like chimpanzees' ant dipping have aspects that 
may be considered searches in smooth spaces (Humle 
and Matzusawa, 2002). An individual, for example, can 
repeatedly experiment with sticks of different length, 
self-evaluate the outcomes of different attempts, and then 
arrive at the measure that is most appropriate in a given 
situation. 
1.2.2  The rugged space  Rugged spaces (see Fig. 1b) 
represent “difficult” tasks for which only few good so-
lutions exist. Contrary to smooth spaces, the structure of 
such tasks does not provide ways to orient individual 
searches. In our simulations rugged spaces were gene-
rated by assigning to every possible behavior a random 
payoff drawn from an exponential distribution with 
mean=1 (rescaled between 0 and 1), so that a single 
behavior led to the maximum payoff, while a restricted 
number of alternatives approximate it and a vast majority 
led to low payoffs. One real-life example of a task rep-
resented by a rugged search space could be foraging in a 
patchy, heterogeneous, environment (see e.g. Gil and 
Wolf, 1977). In such a situation, an individual can po-
tentially try different sources of food, with only few of 
them being fruitful, without knowing in advance which 
one will be the richest. The knowledge of one source, 
furthermore, does not give information about the quality 
of the other sources present in the environment.   
1.2.3  The peaked space  Finally, peaked spaces (see 
Fig. 1c) represent even more difficult tasks, for which 
only a single behavior provides a payoff to individuals, 
distinguishing it from the two other search spaces de-
scribed above. In Acerbi et al. (2011) we argued that 
many real-life tasks, especially in human culture, fit this 
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description. One simple example is tying a knot: per-
forming a behavior similar – but not equal – to the one 
requested to tying the knot does not produce a “less ef-
fective” knot, but in general does not produce any usable 
result. For this kind of task it is likely that any form of 
individual learning would be very ineffective, since there 
is nothing in the search space that could orient the search 
and there is only a single rewarding solution. 

1.3  The copying process 
The outcome of the copying process depended on the 

observer's value of α. Fig. 2 illustrates how the new be-
havior was picked up by the observer. Once the demon-
strator was chosen, a new behavior was randomly se-

lected in the search area included between  1
2

S
± α  

with respect to the demonstrator's behavior, and retained 
by the individual if its payoff was equal or higher with 
respect to the current payoff. 

 

Fig. 2  Schematic representation of the copying process (in 
a smooth search space) 

Given the demonstrator behavior, the learner will randomly pick up one 

behavior in the gray area. The size of the area is given by  / 2 1 ,±S α  

where S is the size of the population's behavioral repertoire and α 

represents the learner's fidelity of social learning. (See text for details). 

 
When α is close to 1 – such that the fidelity of the 

learner's copy is almost perfect – this expression is close 

to 0, meaning that individuals will assume a behavior 

closely approximating the demonstrator's behavior (with 

α=1 the copied behavior will be exactly the demonstra-

tor's behavior, so, in this case, social transmission 

equates to replication). On the contrary, when α is close 

to 0, the expression is close to S/2, covering a large range 

of the behavioral repertoire. Since behaviors that de-

crease individual's payoff are discarded, α=0 can be 

considered cases of pure individual learning. 

1.4  Average payoff and evolutionary algorithm 
A basic assumption of our model was that faithful 

social learning has some cost, and this cost modulated the 
payoff an individual received from performing a behav-
ior. Individual payoff was hence determined both by the 
behavior performed and by the fidelity of social learning 
represented by their value of α. 

In more detail, the payoff of individuals (Pi), at each 
time step, was equal to: 

i bP P C   

that is, the payoff obtained by the behavior performed 
(Pb), minus the value of α multiplied for a factor C:  

We varied the value of C from 0 (no cost) to 0.5 
(highest cost), with steps of 0.1, representing alternative 
situations in which using (and evolving) faithful social 
learning could be more or less costly. 

The average individual payoff, used to select indi-
viduals for reproduction in the evolutionary algorithm, 
was simply the sum of all payoffs an individual had had 
in the course of its life, averaged for the number of time 
steps it was alive. 

Individuals were selected for reproduction according 
to their average payoff. At each time step one individual, 
randomly chosen among the entire population, was re-
placed by a “newborn”. The newborn individual inheri-
ted the value of α from another individual that was ran-
domly chosen among the ten individuals with the highest 
average payoffs. The behavior of the newborn was ini-
tialized randomly. In other words, the fidelity of social 
learning, and not the behavior per se, was genetically 
inherited and, hence, subject to evolutionary pressures.  

Finally, with a small probability of mutation (μ=0.05), 
the inherited value of  α was randomly reinitialized with 
a value comprised between 0 and 1. 

1.5  Simulation procedures 
In a first set of simulations we studied three different 

sizes of behavioral repertoires (S=10, 100, and 200) for 
each payoff distribution (smooth space, rugged space, 
and peaked space). For each condition, we varied the cost 
factor of fidelity (C=0, 0.1, 0.2, 0.3, 0.4, and 0.5) and we 
ran 100 simulations for every value of C, recording the 
average value of fidelity evolved. 

We then analyzed how, in peaked search spaces, the 
interaction between the fidelity of social learning and the 
size of the behavioral repertoire impacted the popula-
tions' behavioral diversity, namely, the number of be-
havioral patterns present in a population. To calculate 
behavioral diversity we used Simpson's diversity index. 
Simpson's diversity index was developed mainly to as-
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sess ecological diversity, taking into account both the 
number and relative abundance of species present in a 
given environment (Simpson, 1949). Recently it has 
been used to assess behavioral diversity in cultural evo-
lutionary models (Kandler and Laland, 2009; Enquist et 
al., 2010). According to this index the diversity of a 
population can be represented as: 

 
21 i

i

D = χ  

where  iχ  is the frequency of the i variant in the 

population. The value of D tends towards 1 as the be-
havioral diversity of a population increases, and is equal 
to 0 when all individuals share the same behavioral 
variant.  

We also measured directly the number of existing 
behaviors at the end of simulations, comparing the effect 
of the three different search spaces, keeping the other 
parameters constant (S=200, C=0.2). 

In a second set of simulations, we added the possibil-
ity of environmental changes. An additional parameter 
(pc=0.001, 0.01, and 0.1) determined at each time step 
the probability of the payoff distribution to be fully re-
initialized. Note that reinitialization of payoffs did not 
change the structure of the search space but it changed 
the distribution of payoffs among the behaviors. In 
smooth spaces as well as in peaked spaces, this involved 
the “shifting” of the optimal behavior in a different po-
sition, and in rugged spaces the re-assignation of a ran-
dom payoff to every possible behavior drawn from the 
exponential distribution described in subsection 2.2.2. 
Notice that when pc=0 this condition reduces to the basic 
simulation (Table 1). 

Table 1  Main parameters and their value used in the model 

Symbol Short description Values 

N Population size 100 

T Number of time steps 10000 

S Size of the behavioral repertoire 10, 100, 200 

C Cost factor of fidelity 0, 0.1. 0.2, 0.3, 0.4, 0.5

μ  Mutation rate 0.05 

pc Probability of environmental change 0, 0.001, 0.01, 0.1 

Bold typeface values are values varied in different experimental con-
ditions. 

 

2  Results 

2.1  Faithful social learning evolves with large 

behavioral repertoire and in peaked spaces 
The results of our simulations showed that, in stable 

environments, costly faithful social learning evolved 
only if two conditions were simultaneously met: the 
populations had a large behavioral repertoire, and the 
task structure was a peaked space (see Fig. 3).  

When faithful social learning was cost-free (C=0), all 

populations converged towards high average values of α, 

showing that high-fidelity transmission mechanisms 

proved advantageous to individuals in all conditions. 

However, when copying mechanisms involved costs that 

impacted on the individual's payoff (C>0), these costs 

were only worthwhile in situations where an individual 

search was ineffective. This occurred in peaked search 

spaces, and with populations characterized by a suffi-

ciently large behavioral repertoire (see Fig. 3c). 

 

Fig. 3  Average fidelity evolved at the end of simulations versus cost factor of fidelity 
a. Smooth space. b. Rugged space. c. Peaked space. Different lines colors in the three conditions represent different sizes of the behavioral repertoire: 
blue line: S=200; red line: S=100, black line: S=10. (Each data point is an average on 100 runs). 
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2.2  Behavioral homogeneity results from both 
high-fidelity social learning mechanisms and 
low-fidelity mechanisms 

Fig. 4 depicts the evolutionary trajectories of typical 
runs in the peaked space condition, for populations 
having different sizes of behavioral repertoire and for 
three different values of C. We have chosen to analyze in 
detail the peaked space condition because in this condi-
tion faithful social learning evolves also when is costly 
(see results in Fig. 3). Each point in the plots represents 
the “position” of a population with respect to its beha-
vioral diversity (x-axes) and its average fidelity of social 
learning (y-axes), sampled at an interval of 100 time 
steps, during each run. Populations that are in the left part 
of the graphs are behaviorally homogeneous populations 
and populations that are on the right side are behaviorally 
diverse. With respect to y-axes, populations that are in 
the lower part of the graphs lack hi-fidelity social lear-
ning abilities while population in the upper part posses 
them. 

Populations always “started” in the bottom right cor-
ner of the graphs, i.e. they were diverse (at the beginning 
of the simulations behaviors were randomly initialized) 
and individuals also did not possess hi-fidelity social 
learning abilities (α was initialized at 0 for all individu-
als). When faithful social learning was cost-free (C=0, 
Fig. 4 left), populations, irrespective of their behavioral 
repertoire's size, “moved” towards the high left corner of 
the plot during the simulation run, i.e. towards behavioral 
homogeneity and faithful social learning. It is worth 
noting that populations with a small behavioral repertoire 
(black line) could move to the left area of the plot (i.e. 
towards behavioral homogeneity) without individuals 
being required to increase their social learning ability 

(this happened only in later stages of the simulation). On 
the contrary, populations with larger behavioral reper-
toire (blue and red lines) were required to increase the 
faithfulness of social learning (“moving up in the plot”) 
in order to move towards behavioral homogeneity.   

For intermediate costs of faithful social learning 
(C=0.1, Fig. 4 center), the evolutionary trajectories of 
populations with large behavioral repertoire were similar, 
while the population with small behavioral repertoires 
reached homogeneity without developing faithful but 
costly social learning. Finally, when faithful social 
learning was even more costly (C=0.2, Fig. 4 right), even 
populations with large behavioral repertoires did not 
evolve it, and their behavioral diversity remained high. 

In sum, while behaviorally diverse populations (right 
part of the plots) were the outcome of a large behavioral 
repertoire coupled with low-fidelity social learning 
mechanisms (Fig. 4 right), behavioral homogeneity (i.e. 
low diversity, left part of the plots) could be the product 
either of faithful social learning (Fig. 4 left) or of low- 
fidelity social learning, provided that the behavioral 
repertoire was small (Fig. 4 center, black line). 

However, the size of the potential behavioral reper-
toire was not the only factor that influenced the final 
behavioral diversity of a population. We analyzed simu-
lation runs with the same behavioral repertoire size 
(S=200) and the same cost factor for social learning 
(C=0.2) and we measured the number of behaviors present 
at the end of the simulations for the three different search 
spaces (Fig. 5). In smooth and rugged spaces, where 
faithful social learning did not evolve (see results in Figure 
3 a and b), the populations showed approximately 20 
different behaviors. In peaked search paces, however, the 
final number of behavior in absence of faithful social  

 

Fig. 4  Evolutionary trajectories of populations 
Evolutionary trajectories of populations in respect to behavioral diversity (x-axes) and average fidelity of social learning (y-axes). Each point in the 
plot represent the “position” of a population at a given stage of the evolution (sampled every 100 time steps in a simulation run).  Different lines colors 
represent different sizes of the behavioral repertoire: blue line: S=200; red line: S=100, black line: S=10. The cost factor of social learning varies in the 
three panels: from left to right C=0, C=0.1, C=0.2.   
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Fig. 5  Final number of behaviors present in populations in 
the three different search spaces 
Each point of the plot represents the results of a simulation in respect to 
the final number of behaviors present in the population (x-axes) and the 
average fidelity of social learning evolved (y-axes), keeping fixed the 
factor cost of social learning (C=0.2) and the size of the behavioral 
repertoire (S=200). Orange: peaked space, red: rugged space, green: 
smooth space. (For each space 100 simulations were run). 

 
learning was higher, and the same number of behaviors 
was reached only when faithful social learning evolved. 

2.3  Intermediate rates of environmental change 
favor the evolution of faithful social learning 

Finally, we analyzed the effect of environmental 
variation on the evolution of faithful social learning, 
running additional simulations for populations with a 
large behavioral repertoire (S=200). Populations with a 
large behavioral repertoire were specifically targeted as 
the above described results showed that in these condi-
tions faithful social learning was more likely to evolve 
when the environment was fixed.  

In smooth search spaces, environmental variation had 
no effect on the evolution of faithful social learning (Fig. 

6a), and populations remained composed of individuals 
with poor copying abilities, even when the environment 
was variable. For rugged and peaked search spaces (Fig. 
6b and 6c), we found instead that the evolution of faithful 
social learning was favored for intermediate rates of 
environmental variation. In fact, when the rate of envi-
ronmental variation was too high (pc=0.1) the average 
values of fidelity evolved were similar to the condition in 
which the environment was stable (pc=0).  

3  Discussion 

3.1  General discussion of the results 
The present individual-based model examined the 

relationship between behavioral constraints and the 
evolution of faithful social learning. Constraints varied 
according to the size of the behavioral repertoire of 
populations (10 vs. 100 vs. 200 possible alternative be-
haviors) and according to the intrinsic structure of the 
search space characterizing the task problem (smooth 
space vs. rugged space vs. peaked space). We firstly 
analyzed, by varying the cost for individuals to use 
faithful transmission mechanisms (from null to high 
cost), how and in which type of search spaces popula-
tions with different sizes of behavioral repertoire would 
take advantage of such faithful social learning. We also 
took into account the effects of fidelity of social learning 
and behavioral constraints on the behavioral diversity at 
population level. We investigated whether populations 
unequipped with high-fidelity transmission mechanisms 
were prone to develop and stabilize novel behavioral 
patterns in a manner outwardly similar to populations 
equipped with high-fidelity transmission mechanisms. 
Finally, the effect of the rate of environmental change in 
which populations evolved (from no to fast environ-
mental change) was studied. 

 

Fig. 6  Stacked bar plot of the average fidelity evolved with different probabilities of environmental change for population 
with S=200 (size of the behavioral repertoire) 
The different colors in the bars represent different values of C (factor cost of faithful social learning) from C=0.1 (darker) to C=0.5 (lighter). We did not 
take into account C=0 because in this condition faithful social learning always evolved for pc=0 (see Fig. 3).  a. Smooth space. b. Rugged space. c.  
Peaked space. (Each data is an average on 100 runs). 
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Three main results emerged. First, in stable environ-
ments, costly faithful social learning evolved only in 
populations with large behavioral repertoires, and par-
ticularly in peaked search spaces. Second, the conver-
gence towards behavioral homogeneity resulted from 
high-fidelity social learning mechanisms but also from 
low-fidelity mechanisms, when they were associated 
with a small behavioral repertoire or with smooth and 
rugged search spaces. Third, intermediate rates of envi-
ronmental change favored the evolution of faithful social 
learning. 

The evolution of faithful social learning, when costly, 
strongly depended on behavioral constraints. According 
to our results, we should expect to find, in real-life, 
faithful social learning in conditions in which a species, 
or a group, has many behavioral alternatives (a large S in 
our model) and, at the same time, in which the task at 
hand does not provide any structure useful to orient the 
individual's search. In particular these conditions were 
met in peaked spaces. Tasks characterized by this search 
space had two interesting features. First, only a very 
narrow number of behaviors-in our model, only one-led 
to success (i.e. the payoff achievable with sub-optimal 
behaviors is zero, differently from other spaces). Sec-
ondly, performing behaviors other than the single suc-
cessful solution did not provide any feedback that indi-
viduals could use to estimate the optimality of a given 
behavior. This result confirms and enriches our previous 
findings (Acerbi et al., 2011) where we showed that, for 
tasks whose search structure could be modeled as a 
peaked space, imitation-i.e. a specific instance of 
high-fidelity social learning mechanism-was more ef-
fective than emulation and individual learning. 

We also showed that the convergence of a population 
towards behavioral homogeneity could result, as ex-
pected, from high-fidelity social learning mechanisms, 
but also from low-fidelity social learning mechanisms. 
An analysis of simulations for peaked search spaces 
demonstrated that a population with a small behavioral 
repertoire could become behaviorally homogeneous 
without developing high-fidelity social learning mecha-
nisms. Additionally, our results also showed that when 
the number of potential behaviors was large, the search 
structure had an impact on the number of behaviors ac-
tually present in the population. In particular, relative 
homogeneity in absence of high-fidelity social learning 
mechanisms was obtained for smooth and rugged search 
spaces, but not for peaked spaces. 

This observation is of importance since the emergence 

of behavioral homogeneity in wild populations is often 
presumed to be a sign of faithful social learning (Huber et 
al., 2009). While this could certainly be the case – in the 
simulations presented here faithful social learning does 
indeed produce behavioral homogeneity – our model 
provides an alternative explanation. This explanation is 
based on the existence of behavioral constraints, may 
they be due to physical and/or cognitive limitations, or 
ecological factors (shaping the search space of a given 
task). It has been shown that behavioral constraints can 
lead to the re-appearance of presumed cultural behaviors 
in naïve captive individuals (Huffman and Hirata, 2004; 
Tennie et al., 2008; see also Masi, 2011). With regard to 
ecological influences, it has long been suggested that 
these may help explain the distribution of several be-
haviors across populations (Humle and Matzusawa, 2002; 
though see Schöning et al., 2008; Möbius et al., 2008). 
For a behavior presumed to be a product of faithful social 
transmission, one has to check whether its diffusion 
among the population is accounted for by such alterna-
tive possibilities (see also Laland and Janik, 2006; Tennie 
et al., 2009). Of course, as nearly always in modeling, 
our model represents an ideally simplified situation. 
However, one could imagine having an estimation of the 
possible alternative behaviors a species is likely to use 
(see e.g. Changizi, 2003), as well as an estimation of the 
search structure of a specific task (for example the dis-
tribution of resources in a specific environment and their 
energetic/caloric contribution). These data can then be 
used to parameterize the model. In this way one could 
obtain more realistic results that could be used as a guide 
to analyze whether, in a specific situation, a given 
population is likely to make use of social learning.   

Finally, by manipulating the probability of environ-
mental change, we showed that intermediate rates of 
environmental change favored the evolution of faithful 
social learning. Importantly, with moderate rates of en-
vironmental change, costly faithful social learning 
evolved not only in peaked spaces, but also in rugged 
search spaces. This is consistent with the idea that the 
three search spaces we modeled represent three different 
levels of “difficulty” (see below however for how we 
intend the meaning of “difficulty” here), with smooth 
spaces representing “easy” tasks, followed by rugged 
spaces, and then by peaked spaces as the most difficult 
ones. More generally, this result is coherent with the 
broad consensus that the evolution of social learning is 
more likely to occur for an intermediate rate of envi-
ronmental change than for no change-where genetic 
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evolution is favored - or fast change-where individual 
learning is favored (see e.g. Henrich and McElreath, 
2003; Wakano et al., 2004; Aoki et al., 2005).  

3.2  Related literature and possible extensions of 
the model 

The results of our model are, in general, consistent 
with the “costly information hypothesis” (Boyd and 
Richerson, 1985), according to which social learning is 
favored when acquiring information individually is 
costly or inaccurate (see e.g. Rogers, 1988; Boyd and 
Richerson, 1995; Wakano et al., 2004; Aoki et al., 2005). 
We aimed to illustrate how this trade-off between social 
and individual learning could be realized in a scenario 
analogous to many real-life situations, focusing on the 
notion of behavioral constraints, and we believe that this 
illustration may be of some use for field biologists and 
comparative psychologists who study social learning and 
cultural evolution.  

The role of the variation of search spaces, or adaptive 
landscapes, have been considered in previous models of 
cultural evolution (Boyd and Richerson, 1992; Mesoudi, 
2008). These models show how multimodal adaptive 
landscapes-i.e. search spaces with more than one peak - 
favor social learning, contrary to unimodal adaptive 
landscapes, where individual learning is favored. Our 
results add to these previous finding by showing that also 
in unimodal adaptive landscapes social learning may be 
favored, as long as the search space does not provide 
information that can be used to orient individual learning 
(our peaked space condition).  

Previously, other computational models (Hinton and 
Nowlan 1987) had shown that problems analogous to 
tasks represented by the peaked space could be solved 
through a combination of individual learning and ge-
netic evolution. Since we did not consider genetic evo-
lution (i.e. our evolutionary algorithm acted on the ac-
curacy of social learning, and not on the actual beha-
vior), our model is unable to address this question, 
though we obtained the same qualitative result with re-
spect to the poor performance of individual learning 
alone. In a later development of Hinton and Nowlan's 
model (Best, 1999), the possibility of social learning was 
added, and it was shown that, indeed, the combination of 
social learning and genetic evolution improved the per-
formance compared to the combination of individual 
learning and genetic evolution. In Best's model, however, 
social learning was cost-free and no changes in the 
search space or in the size of the behavioral repertoire 
were taken into account.  

As with many models, we concentrated here on few 

parameters that we thought of fundamental importance 
for our study, namely the cost of acquiring faithfully 
social information, the size of the behavioral repertoire, 
the different search spaces, and, as a final check of the 
validity of our model, the extent of environmental varia-
tion. Interesting developments could consist in examin-
ing the effects of other factors on the results here reported. 
For example, we used a basic evolutionary algorithm, 
mainly intended as a proof-of-concept tool, keeping a 
fixed-and high-selection pressure, a simple implementa-
tion of the mutation-α was reinitialized every time a 
mutation occurs-, and we did not consider the effect of 
population size on evolutionary dynamics. We had run 
some exploratory simulations to test the effects of the 
variation of these parameters (not reported in the results 
section). Varying population size (n=200; n=500) and 
changing the way mutations were implemented (α each 
time modified by a value randomly selected between -0.1 
and +0.1) did not seem to change qualitatively our main 
results. Selection pressure, however, had some impact on 
the results. Interestingly, less selection pressure (“re-
producing” individuals randomly chosen among the 
twenty, or fifty, individuals with the highest average 
payoffs) favored the evolution of social learning when 
costs were high, at least in peaked and rugged search 
spaces, and for large behavioral repertoires (S=100; 
S=200). We interpret this result as meaning that, with 
high selection pressures, “lucky” individuals that found 
optimal behaviors without using costly social learning 
were highly favored by the evolutionary algorithm, 
making populations of social learners unstable. The in-
teractions between population size and selection pressure 
are anyhow inherently complex, and we plan to explore 
their effect on the evolution of faithful social learning in 
scenarios like ours in future works.       

We also assumed that individuals were randomly 
paired in their interactions, a part from the fact that only 
individuals with proportionally high payoffs were tar-
geted as possible demonstrators. Starting from the same 
set-up, one could certainly include more realistic rules of 
interactions, considering for example individuals being 
in different ways selective in their decisions about when 
and from who to copy (for the importance of these and 
other social learning “strategies” see Laland, 2004; 
Rendell et al. 2011), or explicitly consider a spatial di-
mension in the model, with individuals having different 
movement “rules” and interactions constrained by 
physical proximity.   

As a final remark, we initialized our populations with 
random behaviors, chosen among all the possible alter-
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natives of their potential behavioral repertoire. This is 
possibly an unrealistic situation (real populations do not 
show highly diverse - and certainly not random - be-
haviors) but we believe such a simplification to be useful 
as a “starting point” for the evolutionary algorithm. 
Again, future work could analyze how behavioral con-
straints impact on the evolution of social learning, start-
ing from homogeneous populations that behave sub- 
optimally or already optimally, in which case social 
learning would be necessary to maintain the correct be-
havior through time.  

3.3  General considerations and implications for 
modern human culture 

We conclude with some general considerations de-
rived from our results. In social learning research, the 
complexity of a task is often considered suggestive of the 
presence of social learning - with “easy” tasks being 
solved with individual learning and “difficult” tasks 
needing social transmission (see also Acerbi et al., 2011). 
Especially in laboratory tasks, experimenters try to 
propose “difficult” tasks to animals to encourage the use 
of social information to solve them (Day et al., 2003, 
Baron et al., 1996, Laland, 2004, Tennie et al., 2009). 
While this is probably a good rule of thumb, our model 
suggests that what makes faithful social learning useful is 
not the difficulty of a task per se (see also Tennie and 
Hedwig, 2009) but the fact that relatively unconstrained 
behavioral alternatives are potentially involved in that 
task (or, if you prefer, a task is “difficult” when this 
happens). A spider's web may or may not be less complex 
than potato washing, what is different is that, in the 
former case, natural selection, working on the genetic 
level, highly constrained the behavioral repertoire, nar-
rowing down the possible alternatives.  

Within this perspective, even very complex human 
“cultural” behaviors may be a result of a combination of 
a genetically/ecologically narrowed behavioral reper-
toire, constrained search spaces, and some form of social 
learning (Sperber, 1996). One might consider, for ex-
ample, cookery traditions. The impressive variability of 
foods consumed in different cultures is the outcome of 
various forms of cultural transmission (between and 
within societies) that nonetheless act on a “constrained 
space”: ecologically constrained (local availability of 
products), genetically constrained (only some products 
are edible; some taste preferences are at least partly in-
nate, Rozin, 1990), and technologically constrained 
(many products have to be processed in a specific way to 
became edible; the technologies available in a group 
limit the choice of processing food techniques). On the 

other side, some cultural behaviors are relatively less 
constrained. Many fashions and fads, for example, result 
from pure transmission processes (see e.g. Bentley et al., 
2007, Acerbi et al., 2012): the fashion of, say, “wearing 
green” one year but not the next has not much to do with 
behavioral constraints as we intended them in this paper. 
Analogously, if we take into consideration highly com-
plex technological tasks, products of human cumulative 
culture (Richerson and Boyd, 2005), behavioral con-
straints become less and less important. Building a kayak 
– or an airplane – is certainly subject to constraints (all in 
all airplanes need to fly and kayaks need to float) but 
their guidance is so loose that only high fidelity copying 
mechanisms can allow an individual to acquire the nec-
essary skills to produce them. Humans, nevertheless, 
also excel in a parallel strategy to solve those problems: 
cultural “epistemic engineering” (Sterelny, 2003) is, 
according to the view presented here, a matter of nar-
rowing the alternative solutions to a problem, and artifi-
cially build highly informative search spaces so as to 
reduce the need of costly social learning. 

In conclusion, we believe that an explicit attention 
towards what is learned, and towards the potential al-
ternatives and constraints, may enrich the theoretical 
toolbox of social learning modeling, and possibly our 
understanding of humans and other species' culture.   
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