
Accelerating supply chains with Ant Colony Optimization across

range of hardware solutions
Ivars Dzalbs, Tatiana Kalganova1

1 Brunel University London, Kingston Lane, Uxbridge, UB8 2PX, UK
Tatiana.Kalganova@brunel.ac.uk

Abstract. Ant Colony algorithm has been applied to various optimization problems,
however most of the previous work on scaling and parallelism focuses on Travelling
Salesman Problems (TSPs). Although, useful for benchmarks and new idea comparison,
the algorithmic dynamics does not always transfer to complex real-life problems, where
additional meta-data is required during solution construction. This paper looks at real-
life outbound supply chain problem using Ant Colony Optimization (ACO) and its scaling

dynamics with two parallel ACO architectures – Independent Ant Colonies (IAC) and
Parallel Ants (PA). Results showed that PA was able to reach a higher solution quality in
fewer iterations as the number of parallel instances increased. Furthermore, speed
performance was measured across three different hardware solutions – 16 core CPU, 68
core Xeon Phi and up to 4 Geforce GPUs. State of the art, ACO vectorization techniques
such as SS-Roulette were implemented using C++ and CUDA. Although excellent for
TSP, it was concluded that for the given supply chain problem GPUs are not suitable due
to meta-data access footprint required. Furthermore, compared to their sequential

counterpart, vectorized CPU AVX2 implementation achieved 25.4x speedup on CPU
while Xeon Phi with its AVX512 instruction set reached 148x on PA with Vectorized
(PAwV). PAwV is therefore able to scale at least up to 1024 parallel instances on the
supply chain network problem solved.
Keywords – transportation network optimization, Ant Colony Optimization, parallel
ACO on Xeon Phi/GPU.

1. Introduction and motivation
Supply chain optimization has become an integral part of any global company with a

complex manufacturing and distribution network. For many companies, inefficient

distribution plan can make a significant difference to the bottom line. Modelling a

complete distribution network from the initial materials to the delivery to the customer is

very computationally intensive. With increasing supply chain modelling complexity in

ever changing global geo-political environment, fast adoptability is an edge. A company

can model impact of currency exchange rate changes, import tax policy reforms, oil price

fluctuations and political events such as Brexit before they happen. This requires fast

optimization algorithms.

Mixed Integer Linear Programming (MILP) tools such as Cplex are commonly used to

optimize various supply chain networks [1]. Although MILP tools are able to obtain

optimum solution for large variety of linear models, not all real-world supply chain models

are linear. Furthermore, MILP is computationally expensive and on large instances can fail

to produce an optimal solution. For that reason, many alterative algorithmic approaches

(heuristics, meta-heuristics, fuzzy methods) have been explored to solve large-complex SC

models [1]. One of these algorithms is the Ant Colony Optimization (ACO), which can be

well mapped to real world problems such as routing [2] and scheduling [3]. Supply Chain

Optimization Problem (SCOP) includes both, finding the best route to ship a specific order

and finding the most optimal time to ship it, such that it reaches expected customer

satisfaction while minimizing the total cost occurred.

Ant colony algorithms try to mimic the observed behavior of ants inside colonies, in order

to solve a large range of optimization problems. Since the introduction by Marco Dorigo in

1992, many variations and hybrid approaches of Ant Colony algorithms have been

explored [4] [5]. Most ant colony algorithms consist of two distinct stages – solution

construction and pheromone feedback to other ants. Typically, an artificial ant builds its

solution from the pheromone left from previous ants, therefore allowing communication

over many iterations via a pheromone matrix and converges to a better solution. The

process of solution creation and pheromone update is repeated over many iterations until

the termination criterion is reached, this can be either total number of iterations, total

computation time or dynamic termination.

Researchers in [6] compared an industrial optimization-based tool – IBM ILOG Cplex with

their proposed ACO algorithm. It was concluded that the proposed algorithm covered 94%

of optimal solutions on small problems and 88% for large-size problems while consuming

significantly less computation time. Similarly, [7] compared ACO and Cplex performance

on multi-product and multi-period Inventory Routing Problem. On small instances ACO

reached 95% of optimal solution while on large instances performed better than time-

constrained Cplex solver. Furthermore, ACO implementations of Closed-Loop Supply

Chain (CLSC) have been proposed; CLSC contains two parts of the supply chain – forward

supply and reverse/return. [8] solved CLSC models, where the ACO implementation

outperformed commercial MILP (Cplex) on nonlinear instances and obtained 98% optimal

solution with 40% less computation time on linear instances.

The aim of this paper is to explore parallelism techniques across multiple hardware

solutions for a real-world supply chain optimization problem (where meta-data overhead

during solution construction plays a significant role on the total compute time). The paper

is structured as follows: Section 2 explores current state of the art parallel implementations

of ACO across CPU, GPU and Xeon Phi; Section 3 introduces the hardware and software

solutions used; Section 4 described the real-world problem being solved; Section 5 details

the parallel ACO implementations and Section 6 compares the results. Finally, Section 7

concludes the paper.

2. Parallel Ant Colony Optimization
Since the introduction of ACO in 1992, countless ACO algorithms have been applied to

many different problems and many different parallel architectures have been explored

previously. [9] specifies 5 of such architectures:

• Parallel Independent Ant Colonies – each ant colony develop their own solutions in

parallel without any communication in-between;

• Parallel Interacting Ant Colonies – each colony creates solution in parallel and

some information is shared between the colonies;

• Parallel Ants – each ant creates solution independently, then all the resulting

pheromones are shared for the next iteration;

• Parallel Evaluation of Solution Elements – for problems where fitness function

calculations take considerably more time than the solution creation;

• Parallel Combination of Ants and Evaluation of Solution Elements – a combination

of any of the above.

Researchers have tried to exploit the parallelism offered from recent multi core CPUs [10],

along with clusters of CPUs ([11] [12]) and most recently GPUs [13] and Intel’s many

core architectures such as Xeon Phi [14]. Breakdown of the strategies and problems solved

are shown in Table 1.

Table 1. ACO architecture and hardware configurations explored. LAC - Longest Common Subsequence Problem, MKP
- Multidimensional Knapsack Problem, TSP - Travelling Salesman problem. IAC – Independent Ant Colonies, IntAC –
Interactive Ant Colonies, PA – Parallel Ants.

Task

parallelism,
IAC

Task
parallelism,

IntAC

Task parallelism,
PA

Data parallelism,
PA

CPU
Scheduling

[15]
Scheduling

[15]

TSP [16] [17]
Scheduling [15]
Supply chain
[this paper]

TSP [18] [19]
Supply chain
[this paper]

GPU n/a n/a

Protein folding [20]
TSP [16]
MKP [21]
LAC [22]

TSP [23] [24] [18]
[19]

Edge detection
[25]

Supply chain
[this paper]

CPU
cluster

Scheduling
[26]

TSP [9] TSP [12] n/a

Xeon Phi n/a n/a
Supply chain
[this paper]

TSP [27] [28] [29]
Supply chain
[this paper]

During the search, an Ant has to keep track of the existing state meta-data, for instance

Travelling Salesman Problem only need to keep the track of what cities have been visited

as part of problem constraint. However, real-life problems have a lot more constraints and

therefore requires a lot of meta-data storage during solution creation. This paper explores

such problem in the supply chain domain. Table 2 shows the most common problems

solved by ACO and their corresponding associated constraints / meta-data required during

solution creation.

Table 2. Meta-data required during solution creation based on problem type

Problem
Meta-data required during

solution creation
Comment

Scheduling 2
Resource and precedence

constraints
TSP 1 Has the city been visited

Protein Folding 1 Has the sequence been visited
MKP 1 Total weight per knapsack

LAC 1
Tracking of current position in

string
Edge detection 1 Has edge already been visited

Supply chain (this paper) 3
Capacity, daily order, freight

weight constraints

2.1. CPU

Parallel ACO CPU architectures have been applied to various tasks – for example, [15]

applied ACO for mining supply chain scheduling problem. Authors managed to reduce the

execution time from one hour (serial) to around 7 minutes. Both [30] and [31] used ACO

for image edge detection with varying results, [30] achieved a speedup of 3-5 times while

[31] managed to reduce sequential runtime by 30%. Most commonly, ACO has been

applied to Travelling Salesman Problem (TSP) benchmarks. For instance, [17] proposed

ACO approach with randomly synchronized ants, the approach showed a faster

convergence compared to other TSP approaches. Moreover, authors in [19] proposed new

multi-core SIMD model for solving TSPs. Similarly, both [32] and [33] tries to solve large

instances of TSP (up to 200k and 20k cities respectively) where the architectures are

limited to the size of pheromone matrix. [33] discusses such limitations and proposes a

new pheromone sharing for local search – effective heuristics ACO (ESACO), which was

able to compute TSP instances of 20k. In contrast, authors in [32] eliminate the need of

pheromone matrix and store only the best solutions similarly to the Population ACO.

Furthermore, researchers implement a Partial Ant, also known as cunning ant, where ant

takes existing partial solution and builds on top of it. Speedups of as much as 1200x are

achieved compared to sequential Population ACO.

Generally, CPU parallel architecture implementations come down to three programming

approaches - Message Passing Interface (MPI) parallelism, OpenMP parallelism [34] and

data parallelism with the vectorization of Single Instruction Multiple Data (SIMD). For

instance, [35] explored both master-slave and coarse-grained strategies for ACO

parallelization using Message Passing Interface (MPI). It was concluded that fine-grained

master-slave strategy performed the best. [36] used MPI with ACO to accelerate Maximum

Weight Clique Problem (MWCP). Proposed algorithm was comparable to the ones in

literature and outperformed Cplex solver in both – time and performance. Moreover,

authors in [26] implemented parallel ACO for solving Flow shop scheduling problem with

restrictions using MPI. Compared to sequential version of the algorithm, 93 node cluster

achieved a speedup of 16x. [37] compared ACO parallel implementation on MPI and

OpenMP on small vector estimation problem. It was found that maximum speedup of

OpenMP was 24x while MPI – 16x. Furthermore, [18] explored multi-core SIMD CPU

with OpenCL and compared it to the performance of GPU. It was found optimized parallel

CPU-SIMD version can achieve similar solution quality and computation time than the

state of art GPU implementation solving TSP.

2.2. Xeon Phi

Intel’s Xeon Phi Many Integrated Core (MIC) architecture offers many cores on the CPU

(60-72 cores per node) while offering lower clock frequency. Few researchers have had

the opportunity to research ACO on the Xeon Phi architecture. For instance, [27] showed

how utilizing L1 and L2 cache on Xeon Phi coprocessor allowed a speedup of 42x solving

TSP compared to a sequential execution. Due to the nature of SIMD features such as

AVX-512 on Xeon Phi, researchers in both [29] and [28] proposed a vectorization model

for roulette wheel selection in TSP. In case of [29] a 16.6x speedup was achieved

compared to a sequential execution. To the best of authors knowledge, Xeon Phi and ACO

parallelism has not been explored to any other problem except TSP.

2.3. GPUs

General Purpose GPU (GPGPU) programming is a growing field in computer science and

machine learning. Many researchers have tried exploiting latest GPU architectures in order

to speed optimize the convergence of ACO. ACO GPU implementation expands to many

fields, such as edge detection ([25] [38]), protein folding [20], solving Multidimensional

Knapsack Problems (MKPs) [21] and Vertex coloring problems [39]. Moreover,

researchers have used GPU implementations of ACO for classification ([40] [41]) and

scheduling ([42] [43]) with various speedups compared to the sequential execution.

However, majority of publications are solving Travelling Salesman Problems [44],

although useful for benchmarking and comparison, little characteristics transfer to other

application areas. For instance, highly optimized local memory on GPU (Compute Unified

Device Architecture - CUDA) can significantly speed up the execution for TSP, however,

when applied to real-life problems where additional restrictions and metadata is required to

build a solution, most of the data needs to be stored on much slower global memory.

Authors in [16] did extensive research comparing server, desktop and laptop hardware

solving TSP instances on both CUDA and OpenCL. Although there are couple ACO

OpenCL implementations on GPU ([45] [22]), the majority of implementations use

CUDA. For instance, [46] implemented a GPU-based ACO and achieved a speedup of 40x

compared to sequential ACS. Similarly, a 22x speedup was achieved in [47] solving

pr1002 TSP and 44x on fnl4461 TSP instance in [48]. However, there are also various

hybrid approaches for solving TSP - [49] solves parallel Cultural ACO (pCACO) (a hybrid

of genetic algorithm and ACO). Research showed that pCACO outperformed sequential

and parallel ACO implementations in terms of solution quality. Furthermore, [50] solved

TSP instances using ACO-PSO hybrid and authors in [51] explored heterogenous

computing with multiple GPU architectures for TSP.

Although task parallelism has potential for a speedup, [23] showed how data parallelism

(vectorization) on GPU can achieve better performance by proposed Independent Roulette

wheel (I-Roulette). Authors then expanded the I-Roulette implementation in [24], where

SS-Roulette wheel was proposed. Further, [52] implements a G-Roulette – a grouped

roulette wheel selection based on I-Roulette, where cities in TSP selection is grouped in

CUDA warps. An impressive speedup of 172x was achieved compared to the sequential

counterpart.

2.4. Comparing hardware performances

Comparing parallel performances of different hardware architectures fairly is by no means

trivial. Most research compares a sequential CPU ACO implementation to the one of the

parallel GPUs, which is hardly fair [53]. To amplify the issue, unoptimized sequential code

is compared to highly optimized GPU code. This results in misleading and inflated

speedups [13]. Furthermore, [22] argues that often the parameter settings chosen for the

sequential implementation is biased in favor of GPU. [13] proposes a criteria to calculate

the real-world efficiency of two different hardware architectures by comparing the

theoretical peak performances of GPU and CPU. While the proposed method is more

appropriate, it still doesn’t account for real-life scenarios where memory latency/speed,

cache size, compilers and operating systems all play a role of the final execution time.

Therefore, two different systems with similar theoretical floating-point operations per

second running the same executable can have significantly different execution times.

Furthermore, in some instances only execution time or solution quality is compared, rarely

both are taken into consideration when comparing results.

3. Background

This section briefly covers the tools and hardware specific languages used in the

implementation.

3.1. Parallel processing with OpenMP

OpenMP is set of directives to a compiler that allows programmer to create parallel tasks

as well as vectorization (Single Instruction Multiple Data - SIMD) in order to speed up

execution of a program. Program containing parallel OpenMP directives starts as single

thread, when directive such as #pragma omp parallel is reached, main thread will create a

thread pool and all methods within pragma region will be executed in parallel by each

thread in the thread group. Once the thread reaches the end of the region, it will wait for all

other threads to finish before dissolving the thread group and only the main thread will

continue.

Furthermore, OpenMP also supports nesting, meaning a thread in a thread-group can create

its own individual thread-group and become the master thread for the newly created

thread-group. However, thread-group creation and elimination can have significant

overhead and therefore, thread-group re-use is highly recommended [54].

This paper utilizes both omp parallel and omp simd directives.

3.2. CUDA programming model

Compute Unified Device Architecture (CUDA) is a General-purpose computing model on

GPU developed by Nvidia in 2006. Since then this proprietary framework has been utilized

in the high-performance computing space via multiple Artificial Intelligence (AI) and

Machine Learning (ML) interfaces and libraries/APIs. CUDA allows to write C programs

that takes advantage of any recent Nvidia GPU found in laptops, workstations and data

centers.

Each GPU contains multiple Streaming Multiprocessors (SM) that are designed to execute

hundreds of threads concurrently. In order to achieve that, CUDA implements SIMT

(Single Instruction Multiple-Threads) architecture, where instructions are pipelined for

instruction level parallelism. Threads are grouped in sets of 32 – called warps. Each warp

executes one instruction at a time on each thread. Furthermore, CUDA threads can access

multiple memory spaces – global memory (large size, slower), texture memory (read only),

shared memory (shared across threads in the same SM, lower latency) and local memory

(limited set of registers within each thread, fastest) [55].

A batch of threads are grouped into a thread-block. Multiple thread-blocks create a grid of

thread blocks. Programmer specifies the grid dimensionality at kernel launch time, by

providing the number of thread-blocks and the number of threads per thread-block. Kernel

launch fails if the program exceeds the hardware resource boundaries.

3.3. Xeon Phi Knights Landing architecture

Knights Landing is a product code name for Intel’s second-generation Intel Xeon Phi

processors. First generation of Xeon Phi, named Knights Corner, was a PCI-e coprocessor

card based on many Intel Atom processor cores and support for Vector Processing Units

(VPUs). The main advancement over Knights Corner was the standalone processor that

can boot stock operating systems, along with improved power efficiency and vector

performance. Furthermore, it also introduced a new high bandwidth MCDRAM memory.

Xeon phi support for standard x86 and x86-64 instructions, allows majority CPU compiled

binaries to run without any modification. Moreover, support for 512-bit Advanced Vector

Extensions (AVX-512) allows high throughput vector manipulations.

Figure 1. Knights Landing tile with larger processor die [56]

The Knights Landing cores are divided into tiles (typically between 32 and 36 tiles in

total). Each tile contains two processor cores and each core is connected to two vector

processing units (VPUs). Utilizing AVX-512 and two VPUs, each core can deliver 32

dual-precision (DP) or 64 single-precision (SP) operations each cycle [56]. Furthermore,

each individual core supports up to four threads of execution – hyper threads where

instructions are pipelined.

Another introduction with the Knights Landing is the cluster modes and

MCDRAM/DRAM management. Processor offers three primary cluster modes – All to all

mode, Quadrant mode and Sub-Numa Cluster (SNC) mode and three memory modes –

cache mode, flat mode and hybrid mode. For detailed description of the Knights Landing

Xeon Phi architecture refer to [56].

4. Problem description

A real-world dataset of an outbound logistics network is provided by a global microchip

producer. The company provided demand data for 9216 orders that need to be routed via

their outbound supply chain network of 15 warehouses, 11 origin ports and 1 destination

port (see Figure 2). Warehouses are limited to a specific set of products that they stock,

furthermore, some warehouses are dedicated for supporting only a particular set of

customers. Moreover, warehouses are limited by the number of orders that can be

processed in a single day. A customer making an order decides what sort of service level

they require – DTD (Door to Door), DTP (Door to Port) or CRF (Customer Referred

Freight). In case of CRF, customer arranges the freight and company only incurs the

warehouse cost. In most instances, an order can be shipped via one of 9 couriers offering

different rates for different weight bands and service levels. Although the majority of the

shipments are done via air transport, some orders are shipped via ground – by trucks. The

majority of couriers offer discounted rates as the total shipping weight increases based on

different weight bands. However, a minimum charge for shipment still applies.

Furthermore, faster shipping tends to be more expensive, but offer better customer

satisfaction. Customer service level is out of the scope of this research.

Figure 2 - Graphical representation of the outbound supply chain

4.1. Dataset

Dataset [57] is divided into 7 tables, one table for all orders that needs to be assigned a

route – OrderList table, and 6 additional files specifying the problem and restrictions. For

instance, the FreightRates table describes all available couriers, the weight gaps for each

individual lane and rates associated. The PlantPorts table describes the allowed links

between the warehouses and shipping ports in real world. Furthermore, the

ProductsPerPlant table lists all supported warehouse-product combinations. The

VmiCustomers lists all special cases, where warehouse is only allowed to support specific

customer, while any other non-listed warehouse can supply any customer. Moreover, the

WhCapacities lists warehouse capacities measured in number of orders per day and the

WhCosts specifies the cost associated in storing the products in given warehouse measured

in dollars per unit.

4.2. Fitness function

The main goal of optimization is to find a set of warehouses, shipping lanes and couriers to

use for the most cost-effective supply chain. Therefore the fitness function is derived from

two incurred costs – warehouse cost 𝑤𝑐𝑘𝑖 and transportation cost 𝑡𝑐𝑘𝑝𝑗 in equation (1).

The totaling cost is then calculated across all orders 𝑘 in the dataset.

 𝐦𝐢𝐧 ∑ (𝐰𝐜𝐤𝐢 + 𝐭𝐜𝐤𝐩𝐣)
𝐥

𝐤=𝟏
 (1)

Where 𝑤𝑐𝑘𝑖 is warehouse cost for order 𝑘 at warehouse 𝑖 and 𝑡𝑐𝑘𝑝𝑗 is transportation cost

for order 𝑘 between warehouse port 𝑝 and customer port 𝑗, total number of orders 𝑙.

 𝒘𝒄𝒌𝒊 = 𝒒𝒌 × 𝑷𝒊 (2)

Where warehouse cost 𝑤𝑐𝑘𝑖 for order 𝑘 at warehouse 𝑖 is calculated in (2), by the number

of units in order 𝑞𝑘 multiplied by the warehouse storage rate 𝑃𝑖 (WhCosts table).

1. if 𝑠𝑘 = 𝐶𝑅𝐹 then 𝑡𝑐𝑘𝑝𝑗 = 0

2. else if 𝑚 = 𝐺𝑅𝑂𝑈𝑁𝐷 then 𝑡𝑐𝑘𝑝𝑗 =
𝑅𝑝𝑗𝑐𝑠𝑡𝑚

∑ 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 𝑙
𝑘=1

× 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚

3. else if 𝑅𝑝𝑗𝑐𝑠𝑡𝑚 × 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 < 𝑀𝑝𝑗𝑐𝑠𝑡𝑚 then 𝑡𝑐𝑘𝑝𝑗 = 𝑀𝑝𝑗𝑐𝑠𝑡𝑚

4. else 𝑡𝑐𝑘𝑝𝑗 = 𝑅𝑝𝑗𝑐𝑠𝑡𝑚 × 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚

Figure 3. Pseudo code for calculating order transportation cost

Where 𝑠 is the service level for order 𝑘. 𝑀𝑝𝑗𝑐𝑠𝑡𝑚 is the minimum charge for given line

𝑝𝑗𝑐𝑠𝑡𝑚, 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝 to

customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation mode

𝑚. 𝑅𝑝𝑗𝑐𝑠𝑡𝑚 is the freight rate (dollars per kilogram) for given weight gap based on total

weight for the line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).

Furthermore, transportation cost for a given order and chosen line is calculated by

algorithm in Figure 3.The algorithm first check what kind of service level the order

requires, if the service level is equal to CRF (Customer Referred Freight) – transportation

cost is 0. Furthermore, if order transportation mode is equal to GROUND (order

transported via truck), order transportation cost is proportional to the weight consumed by

the order (𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚) in respect of the total weight for given line 𝑝𝑗𝑐𝑠𝑡𝑚 and the rate

charged by courier for full track 𝑅𝑝𝑗𝑐𝑠𝑡𝑚. Moreover, a minimum charge of 𝑀𝑝𝑗𝑐𝑠𝑡𝑚 is

applied in cases where the transportation cost is less than the minimum charge. In all other

cases, the transportation cost is calculated based on order weight 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 and the freight

rate 𝑅𝑝𝑗𝑐𝑠𝑡𝑚. The freight rate is determined based on total weight on any given line 𝑝𝑗𝑐𝑠𝑡𝑚

and the corresponding weight band in the freight rate table.

4.3. Restrictions

Problem being solved complies with the following constraints:

 ∑ 𝒐𝒌𝒊

𝒍

𝒌=𝟏
≤ 𝑪𝒊 (3)

Where 𝑜𝑘𝑖 = 1 if order 𝑘 was shipped from warehouse 𝑖 and 0 otherwise. 𝐶𝑖 is the order

limit per day for warehouse 𝑖 (WhCapacities table).

 ∑ 𝒘𝒌𝒑𝒋𝒄𝒔𝒕𝒎 ≤ 𝐦𝐚𝐱 𝑭𝒑𝒋𝒄𝒔𝒕𝒎

𝒍

𝒌=𝟏
 (4)

Where 𝑤𝑘𝑝𝑗𝑐𝑠𝑡 is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝 to

customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation mode

𝑚. 𝐹𝑝𝑗𝑐𝑠𝑡𝑚 is the upper weight gap limit for line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).

 𝒌𝒛 ∈ 𝒊𝒛 (5)

Where product 𝑧 for order 𝑘 belongs to supported products at warehouse 𝑖
(ProductsPerPlant table). Warehouses can only support given customer in the

VmiCustomers table, while all other warehouses that are not in the table can supply any

customer. Moreover, warehouse can only ship orders via supported origin port, defined in

PlantPorts table.

5. Methods and implementation

In order to solve the transportation network optimization problem, we are using an Ant

Colony System algorithm first proposed by [58]. Because ACO is an iterative algorithm, it

does require sequential execution. Therefore, the most naïve approach for parallel ACO is

running multiple Independent Ant Colonies (IAC) with a unique seed for the pseudo

random number generator for each colony (high level pseudo code in Figure 4). Due to the

stochastic nature of solution creation, it is therefore more probabilistic to reach a better

solution than a single colony. This approach has the advantage of low overhead as it

requires no synchronization between the parallel instances during search. At the very end

of the search, the best solution of all parallel colonies is chosen as the final solution. Main

disadvantage of IAC is that if one of the colonies finds a better solution, there is no way to

improve all the other colony’s fitness values.

Independent Ant Colonies (IAC)

1. for all parallel instances m parallel do

2. for all iterations i do

3. for all local ants a do

4. local pheromone = global pheromone

5. construct solution

6. local pheromone update

7. end for

8. update global pheromone update based on best solution

9. end for

10. end for

11. find best solution across parallel instances

 Figure 4. High level pseudo code for Independent Ant Colonies (IAC) search algorithm

Alternatively, the ACO search algorithm could also be letting the artificial ant colonies

synchronize after every iteration and therefore all parallel instances are aware of the best

solution and can share pheromones accordingly. High level pseudo code of such Parallel

Ant (PA) implementation is shown in Figure 5. Main advantage of this architecture is that

it allows efficient pheromone sharing, therefore converging faster. However, there is a high

risk of getting stuck into local optima as all ants start iteration with the same pheromone

matrix. Furthermore, synchronization of all parallel instances after every iteration is costly.

Parallel Ants (PA)

1. for all iterations i do

2. for all parallel instances m parallel do

3. for all local ants a do

4. local pheromone = global pheromone

5. construct solution

6. local pheromone update

7. end for

8. find best solution across parallel instances

9. update global pheromone update based on best solution

10. end for

11. end for

Figure 5. High level pseudo code Parallel Ants (PA) search algorithm

Both IAC and PA implementations are exploiting task parallelism – each parallel instance

(thread) gets set of tasks to complete. An alternative approach would be to look at data

parallelism and vectorization – each thread processes a specific section of the data and

cooperatively complete the given task. Due to the highly sequential parts of ACO, it would

not be practical to only use vectorization alone. A more desirable path would be to

implement vectorization in conjugate to the task parallelism. In case of CPU, task

parallelism can be done by the threads, while vectorization done by Vector Processing

Units (VPUs) based on Advanced Vector Extensions 2 (AVX2) or AVX512. Moreover, in

case of GPU and CUDA – task parallelism would be done at thread-block level while data

parallelism would exploit WARP structures. Parallel Ants with Vectorization (PAwV)

expands on the Parallel Ants architecture by introducing data-parallelism of solution

creation and an alternative roulette wheel implementation – SS-Wheel, first proposed in

[24]. SS-Wheel mimics a sequential roulette wheel while allowing higher throughput due

to parallelism. Local search in Figure 6 expands on the implementation in Figure 5 (lines

3-7). First the choiceMatrix is calculated by multiplying the probability of the route to be

chosen with the tabu list – a list of still available routes (where 0 represents not available

and 1 – route still can be selected). A random number between 0 and 1 is generated in

order to determine if a given route will be chosen based on exploitation or exploration. In

case of exploitation, the choiceMatrix is reduced to obtain the maximum and the

corresponding route index. Furthermore, in case of exploration, the route is chosen based

on the SS-Roulette wheel described by [24].

Parallel Ants with Vectorization (PAwV)

1. for all local ants a do

2. local pheromone = global pheromone

3. for all orders o do

4. for all routes r for order do SIMD

5. choiceMatrix[r] = probability[r] * tabuList[r]

6. end for

7. if rand() <= q0 then

8. SIMD reduce max (choiceMatrix)

9. else

10. SS-Roulette wheel [24]

11. end if

12. end for

13. local pheromone update

14. end for

Figure 6. High level pseudo code for Parallel Ants with Vectorization (PAwV) search algorithm.

Expanding on Figure 5 lines 3-7.

6. Experiments

A sequential implementation of ACO described in [58] is adapted from [59] by altering the

heuristic information calculation for a given route – defined as a proportion of order’s

weight and the maximum weight gap (see Equation (2)). Furthermore, the Ant Colony

System set of parameters for all configurations and architectures are shown in Table 3.

Moreover, we then implement three different Parallel ACO architectures – Independent

Ant Colonies (IAC), Parallel Ants (PA) and Parallel Ants with Vectorization (PAwV) in

C++ and CUDA C.

Experiments were conducted on three different hardware configurations – CPU, GPU and

Xeon Phi. Where Hardware A is a host system for Hardware C.

Table 3. Ant Colony System set of parameters for all configurations and architectures

Parameter Value
Pheromone evaporation rate (rho) 0.1

Weight on pheromone information (α) 1
Weight on heuristic information (β) 8

Exploitation to exploration ratio (q0) 0.9

Hardware A - CPU

• CPU: AMD Ryzen™ Threadripper™ 1950X (16 cores, 32 threads), running at

3.85GHz.

• RAM: 64GB 2400MHz DDR4, 4 channels.

• OS: Windows 10 Pro, version 1703

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64

Hardware B - Xeon Phi

• CPU: Intel® Xeon Phi™ Processor 7250F (68 cores, 272 hyper-threads), running at

1.4GHz. Clustering mode set to Quadrant and memory mode set to Cache mode.

• RAM: 16GB on-chip MCDRAM and 96GB 2400MHz DDR4 ECC.

• OS: Windows Server 2016, version 1607

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64,

KMP_AFFINITY=scatter

Hardware C - GPU

• CPU/RAM/OS – see host Hardware A.

• GPUs: 4x Nvidia GTX1070, 8GB GDDR5 per GPU, 1.9GHz core, 4.1GHz memory.

PCIe with 16x/8x/16x/8x.

• Toolchain: Visual Studio v140 toolset, Windows SDK version 8.1, x64, CUDA 9.0,

compute_35, sm_35

6.1. Benchmarks

It is important to take both elapsed time and solution quality into consideration when

referring to speed optimization of optimization algorithms. One could get superior

convergence within iteration but, take twice as long to compute. Similarly, one could claim

that algorithm is much faster completing defined number of iterations, but sacrifice

solution quality. Furthermore, there is little point comparing sequential execution of one

hardware platform to a parallel implementation of another. Comparison should take into

consideration all platform strengths and weaknesses and set up the most suitable

configuration for given platform.

In order to obtain a baseline fitness convergence rate at various number of parallel

instances, we create Iterations vs Parallel Instances matrix for all architectures. An

example of such matrix for Parallel Ants is shown in Table 4. The matrix is derived by

averaging the resulting fitness obtained from 10 independent simulations with a unique

seed value for each given Parallel Instances configuration. All configurations are run for x

number of iterations, where x is based on the total number of solutions explored and is a

function of the number of Parallel Instances. The total number of solutions explored is set

to 768k. The number of Parallel Instances is varied by 2𝑛−1 with maximum n of 11, i.e.

1024 parallel instances. The best value after every 5 iterations is also recorded.

Table 4. Parallel Ants fitness value baseline for different configurations of the number of parallel instances

and the number of iterations. Each Parallel Instance datapoint is an average of 10 individual runs (table

derived from 11*10 =110 runs). Expressed as a percentage of proximity of the best-known solution

(2,701,367.58). Color coded from worse – in red, to the best – in green.

We then compute the number of iterations required to reach a specific solution quality for

different ACO architectures in Table 5, expressed as proximity to the best-known optimal

solution . For the specific problem and dataset, the best solution is a total cost of

2,701,367.58. There are 6 checkpoints of solution quality ranging from 99% to 99.9%.

Although at first 1% gain might not seem significant, one has to remember that global

supply chain costs are measured in hundreds of millions, and even 1% savings do affect

bottom line. Empty fields (-) represent instances where the ACO was not able to converge

to given solution quality.

On all experiments, IAC was able to obtain solution quality only below 99.6%, whereas

PA and PA with 5 ant local search was able to obtain optimal solution with 512 and 1024

parallel instances. Furthermore, IAC did not see any significant benefit of adding more

parallel instances for 99% and 99.25% checkpoints.

In contrast, PA does benefit from the increase in number of parallel instances. For instance,

PA is able to obtain the same solution quality in half the number of iterations at 99%

checkpoint (scaling of 2x for sequential vs 1024 parallel instances). Scaling of 633.7x in

case of 99.5% checkpoint for sequential counterpart. Similarly, PA with 5 ant sequential

local search has the same dynamics, with scaling of 4x at 99% checkpoint compared to

sequential and 140x at 99.6% checkpoint compared to 2 and 1024 parallel instances. One

can also note that at increased solution quality and little number of parallel instances, PA

with 5 ant local search also offers increased efficiency in terms of total solutions explored.

For example, at the 99.5% checkpoint with 2 parallel instances, PA takes 2590 iterations,

while PA with 5 ant local search only requires 65 (decrease of 40x iterations, or 8x total

1 2 4 8 16 32 64 128 256 512 1024

5 98.646% 98.701% 98.740% 98.713% 98.813% 98.825% 98.857% 98.859% 98.881% 98.931% 98.923%

20 98.921% 98.935% 98.973% 98.987% 98.980% 99.063% 99.053% 99.082% 99.102% 99.133% 99.150%

40 99.165% 99.265% 99.315% 99.300% 99.343% 99.355% 99.366% 99.413% 99.410% 99.427% 99.443%

60 99.354% 99.413% 99.466% 99.503% 99.530% 99.536% 99.541% 99.562% 99.573% 99.592% 99.598%

80 99.438% 99.459% 99.547% 99.547% 99.585% 99.585% 99.582% 99.630% 99.638% 99.660% 99.667%

100 99.444% 99.459% 99.548% 99.559% 99.589% 99.592% 99.584% 99.646% 99.641% 99.672% 99.674%

200 99.452% 99.461% 99.551% 99.569% 99.601% 99.605% 99.599% 99.724% 99.717% 99.846% 99.844%

300 99.452% 99.461% 99.558% 99.574% 99.615% 99.615% 99.606% 99.734% 99.743% 99.869% 99.878%

400 99.456% 99.464% 99.559% 99.577% 99.615% 99.628% 99.631% 99.739% 99.763% 99.877% 99.885%

500 99.456% 99.465% 99.560% 99.584% 99.624% 99.637% 99.641% 99.739% 99.772% 99.884% 99.891%

600 99.456% 99.471% 99.560% 99.584% 99.624% 99.641% 99.643% 99.740% 99.772% 99.891% 99.898%

750 99.458% 99.474% 99.560% 99.588% 99.634% 99.647% 99.645% 99.753% 99.778% 99.896% 99.901%

1500 99.462% 99.494% 99.572% 99.590% 99.638% 99.662% 99.656% 99.764% 99.792% 99.917%

3000 99.471% 99.504% 99.582% 99.601% 99.651% 99.672% 99.666% 99.779% 99.812%

6000 99.486% 99.506% 99.596% 99.616% 99.659% 99.675% 99.675% 99.787%

12000 99.494% 99.517% 99.604% 99.626% 99.666% 99.681% 99.692%

24000 99.498% 99.540% 99.611% 99.629% 99.681% 99.693%

48000 99.508% 99.546% 99.622% 99.638% 99.685%

96000 99.514% 99.555% 99.622% 99.643%

192000 99.527% 99.563% 99.622%

384000 99.538% 99.569%

768000 99.551%

The number of Parallel Instances

Th
e

 n
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s
Baseline for Parallel Ants (PA)

solutions explored). However, in most instances, PA without any local search is more

efficient.

Table 5. The number of iterations required to reach a specific solution quality. Each datapoint in the table is an

average of 10 individual runs. Empty fields (-) represent instances where ACO did not obtain specified

solution quality in 768k solutions explored. The solution quality is expressed as a percentage of proximity of the

best-know solution (2,701,367.58).

6.2. Speed performance

To evaluate speed performance, we ran each given configuration and parallel architecture

for 500 iterations or 10 minutes wall-clock time (whichever happens first) and recorded

total number of iterations and wall-clock time for 3 independent runs. Then, average wall-

clock time per iteration was calculated. It is important to measure the execution time

correctly, just purely comparing computation per kernel/method may not show the real-life

impact. For that reason, total time is measured from the start of the memory allocation to

the freeing of the allocated memory, however it does not include time required to load the

dataset into memory. This allows us to estimate, with reasonable accuracy, what is the

wall-clock time required to run a specific architecture and configuration in order to

converge to a given fitness quality. Although, running each given architecture and

configuration 10 times would produce more accurate convergence rate estimates, it would

also require significantly more computation time. Furthermore, all vectorized

implementations went through iterative profiling and optimization process to obtain the

fastest execution time. To the best of the authors’ knowledge, all vectorized

implementations have been fully optimized for the given hardware.

6.2.1. CPU

ACO implementation of IAC, PA and PAwV was implemented in C++ and multiple

experiments of the configurations are shown in Table 6. Intel C++ 18.0 with OpenMP 4.0

Architecture
Checkpoint of

optimal solution
1 2 4 8 16 32 64 128 256 512 1024

99.00% 30 30 35 30 30 35 30 30 25 25 25

99.25% 45 45 40 40 45 40 40 35 35 35 35

99.50% 31685 31055 29550 28895 29075 15910 10950 - - - -

99.60% - - - - - - - - - - -

99.75% - - - - - - - - - - -

99.90% - - - - - - - - - - -

99.00% 30 25 25 25 25 25 20 15 15 15 15

99.25% 45 40 40 35 35 35 35 35 30 30 30

99.50% 31685 2590 65 60 60 55 55 55 55 50 50

99.60% - - 9190 2640 195 170 230 70 70 65 65

99.75% - - - - - - - 685 310 140 135

99.90% - - - - - - - - - 800 675

99.00% 20 15 15 15 15 10 10 10 10 10 5

99.25% 30 30 30 30 30 25 30 25 20 25 20

99.50% 400 65 55 55 50 50 50 50 45 45 45

99.60% - 7715 160 135 90 65 60 65 60 55 55

99.75% - - - - 6630 205 150 155 130 125 125

99.90% - - - - - - - - 460 255 160

Parallel Ants with

5 sequential ant

local search

The number of parallel instances

The number of iterations required to reach specific solution quality

Independent Ant

Colonies

Parallel Ants

was used to compile the implementation. KMP1 (an extension of OpenMP) config was

varied based on total hardware core and logical core count (16c,2t = 32 OpenMP threads).

Very similar results were obtained for both IAC double precision and PA double precision,

with PA having around 5% overhead compared to IAC. In both instances, running 32

OpenMP threads offered around 24% speed reduction compared to 16 threads.

Furthermore, PAwV with double precision vectorization using AVX2 offered speed

reduction of 26%, while scaling from 16 OpenMP threads to 32 offered almost no scaling

at 256 parallel instances upwards.

The nature of ACO pheromone sharing and probability calculations does not require

double precision and therefore can be substituted with single precision calculations.

AVX2 offers 256-bit manipulations, therefore increasing theoretical throughput by factor

of 2, compared to double precision. 36% decrease in execution time was obtained, as not

all parts of the code are able to take advantage of SIMD.

Furthermore, doing 5 ant sequential local search within each parallel instance increases

time linearly and produces little time savings in terms of solutions explored. The overall

scaling factor at 1024 parallel instances compared to sequential execution at PAwV (single

precision with AVX2 and 16c2t) is therefore 25.4x.

Table 6. Hardware A wall-clock time per iteration, in seconds. KMP config is environment variable set as part of
KMP_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, optimization level /O3, favor speed /Ot.

6.2.2. Xeon Phi

Similar experiments were conducted also on the Xeon Phi hardware, Table 7. Due to the

poor convergence rate and search capability, execution time for IAC was not measured.

Xeon Phi differs from Hardware A with the ability to utilize up to 4 hyper-threads per core

and AVX512 instruction set. Although Hardware B has 68 physical cores, for simpler

comparison on base 2, only 64 were used in experiments. At 1024 parallel instances on

double precision PA, having 2 threads and 4 threads per core does offer speedup of 30%

and 42% respectively, compared to 1 thread per core. Moving to the vectorized

implementation of 256-bit AVX2, gains additional speedup of around 37% across all

parallel instances, however, did not benefit from 4 hyper-threads. Furthermore, exploiting

the AVX512 instruction set offers further 24% speedup compared to AVX2. In this

configuration having 4 hyper threads per core actually worsens the speed performance

(3.644 seconds vs 3 seconds). Similar to Hardware A, PAwV was explored with single

1 OpenMP Thread Affinity Control https://software.intel.com/en-us/articles/openmp-thread-affinity-control

KMP config 1 2 4 8 16 32 64 128 256 512 1024

16c,1t 0.196 0.372 0.691 1.368 2.661 5.263

16c,2t 0.148 0.277 0.517 1.002 2.014 4.093

16c,1t 0.205 0.383 0.705 1.411 2.743 5.483

16c,2t 0.153 0.288 0.539 1.044 2.088 4.220

16c,1t 0.131 0.233 0.426 0.805 1.547 3.101

16c,2t 0.107 0.189 0.351 0.749 1.536 3.095

16c,1t 0.111 0.206 0.367 0.699 1.355 2.664

16c,2t 0.088 0.152 0.275 0.501 1.006 1.975

16c,1t 0.484 0.918 1.722 3.380 6.759 13.461

16c,2t 0.347 0.645 1.222 2.369 4.659 9.704

0.049 0.050 0.052 0.055 0.066

The number of Parallel Instances

Hardware A - CPU computation time per iteration (in seconds)

0.115

0.050 0.053 0.057 0.058 0.075

0.078 0.081 0.083 0.085 0.112

0.082 0.084 0.085 0.090

0.212 0.218 0.227 0.241 0.264

Configuration

IAC, double precision

PA, double precision

PAwV, double precision, AVX2

PAwV, single precision, AVX2

PAwV, single precision, AVX2,

with 5 sequential ant local search

https://software.intel.com/en-us/articles/openmp-thread-affinity-control

precision and offered near perfect scaling on 1024 parallel instances with 4 hyper-threads

per core, or 40% overall speed improvement compared to PAwV with double precision (3

seconds vs 1.804 seconds). Alike Hardware A, having 5 sequential local ants does not

provide any time savings and time increases linearly. The overall scaling factor at 1024

parallel instances compared to sequential execution at PAwV (single precision with

AVX512 and 64c4t) is therefore 148x.

Table 7. Hardware B wall-clock time per iteration, in seconds. KMP config is environment variable set as part of
KM_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, optimization level /O3, favor speed /Ot.

6.2.3. GPUs

A further set of experiments were also conducted for GPU, Table 8. The implementation

with no vectorization (Blocks x1), uses 1 thread per CUDA block to compute one solution,

therefore 1024 parallel instances require 1024 blocks. Similarly, for (Blocks x32), 32

threads are used per block, each thread computing its own solution independently. For

parallel instances of 32, only 1 block would be used with 32 threads. The implementation

of no vectorization utilizes no shared memory, however, all static problem meta data is

stored as textures. A single kernel is launched and best solution across all parallel instances

is returned.

Vectorized version implements architecture described in [24], storing the route choice

matrix in shared memory and utilizing local warp reduction for sum and max operations.

Each thread-block builds its own solution, while the extra 32 threads assist with the

reduction operations, memory copies and fitness evaluation. Table 8 shows the comparison

between the two implementations. Implementation without vectorization performs on

average 2 times slower compared to the vectorized version. Furthermore, 64 threads per

block (Blocks x64) performs slower than 32 threads per block (Block x32).

Next, scaling across multiple GPUs were explored. Each device takes a proportion of 1024

instances with unique seed values and after each iteration, best overall solution is reduced.

In case of 2 GPUs and 1024 parallel instances, each device will compute 512 parallel

KMP config 1 2 4 8 16 32 64 128 256 512 1024

64c,1t 1.417 2.787 5.941 11.089

64c,2t 1.014 1.974 3.845 7.669

64c,4t 1.087 1.606 3.226 6.438

64c,1t 0.818 1.578 3.094 6.114

64c,2t 0.563 1.047 2.022 3.964

64c,4t 0.625 1.101 2.072 4.082

64c,1t 0.608 1.152 2.242 4.404

64c,2t 0.446 0.809 1.535 3.000

64c,4t 0.494 0.982 1.913 3.644

64c,1t 0.521 0.970 1.900 3.806

64c,2t 0.359 0.646 1.210 2.361

64c,4t 0.412 0.542 0.957 1.804

64c,1t 2.342 4.601 9.136 18.844

64c,2t 1.489 2.915 5.743 11.815

64c,4t 1.553 2.225 4.428 9.054

0.726 0.726 0.729

0.332 0.335

PAwV, single

precision, AVX512

1.205 1.2151.105 1.123 1.195 1.200 1.205

0.284

PAwV, single

precision, AVX512,

with 5 sequential ant

local search

PAwV, double

precision, AVX512
0.309 0.326 0.326 0.3270.304

0.438

0.261 0.266 0.282 0.284 0.287 0.288

Hardware B - Xeon Phi computation time per iteration (in seconds)

PAwV, double

precision, AVX2

PA, double precision

0.408 0.411 0.430 0.431 0.433

0.7340.687 0.687 0.725

Configuration The number of Parallel Instances

0.434

instances concurrently. Scaling across 2 (2x) and 4 GPUs (4x) did not provide any

significant speedup (only 10%). This is due to the fact that each iteration consumes at least

50 seconds and scaling across multiple GPUs adds almost no overhead. The maximum

number of parallel instances might need to be increased to fully utilize all 4 GPUs to the

point where all Streaming Multiprocessors (SMs) are saturated and increasing block count

increases the computation time linearly.

GPU implementation is therefore one magnitude of order slower than that of CPU, though

this could be explained by the nature of the problem and not be specific to ACO

architecture, as there have been a lot of success on GPUs solving simple, low memory

footprint TSP instances [24] [46] [47]. However, the problem being solved in this paper

requires a lot of random global memory access to check for all restrictions such as order

limits, capacity constraints and weight limits, which are too big to be stored on the shared

memory.

Table 8. Hardware C wall-clock time per iteration, in seconds. Total number of parallel instances are adjusted for the
thread-block dimensions. Compiled with CUDA 9.0. 1x, 2x and 4x correspond of number of devices used to compute.

6.3. Hardware Comparison and speed of convergence

If both convergence rate of the architecture and the speed of the hardware is taken into

account, an estimate can be made on what would be the average wall-clock time to

converge to a specific solution quality. The fastest configuration for both Hardware A

(Table 6) and Hardware B (Table 7) was chosen and then multiplied by the number of

iterations required to reach a specific solution quality (Table 5) to obtain an estimate of the

compute time required (Table 9). Therefore, a fairer real-life impact can be derived. GPU

results (Hardware C) were not included as they are significantly slower.

If one only considers the best time to converge to 99% solution quality, Hardware A can

do that in 1.24 seconds on average while, Hardware B would take 6.66 seconds.

Furthermore, if we look at 99.5% solution quality, Hardware A would take 3.33 seconds

while Hardware B - 17.01 seconds. Faster clock speed for Hardware A gives advantage

over Hardware B at lower solution quality checkpoints. In contrast, at 99.75% and 99.9%

solution quality, Hardware B outperforms. More experimentation is required to determine

if exploring more than 768k solutions at lower Parallel Instance count affects the dynamics

at the 99.75-99.9% range.

1 2 4 8 16 32 64 128 256 512 1024

46.792 47.634 47.610 47.499 47.458 48.914 50.811 53.474 60.845 126.897 229.080

- - - - - 108.316 110.571 112.512 113.214 114.512 115.219

- - - - - 49.890 52.457 54.180 55.409 58.802 64.569

- - - - - - 57.139 58.586 59.676 61.031 65.840

- - - - - - 50.048 52.634 55.471 55.509 60.856

- - - - - - - 50.062 52.702 54.406 55.879

The number of Parallel Instances

1x GPU no vectorisation (Blocks x 1)

1x GPU no vectorisation (Blocks x 32)

1x GPU with vectorisation (Blocks x32)

1x GPU with vectorisation (Blocks x64)

2x GPU with vectorisation (Blocks x32)

4x GPU with vectorisation (Blocks x32)

Configuration

Hardware C - GPU computation time per iteration (in seconds)

Table 9. Estimated time (in seconds) required to converge to a specific solution quality. Calculated by multiplying the

number of iterations by the time taken for iteration for individual best performing hardware configuration. Solution

quality is expressed as a percentage of proximity of the best-know solution (2,701,367.58).

7. Conclusions & Further work

Nature-inspired meta-heuristic algorithms such as Ant Colony Optimization (ACO) have

been successfully applied to multiple different optimization problems. Most work focuses

on the Travelling Salesman Problem (TSP). While TSPs are a good benchmark for new

idea comparison, the dynamics of the proposed algorithms for benchmarks do not always

match to a real-world performance where problem has more constraints (more meta-data

during solution creation). Furthermore, speed and fitness performance comparisons are not

always completely fair when compared to a sequential implementation.

This work solves a real-world outbound supply chain network optimization problem and

compares two different ACO architectures – Independent Ant Colonies (IAC) and Parallel

Ants (PA). It was concluded that PA outperformed IAC in all instances, as IAC failed to

find any better solution than 99.5% of optimal. In comparison, PA was able to find near

optimal solution (99.9%) in less iterations due to efficient pheromone sharing across ants

after each iteration. Furthermore, PA shows that it consistently finds a better solution with

the same number of iterations as the number of parallel instances increase.

Moreover, a detailed speed performance was measured for 3 different hardware

architectures – 16 core 32 thread workstation CPU, 68 core server grade Xeon Phi and

general purpose Nvidia GPUs. Results showed that due to the nature of the real-world

problem, memory access footprint required to check capacity limits and weight constraints

did not fit on small shared memory on GPU and therefore it performed 29 times slower

than the other two hardware solutions even when running 4 GPUs in parallel.

When compared to a real-life impact on time required to reach a specific solution quality,

both CPU and Xeon Phi optimized-vectorized implementations showed comparable speed

performance; with CPU taking the lead with lower Parallel Instances count due to the

much higher clock frequency. At near optimal solution (99.75%+) and 1024 parallel

instances, Xeon Phi was able to take full advantage of AVX512 instruction set and

outperformed CPU in terms of speed. Therefore, compared to an equivalent sequential

implementation at 1024 parallel instances, CPU was able to scale 25.4x while Xeon Phi

achieved a speedup of 148x.

1 2 4 8 16 32 64 128 256 512 1024

99.00% 1.46 1.24 1.30 1.39 1.64 2.19 3.04 4.13 7.52 15.10 29.63

99.25% 2.19 1.99 2.07 1.94 2.29 3.06 5.31 9.64 15.03 30.19 59.25

99.50% 1539.02 128.82 3.37 3.33 3.93 4.81 8.35 15.14 27.56 50.32 98.75

99.60% 476.40 146.33 12.78 14.88 34.92 19.27 35.07 65.42 128.38

99.75% 188.60 155.33 140.91 266.63

99.90% 805.20 1333.13

99.00% 7.84 6.66 7.04 7.09 7.10 7.18 5.76 6.18 8.13 14.36 27.06

99.25% 11.76 10.65 11.27 9.92 9.94 10.05 10.08 14.42 16.26 28.71 54.12

99.50% 8282.30 689.67 18.31 17.01 17.04 15.79 15.84 22.66 29.81 47.85 90.20

99.60% 2588.73 748.49 55.39 48.80 66.26 28.84 37.94 62.21 117.26

99.75% 282.22 168.02 133.98 243.54

99.90% 765.60 1217.70

Checkpoint of

optimal

Estimated time required (in seconds) to reach specific solution quality
The number of parallel instances

Hardware A -

TR1950x

Hardware B -

Xeon Phi 7250F

Architecture

Due to the fact that PA fitness performance increases as the number of parallel instances

increase, it would be worth looking into scaling above 1024 instances using either clusters

of CPUs or clusters of Xeon Phi’s, which will be part of the future work. Furthermore,

Field Programmable Gate Arrays (FPGAs) might have potential to take advantage of

highly vectorized ACO, which is another area of possible future research.

Acknowledgment

Authors would like to thank Intel Corporation for donating the Xeon Phi hardware.

8. References

[1] M. Esmaeilikia, B. Fahimnia, J. Sarkis, K. Govindan, A. Kumar, J. Mo,

"Tactical supply chain planning models with inherent flexibility: definition and

review," Annals of Operations Research, vol. 244, no. 2, pp. 407-427, 2016.

[2] M. Schyns, "An ant colony system for responsive dynamic vehicle routing,"

European Journal of Operational Research, vol. 245, no. 3, pp. 704-718,

2015.

[3] Z. Zhang, N. Zhang, Z. Feng, "Multi-satellite control resource scheduling

based on ant colony optimization," Expert Systems with Applications, vol. 41,

no. 6, pp. 2816-2823, 2014.

[4] Jianping Wang, Eseosa Osagie, Parimala Thulasiraman, Ruppa K. Thulasiram,

"HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad

hoc network," Ad Hoc Networks, vol. 7, no. 4, pp. 690-705, 2009.

[5] Mustafa Servet Kıran, Eren Özceylan, Mesut Gündüz, Turan Paksoy, "A novel

hybrid approach based on Particle Swarm Optimization and Ant Colony

Algorithm to forecast energy demand of Turkey," Energy Conversion and

Management, vol. 53, no. 1, pp. 75-83, 2012.

[6] K.-J. Wang, C.-H. Lee, "A revised ant algorithm for solving location–

allocation problem with risky demand in a multi-echelon supply chain

network," Applied Soft Computing, vol. 32, pp. 311-321, 2015.

[7] L. Wong, N. H. Moin, "Ant Colony Optimization For Split Delivery Inventory

Routing Problem," Malaysian Journal of Computer Science, vol. 30, no. 4, pp.

333-348, 2017.

[8] P. F. Vieira, S. M. Vieira, M. I. Gomes, A. P. Barbosa-Póvoa, J. M. C. Sousa,

"Designing closed-loop supply chains with nonlinear dimensioning factors

using ant colony optimization," Soft Computing, vol. 19, no. 8, pp. 2245-2264,

2015.

[9] M. Randall, A. Lewis, "A Parallel Implementation of Ant Colony

Optimization," Journal of Parallel and Distributed Computing, vol. 62, no. 9,

pp. 1421-1432, 2002.

[10

]

A. Prakasam, N. Savarimuthu, "Metaheuristic algorithms and probabilistic

behaviour: a comprehensive analysis of Ant Colony Optimization and its

variants," Artificial Intelligence Review, vol. 45, no. 1, pp. 97-130, 2016.

[11

]

Ş. Gülcü,M. Mahi,Ö. K. Baykan, H. Kodaz, "A parallel cooperative hybrid

method based on ant colony optimization and 3-Opt algorithm for solving

traveling salesman problem," Soft Computing, vol. 22, no. 5, pp. 1669-1685,

2018.

[12

]

G. Weidong, F. Jinqiao, W. Yazhou, Z.Hongjun, H. Jidong, "Parallel

Performance of an Ant Colony Optimization Algorithm for TSP," in IEEE,

Nanchang, 2015.

[13

]

Y. Tan, K. Ding, "A Survey on GPU-Based Implementation of Swarm

Intelligence Algorithms," IEEE Transactions on Cybernetics, vol. 46, no. 9,

pp. 2028-2041, 2016.

[14

]

M. Sato, S. Tsutsui, N. Fujimoto, Y. Sato, M. Namiki, "First Results of

Performance Comparisons on Many-core Processors in Solving QAP with

ACO: Kepler GPU versus Xeon Phi," in Annual Conference on Genetic and

Evolutionary Computation, Vancouver, 2014.

[15

]

D. Thiruvady, A.T. Ernst, G. Singh,, "Parallel ant colony optimization for

resource constrained job scheduling," Annals of Operations Research, vol.

242, no. 2, pp. 355-372, 2016.

[16

]

G.D Guerrero, J.M. Cecilia, A. Llanes, et al., "Comparative evaluation of

platforms for parallel Ant Colony Optimization," The Journal of

Supercomputing, vol. 69, no. 1, pp. 318-329, 2014.

[17

]

Q. Yang, L. Fang, X. Duan, "RMACO :a randomly matched parallel ant

colony optimization," World Wide Web, vol. 19, no. 6, pp. 1009-1022, 2016.

[18

]

Y. Zhou, F. He, N. Hou, Y. Qiu, "Parallel ant colony optimization on multi-

core SIMD CPUs," Future Generation Computer Systems, vol. 79, no. 2, pp.

473-487, 2018.

[19

]

Yi Zhou, Fazhi He, Neng Hou, Yimin Qiu, "Parallel ant colony optimization

on multi-core SIMD CPUs," Future Generation Computer Systems, vol. 79,

pp. 473-487, 2018.

[20

]

A. Llanes, C. Vélez, A. M. Sánchez, H. Pérez-Sánchez, J. M. Cecilia, "Parallel

Ant Colony Optimization for the HP Protein Folding Problem," International

Conference on Bioinformatics and Biomedical Engineering, pp. 615-626,

2016.

[21

]

H. Fingler, E. N. C´aceres, H. Mongelli, S. W. Song, "A CUDA Based

Solution to the Multidimensional Knapsack Problem Using the Ant Colony

Optimization," Procedia Computer Science, vol. 29, pp. 84-94, 2014.

[22

]

D. Markvica, C. Schauer, G.R. Raidl, "CPU Versus GPU Parallelization of an

Ant Colony Optimization for the Longest Common Subsequence Problem," in

International Conference on Computer Aided Systems Theory, 2015, pp. 401-

408.

[23

]

J. M. Cecilia; J. M. García; A.Nisbet; M.Amos; M. Ujaldón, "Enhancing data

parallelism for Ant Colony Optimization on GPUs," Journal of Parallel and

Distributed Computing, vol. 73, no. 1, pp. 42-51, 2013.

[24

]

J. M. Cecilia, A. Llanes, J. L. Abellán, J. Gómez-Luna, L.W. Chang, W.M. W.

Hwu, "High-throughput Ant Colony Optimization on graphics processing

units," Journal of Parallel and Distributed Computing, vol. 113, pp. 261-274,

2018.

[25

]

L. Dawson, I.A. Stewart, "Accelerating ant colony optimization-based edge

detection on the GPU using CUDA," in Evolutionary Computation (CEC),

Beijing, 2014.

[26

]

Y. Huo ; J. X. Huang, "Parallel Ant Colony Optimization for Flow Shop

Scheduling Subject to Limited Machine Availability," in Parallel and

Distributed Processing Symposium Workshops, Chicago, 2016.

[27

]

F. Tirado ; A. Urrutia ; R. J. Barrientos, "Using a coprocessor to solve the Ant

Colony Optimization algorithm," in IEEE, Santiago, Chile, 2015.

[28

]

F. Tirado, R. J. Barrientos, P. González, M. Mora, "Efficient exploitation of

the Xeon Phi architecture for the Ant Colony Optimization (ACO)

metaheuristic," The Journal of Supercomputing, vol. 73, no. 11, pp. 5053-

5070, 2017.

[29

]

H. Lloyd, M. Amos, "A highly parallelized and vectorized implementation of

Max-Min Ant System on Intel® Xeon Phi™," in Computational Intelligence

(SSCI), Athens, 2016.

[30

]

S. Chetan, H.S. Seshadri, V. Lokesha, "An Effective Parallelism Topology in

Ant Colony Optimization algorithm for Medical Image Edge Detection with

Critical Path Methodology (PACO-CPM)," International Journal of Recent

Contributions from Engineering, Science & IT (iJES), vol. 3, no. 4, 2015.

[31

]

A. Aslam, E. Khan, M.M. Sufyan Beg, "Multi-threading based implementation

of Ant-Colony Optimization algorithm for image edge detection," in India

Conference, New Delhi, 2015.

[32

]

D. M. Chitty, "Applying ACO to Large Scale TSP Instances," UK Workshop

on Computational Intelligence, pp. 104-118, 2017.

[33

]

H. Ismkhan, "Effective heuristics for ant colony optimization to handle large-

scale problems," Swarm and Evolutionary Computation, vol. 32, pp. 140-149,

2017.

[34

]

A. A. Abouelfarag, W. M. Aly, A. G. Elbialy, "Performance Analysis and

Tuning for Parallelization of Ant Colony Optimization by Using OpenMP," in

Computer Information Systems and Industrial Management, 2015.

[35

]

B.H. Li, M. Lu, Y.G. Shan, H. Zhang, "Parallel ant colony optimization for the

determination of a point heat source position in a 2-D domain," Applied

Thermal Engineering, vol. 91, pp. 994-1002, 2015.

[36

]

D. E. Baz, M. Hifi, L. Wu, X. Shi, "A Parallel Ant Colony Optimization for

the Maximum-Weight Clique Problem," in Parallel and Distributed

Processing Symposium Workshops, Chicago, 2016.

[37

]

H. Mehne, "Evaluation of parallelism in ant colony optimization method for

numerical solution of optimal control problems," Journal of Electrical

Engineering,Electronics, Control and Computer Science, vol. 1, no. 2, pp. 15-

20, 2015.

[38

]

L. Dawson, "GENERIC TECHNIQUES IN GENERAL PURPOSE GPU

PROGRAMMING WITH APPLICATIONS TO ANT COLONY AND

IMAGE PROCESSING ALGORITHMS," Durham University, 2015.

[39

]

R. Murooka, Y. Ito, K. Nakano, "Accelerating Ant Colony Optimization for

the Vertex Coloring Problem on the GPU," in IEEE, Hiroshima, 2016.

[40

]

T. Tufteland, G. Ødesneltvedt, M. Goodwin, "Optimizing PolyACO Training

with GPU-Based Parallelization," in International Conference on Swarm

Intelligence, 2016.

[41

]

J. Gao, Z. Chen, L. Gao, B. Zhang, "GPU implementation of ant colony

optimization-based band selections for hyperspectral data classification," in

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing

(WHISPERS), Los Angeles, 2017.

[42

]

P. Wang, H. Li and B. Zhang, "A GPU-based Parallel Ant Colony Algorithm

for Scientific," International Journal of Grid Distribution Computing, vol. 8,

no. 4, pp. 37-46, 2015.

[43

]

N. Ath. Kallioras, K. Kepaptsoglou, N. D.Lagarosa, "Transit stop inspection

and maintenance scheduling: A GPU accelerated metaheuristics approach,"

Transportation Research Part C: Emerging Technologies, vol. 55, pp. 246-

260, 2015.

[44

]

K. Khatri , Prof. V. K. Gupta, "Research on Solving Travelling Salesman

Problem using Rank Based Ant System on GPU," Compusoft, vol. 4, no. 5, pp.

1778-1793, 2015.

[45

]

S. N. Sharma, V. Garg, "Multi Colony Ant System based Solution to

Travelling Salesman Problem using OpenCL," International Journal of

Computer Applications, vol. 118, 2015.

[46

]

F. Li, M.-L Jin, "GACO: A GPU-based High Performance Parallel Multi-ant

Colony Optimization Algorithm," Journal of Information & Computational

Science, vol. 11, no. 6, pp. 1775-1784, 2014.

[47

]

A. Uchida, Y. Ito, K. Nakano, "Accelerating ant colony optimisation for the

travelling salesman problem on the GPU," International Journal of Parallel,

Emergent and Distributed Systems, vol. 29, no. 4, pp. 401-420, 2013.

[48

]

Y. Zhou, F. He, Y. Qiu, "Dynamic strategy based parallel ant colony

optimization on GPUs for TSPs," Science China Information Sciences, 2017.

[49

]

O. Unold, R. Tarnawski, "Cultural Ant Colony Optimization on GPUs for

Travelling Salesman Problem," in International Workshop on Machine

Learning, Optimization and Big Data, 2016, pp. 317-329.

[50

]

O. Bali, W. Elloumi, A. Abraham, A. M. Alimi, "ACO-PSO Optimization for

Solving TSP Problem with GPU Acceleration," in International Conference on

Intelligent Systems Design and Applications, 2016.

[51

]

A.Llanes, J.M. Cecilia, A. Sánchez, J. M. García,M. Amos,M. Ujaldón,

"Dynamic load balancing on heterogeneous clusters for parallel ant colony

optimization," Cluster Computing, vol. 19, no. 1, pp. 1-11, 2016.

[52

]

W. Zhou, F. He, Z. Zhang, "A GPU-based parallel MAX-MIN Ant System

algorithm with grouped roulette wheel selection," in Computer Supported

Cooperative Work in Design (CSCWD), Wellington, 2017.

[53

]

R. Skinderowicz, "The GPU-based parallel Ant Colony System," Journal of

Parallel and Distributed Computing, vol. 98, pp. 48-60, 2016.

[54

]

R. Chandra, L. Dagum, D. Kohr, Parallel Programming in OpenMP,

MORGAN KAUFMANN PUBLISHERS, 2001.

[55

]

"CUDA toolkit documentation," Nvidia, [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[Accessed 2018].

[56

]

J. Jeffers, J. Reinders, A. Sodani, Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition, Morgan Kaufmann, 2016.

[57

]

Ivars Dzalbs, Tatiana Kalganova, "Supply Chain Logistics Problem Dataset,"

[Online]. Available:

https://brunel.figshare.com/articles/Supply_Chain_Logistics_Problem_Dataset

/7558679.

[58

]

M. Dorigo, L.M. Gambardella, "Ant colony system: a cooperative learning

approach to the traveling salesman problem," IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997.

[59

]

M. Veluscek,T. Kalganova,P. Broomhead, A. Grichnik, "Composite goal

methods for transportation network optimization," Expert Systems with

Applications, vol. 42, no. 8, pp. 3852-3867, 2015.

