
A Software-Defined Survivability Approach for Wireless Sensor Networks in
Future Internet of the Things

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of DOCTOR OF PHILOSOPHY

To Department of Electronic and Computer Engineering
College of Engineering, Design and Physical Sciences

BRUNEL UNIVERSITY LONDON
London, United Kingdom

Presented by

Abdullah Al Atawi

Supervised by

Professor Hamed Al-Raweshidy

December 2018

Declaration

I declare that this thesis is my own work and is submitted for the first time to the Post-

Graduate Research Office. The study was originated, composed and reviewed by myself

and my supervisors in the Department of Electronic and Computer Engineering, College

of Engineering, Design and Physical Sciences, Brunel University London UK. All the

information derived from other works has been properly referenced and acknowledged.

Abdullah Al Atawi

December 2018

A Software-Defined Survivability Approach for WSN in Future IoT

Dedication

This PhD work is dedicated to my beloved family, wife Amani and children Khalid,

Waleed, Shadi, Bassil and Julianna.

A Software-Defined Survivability Approach for WSN in Future IoT

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Hamed Al-

Raweshidy for his guidance, support and advice throughout my research and aca-

demic works.

A Software-Defined Survivability Approach for WSN in Future IoT

Abstract

The Internet of the Things (IoT) is evolving rapidly, and its significant impacts

are expected to affect many application domains. Challenges in areas that humans

have been striving to understand, measure, or predict—such as wildlife, healthcare,

or environmental hazards—are likely to be addressed by the time IoT emerges.

The underlying elements of IoT are wireless sensor networks (WSNs),

which consist of a large number of sensor nodes. In the IoT sphere, sensor nodes

represent tangible objects—Things—that monitor changes, collect information,

and eventually send it through the Internet to a recipient party. Inherently, how-

ever, a wireless sensor node relies on limited computational resources with a limited

power source. These undesirable qualities result in a low level of dependability.

This research explores the viability of applying the unfolding network programma-

bility concepts to overcome survivability obstacles in WSNs and the IoT. In par-

ticular, it examines the viability of software-defined networking (SDN) in network

lifetime maximisation, failure detection, and failure recovery problems in WSNs.

Software-defined networking is a new network programmability concept

that separates the traditionally-tied control and data planes. It offloads the route

computations and management from network devices to a logically centralised

controller. This separation directly leads to better allocation of computational

resources for the network nodes and allows endless orchestration possibilities for

the controller. This thesis proposes an SDN-based solution to increase the surviv-

ability and resilience of WSN environments. Following an approach that conforms

with the centralised nature of SDN environments and considers the limited re-

sources of the WSN.

A routing algorithm based on A-star was developed for WSNs, then de-

ployed within an SDN environment to maximise the network lifetime. Apart from

finding the path with the lowest energy burden, the algorithm offloads most of

the control traffic from sensor nodes to the controller. This algorithm resulted

in improved resource utilisation among the nodes due to plane decoupling. Addi-

tionally, it increased the lifetime of the network by 22.6% compared to the widely

explored LEACH protocol.

This thesis also investigates different failure detection and recovery prac-

tices in the SDN architecture. The simulation results show that adopting bidi-

rectional forwarding detection (BFD) with the asynchronous echo mode for WSN

in an SDN environment reduces control traffic for failure detection to between

27% and 48%. The thesis also evaluates the performance of multiple recovery ap-

proaches when adopting the premises of SDN. The simulation results indicate that

path protection, using group tables from the OpenFlow protocol, has a recovery

time up to eight times shorter than the restoration time. The results of the study

reveal that using protection as a failure recovery technique significantly reduces

control traffic overhead.

v

Table of Contents

List of Acronyms 6

1 Introduction 8

1.1 Introduction . 8

1.1.1 Network Virtualisation . 10

1.1.2 Characteristics of Software Defined Networking 12

1.2 Wireless Sensor Networks . 14

1.3 Motivations . 16

1.4 Aim and Objectives of the Research . 17

1.5 Contributions to Knowledge . 18

1.5.1 WSN Lifetime Maximisation in the SDN Environment 19

1.5.2 IoT Failure Recovery in the SDN Environment 20

1.6 Thesis Organisation . 20

2 Background 22

A Software-Defined Survivability Approach for WSN in Future IoT

Table of Contents

2.1 Internet of the Things: An Overview . 22

2.2 Internet of the Things Applications . 23

2.2.1 Applications in Environmental Monitoring 23

2.2.2 Applications in the Agricultural Sector 23

2.2.3 Applications in the Healthcare Sector 25

2.2.4 Applications in Wildlife . 25

2.3 Internet of the Things Architecture . 26

2.3.1 Communication Technologies . 28

2.3.1.1 Short-Range Communication Technologies 28

2.3.1.2 Long-Range Communication Technologies 29

2.4 Characteristics of Software-Defined Networking 30

2.4.1 SDN Controllers . 31

2.4.2 OpenFlow . 32

2.4.2.1 OpenFlow Switch . 33

2.4.2.2 OpenFlow Protocol Messages 36

2.5 Wireless Sensor Networks (WSN) . 40

2.5.1 Functionality . 40

2.5.2 Wireless Sensor Network Standards 41

vii

Table of Contents

2.5.2.1 Zigbee . 41

2.5.2.2 6LoWPAN Standard 42

2.5.2.3 WirelessHART . 42

2.5.2.4 IPv6 Routing Protocol Standard 43

3 Literature Review 44

3.1 Introduction . 44

3.2 Low Power Protocols . 45

3.3 Energy Efficiency in Internet of the Things 46

3.4 Energy Conservation in Internet of the Things 47

3.4.1 Energy Conservation Issues . 47

3.4.2 Energy Conservation Approaches 49

3.5 Software Defined Networking . 50

3.5.1 Survivability in Software Defined Networking 51

3.6 Software Defined Networking (SDN) Applications in Wireless Networks . 53

3.6.1 Performance Improvement . 53

3.6.1.1 Load Balancing and QoS 55

3.6.1.2 Rural Connectivity . 56

3.6.1.3 Heterogeneous Networks 57

viii

Table of Contents

3.6.2 Survivability In Wireless SDN . 58

3.6.3 Emulating Solutions for SDN and IoT 60

4 Lifetime Maximisation of SDWSN 64

4.0.1 Lifetime of a Wireless Sensor Networks 64

4.1 State of the Art . 65

4.1.1 Traditional WSN . 65

4.1.2 Software Defined Wireless Sensor Network 66

4.2 Problem Formulation . 67

4.2.1 Illustrative Example . 69

4.3 Proposed Algorithm . 71

4.3.1 Assumptions . 71

4.3.2 A-star Algorithm . 72

4.3.3 Energy Model . 73

4.4 Simulation . 76

4.4.1 LEACH protocol . 76

4.5 Results and Discussion . 78

4.6 Conclusion . 81

5 Failure Recovery in SDWSN 82

ix

Table of Contents

5.1 Overview . 82

5.2 Failure Detection in SDWSN . 83

5.3 Failure Recovery Techniques . 86

5.3.1 Fast Failover Procedure in Software Defined Networking 88

5.4 Model and Simulation . 95

5.4.1 Evaluation . 99

5.4.2 Evaluating Recovery Time . 102

5.4.3 Evaluating Failure Detection Traffic 105

5.4.4 Evaluating Number of Control Messages 107

5.5 Conclusion . 111

6 Conclusion 113

6.1 Addressed Problems . 113

6.1.1 Lifetime Maximisation for SDWSN 114

6.1.2 Failure Recovery of SDWSN . 115

6.2 Discussion and Future Work . 116

Bibliography 118

x

List of Figures

1.1 Bell’s law: a new computing class emerges every 10 years 9

1.2 Network function virtualisation: Combines the functionality of various net-

working devices into a single virtualised architecture reducing CapEX and

OpEX . 10

1.3 Applicability of software-defined networking and network function virtu-

alisation . 11

1.4 Traditional vs software-defined networking: (a) networking switch per-

forms the control and management tasks in addition to forwarding traffic;

(b) the control and management tasks are delegated to the dedicated con-

troller. 14

2.1 IoT application domains . 24

2.2 The six layers IoT architecture . 26

2.3 SDN . 31

2.4 In software-defined networking, OpenFlow protocol is used for communi-

cation between controller and switches. 33

A Software-Defined Survivability Approach for WSN in Future IoT

List of Figures

2.5 OpenFlow Switch Components . 34

2.6 Messages exchanged between the SDN controller and the OpenFlow-enabled

switch . 37

2.7 Detailed OpenFlow switch components with the main fields of each table 39

3.1 IOT layers . 48

4.1 Network Topology of a typical SDWSN 69

4.2 100 Random Nodes Network . 75

4.3 A-star based SDWSN lifetime compared to LEACH with random network

consisting of 100 nodes . 79

4.4 Energy dissipation of SDWSN compared to LEACH with random network

consisting of 100 nodes . 80

5.1 BFD Control Frame . 85

5.2 Path Recovery vs. Link Recovery . 87

5.3 Group Tables of OpenFlow . 89

5.4 Messages Exchange Between SDN Controller And OpenFlow Enabled Switch 90

5.5 FlowTables For A Sample Network With Input And Output Ports And

Priority For The Flow From Source To Destination 91

5.6 FlowTables For A Sample Network With Input And Output Ports And

Priority For The Flow From Source To Destination 92

2

List of Figures

5.7 FlowTables For A Sample Network With Input And Output Ports And

Priority For The Flow From Source To Destination 94

5.8 Flow Chart For Protection Process Inside The Controller 98

5.9 Topologies Used for evaluating Recovery Schemes in SDWSN [1] 101

5.10 Time Required by Controller In Finding Alternative Path In Restoration

Operation . 103

5.11 Average Recovery Time . 104

5.12 Traffic Behaviour In Restoration Scheme 106

5.13 Traffic Behaviour In Protection Scheme 106

5.14 Control Traffic In Topology a . 108

5.15 Control Traffic In Topology b . 108

5.16 Control Traffic In Topology c . 109

5.17 Control Traffic In Topology d . 110

5.18 Control Traffic In Topology e . 110

3

List of Tables

1.1 Software Defined Networking (SDN) vs Network Function Virtualization

(NFV) . 12

2.1 Different SDN controllers . 32

2.2 FlowTables Fields of OpenFlow Standard 1.0 34

2.3 FlowTables fields of OpenFlow standard 1.1 35

2.4 Possible match fields . 35

3.1 Results overview . 53

3.2 Software Defined Networking in Wireless Network 59

3.3 Summary of Mininet-WiFi Related Studies 62

3.4 Summary of OpenNet Based Studies . 63

4.1 Variables Used In The Optimisation Model 68

4.2 Flow from sensing nodes to SDN controller 70

A Software-Defined Survivability Approach for WSN in Future IoT

List of Tables

4.3 Simulation Paramters . 78

4.4 Results overview . 80

5.1 OFDP/LLDP Frame Structure . 91

5.2 FlowTable entry for Node A, Directing The Pipeline To Execute The In-

structions In The GroupTable . 93

5.3 GroupTable entry for Node A, Prioritising The Flow Using Primary Path

As a First Entry and The Rest As a Backup Route In The Case Of Failure 93

5.4 A Failure In Port 2, The Next Active Entry In GroupTable Of Node A Is

Activate . 93

5.5 Applications Used In SDWSN Failure Recovery Implementation 96

5.6 Topologies . 100

5

Acronyms

6LoWPAN : IPv6 over Low-Power Wireless Personal Area Networks
API : Application Programming Interface
AODV : Ad-Hoc On Demand Vector Protocol
B.A.T.M.A.N. : Better Approach To Mobile Ad-hoc Networking Protocol
BFD : Bidirectional Forwarding Detection
BS : Base Station
CAM : Content Addressable Memory
C4ISRT : Command, Control, Communications, Computers,

Intelligence, Surveillance, Reconnaissance, and Targeting
CapEX : Capital Expenditures
CH : Cluster Head
CSMA : Carrier Sense Multiple Access
DAG : Destination-Oriented Graph
DODAG : Destination-Oriented Directed Acyclic Graphs
DoS : Denial-of-Service
DSSS : Direct Sequence Spread Spectrum
DYMO-low : Dynamic MANET On-demand for 6LoWPAN protocol
ECG : Electrocardiography
GPL : GNU Public License
HaaS : Hardware as a Service
IETF : Internet Engineering Task Force
ILP : Integer Linear Programming
IoT : Internet of Things
LEACH : Low-Energy Adaptive Clustering Hierarchy
LoWPAN : Low-Power Wireless Personal Area Networks
LR- WPAN : Low-Rate Wireless Personal Networks
LOS : Loss of Signal
MANET : Mobile Ad hoc Network
MEMS : Micro Electrical Mechanical Systems
MILP : Mixed-Integer Linear Program
MPLS : Multi-Protocol Label Switching

A Software-Defined Survivability Approach for WSN in Future IoT

Acronyms

NBI : North Bound Interface
NFV : Network Functions Virtualization
NIC : Network Interface Card
NOX : Network Operating System
ONF : Open Network Foundation
OvS : Open Virtual Switch
OSPF : Open Shortest Path First Protocol
OpEX : Operating Expenses
QoS : Quality of Service
RF : Radio Frequency
RTT : Round Trip Time
RSSI : Received Signal Strength Indicator
SaaS : Software as a Service
SBI : South Bound Interface
SDN : Software Defined Networking
SDx : Software-Defined Everything
SDWLAN : Software-Defined Wireless Local Area Network
SDWSN : Software Defined Wireless Sensor Network
TCAM : Ternary Content-Addressable Memory
TDMA : Time division Multiple Access
TCP : Transmission Control Protocol
VANET : Vehicular Ad Hoc Network
VLAN : Virtual Local Area Network
WAC : Wireless Access Controller
WMN : Wireless Mesh Network
WLAN : Wireless Local Area Network
WSN : Wireless Sensor Networks

A Software-Defined Survivability Approach for WSN in Future IoT

Chapter 1 Introduction

1.1 Introduction

With the enormous advancement and spread of information technology (IT), people and

organisations depend heavily on the flow of information and the availability of technology.

Under the umbrella of IT, the three major significant parts are software, hardware, and

networking. Harmony in the development of these elements ensures a coherent digital

ecosystem. In addition, any lack of innovation in one of these three will adversely affect

the growth of the other two. Software has improved dramatically as it has moved from

the command line interface (CLI) to higher level programming languages through Web

and Web 2.0 technologies to mobile applications. In addition, hardware development has

improved dramatically, with increased capacity in memory, storage capacity, size, and

processing speed. According to Bell’s law, a new class of computer is developed approxi-

mately every 10 years that is less expensive[2] and 100 times smaller than its predecessor

[3]. However, networking remains restrained by the same Transmission Control Proto-

col/Internet Protocol (TCP/IP) that was introduced in the early 1980s [4]. With the

inherited complexities from TCP/IP becoming increasingly complex by the addition of

new protocols, the limitations caused by TCP are the main reasons for the lack of innova-

tion in networking[5], in addition to other problems, including the high costs associated

with the operation and management of networks. A clear example was the introduction

A Software-Defined Survivability Approach for WSN in Future IoT

Introduction

of IPv6, when the world noticed that traditional IP is insufficient for the growing number

of users. Many services and protocols have been introduced to address the new changes,

with a deployment cost of approximately $25 billio[6][7].

Due to growing bandwidth demands and strict limits on the latency of present

applications and network characteristics, TCP is constantly being developed. This de-

velopment has caused a growing number of protocols and requests for comments (RFCs)

(' 8,300) [8]. Consequently, networking protocols that were constituted to a very agile

standard turned into an inelegant collection of protocols.

60s 70s 80s 2010 2020200090s

103 : 1

1 : 1

1: 103

1: 106

106 : 1

Mini

Mainframe

Computers

Per Person

Years

Workstation PC

Labtop

mobile

Figure 1.1 – Bell’s law: a new computing class emerges every 10 years

New challenges, such as the increased demand from end users for media stream-

ing and mobility, have added to the problem. Telecommunication companies would have

to spend more capital expenditure (CapEX) to cope with this demand, including invest-

ing in different large-scale networking devices (switches, routers, load-balancers, firewalls,

9

Chapter 1 : Introduction

etc.). Telecom companies would also have to spend more resources to maintain and run

different networking devices (OpEX).

1.1.1 Network Virtualisation

To address existing shortcomings and future needs, the concept of network virtualisation

has been embraced by a wide range of stakeholders across industry and academia. Two

of the prominent network virtualisation approaches that complement each other and

aim to change the networking status quo are software-defined networking (SDN) [9] and

network function virtualisation (NFV) [10]. NFV follows a ‘white box’ approach, in

which standard x86 computers can perform common networking functionalities, instead

of only costly devices. This performance is achieved by virtualising networking tasks on

top of a dedicated operating system (OS). Thus, one white box could have a firewall,

load-balancer, or router running in a virtual OS inside that box. The result is reduced

complexity, OpEX, and CapEX. In addition, this approach has the added benefit of

quicker implementation, yielding a more rapid time to market.

R
ou

te
r

Sw
itc

h

Fi
re
w
al
l

Lo
ad

B
al
an

ce

Se
rv
er

OS OS OS OS OS
x86 x86 x86 x86 x86

Hyper

x86

Figure 1.2 – Network function virtualisation: Combines the functionality of
various networking devices into a single virtualised architecture reducing

CapEX and OpEX

SDN, on the other hand, is based on the separation of control and media planes.

10

Introduction

Here, the control plane can be programmed, and the data plane is abstracted.

SDN borrows the concept of abstraction from object-oriented programming

(OOP). When a class is defined whenever repeated functionality is performed and com-

mon characteristics are not redefined each time. Similarly, SDN treats networking devices

as objects that perform basic forwarding functionality. This approach results in maximis-

ing hardware and power utilisation.

Other complex and intelligent calculation tasks are moved to a controller. Using

SDN, the controller can operate various vendor devices through standard communication

protocol, which leads to easier network orchestration and simplified operation and main-

tenance.

Moving the logic and route computations from the nodes to a central controller

results in removing existing complicated calculations of network devices. Furthermore,

this change leads to easier network orchestration and maintenance because of the cen-

tralisation of the configuration process. For wireless networks, the central controller can

visualise a network-wide picture, instead of consuming the power of the nodes trying

collaboratively to find the best route for transmission.

Application

Presentation

Session

Transport

Network

Data link

Physical

SDN
optimizes the work

of layer 2 & 3
of the OSI model

NFV
virtualizes the work

of layers 4-7 of the OSI model

Figure 1.3 – Applicability of software-defined networking and network
function virtualisation

11

Chapter 1 : Introduction

Software Defined Networking Network Function Virtualization
Planes decoupling
Control plane is moved from the
network devices that are left
with the forwarding functionality

System Architecture Decoupling
Different applications from different
vendors work in the same x86
architecture

Virtualise the programmability of
network devices

Virtualise and consolidate the
functionality of network appliances

Change of network topology Change of system architecture
Requires changes to interfaces,
control module, and applications

The change is only moving applications
from dedicated hardware to generic computer

Future: not yet implemented in
commercial scale

Present: Prove-of-concept already exists

Standardised by ONF Not Standardised

Table 1.1 – Software Defined Networking (SDN) vs Network Function
Virtualization (NFV)

1.1.2 Characteristics of Software Defined Networking

an SDN [9] is a new paradigm in networking that abandons traditional TCP/IP concepts

by abstracting its protocol stack from seven layers to an abstracted forwarding plane

and a control plane. The former is concerned only with forwarding data based on a

FlowTable; whereas, the latter oversees the network and controls the flow between

devices from a centralised location. The control plane can be centralised and managed

remotely, while the forwarding plane forwards the basic data based on instructions from

the control plane. While there are many challenges associated with the design of an SDN

[9] , OpenFlow [11] is a successful implementation of SDN concepts with its innovative

specifications [12]. The simple approach of SDN/OpenFlow has enabled researchers to

explore new applications [13] that were not possible in traditional networking [14].

In the past couple of years, most research attention has been directed towards

the integration of wired networks with SDN; even giant technical corporations, such as

Google, have implemented SDN [15] in their internal wide area networks (WANs). Even

so, little literature is available related to the integration of wireless networks with SDN.

12

Introduction

The existing prominent implementation of SDN is OpenFlow. OpenFlow spec-

ifications [12] [16] [17] [18] define the architecture and messaging protocol. In OpenFlow

architecture, there is an OpenFlow controller and an OpenFlow switch, which commu-

nicate through an OpenFlow protocol. The controller manages one or more switches,

formulates the flows, and programmes OpenFlow switches. The controller can also op-

erate in the same namespace as the network applications. SDN promotes the abstraction

of the second and third functionalities above for the following benefits:

• Functions such as firewall, load balancing, and intrusion detection become an ap-

plication that runs in the controller. Even basic functions, such as media access

control (MAC) learning are implemented to be performed only by the controller.

• The above have an added benefit of saving customers from buying dedicated boxes

for certain functionalities, hence reduced CapEX.

• When network devices are left only for data forwarding, enormous improvement

is obtained. The device only has to check the rule of the first packet of the data

sent, then will perform either the forwarding or drop and no further processing is

required. The rest of the traffic is treated as data flow.

• For the network administrator, a view of the network will be visible so that they

only think about the big picture. Host A can communicate with Host B, there is

no need for physical configurations on both devices. The controller performs the

MAC learning and calculates the route based on the chosen protocol, then installs

the rules for every affected network device in the network.

13

Chapter 1 : Introduction

Data Plane
Control
Plane

Data Plane
Control
Plane Data Plane

Control
Plane

(a)

SDN
Controller

Data Plane

Data Plane Data Plane

(b)

Figure 1.4 – Traditional vs software-defined networking: (a) networking
switch performs the control and management tasks in addition to forwarding
traffic; (b) the control and management tasks are delegated to the dedicated

controller.

1.2 Wireless Sensor Networks

Wireless sensor networks (WSNs) are a special type of network that can sense the phe-

nomenon of interest. Activates in the soundings, such as motion, pressure, or temperature

of the environment and electromagnetic and acoustic waves [19]. Initially developed to

detect dangerous situations during attacks in battleground and surveillance military ap-

plications, WSNs have a much broader array of exciting potential applications.

WSNs and future Internet of Things (IoT) applications can help solve global

challenges such as the ageing population, food security, and many others. In addition, the

quality of life of the general public is expected to improve thanks to commercial products,

including healthcare, security, and environmental solutions. In the healthcare sector, the

WSN will be more efficient and will have more operational time; thus, providing patients

or ageing people with more freedom to perform their daily tasks [20].

The advanced development of micro-electro-mechanical systems (MEMS) over

recent years has brought greater accessibility to small, low-cost, low-power sensor devices.

A typical sensor node consists of one or more sensing units, a power source, a wireless

communication unit, a processing unit and limited memory. The sensing part of the node

14

Wireless Sensor Networks

contains one or more sensors and an analogue-to-digital converter (ADC). Typically, the

power source is in the form of a battery. Once this power source is depleted it cannot be

easily replaced.

Different sensor nodes may contain advanced capabilities according to their in-

tended application. Mobility support, for example, is required in certain applications

where WSN node is coupled with mobile entities such as vehicles or people.

Despite their compelling applications, WSNs have some negative attributes that

could impact their capability to perform their intended function, most notably, the limited

on-board resources of their nodes in terms of battery, processor, and memory. Of these

resources, the finite power resource is the most significant challenge in WSNs research.

The limited power resource of the node prevents WSNs from capitalising on their fullest

potential and causes them to have a deprived functioning lifetime. To address the limited

battery resource problem, an enormous number of energy conservation solutions and

protocols have been proposed over the past decade[21] [20].

Routing, the process of calculating and using the route for transmitting sensed

data in WSNs, is the foremost energy consumption element in WSN node operation [22].

A meticulous design of WSNs routing protocol is strongly desired to extend network

lifetime. However, due to other existing limitations regarding processing and memory,

routing is unconventional in the case of WSNs. This issue leads to the necessity for in-

novative solutions to make the IoT and WSN more resilient, dependable, and survivable;

that is, providing the expected level of functionality based on existing resources. Addi-

tionally, addressing the challenge of WSN failure recovery is yet another survivability and

resilient feature that is desired in future IoT solutions.

15

Chapter 1 : Introduction

1.3 Motivations

As discussed previously, WSNs involve several challenges in areas such as energy ef-

ficiency, security, computational capabilities, communication bandwidth, data storage,

and scalability. These issues may threaten the growth of WSNs. It is expected that by

2020, more than 50 billion devices will be connected to at least one form of network,

most of which will be composed of sensors and actuators [23]. Thus, it is imperative to

invent methods of optimising WSNs to ensure that their applications in various fields

remain effective. One emerging area aimed at countering the traditional weaknesses of

WSNs is software-defined networking (SDN), which is a field that separates control logic

from the network device to ensure that the only role of the device is the forwarding of

information. Software-defined wireless networks (SDWSNs) are the integration of SDN

and WSN. In the SDN model, functions that consume a high amount of energy are re-

located to a centralised controller from the physical node. In this system, the node does

not perform functions such as information management, major processing, or routing [23].

These functions are performed at the application or controller level. Thus, the SDWSN is

a new paradigm for improving WSN efficiency by enabling a high level of abstraction for

the various functions of the current networks. The benefits of SDWSNs are the following:

• For energy preservation, SDN algorithms can be applied to the controller to replace

the resource-constrained nodes.

• An SDN can improve the interoperability of most current WSNs because it can

alleviate the low reliability of vendors by enabling the control of infrastructure

components from a central point. This allows a single protocol to be used for

various elements even when they are from different manufacturers.

• The scalability of WSN can also be improved by SDN through the centralised

16

Aim and Objectives of the Research

enhancement of topological organisation and network efficacy.

• Software-defined networking is poised to improve communication in WSNs by in-

troducing changes such as allowing the centralised controller to effectively manage

duty-cycling functionality, media access, and sleep/duty scheduling .

• Security can also be improved by SDN through the centralisation of security man-

agement that simplifies the execution and configuration of defence mechanisms.

This dissertation is motivated by the need to develop a solution to existing

survivability and resilience problem in WSNs. As most efforts in this field have focused

on the traditional networking techniques, these solutions continue to suffer from the

challenges that network programmability can solve. With SDN and NFV being embraced

heavily in giant networking and telecommunication companies [24], this aggravates the

need to push the research to involve wireless networking technologies.

On the other hand, energy and survivability pose a challenge in the face of the

advancing IoT. With WSNs being the key element in the IoT, the energy consumption,

stability, and agility of the WSNs dramatically affect the IoT. However, the success of

SDN in reducing the OpEX, energy consumption, and computational tasks of networking

devices stimulates the need to discover its potential in the WSNs domain.

1.4 Aim and Objectives of the Research

The main aim of this thesis is to increase WSNs survivability in the SDN environment

by (1) increasing network lifetime and (2) improving the failure recovery process. The

goals of this research are addressed through the following objectives:

• Review and study the contrasting features of both SDN and WSNs. To achieve

this, a comprehensive literature review of the topics and their new standards and

17

Chapter 1 : Introduction

solutions is carried out. In addition, simulation tools and their documentations are

examined.

• Develop a mathematical model for WSNs based on the SDN standard of decoupling

the control plane and the data plane. The linear programming model objective is

to maximise network lifetime, and the residual energy of the nodes is used as a

constraint. The problem was modelled and validated through AMPL optimisation

software.

• Develop a heuristic algorithm to prolong WSNs lifetime in the SDN environment,

with the goal of making the SDN controller perform a pathfinding process and

ensuring a fair resource utilisation of WSNs nodes. An A-star-based algorithm was

developed and simulated in MATLAB program[25]. The results were validated be

comparing the packet-delivery ratio and network lifetime with the LEACH protocol

[26].

• Introduce failure-detection methodologies to a software-defined wireless sensor net-

work (SDWSN) environment. An IoT emulation environment was used to architect

and test the bidirectional forwarding detection (BFD) and loss of signal (LoS) de-

tection based on OpenFlow specifications and implemented within Open vSwitch

(OvS).

• Devise a failure recovery technique in the IoT emulation environment. Protection

with different BFD schemes and restoration are compared regarding various param-

eters.

1.5 Contributions to Knowledge

Many energy-efficient and failure-recovery protocols in WSNs have been proposed in the

past to overcome the above-mentioned problems. With the new emerging technologies

18

Contributions to Knowledge

that provide alternative unexplored solutions, this issue raises many new and challenging

questions in the WSNs and IoT research domain. Of the newly unexplored issues, this

thesis addresses the following two major research topics.

1.5.1 WSN Lifetime Maximisation in the SDN Environment

Software-defined networking introduces the concept of decoupling the control plane ‘rout-

ing and management’ from the data plane ‘traffic forwarding’. This new paradigm in net-

working has the potential to reduce the amount of energy required in calculating the route

in WSNs. On the other hand, SDN depends on a centralised controller to perform the

calculations, which could conflict with the decentralised nature of traditional WSNs. This

issue presents new, unexplored challenges when combining the two environments. When

addressing the problem of lifetime maximisation, it is necessary to efficiently balance the

energy consumption of the nodes through the centralised SDN controller, in addition to

selecting the best path. With a network-wide perspective within the controller, its duty

is implementing a lightweight and efficient centralised routing criteria.

Contribution: Practical solutions that extend WSN lifetime were inves-

tigated by addressing the resource-constrained nature of wireless nodes when migrated

into SDN, becoming SDWSN. An A-star-based routing algorithm was proposed to extend

WSNs in the SDN environment. The algorithm, in addition to finding the shortest path

for WSN nodes, benefits also from the SDN controller to obtain fair distribution of traffic

to maximise resource utilisation among the nodes. A simulation model of the algorithm

was developed, in which it is deployed within the SDN controller. The algorithm is then

evaluated against existing WSN energy-saving algorithms.

19

Chapter 1 : Introduction

1.5.2 IoT Failure Recovery in the SDN Environment

Failure detection and recovery is another survivability concern in all types of networks.

In this sense, even though SDN is potentially a promising solution for IoT solutions,

certain technical challenges must be addressed when deploying IoT solutions based on

the SDN architecture. One challenge is the choice of failure detection technique that

adapts SDN technology and, at the same time, respects the unique nature of WSNs.

Another challenge is the selection of an SDN-native feasible recovery technique under the

restrictions of IoT solutions under limited resources.

Contribution: The failure detection problem is addressed, and a comparative

evaluation of existing SDN failure detection techniques is presented. The performance

of different failure detection techniques is evaluated in an IoT simulation environment.

The control traffic overhead and failure detection time are the main criteria in this eval-

uation. The selection of any particular technique is an application-based decision, which

our work contributes towards clarifying. For failure recovery, the performance was mea-

sured for various combinations of existing failure recovery techniques that adhere to SDN

specification constraints and suit IoT applications. At the centre of this contribution lie

the identification of architectural aspects and considerations of OpenFlow SDN protocol

when applied to a resource-constrained environment such as IoT.

1.6 Thesis Organisation

This dissertation addresses a range of open challenges in the area of survivability in WSNs

and proposes embracing network programmability through SDN architecture. Chapter 2

introduces SDN and WSNs and their distinguishing characteristics and highlights their

potential. Chapter 3 reviews recent literature on wireless network applications in the

20

Thesis Organisation

SDN environment. Since the integration of SDN is still a work in progress, we highlight

the most relevant work regarding wireless fault tolerance and survivability problems.

Chapter 4 addresses the lifetime energy problem in WSNs and presents SDN as a solution

for lifetime maximisation. The problem is mathematically formulated and solved then

a heuristic solution based on an A-star algorithm is presented. Chapter 5 addresses the

error recovery problem in the SDWSN environment, technical challenges are addressed,

and then a novel error recovery model is utilised to solve this problem. This work then

concludes in Chapter 6 with a summary of the findings and future research directions.

21

Chapter 2 Background

2.1 Internet of the Things: An Overview

The Internet of things (IoT) can be defined as the network of computing devices incorpo-

rated in different types of objects that send and receive data through the Internet. The

IoT allows the transfer of data over a network without the need of human-to-computer

or human-to-human interactions. An increasing number of organisations use IoT to au-

tomate processes and increase the quality of customer service, among other benefits. The

number of interconnected devices is expected to reach more than 34 billion devices by

2021 [27]. According to a BBC Research report [28], both the IoT hardware and service

sectors are expected to reach $17.3 billion by 2022 at a compound annual growth rate

of 21.7%. These estimations show the high potential impact of IoT on the entire global

economy and suggest it will likely disrupt many industries.

The technology and applications of IoT are likely to be one of the major drivers

of innovation and investment in the communication sector, likely leading to the introduc-

tion of many new services [27]. The IoT has applications in several domains, including

biometrics, transportation, industry, agriculture, business, infrastructure, energy, health

care, and home appliances. In the next years, it is expected that IoT will continue to

change these domains by automating, digitising, digitalising, optimising, and transform-

ing processes, business models, and industries.

A Software-Defined Survivability Approach for WSN in Future IoT

Internet of the Things Applications

2.2 Internet of the Things Applications

The IoT is rapidly penetrating multiple fields such as medicine, agriculture, power sys-

tems, and industrial automation. This section briefly discusses some popular applications

of IoT to emphasis its importance in the evolution of our world into a smart world [29,

30].

2.2.1 Applications in Environmental Monitoring

Internet of the things have several environmental applications, such as the prediction or

detection of coal-mine flooding, forest fires, earthquakes, tsunamis, cyclones, water qual-

ity, gas leakage, and volcanic eruption [29]. That this technology helps in the prediction

and early detection of these environmental disasters allows the relevant authorities to

take precautionary and safety measures to reduce the impact on the environment. Sen-

sors used in environmental monitoring collect data and convey them to the base station

through the Internet. For instance, in air pollution monitoring, the chemical reactions

that result in pollution are detected using sensors in an IoT system [29]. This system

uses an air quality chemical index to compare the obtained information with values on

the index to determine the required intervention.

2.2.2 Applications in the Agricultural Sector

Internet of the things applications in the agricultural sector play a crucial role in minimis-

ing wastefulness of resources and in conservation of the environment [30]. A WSN collects,

processes, and produces important information that can be used to assess favourable con-

ditions such as sowing density, humidity, temperature, pressure, fertiliser, and insecticides

levels, among other input needs [31]. The sensed data are then transmitted to the human

interface via cloud computing technology or the Internet. Personnel at the main sink

examine the data, and if required, take action to ensure that the production cost is low

23

Chapter 2 : Background

and the crop yield is high. In the real-time monitoring approach, the data are inspected

to determine the status of various environmental and climate conditions that affect the

production of agricultural products [29]. To improve the precision of the outcome, the

processed data of different topologies, such as throughput, load, and delay, are calculated

and simulated. For instance, in crop management, IoT is used to detect pH levels, tem-

perature, and humidity inside the rumens of cows, goats, and sheep [31]. The collected

data are then transmitted wirelessly to an exterior receiver node through a condensed

measuring probe known as a bolas. The objective of this wireless system is to detect the

presence of ailments, such as acidosis, hyperthermia, and blotting [31].

IoT
Application
Domains

Wearables

Smart
Home

Health
CareSmart

Cities

Automotive

Agriculture

Industrial
Automa-

tion

Retail

Energy
Man-

agement

Poultry
and

Farming Public
Safety

Tourism

Transportation

Independent
Living

Inventory
Man-

agement

Figure 2.1 – IoT application domains

24

Internet of the Things Applications

2.2.3 Applications in the Healthcare Sector

Currently, applications of WSN and IoT have extended to the healthcare sector where the

technology is used to detect physiological parameters such as the temperature, pH, and

heart rate of patients [29]. Therefore, it is possible to detect various ailments such as heart

attack, various heart diseases, Alzheimer, and acidosis. The IoT used in the healthcare

sector is designed in a way that enables sensing of various physiological parameters, and

the data are then transmitted to the care provider for further analysis and diagnosis [31].

Internet of the things applications have also been applied in telemonitoring arrangements,

such as a cognitive sensor network for the elderly. This home-based system comprises

an adequate number of cognitive wireless sensors that are used to detect the usage of

electrical devices, water flow, and bed usage patterns [29].

Moreover, utilising IoT in the medical field enables real-time monitoring of the

health status of a patient. For instance, electrocardiogram (ECG) sensors have been used

to monitor patients in real-time who suffer from chronic heart diseases [29]. In this case,

the patient wears the ECG sensor, which continuously sends data to the healthcare centre

or clinician and allows continuous monitoring of the patient.

2.2.4 Applications in Wildlife

Internet of the things are used in the wildlife sector to track the location of an animal in

the wilderness. A sensor in the IoT system can be attached to the body of a wild animal,

such as at the neck, a limb, or an ear, to enable identification of the animal’s position

as well as its feeding and movement patterns. One of the examples is the Zebra Net

that is used to monitor the movement of zebras in the wilderness [29]. The Zebra Net

sensor is attached to a given part of the zebra’s body to monitor the animal’s location and

position and the type of food consumed by the animal. Typically, a collar-mounted sensor

is attached to the neck of the animal, which helps continuously track its movements. In

25

Chapter 2 : Background

addition, endangered species such as elephants, rhinos, lions, and other wild cats can

be protected using WSN sensors. In this case, sensors are attached to the animals to

help determine their exact location all times, which enables the wardens to monitor and

control the animals’ movements.

Business Layer

Application Layer
Smart-Home, Smart-City, Healthcare, Industry, ...

Processing Layer
centralized Database, Cloud, Fog, Services, ...

IoT - Internet Connection Layer
Fiber optics, Satellite, ...

IoT Access Network Layer
6LoWPAN, BLE, LoRa, ZigBee, ...

Perception Layer
sensors, actuators, RFID tags, embedded devices, ...

Figure 2.2 – The six layers IoT architecture

2.3 Internet of the Things Architecture

There is currently no universally accepted architecture design. The most commonly used

designs include three-layer, five-layer, cloud and fog-based architecture [32]. The three-

layer architecture consists of an application, network, and perception layers. The cloud

and fog-based architecture consists of transport, security, storage, pre-processing, moni-

toring, and a physical layer. Compared to the other proposed architectures, the six-layer

architecture is considered to be a better and wider view of IoT architecture [32]. It

separates the network layer in previous proposals into access network and Internet con-

nection layers. The layers are perception, access network, Internet connection, processing,

application, and business.

26

Internet of the Things Architecture

The perception layer consists of actuators, radio frequency identification (RFID)

tags, sensors, and other embedded devices that are usually small form-factors with con-

strained power sources. These are the sensors that collect data from the environment.

Most IoT devices use a battery as the energy source, though energy-harvesting or mains-

powered devices exist.

The access network layer is responsible for the transmission of data collected

by the perception layer. It encompasses several communication technologies, including

Bluetooth Low Energy, Ethernet, and WiFi. Different communication technologies pro-

vide different transmission rates and data ranges and have different levels of costs and

power consumption.

The Internet connection layer consists of a border gateway or router that con-

nects the inner network to the Internet via communication technologies such as satellite

or fibre optics.

At the processing layer, the collected data is processed, analysed, and stored.

Storage and processing systems are either distributed or centralised. At this layer, mid-

dleware services are provided based on the data that is analysed and processed.

The application layer is where applications in various deployment areas use data

obtained from the processing layer.

The business layer is responsible for coordinating with the whole IoT system to

extract appropriate data for creating business models and other relevant data that helps

in making important business decisions.

27

Chapter 2 : Background

2.3.1 Communication Technologies

There are two categories of WSN based on functionality. They include short-range com-

munication technologies and long-range communication technologies [23]. Wireless sensor

networks in the short-range communication category are Bluetooth, Zigbee, Bluetooth

LE, and Z-Wave. The following list describes these technologies:

2.3.1.1 Short-Range Communication Technologies

Bluetooth was created in 1994 and is based on the IEEE 802.15.1 standard. It uses

an frequency-hopping spread spectrum (FHSS) radio transceiver and functions within

a diameter of 10m [23]. Its energy consumption is very high compared to other short-

distance WSNs. Bluetooth is applied in medicine and mobile technologies.

Zigbee is a short-distance WSN that was created in 2003 and is based on IEEE

802.15.4. It uses a direct-sequence spread spectrum (DSSS) radio transceiver and requires

a low amount of energy compared to Bluetooth. It can function within a diameter range

of 70m to 300m and is mainly used in monitoring and control [23].

Bluetooth LE, or BLE, is another short-distance WSN that is based on IEEE

802.15.1. It operates within the 2.4GHz frequency band and was created in 2011. Al-

though Bluetooth and Bluetooth LE function within the same diameter range, the latter

consumes less power [23]. Thus, Bluetooth LE is more cost-effective than Bluetooth. The

technology is also applied in the healthcare and public transport sectors.

Z-Wave is a short-distance WSN that consumes lower energy than Bluetooth. In

terms of energy consumption, it is comparable to Zigbee and Bluetooth LE. Unlike Blue-

tooth and Zigbee, Z-Wave operates on a varying radio frequency between 800–900MHz.

Hence, it is less likely to experience interference [23]. It can function within a 100m

diameter and is mainly used in smart homes, particularly in combination with IoT.

28

Internet of the Things Architecture

A wide variety of technologies are used in IoT systems, and a few commonly used

technologies are considered IoT enablers. Radio-frequency identification (RFID) forms

the part of the perception layer of the IoT architecture and is responsible for object

identification. Radio waves are used to transfer the identity of the object in the form of

a serial number [33]. Based on power provision, RFID tags can be categorised as active,

passive, and semi-passive.

Barcodes encode information through a combination of bars. These are machine-

readable codes that contain object-specific information. They are read by lasers or cam-

eras and have become popular for object identification. Quick response (QR) code that is

a variation of the barcode has been particularly adopted in a wide range of applications

[34].

Near field communication (NFC) can transfer data between objects wirelessly.

The object must be close (around 20 cm) [35]. The tags are similar to RFID and contain a

small amount of data. The tag can be rewritten. It is an effective way of communicating

when devices are close to each other, and it does not require line of sight.

2.3.1.2 Long-Range Communication Technologies

Some long-distance WSNs include NB-IoT or narrowband-IoT, which is a technology

using the 4G network. As a result, it has wide and excellent coverage, even underground

[36]. The technology can connect several devices to one another concurrently. It uses low

energy, and its battery can last up to 15 years. Also, it is not possible to interfere with this

technology because it uses licensed frequencies such as 3G and 4G. Also, the installation

of NB-IoT is cheaper [36]. However, its low bandwidth hinders the transmission of large

quantities of data within a short time.

LTE-M is comparable with NB-IoT. It has a wider bandwidth compared to other

LTEs but offers a narrow coverage. In addition, it transmits data at a reduced speed but

29

Chapter 2 : Background

more frequently than typical 4G networks [37]. One of the advantages of this network is

the ability to provide real-time information.

Long Range (LoRa) is a long-distance WSN designed to connect devices that

are battery-powered [36]. It achieves this connection through a local, national, or global

network at a very low cost. Consequently, it requires a network point, similar to cellular

M2M or WLAN. It can be accessed from a distance of 16km above ground or underground

[36]. Unlike NB-IoT, it utilises a licence-free network called ISM, meaning that there is

the possibility for interference by other users. Similar to NB-IoT, there is a legal limit

for data usage.

Sigfox allows the exchange of small amounts of data and does not require fre-

quent communication. It can be accessed from 40km and consumes low energy; when

it is on stand-by mode, two AA batteries can last for two years [36]. Unlike NB-IoT,

Sigfox uses a license-free network called ISM, which can lead to interference when a high

number of users are on the same network. In addition, data usage by this WSN is legally

limited.

2.4 Characteristics of Software-Defined Networking

Software-defined networking (SDN) [9] is a new networking approach that removes the

path processing from network devices and allows them to save their computing powers

for data forwarding. In SDN, the computation of the path does not occur in the wireless

nodes; instead, it happens in an external controller. This approach has been applied

successfully in wired networks with significant results. Moving the logic and computations

from the nodes to a central controller results in reducing the power consumed by the nodes

to calculate the path. In addition, the central controller can provide a clear picture of

the network, instead of consuming the power of the nodes by trying collaboratively to

find the best route for transmission.

30

Characteristics of Software-Defined Networking

The control plane can be centralised and managed remotely, while the forward-

ing plane forwards the basic data based on instructions from the control plane. Although

there are many challenges associated with the design of an SDN [9] , OpenFlow [11] has

been a successful implementation of SDN, with its comprehensive yet agile specifications

[12] . The novelty of SDN/OpenFlow has enabled researchers to explore new applications

[13] that were not possible in traditional networking [14].

Network Application Network ApplicationApplication Layer

Northbound Interface

Network Services Network ServicesControl Layer
(Control Plane)

Southbound Interface
(OpenFlow, ForCES, etc.)

Infrasturcture Layer
(Data Plane)

Figure 2.3 – SDN

2.4.1 SDN Controllers

In the SDN paradigm, the controller is the brain of the operations. The data plane

depends on the controller’s instructions to manage the flow of traffic. The controller

translates network policies into configurations for individual network devices to create,

read, update, or delete flow entries. These configurations can be set beforehand, proac-

tively. Reactive flow entries are installed when the network device consults the controller

to determine the next course of action for traffic flow. Multiple controllers can be clus-

tered for higher reliability and network scalability. The placement of controllers and the

quantity depends on the topology and operational requirements of the system. The first

SDN controller was NOX, which was developed using C++/Python. Since then, many

31

Chapter 2 : Background

SDN controllers have been implemented, mostly using either JAVA, C, or Python and

addressing different networking requirements. Table 2.1 lists the most commonly used

and reliable controllers. Ryu [40] controller is an open source component-based Python

Controller Implementation License Developer
NOX [38] C++ GPL Stanford University
POX [39] Python Apache Nicira
Ryu [40] Python Apache NTT, OSRG
OpenDaylight [41] Java EPL Industry consortia
Floodlight [42] Java Apache Big Switch
Beacon [43] Java BSD Stanford University
MUL [44] C GPL Kulcloud
Trema [45] C/Ruby GPL NEC

Table 2.1 – Different SDN controllers

SDN controller that is used throughout this work. This controller has the advantage

of running various controller functionalities and integrations with OpenStack1 thus, it

is widely used in cloud orchestration applications [46][47]. Ryu utilises a first-in first-

out priority for events in its application. Ryu is better suited for research applications

compared to NOX because of its active development and support for other southbound

interfaces other than OpenFlow, such as OF-config [48] and Netconf [49]. However, Ryu’s

performance is slower than other SDN controllers when deployed in large-scale networks

[50][47].

2.4.2 OpenFlow

Put simply, SDN treats network devices as forwarding boxes regardless of the vendor.

SDN separates the forwarding process of data packets from the routing process ‘control

process’. The controller performs the routing and management operations. The controller

has a global view of the network layer, because it is located between the application layer

and the physical switches in the network. The actual rules are installed in network devices
1 OpenStack controls large pools of computers, storage, networking and multi-vendor hardware re-

sources in a datacenter.

32

Characteristics of Software-Defined Networking

SDN
Controller

Data Plane

Data Plane Data Plane

Figure 2.4 – In software-defined networking, OpenFlow protocol is used for
communication between controller and switches.

by the controller, usually through OpenFlow protocol [12].

The existing prominent implementation of SDN is OpenFlow. OpenFlow was

initially proposed by Stanford University [51], and it is now standardised by The Open

Networking Foundation ONF [24]. OpenFlow specifications [12] [16] [17] [18] defines

the architecture, messaging protocol. In OpenFlow architecture there an OpenFlow

controller and OpenFlow switch which communicate through OpenFlow protocol. The

controller manages one or more switches, formulates the flows, and programmes the

OpenFlow switches. The controllers can also operate in the same namespace as the

network applications. There are several implementations of OpenFlow controllers. They

vary in terms of programming language, target users, and learning curve. The prominent

ones are NOX / POX, Ryu, Floodlight and OpenDaylight.

2.4.2.1 OpenFlow Switch

OpenFlow switches are agents that communicate with the controller and process the con-

troller’s messages. An OpenFlow switch contains FlowTables, GroupTables, Ports

and an OpenFlow channel. To achieve this functionality a software implementation of

33

Chapter 2 : Background

the OpenFlow standard, such as OvS software [52], must be installed in the standard

switch.

OpenFlow Channel

Contorl Channel

Datapath

Pipeline

 Flow Table Flow Table Flow Table

Group Table Meter Table

port

port

port

portpkt-in pkt-out

controller port

Figure 2.5 – OpenFlow Switch Components

Every entering packet is matched to flows in FlowTables. Flows within

FlowTables contain sets of actions that are applied to each packet that matches the

rules.

Header Fields Counters Actions Priority

Table 2.2 – FlowTables Fields of OpenFlow Standard 1.0

With the introduction of OpenFlow standard 1.1, Actions were replaced with

Instructions. With Actions, if there is a match, the action is performed directly.

While in Instructions, more sophisticated operations can be performed according to

the instructions which can be: (1) immediate actions , (2) a set of actions, or (3) a change

34

Characteristics of Software-Defined Networking

to the pipeline processing to go to a certain FlowTable or GroupTable. Additionally,

OpenFlow 1.1 allows for more tables compared to OpenFlow 1.0, and introduces the

concept of GroupTables. This concept was introduced to perform common networking

tasks, which can be of the following types.

• ALL a list of actions can be performed, used for flooding and multicasting.

• SELECT only one set of actions in the group is executed.

• INDIRECT instructions are executed in the next hop.

• FAST FAILOVER the live/functioning instruction list is executed.

Match Fields Priority Counter Instruction Timeout Cookie Flag

Table 2.3 – FlowTables fields of OpenFlow standard 1.1

Ingress
port

MAC
D.A.

MAC
S.A.

Ether
Type

VLAN
I.D.

IP
src

IP
Prtcl

IP
DSCP

L4
src prt

L4
dst prt

Table 2.4 – Possible match fields

Rules or Match Fields Rules are matching criteria based on ingress ports,

Ethernet, IPv4, or TCP source or destination addresses. This makes OpenFlow make

rules for Layers from 1 to Layer 4.

• Input Port (L-1)

• Ethernet (L2-Data)

• IP (L3-Network), subnet mask availability

• Transport Protocol and TCP/UDP ports (L4-Transport)

35

Chapter 2 : Background

Actions The measures that takes place once an event occurs in the data-path

pipeline. For example, when a packet first arrives, and there is no match, the rule can

be ‘drop it’ or ‘consult with the controller’. It is not required for an OpenFlow enabled

switch to support all actions. The actions available are shared with the SDN controller

during the bootstrapping process through the OFPT_FEATURES_REPLY message. Ex-

amples of actions include:

• Forward/OUTPUT (All, Controller, Local, Table, IN_port, Flood)

• Enqueue

• Drop

• Modify-Field

• SET_NW_SRC , SET_NW_DST

Counters, keep statistical information about flows, such as Received Packets, Received

Bytes, and Duration. A closer look at the simple but efficient structure of OpenFlow

tables reveals that it can provide the OpenFlow switch with the capability to function as

a switch, router, or firewall. For example, using the field [L4 Dst] to filter TCP or

UDP traffic, combined with a drop action, we have firewall functionality. Furthermore,

by setting the field [IP Dest addr] to forward matched flow to a certain port, the

result is router functionality. In addition, utilising counters for traffic size or duration

simplifies the work of networking engineers to perform sophisticated quality of service

(QoS) requirements.

2.4.2.2 OpenFlow Protocol Messages

The communication between an OpenFlow switch and a controller may be one of the

following types of messages. The relevant messages are defined below, the OpenFlow

36

Characteristics of Software-Defined Networking

specifications contains a comprehensive list [53].

• ofpt_hello: This is a symmetrical message to trigger the connection process

between the OpenFlow switch and the controller.

• ofpt_features_request: A controller-to-switch message created by the SDN

controller to request the features of the OpenFlow switch.

• ofpt_features_reply: A reply to the ofpt_features_request that con-

tains a list of the switch’s features.

The above three messages, in sequence, describe the process of OpenFlow bootstrap-

ping. Then, if successful, the SDN controller installs configurations and further installs

proactive flows using the following two messages.

3-way
handshake

HELLO

CONTROLLER

OF SWITCH

HELLO

FEATURE
REQUEST

SET
CONFIG

GET
CONFG

REQ

GET
CONFG

REQ

FLOW
MOD

PKT
OUT

(LLDP)

PKT
IN

ECHO
REPLY

ECHO
REQ

FEATURE
REPLY

Figure 2.6 – Messages exchanged between the SDN controller and the
OpenFlow-enabled switch

• ofpt_set_config: A controller-to-switch message to modify the settings of the

switch.

• ofpt_flow_mod: A controller-to-switch message generated by the controller to

modify the FlowTables of an OpenFlow switch.

Other relevant messages for this study include the following messages.

37

Chapter 2 : Background

• ofpt_echo_request: A symmetrical message used to implement a keep-alive

of the connection.

• ofpt_echo_reply: A symmetrical message in response to the previous message.

• ofpt_packet_in: A switch-to-controller message generated by the OpenFlow

switch on forwarding a packet to the controller.

• ofpt_port_status: A switch-to-controller message generated by the switch to

inform the controller about a change in state of a physical port.

• ofpt_packet_out: A controller-to-switch message that permits the SDN con-

troller to inject a packet into the data plane of a switch.

• ofpt_stats_request: A controller-to-switch message generated by the con-

troller to query the contents of one of the switch’s FlowTables.

• ofpt_stats_reply: A switch-to-controller message that is generated in response

to an ofpt_stats_request message enclosing the requested information about

the flows in the switch’s FlowTable.

38

Characteristics of Software-Defined Networking

OpenFlow Channel

Contorl Channel

Datapath

Pipeline

 Flow Table 0 Flow Table i
 Flow Table

Group Table Meter Table

port

port

port

port

port

controller port

���

���
���������������������������
	�
�	���
���
�

����	�� �����	

����

������	
�����
�

������

��
���	

�	�
�

�������
����

������������������	��������������������

�������
������

��������
����

���
�� �

����
­ �

������
����

����
�� � �

��
�����

���
����
�

���
�­���

������
��������

�����
������

Figure 2.7 – Detailed OpenFlow switch components with the main fields of
each table

39

Chapter 2 : Background

2.5 Wireless Sensor Networks (WSN)

A wireless sensor network (WSN) refers to a self-configured network, and unlike other

networks, it does not require an infrastructure to function [54]. A WSN is typically used

to monitor environmental or physical conditions such as pressure, temperature, vibration,

pollutants, motion, or sound. A WSN comprises several thousand sensors called nodes,

which use radio signals to communicate with each other. Each node contains computing

and sensing devices, power elements, and radio transceivers [54]. Wireless sensor nodes

cooperate to transmit the data to the base station or the main sink where the data are

observed and analysed. The base station functions as an interface between the network

and the user. All nodes in a WSN are characteristically resource-constrained, such that

they have low processing speed, limited communication bandwidth, and inadequate stor-

age capacity [54]. However, the discovery of new architectures that contain heterogeneous

devices and the recent developments in WSN have eliminated these limitations and con-

siderably expanded the spectrum of applications of this technology. Advancement in

WSNs has been rapidly increasing, leading to a wide range of applications in areas such

as agriculture, manufacturing, environment, and healthcare. A WSN is deployed in a

random, structured, or unstructured way depending on the network application and the

terrain [54].

2.5.1 Functionality

A WSN system consists of several sensor devices that can compute, communicate, and

sense wirelessly. The basic unit of a WSN is the sensor node, which is a tiny low-cost

scattering device with low energy consumption and wireless communication and local

processing capabilities [54]. A sensor node combines its capabilities to sense, communi-

cate, and compute input to produce valuable information for the user. A sensor node

is attached to a battery that acts as the power supply source. A WSN also contains

40

Wireless Sensor Networks (WSN)

a central processing unit or a microprocessor that digests the collected data. The pro-

cessor is attached to a memory chip on which the information is stored. Every sensor

node has a radio transceiver or an antenna that allows one node to communicate with

its neighbours. Sensor nodes sense and collect data on events happening nearby, which is

then processed by the microprocessor and transmitted to the base station [54]. Various

components of WSNs have limitations that may hinder the proper functioning of the

system. The battery has a limited power supply because it cannot store enough power

to sustain the system. The memory chip has a limited storage capacity, meaning that it

can only store a small amount of information. Radio transceivers compared to infrared

or optical communication are not robust and are not interference-free. The transmission

of data can be affected when the sensor devices generate vast volumes of redundant data,

and similar data from numerous devices might be aggregated, reducing the number of

transmissions [54].

2.5.2 Wireless Sensor Network Standards

The fundamental requirements for WSN include a high level of administration, low cost,

reliability, low power and maintenance, and easy deployment. Consequently, various

WSN standards such as Zigbee Pro ISA 100.11a, WirelessHART RPL, 6LoWPAN, and

LoRaWAN have been developed by companies such as Zigbee Alliance, HART Commu-

nication Foundation, and the International Society of Automation [55]. These standards

are based on IEEE 802.15.4.

2.5.2.1 Zigbee

Zigbee is a WSN standard developed by Zigbee Alliance. It is applied in a wide range

of sectors as a monitoring agent. Similar to WirelessHART, Zigbee is based on IEEE

802.15.4 and has an operating frequency of 2.4 GHz [55]. The standard can form three

types of topologies – mesh, star, and cluster – and defines its network layer for various ap-

41

Chapter 2 : Background

plication layers and networking capabilities that provide a framework for communication

and development application. There are two implementation options for this standard:

Zigbee, for smaller networks, and Zigbee Pro, for larger networks [55]. The key features of

the Zigbee standard are low cost, long range, low energy usage, robustness, easy deploy-

ment, self-healing, and self-organising. All these features are present in WirelessHART.

However, Zigbee can only interoperate with Zigbee devices, and unlike WirelessHART,

Zigbee lacks frequency diversity and is exposed to security threats. The standard uses

a static channel, which increases the chances of interference and delay [55]. Another

limitation is the lack of path diversity, meaning that in the event a path breaks down,

a new one must be created. Unlike WirelessHART, it is not easy to achieve scalability

with Zigbee due to the presence of ad hoc on-demand vector routing (AODV).

2.5.2.2 6LoWPAN Standard

6LoWPAN stands for IPv6 over low power wireless personal area network and was cre-

ated by the International Engineering Task Force (IETF) based on IEEE 802.15.4 [55].

6LoWPAN is designed to be applied in sectors that require many sensor nodes to cover

a large geographic region using low power, low cost, and few computations. The incor-

poration of IPv6 allows connectivity to the Internet at low data rates and a low duty

cycle. 6LoWPAN has the following benefits: a smaller packet size; easy management

of the network due to IPv6; mobility support; reliability; reduction in latency, header

fragmentation, and compression; and high scalability as a result of the adoption layer

[55]. Some of the drawbacks of 6LoWPAN include susceptibility to link failures, weak

security, and interference.

2.5.2.3 WirelessHART

WirelessHART is a WSN standard created by the HART Communication Foundation

(HFC). It uses IEEE 802.15.4 to process information automatically, and its operational

42

Wireless Sensor Networks (WSN)

frequency is 2.4 GHz [55]. The standard combines a direct sequence spread spectrum

(DSSS) with a frequency-hopping spread spectrum (FHSS) to transmit data efficiently.

The functionality of IEEE 802.15.4 is extended at the link layer by the addition of 10ms

timeslots and the use of the time-synchronised mesh protocol (TSMP). This protocol

utilises time division multiple access (TDMA) to reduce the frequency of collisions and

allow channel access [55]. The WirelessHART standard can self-organise and self-heal.

Additionally, the WirelessHART standard is robust, highly secure, energy-efficient,

simple to execute, and interoperable with other devices manufactured by HART [55]. It

also easily achieves scalability using either multiple access points or a WirelessHART

Gateway. While the standard has several benefits, it also has drawbacks. For instance, it

cannot be interoperated with other standards that are based on IEEE 802.15.4. In addi-

tion, WirelessHART has only dedicated links and has provisions associated with shared

links. The standard uses a scheduling algorithm called a centralised scheduling algorithm

[55].

2.5.2.4 IPv6 Routing Protocol Standard

The IPv6 routing protocol (RPL) for low power was developed by the IETF [56]. The

standard is mainly applied in IoT environments. Since its first proposal, the standard has

been improved extensively to allow applications in diverse environments and scenarios.

One of the areas in which RPL has been extensively applied is the control of congestion

[57]. In lossy and low power networks (LLNs), congestion is a problem and can result

in a reduction in network lifetime. Some of the benefits of RPL include low energy

consumption and low cost.

43

Chapter 3 Literature Review

3.1 Introduction

The world we live in today is transforming into a ‘smart world’ rapidly with the fast-

paced technological advancements. The IoT is an important milestone in this context.

Everyday devices are connected to each other over a network and are able to communicate

with each other and behave intelligently.

A simple working of an IoT system can be described in three steps [33]:

1. Data sensing and communication: The objects collect specific information from

their surroundings with the help of sensors and communicate it to the process-

ing centre. The data picked up by the sensors may range from temperature and

humidity level to vibrations.

2. Action: The information collected by the sensors is received by the processor, and

after being processed, a decision is made regarding an appropriate response.

3. Feedback: The results yielded by the action taken in step 2 are communicated to

the administrator.

A Software-Defined Survivability Approach for WSN in Future IoT

Low Power Protocols

3.2 Low Power Protocols

There are several standardised protocol stacks used for low power networks. These include

narrowband Internet of things (NB-IoT), Long Range (LoRa), and Long-Term Evolution

Machine Type Communication (LTE-M). For instance, the authors of [58] supported

the use of a stack for lossy and low power IoT networks that make use of the standards

proposed by IEEE and IETF. These standards are meant to offer energy-efficient medium

access control layer (MAC) and physical layer (PHY) operations for lossy and low power

networks.

The routing protocol for low-power and lossy networks (RPL) protocol, is a

tree-based approach that is defined by IETF as the standard protocol for low-power and

lossy networks (LLNs) [59]. This protocol organises the network in a directed acyclic

graphs (DAG) that encompasses more than one destination-oriented directed acyclic

graph (DODAG). Each DODAG is used to represent a routing tree and is constructed

from objective functions that use routing metrics to calculate the best path between the

DODAG root and the nodes [60].

Culler and Berkeley [61] proposed a hybrid routing protocol for LLNs (HYDRO).

This approach combines centralised control with local agility, and the network nodes

produce DAGs as the default routes of the border router.

Kim, Montenegro, Park, Chakeres, and Perkins [62] proposed a dynamic mobile

ad-hoc network on-demand for the 6LoWPAN protocol (DYMO-low). This protocol uses

routing messages as control messages and was fully projected for the use over IEEE

802.15.4. The routing messages are not fragmented, and the choice of the best path to

forward a message is realised considering the route cost and the link quality indicator

value. A different protocol is the Lightweight On-demand Ad hoc Distance-vector Routing

Protocol – Next Generation (LOADng) [63]. The LOADng protocol creates a route only

45

Chapter 3 : Literature Review

when a node sends a message to another node, and the process of creation is realised

through control messages. The route reply message is used by the destination to attend

the received route creation requests. In order to create a bi-directional path, an route

reply message can require a reception confirmation.

3.3 Energy Efficiency in Internet of the Things

Energy efficiency in IoT is an important factor that must be addressed when considering

the large number of energy-constrained devices that are connected to the Internet. In

order to increase the life span of different sensor nodes, energy conservation efforts should

be made at different levels of an IoT infrastructure [32]. With this in mind, the following

section provides a review of energy conservation approaches for IoT devices.

Sensors play a key role in IoT and are a special consideration in energy efficiency

solutions [32]. Several models of energy-efficient IoT have been proposed. For instance,

Wut, Yang, Li, and Li [64] proposed an energy-efficient model for a physical layer that can

also provide deployment benefits and a naïve optimisation principle for energy efficiency.

Al-Kahtani [65] presented a cluster-based sleep schedule model where clusters

were formed and devices assumed to have the same energy deployed. Different devices

were used as principal cluster heads (PCH) or alternative cluster heads (ACH),-which

were used as fault tolerance in case PCH devices failed. In each cluster, some devices are

active and others are not, reducing energy consumption.

Ahmad, Asim, Khan, and Singh [66] introduced the concept of green IoT. Which

requires specific hardware and software that are designed to consume less energy while

maintaining the same level of performance. For example, green wireless networks use

sensor nodes with small power and storage capacity and can be achieved by green energy

conservation, radio optimisation, and routing techniques. Green data centres are based

46

Energy Conservation in Internet of the Things

on renewable energy resources and use protocols [67].

Al Ridhawi, Aloqaily, Kotb, Jararweh, and Baker [67] proposed a new fog-to-fog

(F2F) collaboration approach for simple and complex multimedia service delivery that

creates short-term service-level-agreements offered to cloud subscribers while maximising

fog profit gains and client satisfaction. The proposed solution consists of a learning

mechanism that uses online and offline simulation data to generate guaranteed workflows

for new service requests. The evaluation of the model showed positive gains in service

delivery at a reduced power consumption for cloud and fog data centres.

3.4 Energy Conservation in Internet of the Things

There are multiple challenges that affect the design of an IoT architecture. Issues such

as security, mobility, energy usage, business model, and interoperability must be taken

into account.

3.4.1 Energy Conservation Issues

Energy conversation is a difficult task, especially in situations where access to resources

is reduced while operational costs increase. There are several issues that must be consid-

ered when searching for energy conservation solutions, including analysis and planning,

energy engagement, maintenance, and employee commitment and satisfaction. Important

variables to be considered are traffic fluctuation, collision listening, overhearing listening,

protocol overhead reduction, and idle listening [32].

Traffic fluctuation in the network traffic can cause congestion, and when there

is a maximum traffic on the network, even if the network is working at the maximum

efficacy, congestion will reach a significant apex level [68].

Collision listening occurs when a node receives multiple data packets at the

47

Chapter 3 : Literature Review

same time. In this situation, the received data becomes irrelevant and retransmission is

necessary, causing additional energy consumption [69].

Overhearing listening can occur during data transmission when interference oc-

curs with the neighbouring node. This issue is especially relevant for the nodes within

reach and consumes a substantial amount of additional energy [70].

Protocol overhead reduction is an important consideration, as the protocol

header information consumes significant energy resources. There are several ways to

reduce this energy consumption, including cross-layering approaches, adaptive transmis-

sion periods, and optimised flooding [71].

Idle listening refers to the fact that energy is consumed even when the node is

in idle mode and active and waiting to send data. In order to address this issue, one

option is to turn back the sensor nodes from sleeping to active mode after processing a

wake-up signal or after a predefined time interval [72].

Node Activity Management

Data Aggregation and Transmission

Media Access Control (MAC)

Security Management

Topology Management

Routing

sleep scheduling and on-
demand node activity

data from different sources
combined into one packet

channel access coordination

encryption and decryption

transmission power is ad-
justed relative to topology

transfer data
through the network

Figure 3.1 – IOT layers

48

Energy Conservation in Internet of the Things

3.4.2 Energy Conservation Approaches

There are several energy conservation approaches that can be used for IoT, and the

decision of a specific approach over others will have to be based on multiple variables.

For instance, routing protocols can take three forms, proactive, reactive, and hybrid

routing [73]. In proactive routing, the routes are routinely updated for each node in the

network. In a reactive protocol, routes generated on-request for the node. Hybrid routes

combine both approaches [74].

Node activity management can be used to save energy in idle time spans by

using sleep scheduling, namely setting a priori sleeping and wake-up timing. On-demand

node activity, in contrast, is not scheduled, as the node remains in an active state and

has some functionality [75].

Another approach for saving energy is through the design of improved MAC

protocols. The MAC protocol describes a set of frame transmission rules and channel

access procedure. The MAC standards can operate as non-beacon-enabled or beacon-

enabled. The non-beacon-enabled mode is always awake while the latter defines super-

frames in which nodes are active just for a small fragment of a super-frame [76].

Another area of activity where energy can be saved is security management. At

the present time, there is a need for improved cryptographic algorithms that could be

implemented in the application layer of security management. Saving energy in other

layers can be challenging, as each layer of IoT requires security measures. For instance,

in the perceptual layer, confirmation is fundamental in order to avoid illegal access to

the node, while in the network layer, confidentiality and integrity must be ensured at the

cost of energy consumption [77].

In order to reduce the node power consumption, several topology management

49

Chapter 3 : Literature Review

practices can be used. There are four control types, namely graph-based topology con-

trol, Gabriel graph, relative neighbourhood graph, and localised minimum spanning tree.

Graph-based control occurs where information about sensor separations and their posi-

tion can be accessed. In a Gabriel graph, every sensor participating in the network is

aware of the sensors located in their proximity and their location. A relative neighbour-

hood graph is a straight line connecting two points. A localised minimum spanning tree

processor works as a power diminished network by using a minimum spanning tree over

the network in a dispersed way [78].

Because data transmission is more costly than data processing, one approach

is to aggregate data sets inside clusters, where data coming from different sources is

consolidated in one packet. This approach helps reduce redundancy and the number of

transmissions. When power control is used in the transmission process, it is possible to

save a significant amount of energy [79].

3.5 Software Defined Networking

IoT solutions can benefit from the newly emerging concept in networking called SDN.

SDN is based on the separation of the control and media (or data) planes: the control

plane can be programmed, and the data plane is abstracted. SDN treats networking

devices as objects that perform basic forwarding functionality. This approach results in

maximising hardware and power utilisation.

Other complex and intelligent calculation tasks are moved to a controller. Using

SDN, the controller can operate various vendor devices through standard communication

protocol, which leads to easier network orchestration and simplified operation and mainte-

nance. Moving the logic and route computations from the nodes to a central controller

results in removing existing complicated calculations of network devices and to easier

network orchestration and maintenance because of the centralisation of the configuration

50

Software Defined Networking

process. For wireless networks, the central controller can visualise a network-wide picture

instead of consuming the power of the nodes by trying collaboratively to find the best

route for transmission. This chapter highlights recent developments in these fields to

address the survivability problem in the IoT.

3.5.1 Survivability in Software Defined Networking

A few recent studies have addressed survivability issues, mostly in wired networks. In[80],

the backup path is used once a failure is detected. The optimised path is calculated

based on link capacity and congestion constraints. The solution is inspired by the MPLS

tagging approach, in which a packet discovers the failure. The authors assume that the

packet will detour and make subsequent packets use the backup path. The authors have

not implemented the proposed solution, but claim that it could be implemented using

OpenState. The problem is formulated to reduce the length of the path of the tagged

backup packet, and the model is solved using AMPL-Cplex.

The authors in [81] apply the concept of protection to an existing network

by constructing a new network considering the capacity factor. The authors begin by

constructing the primary graph, in which each link is assigned a probability of failure,

and a primary capacity. Then, a backup network is constructed using the same vertices

(nodes) using new backup links. So, those links provide a backup path for the primary

links and allocate capacity. The problem was formulated as an ILP for backup capacity

provisioning, then solved using simulated annealing to use networks with a larger number

of nodes. The assumptions in the work include links being bidirectional, primary links

failing with probability, and backup links not failing. However, the authors provide a

draft of how to consider unreliable backup links.

In [82], the protection is performed for the links, not the entire network as in

the previous work. The primary network is calculated and, for each switch, the set of

51

Chapter 3 : Literature Review

OD (origin, destination) is based on capacity and demand. The problem is formulated

as an ILP and solved using a heuristic algorithm. The authors performed a simulation

in comparison with other methods.

The authors in [83] prove that routing tables can provide guaranteed resilience

against a single failure. In [84],a study of an SDN local fast failover mechanism is pre-

sented. The authors report the effect of fast failover and the trade-off between robustness

and load balancing. Another resilience approach is presented in[85], in which a higher

degree of availability and fixable routing control is achieved by moving the responsibil-

ity of connectivity to the data plane. The authors introduce the notion of data-driven

connectivity (DDC), in which forwarding decisions should guide the packets to their des-

tinations.

A shortest path backup and a greedy algorithm for controller selection are pro-

posed in [45] for wireless mesh networks (WMNs) in an SDN environment. The aim is

to extend the network edges and to reduce packet loss. The simulation was based on 20

nodes, but recovery time in case of failure was not documented.

To detect the connection status and to minimise the effect of controller loss, a

test bed was implemented recently [9]. In the study, OvS were modified within WSNs

to perform recovery in addition to detecting node failure. The authors in [86] propose a

method of dynamic monitoring of the entire wired network in the case of flow changes.

That is, once a new rule is inserted in the flow table, how long will it take the net-

work to update the affected switches running OvS. In addition, event log function and

visualisation were implemented.

52

Software Defined Networking (SDN) Applications in Wireless Networks

Ref. Recovery Type Algorithm Time media metric Cplex SDN sim.
[87] tagging MLIP 30 s< wired link capacity Yes No
[88] Link protection LIP-SA wired Link capacity Yes No
[89] Link protection heuristic 0.4 s < wired Link capacity No Yes
[90] Node protection Shortest wireless distance No No

Table 3.1 – Results overview

3.6 Software Defined Networking (SDN) Applications
in Wireless Networks

Different implementations of SDN in wireless networks have been presented to solve vari-

ous problems in wireless networks. Research work has dealt with applications intended to

achieve a specific goal, such as to improve the network’s performance. Other applications

include load balancing, rural networks, and wireless sensor networks.

3.6.1 Performance Improvement

Wireless networks share the common goal of utilising the available bandwidth and reduc-

ing delay. These two factors affect the performance of the network. With the successful

deployment of SDN in wired networks, it has been tested in various wireless networks

using both simulation and test-bed experimental approaches.

In WMNs, traffic is transferred in a multi-hop fashion from one wireless router

to another, which creates a major problem regarding the client’s mobility. When a client

moves within a WMN, it is difficult to maintain end-to-end mobility. Current routing

protocol solutions, such as the ad-hoc on demand distance vector (ADOV) protocol [91]

and the better approach to mobile ad-hoc networking (B.A.T.M.A.N) protocol[92], lack

flexibility and do not provide flow-based routing. The first work to address this issue and

introduceOpenFlow as a solution was a study by Dely, Kassler and Bayer (2011) [93].

Their experiment results indicate that OpenFlow is a promising option, with an average

53

Chapter 3 : Literature Review

outage of 200 ms during handover.

In [94] , OMNeT++ [95] was used to conduct a comprehensive investigation

of WMNs operating withOpenFlow technology. The simulation results are compared

with traditional open shortest path first (OSPF) routing. The aim of the experiment

was to evaluate the performance regarding throughput, end-to-end delay, and packet

loss. The results indicate that OpenFlow performed worse in terms of throughput when

the number of users exceeds 20. However, for less than 20 users, all other performance

parameters, including throughput, indicate greater benefits from using OpenFlow rather

than traditional routing. For example, the end-to-end delay was improved by 47% based

on the simulation of different applications over a variety of different users and simulation

times.

One of the factors that affects the performance in wireless networks is the handoff

process. Traditionally, handoff is performed through the measurement of the received

signal strength indicator (RSSI) when the client is moved to the access point (AP) with

a stronger signal. This technique does not guarantee an acceptable performance for

the entire network. An alternative solution using OpenFlow was proposed in [96]. In

what the authors callOpenFlow Access Point (OFAP), each client uses its service set

identification (SSID) as its basic service set identification (BSSID). The former is the

network name that is used to identify the network, while the latter is the MAC address

of the device that is providing the service. By using SSID as BSSID, the perception of

the client’s device is that there is only one AP in the entire network. The experimental

setup in this work included Kulcloud 1 as the controller and OpenWrt 2 to configure

Open vSwitch [52] in the nodes. The performance regarding throughput and delay was

measured for the proposed handoff procedure. The experimental results in this work

indicate an increased throughput of 26.7% compared with the traditional RSSI, with no

1www.openmul.org
2www.openwrt.org

54

Software Defined Networking (SDN) Applications in Wireless Networks

interval of disruption during the handoff process. Although this approach solved the

problem of seamless handoff, the extra traffic generated/processed is not discussed. In

addition, in some applications, security issues could arise from sending the same traffic

to multiple devices.

A common problem among routing algorithms on WSNs is the lack of a global

view of the network’s topology and the high number of advertisement packets. Yuan,

Fang and Wu [97] proposed the use ofOpenFlow with link-state routing to overcome

those challenges. The authors used Raspberry Pi as the WSN nodes and installed Open

vSwitch to get anOpenFlow test bed. ADOV-UU 3 , a version of the famous ADOV

routing protocol, was used. The paper does not indicate exactly which controller was

used. However, the authors claimed that the new design allowed better utilisation of the

available bandwidth. An advantage of this approach is that it provides a fault-tolerant

design of the system (i.e., the system can use the co-existing ADOV protocol if the

controller fails).

3.6.1.1 Load Balancing and QoS

The design of SDN enables its control plane to oversee all the devices throughout the

network; therefore, it is a potential solution, in particular, for QoS and load balancing.

In [98] , a test bed was used to compare load balancing between an SDN-based

WMN (wmSDN) and the traditional optimised link state routing (OSLR) [99] protocol.

The design of the wmSDN included an Open vSwitch and a POX controller 4 . In this

approach, an in-band traffic solution is presented using the same network for data and

control traffic, but with different IP subnets. Both approaches have the same time of

hand off between two different experimental flow paths. The approach that used SDN

provided better performance in distributing the goodput (the useful data rate without
3Aodvuu.sourceforge.net
4openflow.stanford.edu

55

Chapter 3 : Literature Review

TCP/IP header) between the two available paths. The available links/paths are fully

utilised because of the OpenFlow controller’s ability to oversee the available paths and

to make the correct decisions for data flow.

A prototype was used to examine load balancing for WMNs by implementing

OpenFlow technology [100]. A Linux-based x86 platform was used with Floodlight

as a controller, and the B.A.T.M.A.N. routing protocol [92] was used for the initial

network topology setup. The design of the network incorporated a custom-designed

monitoring-tool ‘code’ that redirected traffic whenever the performance was degraded.

This redirection of traffic was performed through an OpenFlow controller that pushed

certain flow entries into a congested-nodes flow table. The results of the experiment

indicate that there was increased throughput when redirection occurred; in addition,

jitter was decreased by 25%. The redirection between paths consumes 5 ms, which is a

drawback of this configuration if the goal is not load balancing.

3.6.1.2 Rural Connectivity

Software-defined networking could be the answer to many challenges in rural networks,

such as low-cost devices and very limited operational budgets. Rural connectivity does

not require demanding networks in terms of features. The main requirements are only

simple connectivity with low-cost equipment and operations. Herein, SDN is proposed

as a viable solution for this type of network. However, since SDN is still an emerging

technology, a major concern is the availability of trained technicians during the first

deployment or when additional nodes are required.

Hasan et al. [101] [102] propose the integration of SDN concepts to be used in

rural networks. The authors posit that using this integration will only cost the enterprise

for the setup, after which it will obtain the benefits of easy management. The authors

analysed the business benefits of the integration in detail, positing that it would cause a

56

Software Defined Networking (SDN) Applications in Wireless Networks

paradigm shift in rural networks’ business.

Another work that advocates this idea of simplifying the operation and man-

agement of rural networks through SDN is [103]. The author of this work went further

than [101] [102] by proposing architectural and design concepts for such implementation.

A test was employed for these ideas that consisted of a POX as a controller, with an OvS

installed in the wireless nodes. No loss of data was reported using this technique, but

it failed to provide any extra features that might have been expected from a new design

for a wireless backhaul. However, the objective of rural wireless networks is to provide

service at a low cost for low-performance devices, and this design can achieve those goals.

3.6.1.3 Heterogeneous Networks

One possible application for which SDN has been evaluated in recent research is its use

in mixed or heterogeneous network environments, according to [104] and [105]. The first

study discusses the possibility of integrating infrastructure-based and infrastructure-less

networks in what is called heterogeneous-SDN (H-SDN). The authors posit that H- SDN,

when correctly implemented, could solve existing problems regarding capacity sharing

and compatibility between different device vendors. Supported by the flexibility of SDN,

this solution could enable innovation and interoperability in such networks. However, the

second study uses this technique for a noble objective that is disaster resilient. Prototypes

were installed in three locations, and each was equipped with an OpenFlow switch. In

addition, each device was equipped with extra network interface cards (NICs) to support

satellite, the third generation of wireless mobile telecommunications technology (3G), and

fiber to the home (FTTH) technologies. Trema 5 was used as an OpenFlow controller,

and the nodes used OvSs. The experiment was conducted to enable the link to be

functional in case of a disaster, so the switching time was measured for all possible

scenarios. The average switching time between the different technologies was 80 ms,
5trema.github.io/trema/

57

Chapter 3 : Literature Review

which is acceptable in the case of a disaster.

The use of mixed wireless networking technologies is presented in [5]. The

authors’ goal was to allow any wireless device to connect seamlessly to any network, ir-

respective of its technology, whether WiFi, WiMAX, or LTE. The authors propose the

use of this architecture using SDN. The technical challenges are addressed, and other

economic and regularity challenges are left for future researchers. The results are promis-

ing regarding a seamless handover from WiFi and WiMAX. The deployment consisted

of two WiMAX base-stations, 30 WiFi access points, and five Ethernet switches (wired).

The SDN/OpenFlow configuration consisted of NOX as a controller and used OpenWRT

to provide OpenFlow switching functionality. To test multiple services in this virtu-

alised environment, a FlowVisor was used to slice the network to allow the co-existence

of multiple controllers.

A novel architecture for very dense heterogeneous wireless networks is proposed

in [106] by making use of SDN technology. In this type of network, challenges such as

control overhead and operational costs are the main concern. In this architecture, SDN

is used to provide overlapping between LTE and WLAN, which are connected to the core

network.

The advantages of abstracting the forward layer could benefit the case of mixed

networks. This abstraction makes the communication between the control and the for-

ward plane vendors and technology independent. Distributed controller architecture can

be used to provide redundancy in the case of a failure.

3.6.2 Survivability In Wireless SDN

With the increased interest in Software Defined Networking (SDN), some studies have

tried to wight the applicability of its application in WSN. The work of Kahjogh & Bern-

58

Software Defined Networking (SDN) Applications in Wireless Networks

Ref. Test Technology Setup Controller Goal
[98] Prototype WMN OSLR POX Load balancing
[93] Prototype WMN OSLR NOX Performance
[94] Simulation WMN - - Performance
[100] Prototype WMN B.A.T.M.A.N. Floodlight Load balancing
[96] Prototype WLAN bootstrap Kulcloud Performance
[105] Prototype Mixed Manual Terma Coverage
[97] Prototype WSN ADOV - Performance
[5] Prototype Mixed ipref NOX Coverage

Table 3.2 – Software Defined Networking in Wireless Network

stein [107] explored the utilisation of SDN controller to prolong network lifetime under

optimal conditions. The authors provided a Mixed Integer Programming (MIP) with tow

objectives: (i) To minimises traffic latency and (ii) To maximise network lifetime. The

algorithm first evaluates network life and network lifetime with hop counts. Nodes with

low energy reserve chose the path with least energy consumption, satisfying the second

objective.

Alternatively, if energy is higher than certain threshold, a path with fewer num-

ber of hop counts is selected. To evaluate the efficiency of the proposed algorithm, the

authors examined the performance of network under the aforementioned objectives sep-

arately and combination. The simulation showed 20% decrease in network lifetime due

to enforcing hop count criteria. With SDN controller to manage events, balance between

hop count and network lifetime can be amenable.

[108] presented tow approaches to solve the lifetime maximisation problem. A

mathematical model that is solved using Column Generation and a greedy algorithm.

Here coverage is used as a metric for lifetime calculations. The network is considered

not functional if it drops under certain coverage level is reached. The paper discusses

the applicability of each approach in various scenarios like; network size, flexibility of

modifying the coverage criteria. In [109] a column generation approach is used to solve

59

Chapter 3 : Literature Review

the lifetime problem with mobile sink.

Energy minimisation of Software-Defined Sensor Network (SDSN), where nodes

are equipped with different sensor types was studied in [110]. Each sensor node can

activate specific sensing task dynamically based on the task required. In this work,

minimum energy sensor activation problem is formulated as Mixed-Integer with Quadratic

constrains Program (MIQP). With emphasis on quality of sensing , task-mapping and

task-scheduling results are compared to a formulated online algorithm. Investigation

results show reduced rescheduling time and control overhead.

A game theory approach was used in [111] to reduce reduce energy consump-

tion in SDWSN. Compared to traditional energy algorithms, SDWSN approach provided

balanced energy consumption and prolonged network lifetime.

The authors of [112] developed a cognitive SDWSN prototype for environmental

applications. The design offered self-adaptability for environmental changes and reduced

control signal overhead resulting in low energy consumption. N

SDN as a solution for reducing energy consumption have been studied in many

recent papers. Ranging form Data Center network, Optical Network and Fixed networks.

The work of [113] provides an extensive evaluation of the existing energy-centric SDN

approaches.

3.6.3 Emulating Solutions for SDN and IoT

The involvement of hundreds of nodes in in wireless environments provides cheap and

holistic solution, nevertheless it requires proper planning to ensure a smooth and effi-

cient operation of the system. Network simulation is one way to conduct pre-feasibility

study before the system is deployed. Three requirements in a simulator in the case of

SDWSN needs to be fulfilled; controller compatibility, wireless functionality support and

60

Software Defined Networking (SDN) Applications in Wireless Networks

extendibility. Once these requirements are available, the simulator can be used to debug

and test protocols, evaluate performance and verify the scalability of the system.

One such simulator is developed Ramon et al. [114] for Software Defined Net-

working emulation, called Mininet- WiFi. In addition to Wi-Fi support, Mininet- WiFi

also supports wireless sensor networks technology like 6LowPAN. The goal is enhancing

Mininet emulator which lacks the support of wireless channel or mobility modelling. The

addition of these features makes a clean extension of the highly reliable Mininet emulator.

This is due to supplementation of new classes and abstractions to support emulated links

and wireless NICs. Besides, it has the potential of permitting the physical wireless and

wired interfaces to integrate with the virtual environment. Thus, utilizing challenging

tasks like integrating mobility with SDN environment through single or multiple con-

trollers. An added benefit of using Mininet-WiFi is it’s convenient for simulating the

handover procedure in a wireless network.

Apart from the initial study, Mininet-WiFi was also implemented in subsequent

studies. The work in [115] used a single controller of Mininet-WiFI to run the Software

Defined Wired and Wireless Network(SDWWN). It was selected for executing the SD-

WWN because of its potential in wireless stations and virtualised access points. In this

study it was used to emulate wireless services with Ethernet connections.

The work in [116] offers a first use case for security application testing based

on Mininet-WiFi. The study addresses a new class of threats to traditional and SDN

networks through unauthorised connected devices.

The authors in [117] designed a prototype of a monitoring platform to gather

real-time data about the services in the community network"CN" 6 using a gossip-enabled

network. The utilisation of Mininet-WiFi enabled an edge-cloud computing environment

6CNs are large-scale, self-organised and decentralized communication infrastructures built and oper-
ated by the community itself

61

Chapter 3 : Literature Review

Reference Area Purpose Controller
[115] SDWWN Coverage NOX
[116] Campus Security ryu
[117] Community Network Monitoring -
[118] IoT Security Floodlight
[119] SDWN Association OpenDayLight
[120] SDWN Association -
[121] SDWN Association OpenDayLight
[122] VANET Performance POX
[123] IoT Security -

Table 3.3 – Summary of Mininet-WiFi Related Studies

and revealed the data dissemination through gossip-enabled network is achieved within

minutes.

A study of using Mininet-WiFi on IoT security is conducted in [118]. The study

is focused on edge oriented detection and mitigation scheme against DDoS in IoT using

SDN.

[119] [120]and [121] studied the association control 7 using Mininet-WiFi as the

emulation tool. In [119], Mininet-WiFi is used in research which focused on evaluating

the performances of handover association mechanisms in SDN-based wireless networks.

This study is pursuing a solution of the simplified network operation and management

with taking advantage of Software Defined Networking (SDN), OpenDayLight was used

as a controller.

Tarigan et al. [120] designed a dynamic load balancing system that lowers the

congested APs load by forcing users located near the boundaries of loaded AP to move

to a less-loaded neighbouring AP. The system aims to maximize throughput by moving

users to lightly loaded APs and allowing each AP to provide end users with maximum

data rate.

7Association control is a mechanism that regulates the association between stations and access points
in the network

62

Software Defined Networking (SDN) Applications in Wireless Networks

Reference Area Purpose Controller
[124] SDWN Handover POX
[125] Enterprise Edge Virtualisation -
[126] VANET GeoBroadcast Floodlight
[127] SDWN Flow Stability POX

Table 3.4 – Summary of OpenNet Based Studies

Moreover, Mininet-WiFi is used for simulating Vehicular Ad-Hoc Network (VANET)

by Indriyanto et al. [122]. In this study, Mininet-WiFi is installed on Ubuntu that ran on

a virtual machine. Two Ubuntu servers were installed on VMware: one for running the

Mininet Wi-Fi and the other for running the POX [39] controller. The study evaluates

performance parameters such as packet drop, delay, and throughput.

[123] evaluated the performance of Mininet-WiFi along with other non-SDN

tools. The study evaluated the association and authentication of different wireless emu-

lation tools. The study concluded with an extension module to enable a wireless emulation

experiment to span Mininet-WiFi instances on different computer platforms.

Another simulator is OpenNet [124] , that can be used to simulate SDWSN.

OpenNet brings the world of SDN through use of Mininet to the world of wireless envi-

ronment by utilising NS-3. The combination of the two simulation environments, enabled

researchers to test and evaluate different scenarios under SDWSN environment [125] [126]

[127] [128].

[125] examined new edge virtualisation architecture in WLAN enterprise using

SDN approach. OpenNet provided the ability to simulate featuring centralised logical

control and provides mobility to clients.

OpenNet running Floodlight controller was used to automatically arrange road-

side units (RSUs) in VANET in geographical positions in [126]. OpenNet was used also

to evaluate the routing [127], handover management [129] and other applications [128].

63

Chapter 4 Lifetime Maximisation of
SDWSN

4.0.1 Lifetime of a Wireless Sensor Networks

A network can only fulfil its purpose as long as it is alive. What decides this lifelessness

is the choice of proper analysis. Thus, it is imperative to choose the right metric for such

analysis so that it suites the intended WSN application. Connectivity, coverage and node

availability broadly define the purpose of WSN application.

The later, evaluates a single node lifetime then creates a criteria of evaluating

the whole network based on that. A trivial but few practical real life implementation is

the last dead node lifetime. That is once all network nodes deplete energy the network

is considered dead. Another commonly used approach is defining the lifetime as the time

for the first node to die. This plays key role in mission critical applications where all

nodes have the same importance. Another variant of the node availability criteria is

the time until a fraction of network nodes α are still a live. This definition suits most

applications[130].

The lifetime of a single node is determined by the available energy and the

energy consumed to perform its operations. Typically a node will consume energy in

sensing, communicating and data processing. with the communication part consuming

most energy [22].

A Software-Defined Survivability Approach for WSN in Future IoT

State of the Art

With a centralised controller like the case of SDWSN, however, connectivity is

more applicable. For example, the number of nodes that are able to communicate with

the central controller. The node availability criteria is not sufficent in this scenario if the

nodes are available and cannot communicate with central controller.

4.1 State of the Art

Many studies address lifetime maximisation of WSN [108] [109]. While there exists some

decent amount of work of wired network under SDN environment [113]. There is a scarce

in the knowledge base of lifetime in Software Defined Wireless Sensor Network due to the

emerging nature of the research field. Below is a highlight of some notable and related

research articles starting from solutions in traditional WSN and SDWSN.

4.1.1 Traditional WSN

The appropriate definition of lifetime of WSN that takes into consideration the lack of

constant energy nature is discussed in [131] and [132]. [131] provides a definition of

operational lifetime of sensor nodes to replace the common definition of lifetime of WSN

network based on the last node to deplete. It provides a mathematical perspective of

the problem, and provides a prove that energy depletion decreases in the order of 1/n

of the initially deployed nodes "n". [132] provides an alternative WSN network lifetime

definition, functional lifetime. Where the lifetime of the network and the amount of data

collected depends on (a) the layout of the sensor network, (b) the initial battery capacity

on the individual sensor nodes, (c) the characteristics of the sensor data generated at the

individual nodes, and (d) the communication costs in transferring.

[108] presented tow approaches to solve the lifetime maximisation problem. A

mathematical model that is solved using Column Generation and a greedy algorithm.

Here coverage is used as a metric for lifetime calculations. The network is considered

65

Chapter 4 : Lifetime Maximisation of SDWSN

not functional if it drops under certain coverage level is reached. The paper discusses

the applicability of each approach in various scenarios like; network size, flexibility of

modifying the coverage criteria. In [109] a column generation approach is used to solve

the lifetime problem with mobile sink.

4.1.2 Software Defined Wireless Sensor Network

With the increased interest in Software Defined Networking (SDN), other papers have

tried to wight the applicability of its application in WSN. The work of Kahjogh & Bern-

stein [107] explored the utilisation of SDN controller to prolong network lifetime under

optimal conditions. The authors provided a Mixed Integer Programming (MIP) with tow

objectives: (i) To minimises traffic latency and (ii) To maximise network lifetime. The

algorithm first evaluates network life and network lifetime with hop counts. Nodes with

low energy reserve chose the path with least energy consumption, satisfying the second

objective.

Alternatively, if energy is higher than certain threshold, a path with fewer num-

ber of hop counts is selected. To evaluate the efficiency of the proposed algorithm, the

authors examined the performance of network under the aforementioned objectives sep-

arately and combination. The simulation showed 20% decrease in network lifetime due

to enforcing hop count criteria. With SDN controller to manage events, balance between

hop count and network lifetime can be amenable.

Energy minimisation of Software-Defined Sensor Network (SDSN), where nodes

are equipped with different sensor types was studied in [110]. Each sensor node can

activate specific sensing task dynamically based on the task required. In this work,

minimum energy sensor activation problem is formulated as Mixed-Integer with Quadratic

constrains Program (MIQP). With emphasis on quality of sensing , task-mapping and

task-scheduling results are compared to a formulated online algorithm. Investigation

66

Problem Formulation

results show reduced rescheduling time and control overhead.

A game theory approach was used in [111] to reduce reduce energy consump-

tion in SDWSN. Compared to traditional energy algorithms, SDWSN approach provided

balanced energy consumption and prolonged network lifetime.

The authors of [112] developed a cognitive SDWSN prototype for environmental

applications. The design offered self-adaptability for environmental changes and reduced

control signal overhead resulting in low energy consumption. Network lifetime was pro-

longed by more than 50 rounds due to the use of this technique.

4.2 Problem Formulation

A wireless network is represented by a graph G(N ,L). Where the vertices N of the

graph correspond to network nodes. The links between network nodes correspond to the

edges/arcs of the graph. There is a bidirectional link L, between a pair of two nodes (i,j)

if they are within the transmission range of each other. The set of nodes Si, contains

nodes that fall in the communication range of i. We denote a node that is equipped

with SDN controller with X , this node acts as a base station and infinite power supply is

assumed. The initial energy of node i is Ei (Ei > 0,∀i ∈ N), and the amount of data

to be transmitted through link (i,j) is fij. Other variables are summarised in 4.1.

Lifetime of a node Ti can be expressed as the total amount of energy consumed

for sending transmitting and receiving data

Ti = Ei
ei

∑
(i,j)∈L

fij
(4.1)

In addition, under a flow fij the lifetime of the network T can be expressed as

67

Chapter 4 : Lifetime Maximisation of SDWSN

the time needed for the first node in the system to deplete its initial energy first.

T = min
i∈N

Ti = min Ei
ei
∑
i∈L
fij (4.2)

Table 4.1 – Variables Used In The Optimisation Model

Notation Meaning

G(N ,L) directed graph representing network topology
N set of network nodes
L set of links
Si set of nodes that can communicate with i
X SDN controller node
T lifetime of the network
Ti lifetime of node i
ri sensed data by node i
Ei initial energy of node i or battery capacity
ei energy spent for sending fij by i
fij amount of flow to be sent through link (i,j)

Therefore, in order to maximise the lifetime of the network. Routing algorithm

that enables the most vulnerable node to depletion must be implemented.

Maximize T = Max (minTi)

= Max

min Ei
ei
∑
i∈L
fij


(4.3)

The nonlinear term in (4.3) , can be linearised following the approach of g. The variable

f ij is introduced to reflect that over time the assigned flow fij becomes a rate. Hence

68

Problem Formulation

(4.3) becomes the following linear program for maximising the lifetime of SDWSN.

Max T (4.4)

Subject to the following constrains:

s.t.



f ij ≥ 0 , ∀ (i, j) ∈ L (4.4)

ei
∑
i 6=j

f ij ≤ Ei , ∀ i ∈ N − {X} (4.5)
∑
k∈Si

fki + ri · T =
∑
j∈Si

f ij , ∀ i ∈ N − {X} (4.6)
∑
k∈Si

fki +
∑
j∈Si

f ij ≤ T , ∀ i ∈ N − {X} (4.7)

The constrain in (4.5) reflects the energy consistency, where only nodes with

sufficient energy are selected. Constrain (4.7) is the usual flow constrain, the sum of the

traffic entering to a node in addition to the traffic generated by the node ri equals to the

traffic leaving that node. The last constrain ensure concurrent flow.

4.2.1 Illustrative Example

1
r = 0.1

Eini = 5

2
r = 0.3

Eini = 5

3
r = 0.2

Eini = 10

4
r = 0.2

Eini = 10

5
r = 0.1

Eini = 10

6
r = 0.2

Eini = 10

7
r = 0.2

Eini = 10

8
r = 0.8

Eini = 10

9
r = 0

Eini = 10

10
r = 0

Eini = 10

11

Figure 4.1 – Network Topology of a typical SDWSN

The following network topology represents an SDWSN with 11 nodes, the na-

ture of the topology, and the application in which the network dramatically affects any

69

Chapter 4 : Lifetime Maximisation of SDWSN

: 1 2 3 4 5 6 7 8 9 10 11
1 0 0.1 0 0 0.2 0 0 0 0 0 0
2 0 0 0 0 0 0.4 0 0 0 0 0
3 0.2 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0.1 0.1 0 0 0
5 0 0 0 0 0 0 0.3 0 0 0 0
6 0 0 0 0 0 0 0 0 0.6 0 0
7 0 0 0 0 0 0 0 0 0 0.6 0
8 0 0 0 0 0 0 0 0 0.9 0 0
9 0 0 0 0 0 0 0 0 0 0 1.5
10 0 0 0 0 0 0 0 0 0 0 0.6
11 0 0 0 0 0 0 0 0 0 0 0

Table 4.2 – Flow from sensing nodes to SDN controller

optimisation algorithm.

Node 11 in Figure 4.2 is a base station equipped with an SDN controller. Other

nodes are sensing or forwarding the data. The arrow indicates the traffic direction, other

parameters are depicted in the figure. This scenario was used for testing the optimisation

model (4.4) using AMPL.

The initial energy of node 1 and 2 equals 5, the rest of the nodes have an initial

energy of 10. The generated data of each node is represented by r. For example, node 3

generates 0.3 data frames.

AMPL [133] is a reliable algebraic modelling platform for optimisation prob-

lems. The intuitive syntax of AMPL allows many mathematical optimisation problems

to translated to a model file “.mod” with lucid syntax. With sufficient data “.dat” sup-

plied by the user to support the model, the objective function, primal and dual variables

at the solution point can be straightforwardly displayed. AMPL relies on existing off-

the-shelf solvers, like CPLEX or MINOS, to perform the pre-solve functionality of the

linear program. The network lifetime was 11.11 time units.

70

Proposed Algorithm

The results in Table 4.2 are of the MILP inside the AMPL/Cplex model of the

mathematical model. Flow from the sensing nodes to the SDN controller are the non

zero values of table 4.2. The link between node 3 and 1 carries 0.2 data frames, and the

link between node 2 and node 6 carries 0.4 data frames. These routing decisions are the

result of the mathematical model, which optimises the network lifetime.

One drawback of the mathematical optimisation model is that it traces all pos-

sible solutions to find the maximum lifetime for the network. This leads to the need

of advanced processing capabilities, which does not exist in WSNs. Hence, a heuristic

algorithm is a possible alternative solution in this situation.

4.3 Proposed Algorithm

4.3.1 Assumptions

To make the model more generic, we assume that all SDWSN nodes have the same im-

portance and are all equipped with the same computational and energy resources. The

topology is assumed to be flat, that is, there are no superior nodes, cluster head or hi-

erarchical structure. Because it is a characteristic of the absolute majority of standard

existing nodes, we assume that all SDWSN nodes are communicating with fixed commu-

nication power and lack the ability to adjust their transmission power. We also assume

that they are immobile once they are deployed.

The SDN controller, on the other hand, is assumed to have unlimited power

supply that is constantly charge with reliable energy source. The controller is responsible

of forming the topology and managing the recovery process by selecting the best candidate

in the case of failure. The SDN controller is placed in the centre of the deployment

field. The communication form the controller follows In-Band mode, where nodes forward

control messages from neighbours and a direct connection to with the SDN controller is

71

Chapter 4 : Lifetime Maximisation of SDWSN

not required as long as a neighbouring node has an OpenFlow session running with the

controller. In the in-band mode, switches do not need an extra physical port for control

traffic. OpenFlow defines a virtual port in the SDWSN switch called local port, which

enables remote entities (e.g. controller) to interact with the switch via an OpenFlow

network (in-band mode)[53].

Tow end nodes are considered connected if they can communicate with each

other, send/receive messages to/from each other. So, the link between the nodes are

assumed to be bi-directional. It is also assumed that the location information is known

during the initialisation process.

4.3.2 A-star Algorithm

A-star is a path finding algorithm that tries to reduce the total number of states explored

and is successfully deployed AI applications. A-star is guaranteed to find to find the

optimal path by incorporating a heuristic estimate of the cost to get to the destination

node from a given starting node.

A-star maintains tow lists, OPEN list and CLOSED list. Nodes that need to

be examined are kept in the OPEN list, while the CLOSED contains nodes that have

already been examined. It is initialized by the OPEN list containing the start node, and

an empty CLOSED set. Every node is evaluated based on cost plus heuristic function

f(n). Firstly, the cost of getting from the initial node to n is stored in g(n). In our

implementation this corresponds to the ratio of initial energy over the residual energy

g(n) = Eini/Eres. Along a sequence of nodes, g(n) becomes the sum of the previous costs.

In addition, the shortest distance for getting from current node n to the SDN controller

is h(n), which uses the Euclidian formula:

d(i,j) =
√

(xj − xi)2 + (yj − yi)2 (4.8)

72

Proposed Algorithm

setting the second function h(j) to zero, simplifies A-star functionality to Di-

jskrats Algorithm.

Moreover, the evaluation function f(n) which combines the tow cost functions;

f(n) = g(n) +h(n), is used to evaluate the best route passing through node n. The value

of f(n) is maintained in OPEN priority queue list.

A-star has a main loop that gets the node n with the lowest f(n) from this list.

If the destination is not found, then it examines the successors of n by placing them in

the priority queue. The loop terminates once the destination is reached or the priority

queue is empty.

After collecting the fundamental information, the controller applies the following

energy model as a secondary function for h(j)

4.3.3 Energy Model

The total energy E(d) for transmitting data from node i to another node in the network

at distance d follows the following formula [22] :

E(d) = E
T X

+ E
RX

= max(Emin, βdα) + E
RX

(4.9)

To maintain reliable communication, the transmission energy increases with dis-

tance increase. Here β is the power required to communicate for one meter distance, α

≥ 2 is the loss factor due to propagation. However, if no transmission takes place, a

minimum energy is assumed to always be radiated Emin even in the idle case.

In a square region, where WSN usually deployed, the analysis in [22] produced the fol-

73

Chapter 4 : Lifetime Maximisation of SDWSN

Algorithm 1: Lifetime Extension for SDWSN

1 enqueue (OPEN,start)
2 while OPEN 6= ∅ do
3 if d(n,n′) ≤ dtrans then
4 κn ← n′

5 end
6 dequeue (OPEN, nbest)
7 enqueue (CLOSED , nbest)
8 if nbest = X then
9 foreach n′ ∈ κn and n′ /∈ CLOSED do

10 successor(n′)← n

11 h(n′)←
√

(xn′ − xn)2 + (yn′ − yn)2

12 g(n′)← Eini/Eres
13 f(n′)← h(n′) + g(n′)
14 if n′ /∈ OPEN then
15 enqueue (OPEN , n′)
16 else
17 successor(n′)← nbest
18 end
19 end
20 else
21 foreach successor(n′) do
22 update FlowTable of n′
23 end
24 end
25 end

lowing average power consumption per node i.

E
AV G

i = τ η∗ r
i
d(i,c)

(
1

3
√

2
+ 1

12 log
(√

2 + 1√
2− 1

))
(4.10)

where τ represents the time for transmitting a single bit of data, ri is the data

generated from the node. The model [22] incorporates the location of node as a parameter

that is ri(x,y), where (x,y) the location of the sensor node. The distance from node i

to SDN controller is denoted by d(i,c) , and η∗ is the optimal efficiency watt-per-meter

74

Proposed Algorithm

η∗ = E(d)
d∗

and d∗ is given by

d∗ =



(
Emin

β

)1/α

when E
RX

α−1 < Emin(
E

RX

β(α−1)

)1/α

whenE
RX

> 0, ERX

α−1 ≥ Emin

For each node that passed the setup phase with no flow entries, the controller

uses A* pathfinding algorithm. Utilising formula (4.10) as h(j) and Euclidean formula

(4.8) to the function g(j) sets the A* Algorithm path finding criteria that maximises

network lifetime.

Figure 4.2 – 100 Random Nodes Network

75

Chapter 4 : Lifetime Maximisation of SDWSN

4.4 Simulation

The algorithm was tested in a network of 100 randomly generated, with nodes equipped

with the same amount of energy of 5J. The SDN controller was selected to be in the

middle of the network, and the traffic generated by each sensor node was four packets

per round, with each round a random sensor is selected. The distance between the nodes

is set to a minimum 20m, with simulation area of 200m x 200m. Table 4.3 summarises

the rest of the simulation parameters.

4.4.1 LEACH protocol

The simulation is compared initially with a protocol called low-energy adaptive clustering

hierarchy protocol(LEACH). LEACH protocol puts the multi-hop nature of WSNs into

service. The LEACH protocol divides the network into clusters of a hierarchal structure.

Sensor nodes are grouped into clusters, and one sensor node is nominated as the cluster

head of each cluster. This arrangement is performed to increase energy efficiency because

only cluster heads will communicate with the base station. Data is gathered from all

the sensor nodes within the cluster, then forwarded to the cluster head. Data is then

compressed before being sent on to the base station [17]. A distinctive character of

LEACH compared to other algorithms is the ability to self-organise and adapt to the

change of nodes’ energy. The process of selecting a new cluster head is performed each

round. Here, a randomised algorithm is used to decide which node becomes the next

cluster head [18]. The underlying assumption is that all nodes are powerful and capable

of reaching the base station, but energy is saved by restricting the communication of all

nodes except one.

Communication with cluster head uses Time Division Multiple Access(TDMA);

where sensor nodes transmit sensed data consecutively. In TDMA, the cluster head node

controls the time limit and order in which nodes can transmit. This channel access

76

Simulation

technique limits the radio usage of nodes as they restricted from accessing open radio

link aside from their designated time slot. LEACH protocol also minimises interference

between clusters by allocating a different code for each participating node. Through the

utilisation of a conventional communication technique known as code division multiple

access (CDMA), which allows multiple sensor nodes to use the same wireless channel at

the same time.

The operation of LEACH can be split into a setup phase and steady phase.

Setup phase involves the formation of a cluster of nodes and specifying a cluster head.

Cluster head node is revealed each round through an election process. The decision to

selecting a cluster head is available for all participating nodes and is based on specific

probability parameters. The algorithm produces a threshold value, and then participating

node selects an arbitrary random value between zero and one. If the threshold value is

higher than the chosen arbitrary value, the node becomes a cluster head. Rate of cluster

heads of the network determines the threshold value along with the number of times the

node has previously become cluster head. After that, cluster head nodes notify other

nodes by broadcasting a signal to all the other nodes. Upon receiving this broadcast

signal, a regular node forms a cluster with the cluster head having the strongest signal.

The reason for this selection is that it will ensure the node will be consuming less amount

of energy in transmission to a closer and strong cluster head.

The last process in the setup phase is scheduling. Cluster head designates time

slots to all the nodes in its cluster, provided that these nodes become only active during

their timeslots.

After the scheduling is completed, the LEACH protocol enters the Steady Phase.

During this phase, data is forwarded to the cluster head form all the other nodes in the

cluster as per their allocated time slots. Finally, the cluster head then gathers all the

data received and conveys it to the base station [19, 20].

77

Chapter 4 : Lifetime Maximisation of SDWSN

Parameter Value Unit
Network Area 200x200 m*m
Number of rounds 500 round
Number of sensor nodes 100 nodes
Transmission radio range 80 m
Initial energy 5 J
Number of transmission packets 4 packet/round
Message size 500 bit
α 2
E

RX
10−4 J

E
min

10−5 J
β 10−8 J/m/b

Table 4.3 – Simulation Paramters

4.5 Results and Discussion

The main focus in terms of results analysis is focused in directed to how the introduction

of SDN technology in Wireless Sensor Networks can improve the network lifetime. Our

analysis indicate that SDN improved network lifetime by 16% compared to traditional

LEACH. This is due to the fact that SDN technology requires less number of control

messages and fewer processing power is consumed due to the fact that route calculations

are performed in the SDN controller rather than in sensor nodes in traditional routing.

With the different network lifetime definitions mentioned earlier, the observations as

follow. The first node to deplete energy in SDWSN is very fast in the SDWSN compared

to traditional routing. Thus the applications like intrusion detection might not benefit

from the scenario in this work. Alternatively fewer number of nodes could be used for

similar applications.

However, considering network lifetime definition as 50% of network nodes to

deplete, the new algorithm offers promising potential. Here, network nodes had gained

an impressive 22.6% the accumulate to the network lifetime. From figure 4.3, the SDN

approach controller tries to stabilise the network at the beginning of the first nodes to

78

Results and Discussion

die, this is due to the use of A-star algorithm in finding much stable paths. When

30 nodes are dead, the SDN controller provides a graceful network outage and energy

consumption drop. Before that point, nodes that exhausted are the ones with more

number of connections to neighbouring nodes and much closer to the SDN controller.

It can be noticed that the at some parts, nodes are still having enough energy but not

feasible route to the controller. This can be addressed by the deployment of multiple

controllers.

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

0

10

20

30

40

50

60

70

80

90

100

Number of Rounds

N
um

be
r
of

A
liv

e
N
od

es

SDWSN
LEACH

Figure 4.3 – A-star based SDWSN lifetime compared to LEACH with
random network consisting of 100 nodes

The distribution of energy in LEACH protocol, is based on selecting cluster head

with pre-assigned probability. In our simulation the percentage of nodes with advanced

power is 50% and probability of 20%. This results in distributing energy load among

network clusters. However, this also causes more control traffic between sensing node

and cluster head and the addition of traffic aggregation. Figure 4.4 shows the effects of

this approach compared to our proposed solution.

Initially the SDN controller collects network topology causes more energy con-

79

Chapter 4 : Lifetime Maximisation of SDWSN

Characteristic Value
Number of routes generated by the algorithm 436 route
Average number of hops in each route 5
Average energy consumed by route 1.797 J
Route with maximum energy consumption 3.856 J
average energy dissipation per node 0.363 J

Table 4.4 – Results overview

sumption. After that each node has FlowTable with destination stored and the only

overhead remaining is to forward traffic. Wherever a node is depleted, FlowTabless

are updated accordingly following the In-Band mode process through the forwarding

plane. In contrast to traditional routing, this does not cause sharp increase in energy

consumption with nodes performing the computations and and maintaining the route.

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

0

1

2

3

4

5

Number of Rounds

En
er
gy

C
on

su
m
pt
io
n

SDWSN
LEACH

Figure 4.4 – Energy dissipation of SDWSN compared to LEACH with
random network consisting of 100 nodes

80

Conclusion

4.6 Conclusion

Network programability provide a promising future for solving many network problems

inherited from traditional networking. In this work SDN controller is incorporated with

WSN to manage and oversea the network. The In-Band mode enables wireless nodes

to communicate with the controller through their neighbouring nodes once a flow entry

requires modification. Other than this case, the forwarding "data" plane is used for its

original forwarding function.

This approach might not suite all Internet of the Things (IoT) applications,

however a vast majority of applications will gain vast improvement in terms of energy

and centralised control. In particular, applications where the number off nodes and their

deployment area are on the scale of hounders of meters. In theory, the approach can be

extended to include more than one SDN controller, which will further be investigated in

future work.

Simulation results suggest that A-star based routing within SDWSN can increase

network lifetime by using residual energy of nodes as the heuristic part of the algorithm.

Compared to traditional routing, this approach increased network lifetime by 22.6% in

randomly generated network . By carefully incorporating advanced nodes or within grid

network, our results showed this figure can increase dramatically.

This centralised routing scheme provides a graceful network outage and energy

consumption drop. Due to the balancing of power use in the network, wireless sensor

nodes deplete their energy sources at approximately the same time. This is highly bene-

ficial since all nodes can be recharged or replaced simultaneously, instead of of constantly

monitoring and servicing individual devices.

81

Chapter 5 Failure Recovery in SDWSN

5.1 Overview

Internet of the Things (IoT) is the anticipated new wave that will enable everyday things

to be connected to the internet and change how we live and work. Once implemented

IoT will bring innovative industries and services to light. Since IoT is merely based on

Wireless Sensor Networks (WSN), existing limitations in this type of networks have to be

resolved. Major drawbacks in WSN like rapid energy depletion and wireless unreliability

pose major challenge for WSN. A new trend in networking that could offer a remedy to

some of these dilemmas is virtualization and in particular Software Defined Networking

(SDN). In SDN environment, computational functionalities of the network nodes are

moved to a central controller. Consequently, network nodes are left with minimal required

functionality providing them with more power resources to utilize for their fundamental

data forwarding functionality. This new technology implementation proven to be a success

in wired networks, both in saving resources (human and machine) in addition to delivering

cross vendor operability and many other benefits.

Inspired by its success in wired environments, many researchers investigated

the feasibility of incorporating wireless devices in SDN environment [87] [88]. Numerous

encouraging results in WMN have been obtained both in Simulation [89] and test bed

environments [90]. Additionally, other studies have considered the practicality of inte-

grating Wireless Sensor Networks, WLAN and cellular networks [88].

A Software-Defined Survivability Approach for WSN in Future IoT

Failure Detection in SDWSN

In all of the above wireless implementations, the environments work infrastructure-based

fashion. That’s due to the existing limitations of SDN of only supporting Ethernet type

connections. However, the faultiness of such devices, more precisely the behaviour of the

node whilst isolated, haven’t been considered reasonably. Survivability is underplaying

character of wireless networks, which is not always caused by node faultiness rather than

the nature of the wireless environment. Nonetheless, wireless sensor nodes usually char-

acterised by the deficit of long lasting energy source as well as unreliable communication

channels, which usually adds to the severity of service disruption and instability.

This part of the research investigates practical solutions that address the disruption-

prone nature of wireless nodes when migrated into SDN, i.e. SDWSN. While faultiness is

a broad area for investigation in wireless environment, we only consider the factors that

probably cause disruption the whole system. In particular, our goal is to provide the

means for wireless nodes to act independently (1) in case of an SDN controller absence

or routing protocol failure (2) path or link protection compared to restoration in the case

of node failure, (3) in addition to providing selecting appropriate beaconing mechanism

among the nodes in these situations. The research will help shaping critical design and

implementation considerations of disruption tolerant Wireless Software Defined Networks.

5.2 Failure Detection in SDWSN

Data traffic and control traffic can be affected by by failure in the data plan, that is node

or link failure. This failure results in (1) preventing new services to established due to loss

of control signal; and (2) disruption to the services due to the loss of data traffic. There

are two primary error detection techniques that can be employed in SDWSN to identify

failure. Loss-Of-Signal (LOS) is a technique for detecting failure in any forwarding port

and is usually used in reactive recovery techniques "Restoration". On the other hand, for

detecting failure in paths Bidirectional Forwarding Detection [134].

83

Chapter 5 : Failure Recovery in SDWSN

In the case of Loss-of-Signal (LOS), a node that operates under OpenFlow de-

pends on the PORT_STATSUS flag to detect port failure. In the event that a port is

not functioning, “port down” event notifies the controller of the failure. Compared to

BFD, this technique notifies the controller about only one end and utilises port failure

and the node still has a connection to the to the controller. In addition, this technique

depends on failure declaration instead of echo timeout signal.

Bidirectional Forwarding Detection [134] is lightweight protocol, that operated

in the data plane and does not require communication to the SDN controller, i.e., the

control plane. According to the BFD specifications [134], there are two modes of op-

eration; Asynchronous and Demand modes. The earlier requires periodical exchange of

messages at a fixed rate. While the later suits other applications where one end node

can request the corresponding end node to activate or deactivate the transmission control

messages at any time. Further Asynchronous mode can be Echo or Non-Echo.

BFD implements an echo and control message system to identify the availability

of the link between two nodes. BFD session is initiated as most protocols with handshake

process after that each node exchanges control message with the other end of the link

to indicate the liveness of the link between them. Once the session established, the tow

nodes exchange session status messages. BFD control messages are required when

the operating in Non-Echo mode. Alternatively, if the Echo mode is used, as the name

suggests echo messages are used instead of the control messages to check the status of

the other interface.

In BFD, failure detection time Td depends on two factors: (1) the detection

time multiplier M and (2) transmit interval Ti. The earlier is the number of lost control

messages before the failure is detected by the end node, and the latter represents how

84

Failure Detection in SDWSN

frequent the messages are exchanged. To prevent incorrect status report, traditionally

M is assigned a value of 3. The transmit interval Ti,on the other hand, is less than

or equal to the Round Trip Time (RTT) of the link. Moreover, a 25% time jitter is

usually introduced to accommodate for packet synchronization. Hence, the minimum

BFD transmission time is:

Ti min = 1.25 · RTT

The early versions of OpenFlow specifications didn’t address the failure problem.

However, since OpenFlow v 1.1 Fast Failover Group Table was introduced [53]. OpenFlow

adopts BFD, however it was partially implemented inside Open vSwitch where only

Asynchronous mode can been used.For BFD to work for SDWSN a local port has to

be reserved within SDWSN and controller has to initiate the BFD process. With the

controller sending BFD message, SDWSN node can run BFD session in its local port.

These BFD process takes place after OpenFlow bootstrapping process, ofpt_hello

, ofpt_feature_request and ofpt_feature_reply. In the case that BFD de-

tects failure, the ingress node declares the working path is faulty and recovery process is

initiated based on OpenFlow rules.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Vers

 My Discriminator

 Your Discriminator

 Desired Min TX Interval

 Required Min RX Interval

 Required Min Echo RX Interval

Diag Sta P F C A D M Detect Mult LengthDiag

Figure 5.1 – BFD Control Frame

The BFD control packet consists of two parts: (1) a mandatory part and (2) an

85

Chapter 5 : Failure Recovery in SDWSN

optional authentication field. The optional field have different field formats depending

on the authentication type.

Figure 5.1 shows different fields of BFD control packet. It contains certain flags

such as "A" which indicates the BFD session requires authentication. The "P"and "F"

flags are used for polling information independent of the other end and can’t be set to 1

at the same time. The "D" flag is used when the node wishes to operate in in Demand

mode instead of the default Asynchronous mode. My Discriminator field is 32 bits

identifier sent to the other end or "0" if it doesn’t know the value. The other fields can

be negotiated between the two BFD parties based on their capabilities. The Required

Min Rx Interval field serve in indicating the minimum interval for receiving BFD

packets in microseconds to force the other BFD party to the required time. Desired

Min Tx Interval informs the other end about the desired transmission rate.

The other type of messages, Echo, can be implemented differently. A common

approach for this simple type of messages is to include a node id and timestamp in

addition to other possible implementations[134].

5.3 Failure Recovery Techniques

A common drawback in wireless networks more than wired networks, is network failure[135][136]

. Once it takes place, a network recovery technique is required. One mechanism to recover

a lost connection before it happens is called protection. If the connection is restored after

failure takes place it is called restoration. [137]

An important related feature in resource recovery design is whether it is link or

path recovery. For the earlier, only the failed link is recovered. While in the latter, the

end-to-end flow that depends on a failed link is re-established.

When a failure takes place, a choice of link or path reestablishment is an impor-

86

Failure Recovery Techniques

tant decision for a resilient network design. In the case of link recovery, only the failure

from one node to the other end node is considered and resolved. In the other hand,

path reestablishment takes in consideration the full end to end path and recovery process

includes all failed nodes.

Figure 5.2 illustrates the difference between path recovery and link recovery

mechanism. For demand 〈1,11〉 the flow is established on path 1→ 2→ 4→ 8→ 10→

11. If the link 4-8 fails, then with link recovery scheme, the traffic will be routed around

the failed link 4-8, e.g., the path 4-6-10. With path recovery scheme, however, a new end

to end path for the demand 〈1,11〉 is established along the path 1→ 5→ 7→ 9→ 11.

(b) Path Recovery

(a) Link Recovery

Primary Route
Recovery Route

x1

2

118

95 7

4
3

106

x1

2

118

95 7

4
3

106

Figure 5.2 – Path Recovery vs. Link Recovery

87

Chapter 5 : Failure Recovery in SDWSN

Conventionally there are two types of network failure recovery in networking

literature, namely Protection and Restoration[138] [139]. In path/link protection, re-

sources are pre calculated in advance at set-up time and recovery measures and actions

are considered early in the design time. These actions can be either, reserved link capac-

ity or backup link/path establishment. If a failure takes place, then the effect link/path

is recovered with the initial predefined actions.

In the case of restoration scheme, only when a failure takes place then reactive

recovery process takes place. The control starts by calculating the backup path/link

using existing information of the network. Traditionally, protection is a preferred recovery

scheme for link failure and restoration is a more suited solution for path failure.

5.3.1 Fast Failover Procedure in Software Defined Networking

The fast failover is implemented by the controller and nodes can . The controller continu-

ally learns network-wide topology information. Utilising to the collected information, the

SDN controller computes the route for each source and destination pair. The controller

then constructs the appropriate FlowTable and GroupTable entries according the its pre-

installed configurations. In the case of a node (OF switch) failure, the node can locally

redirect the effected flow to a different live port. If configured appropriately, OpenFlow

failover procedure can dramatically reduce failure recovery time.

As described in Chapter 1, a distinguishing feature of OpenFlow starting from

version 1.1 switch architecture is tables; FlowTables and GroupTables. A FlowTable

contains flow entries. With each entry having (1) match fields: that accurately defines

the flow, (2) counters: that keeps track of flow statistics, and (3) instructions: which

defines how the data will be treated (forward, drop or go to another table).

When pkt_in is received, the OpenFlow switch compares it against the flow

88

Failure Recovery Techniques

entries within its FlowTable. If a matching entry is found, the corresponding instruction

is performed and counters incremented accordingly. In the case that a flow is not found,

a table-miss flow entry is created to handle the packet. This is usually by informing the

SDN controller through packet_in control message, and waiting for response.

With the introduction of instructions instead of actions and GroupTable start-

ing form OpenFlow 1.1 [53] , advanced processing methods can be utilised. With actions

if there is a match, the action is performed directly. While the instructions, more so-

phisticated operations can be performed according to the instructions which can be: (1)

immediate actions, (2) a set of actions, or (3) a change to the pipeline processing to go

to GroupTables.

ID Type= FF Counters

Bucket actionswatch port/group

Bucket actionswatch port/group

Bucket

Group

actionswatch port/group

Figure 5.3 – Group Tables of OpenFlow

The GroupTable contains several group entries. Each group entry has a dis-

tinctive group ID, a group type, and a number of action buckets. Action buckets is an

OpenFlow term that resembles a list of actions that may performed sequentially. For

executing a specific group entry in GroupTables, the flow entry sends the packets to a

89

Chapter 5 : Failure Recovery in SDWSN

group entry containing a specific group ID. GroupTables can be of any of the following

types: (1) ALL, where it is allows to perform a list of actions, used for flooding and

multicasting, (2) SELECT with this type only one set of actions in the group is exe-

cuted, (3) INDIRECT where the instructions are executed in the next hop, or (4) FAST

FAILOVER type that allows the first alive action bucket of instructions to be executed.

In our work, FAST FAILOVER group type is used to switch the flow in the case of failure

by providing alternative paths once failure is detected.

3-way
handshake

HELLO

CONTROLLER

OF SWITCH

HELLO

FEATURE
REQUEST

SET
CONFIG

GET
CONFG

REQ

GET
CONFG

REQ

FLOW
MOD

PKT
OUT

(LLDP)

PKT
IN

ECHO
REPLY

ECHO
REQ

FEATURE
REPLY

Figure 5.4 – Messages Exchange Between SDN Controller And OpenFlow
Enabled Switch

The discovery process uses Open Flow Discovery Protocol “ OFDP" that is just

an instantiation of Link Layer Discovery Protocol “ LLDP”. LLDP is layer 2 protocol

that transmits the device information and ports to all neighbouring networking devices.

The information is sent at a fixed time interval as an advertisement message in the format

[Type, Length, Value]. Basic information such as hostname, description, port name and

others. Once received by a neighbouring OpenFlow-enabled switch, it updates its OFDP

table and forward this advertisement message out to all other ports. [140]

There are three compulsory TLVs; Chassis ID, Port ID and Time To Live.

Chassis ID is a unique switch identifier. It also conations other optional TLVs showing

in

Each OpenFlow-enabled switch forwards these advertisement messages as

90

Failure Recovery Techniques

Prem. MAC
D.A.

MAC
S.A.

Ether
Type

Chassis
I.D.

Port
I.D.

TTL
TLV

OPT.
TLV

End
OFDP

Frame
CHQ

Table 5.1 – OFDP/LLDP Frame Structure

OFP_PACKET_IN to the SDN controller once the the controller broadcasts OFP_PACKET_OUT.

Upon receiving all OFP_PACKET_IN from network nodes, the controller can now have

a global view of the network devices. Based on this information and utilising a suitable

routing algorithm, e.g. Dijkstra, the controller can construct OpenFlow tables for all

participating nodes 5.5.

A
Src.

Dst.

B

C

E

D

F

K

G

H

I

J

x

�����������������������
������������������������
�������������������������
������������������������

�������������������������
��������������������������
��������������������������

������������������������
�������������������������
��������������������������

������������������������
�������������������������

������������������������
�������������������������
��������������������������

������������������������
�������������������������

�����������������������
�������������������������
��������������������������
��������������������������
��������������������������

�����������������������
������������������������
�������������������������

������������������������
�������������������������
��������������������������

�����������������������
������������������������
�������������������������

�������������������������
��������������������������
���������������������������

FlowTable for A

FlowTable for D FlowTable for G FlowTable for I

FlowTable for H
FlowTable for E

FlowTable for C

FlowTable for B FlowTable for F FlowTable for J

FlowTable for K

1 3

3
3

3

3

3 3

33
1

3

3

2

2 4
2

2

25

2
2

2
2

2

2

4

4

4

4
4

4

4

Figure 5.5 – FlowTables For A Sample Network With Input And Output
Ports And Priority For The Flow From Source To Destination

After the controller receives packet out , and using OFDP. The controller con-

structs primary path using FlowTable and backup path for each flow using FAST_FAILOVER

group. For each <source, destination> pair the SDN controller sends these flow entries

for the effected nodes (OF switch). To achieve this, the controller installs tow action

91

Chapter 5 : Failure Recovery in SDWSN

buckets in the group entry of the GroupTable of type FAST_FAILOVER. The first ac-

tion bucket for the primary and the second for the backup path. The previous steps

are depicted in 5.6 . After receiving the port and other information through OFDP, the

controller calculates the path from source to destination. In this example, the primary

shortest path is calculated by the controller to be A→D→G→I→K .

A
Src.

Dst.

B

C

E

D

F

K

G

H

I

J

x

����������������
�������������������

GroupTable A

����������������
��������������

GroupTable D

����������������
��������������

GroupTable C

����������������
GroupTable B

����������������
������������������

GroupTable G
����������������
������������������

GroupTable I

�����������������
����������������
GroupTable F

�������������������
����������������
GroupTable J

�������������������

����������������
GroupTable K

���������������

����������������
GroupTable H

�������������������
����������������
GroupTable E

������������������

Backup Path

Primary/ActivePath

1 3

3
3

3

3

3 3

33
1

3

3

2

2 4
2

2

25

2
2

2
2

2

2

4

4

4

4
4

4

4

Figure 5.6 – FlowTables For A Sample Network With Input And Output
Ports And Priority For The Flow From Source To Destination

Afterwards the controller computes the following backup paths A→B→F→J→K

and A→C→E→H→J→K for any possible failure in the link <A,D>, in this example.

Because node D has only one action bucket, there are no alternative paths to be diverted

from that node. However, node A has 3 action buckets to choose from in the case of

failure of the link <A,D>.

Figure 5.7 illustrates the utilisation of the backup path A→B→F→J→K if a

failure takes place at link <A,D>. Once port_down signal is detected at port number

92

Failure Recovery Techniques

2 of OF switch A, the traffic is instantly diverted to node D through port 4.

Match Fields Instruction
IP_src:src.ip and IP_dst:dst.ip GID1

Table 5.2 – FlowTable entry for Node A, Directing The Pipeline To Execute
The Instructions In The GroupTable

The combination of of FlowTables and GroupTable to achieve this result is

summarised in 5.2 and 5.4 respectively. It shows the flow entries for both FlowTable

and GroupTable for node A, which is OpenFlow switch. The FlowTable entry for traf-

fic comping from Src. and heading to Dest. is directed to go to GID1 where further

instructions are executed sequentially based on their liveness status.

Group Identifier Group Type Action Buckets
GID1 Fast Failover Watch: A_1 port; Outport: A_2
GID1 Fast Failover Watch: A_1 port; Outport: A_4
GID1 Fast Failover Watch: A_1 port; Outport: A_3

Table 5.3 – GroupTable entry for Node A, Prioritising The Flow Using
Primary Path As a First Entry and The Rest As a Backup Route In The

Case Of Failure

When the first instruction in the action bucket becomes inactive, the second

action in the actions buckets is triggered. The process continuos for the rest of created

table entries.

Group Identifier Group Type Action Buckets
GID1 Fast Failover Watch: A_1 port; Outport: A_2
GID1 Fast Failover Watch: A_1 port; Outport: A_4
GID1 Fast Failover Watch: A_1 port; Outport: A_3

Table 5.4 – A Failure In Port 2, The Next Active Entry In GroupTable Of
Node A Is Activate

93

Chapter 5 : Failure Recovery in SDWSN

A
Src.

Dst.

B

C

E

D

F

K

G

H

I

J

x

x����������������
�������������������

GroupTable A

����������������
��������������

GroupTable D

����������������
��������������

GroupTable C

����������������
GroupTable B

����������������
������������������

GroupTable G
����������������
������������������

GroupTable I

�����������������
����������������
GroupTable F

�������������������
����������������
GroupTable J

�������������������

����������������
GroupTable K

���������������

����������������
GroupTable H

�������������������
����������������
GroupTable E

������������������

Backup Path

Primary/ActivePath

1 3

3
3

3

3

3 3

33
1

3

3

2

2 4
2

2

25

2
2

2
2

2

2

4

4

4

4
4

4

4

Figure 5.7 – FlowTables For A Sample Network With Input And Output
Ports And Priority For The Flow From Source To Destination

94

Model and Simulation

5.4 Model and Simulation

The choice of an emulation environment to examine the earlier discussed failure issues,

section 5.3 Failure Recovery Techniques and 5.2 Failure Detection in SDWSN, is funda-

mentally based on the ability of the simulation environment to embrace the new releases

of OpenFlow specifications [11] [53][17][18] and Open vSwitch [52] that addressed these

problems. Other fundamental features must include support of physical wireless inter-

faces, 6LowPAN WSN nodes, integration with mininet [141][142], and active support of

Open vSwitch [52] are key elements of selecting an emulation environment from the solu-

tions discussed in subsection 3.6.3 Emulating Solutions for SDN and IoT. The topologies

were tested Mininet-WiFi which enabled the connection of 6LowPAN sensor nodes to an

802.11 wireless nodes. The sensing nodes either collect data periodically or in the case

of an event takes place. Sensing nodes were acting as hosts and is attached to every

edge wireless Open vSwitch node. This imitates a typical IoT application where devices

collaborate to perform unconventional tasks.

In the experiment, WSN nodes, are equipped with OpenvSwitch (OVS) [52] ,

which enables the nodes to act as OpenFlow switches and communicate through Open-

Flow protocol with the controller. OVS is production quality switch a multilayer software

switch licensed under the open source Apache 2 license. OVS supports standard manage-

ment interfaces and allows the programability of forwarding plane through the control

plane. Ryu SDN controller [40] was chosen as the driving controller for the SDWSN

network. Ryu provides software components with well defined API which makes the cre-

ation of control and management an easy task. Wireshark [143] , was used for analysing

OpenFlow protocol the traffic and providing statistical data about the message exchange,

protocol, size and duration. The whole system was test under Ubuntu 14.X in a virtu-

alised environment under Parallel software for MacOS. The goal of the experiment is to

compare protection and restoration techniques as a solution of WSN in an SDN environ-

95

Chapter 5 : Failure Recovery in SDWSN

ment. To test the protection mechanism, the steps in chart 5.8 were performed inside

Software Function Version
Open vSwitch [52] Virtual SDN Switch 2.5.1
Ryu [40] SDN Controller Platform 2.7.3
Mininet-WiFi[114] Wireless SDN Network Emulator 2.3
Parallel x86 Virtualisation Software 10.4
Linux (Ubuntu) Guest Operating System 14.04.5
Python Programming Language 2.7
Wireshark [143] Netwrok Analyser 2.2.2

Table 5.5 – Applications Used In SDWSN Failure Recovery Implementation

Ryu controller. The controller broadcasts ofp_packet_out message enclosing OFDP

packet for every SDWSN switch. Every switch that receives this packet forwards the

OFDP part to all of its active physical ports. Once received by a participating switch,

it responds by sending ofp_packet_in message. The ofp_packet_in is sent to the

controller to inform it about how this message is received. Upon receiving this informa-

tion, the controller now has the information needed to link two switches, to which port

and other information. We use pkt.etherType = 0x88cc and pkt.inPort = con-

troller, to filter OFDP packets in response to the initial ofp_packet_out message.

After that we use a shortest distance algorithm to establish the route from source to

destination. In the case that the messages received are not enough to establish a route,

the controller populates the participating ends to forward flow to ofpp_table virtual

port, that will treat it as per the flow already exist in legacy switching. On the other

hand, if enough information is collected through the ofp_packet_out message, the

controller populates the participating SDWSN nodes with the corresponding flow entries.

In the case that the node has one active port (edge=1), the instructions is limited to

a FlowTable entry. Whereas if there is more than active port, the controller provides

protection for the node. By first creating a GroupTable entry with the first shortest

path. In addition, the controller also, creates a flow entry with an instruction to go to

that particular GroupTable. The GroupTables is set to type= fast failover. In our

96

Model and Simulation

implementation, the controller creates entries equal to the number of edges linked to that

particular node. In addition, BFD is used for detecting faulty links.

97

Chapter 5 : Failure Recovery in SDWSN

only one edge,update
OpenFlow Table

forward to legacy
legacy switching

create OF instruciton
& GT action buckets

create GroupTable
entries eq. to # edjes

pkt_in
ingress por

other SDN controller operation

forward=OFPP TABLE
 virtual output port

extract
 srcMaC, dstMAC

initiate discovery
process

for all OF switches in
shortest path

populate tables

initiate shortest distance

OF_Flow_Mod

OF_Flow_Mod
OF_Group_Add

While
Degree>0

success ?

Degree=1
Yes

No

pkt_out
egress por

etherType=0x88cc
&&

inPort=CONTROLLER

Figure 5.8 – Flow Chart For Protection Process Inside The Controller

98

Model and Simulation

In contrast to protection, in the case of restoration the SDWSN node reactively

contacts the controller after the failure takes place. The restoration process starts by a

first stage of detecting failure through Bidirectional Forwarding Detection (BFD) or Los of

Signal (LoS), the later is used in this work. The second stage is from the SDWSN node to

contact the controller via ofpt_multipart_request and ofpt_multipart_reply.

The controller then reactively calculates an alternative link and updates the corresponding

flow entries in the participating switches. Normal routing operation is then performed

once the new flow entries are installed.

5.4.1 Evaluation

To evaluate the different recovery techniques in the new Software Defined Wireless Sensor

Network environment, the topologies in 5.9. Topologies a, b and c have the same number

of nodes (Open vSwitches) with varying number of links and node degrees. Node degree

is the number of links to each node, which could affect the number of backup links in

the case of failure. Topology e is the largest with 59 nodes and 148 links and nodes in

this configuration has between 3 and 7 links to connect them with other nodes. Table

5.6 summarises the key differences between each topology.

The choice of these topologies is driven by the fact that the growth in the number

of nodes and node degree has influence on failure recovery performance. For example,

the increase of number of nodes from topologies a, to d and e; increases SDN control

overhead. This in turn, affects the recovery time and increases the probability of packet

collision and retransmission. The change in node degree in b and c, has direct influence

on the available alternative links and the number of GroupTable entries in the case of

protection mechanism. These simple and easily maintained topologies are adequate for

evaluating the scope of this proposal, however other alternative topologies are possible.

99

Chapter 5 : Failure Recovery in SDWSN

Node DegreeTopology Nodes Links Min MEAN Max
a 29 67 3 4.64 7
b 29 64 2 4.46 7
c 29 55 2 3.57 5
d 44 93 2 4.24 8
e 59 148 3 4.72 7

Table 5.6 – Topologies

100

Model and Simulation

Figure 5.9 – Topologies Used for evaluating Recovery Schemes in SDWSN [1]

101

Chapter 5 : Failure Recovery in SDWSN

5.4.2 Evaluating Recovery Time

Analysis

The failure recovery time can be modelled as explained in [144] [145], which can be

extended to the following model in the case of Software Defined Wireless Sensor. The

process starts when a failure is detected at time TD, after that a notification message is

sent to the controller that takes time Tprop to reach the SDN controller. The controller

then spends TS to search for the effected flow and Tcalc to calculate a new path. Then,

TFM is taken to created and send flow_mode message. Then OvS switch will take TU

to update the new flow entry.

TRecovery = TD + Tprop +TS + Tcalc + TFM +Tprop + TU

Because we are using Dijkstra algorithm, the time taken to calculate the path

Tcalc is of time complexity O(n2) where n is the number of nodes. The measured average

time for the controller to calculate alternative paths for the topologies in 5.9 is shown in

5.10.

In the case of protection, the recovery time model is the detection failure time

TD and internally updating the flow TU with the OvS switch.

TRecovery = TD + TU

Simulation

To evaluate the average recovery time for the protection mechanism. The topologies in

figure 5.9 were installed for each network topology in Mininet-WiFi simulator. Then the a

random link failure was performed to the existing working path, through “ovs-ofctl”

utility by using the #sudo ovs-ofctl mod-port command. For each topology the

experiment is repeated 10 times. Wireshark [143] was used to record the start of the

failure of the link and the establishment of the flow again. Once a new flow entry is

102

Model and Simulation

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

Number of Paths

C
on

tr
ol
le
r
Se

ar
ch

T
im

e
(m

s)

Figure 5.10 – Time Required by Controller In Finding Alternative Path In
Restoration Operation

activated from GroupTable this ends the failure time for the link.

Similarly the process of examining the restoration process, was repeated with

the same topologies. Here Open vSwitch had to consult the SDN controller to evaluate

a new working path. Once the traffic resumes to arrive to the destination, this records

the end of the failure time. The utilisation of GroupTables in the protection recovery

technique provided smoother recovery. The recovery time for the first three topologies

was almost the same of around 59 ms. Topology d and e had an average recovery time

of 112 ms, and 145 ms respectively in protection technique. The recovery time for the

same topologies using restoration is considerably higher. When using BFD for protection

using normal Asynchronous Echo mode, the recovery process is performed faster

than the Asynchronous Non-Echo mode. This is due the active echoing performed

periodically in Asynchronous Echo BFD. The major part of the delay, however, takes

place during the communication between the the tow end nodes in BFD. In LoS that is

used in restoration, the delay is caused by the control message traversing from the node

103

Chapter 5 : Failure Recovery in SDWSN

detecting the failure to reach the controller and back with average time consumed for 200

ms delay. The remaining time is for the control to computer the alternative route and

update flow entries.

The two BFD modes produced similar recovery time for the protection scheme.

The high delay in the last topology the recovery time of the restoration technique is due

to the large number of links the message has to traverse and higher node degrees. The

controller takes more time to install several flow entries in their respective nodes for the

new alternative route from source to destination. An average recovery time for topology

e of 760 ms is very high and is not acceptable in common time-critical WSN applications

[146][130].

From recovery time perspective, the protection technique that depends on Open-

Flow GroupTables had a faster recovery time from network failure. This due to the use

of preexisting calculated paths within the node and controller-free path reconstruction

process.

Topology a Topology b Topology c Topology d Topology e
0

200

400

600

800

R
ec
ov
er
y
T
im

e
(m

s)

Protection Asynchronous Protection Demand Restoration

Figure 5.11 – Average Recovery Time

104

Model and Simulation

5.4.3 Evaluating Failure Detection Traffic

To evaluate the behaviour of control traffic in protection and restoration. In this evalua-

tion end nodes send collected data to the the controller node in topology c . In this test,

nodes start communicating and after specific time slot we break one of the links used as

a primary path for the traffic. The control traffic is then captured in SDN controller for

evaluation.

Restoration

The OpenFlow session hello messages exchanged from the nodes in the topology with the

controller at the 12 second of the experiment. At the beginning, the Open vSwitch learns

the path from source to destination, this is represented in the initial spikes in the graph

5.12 [22 seconds – 49seconds] of the experiment. This is followed by normal traffic from

source to destination, a one second interval gap is used to avoid overloading the SDN

controller. This is followed by periodical smaller spikes from the SDN controller. These

are the echo messages to check the aliveness of the links in the SDN controller. At the

mark of 120 second, a link is disabled in the working path of the SDWSN network. When

this failure takes place, the Open vSwitch sends a failure notification message to the SDN

controller. Because the restoration process requires the controller to perform the recovery

process, this is indicated by a large volume of traffic around 120 second. This large spike

in the figure 5.12, due to the control messages of the path reestablishment. These are

flow_mode that modifies the flow entry of the effect flows. In addition to the response

to these notification messages of the flow_mode.

Protection

Similar to the restoration initial process, the path learning process in the protection have

28 spikes at the beginning of the simulation. In the protection scheme, however, the

traffic is higher in volume compared to the restoration. This is caused due to the fact

105

Chapter 5 : Failure Recovery in SDWSN

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

0

100

200

300

Simulation Time (s)

N
um

be
r
of

Pa
ck
et
s

Figure 5.12 – Traffic Behaviour In Restoration Scheme

that the controller establishes a primary path and a backup path from the SDN controller

and store the flow entries in addition to the GroupTable entries. The second wave of high

spikes from 45 seconds to 68 seconds is beginning of the BFD session for each working

path. This is followed by periodical smaller spikes from the SDN controller. These are

the echo messages to check the aliveness of the links in the SDN controller. Similar to

the previous restoration experiment, the same link failure process was performed at the

120 second in the protection mode. Since the Open vSwitch is not required to contact

the SDN controller, the controller does not take any action. This is reflected in the lack

of any significant spikes of the SDWSN network at the 120 second mark in 5.13 where

link failure was performed. Here the node only uses the pre-installed alternative path.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

0

200

400

600

Simulation Time (s)

N
um

be
r
of

Pa
ck
et
s

Figure 5.13 – Traffic Behaviour In Protection Scheme

106

Model and Simulation

5.4.4 Evaluating Number of Control Messages

The control traffic overhead is main energy consumption element that exhaust WSN

nodes’ power. Because the other type of data is forwarded without processing. The

control messages during the discovery process include OFDP which takes place after the

Hello and features_request. For example, Topology a has 29 nodes and 67 links,

OFDP requires 67 LLDP Packet_Out messages. The size of each of these OFDP

messages is 160 bits. The same is required for the Packet_In messages from SDWSN

to the controller.

Each link of the network will have an BFD session established with 24 bytes

BFD Control message length for both Asynchronous Non-Echo and Asynchronous

Echo in the case of protection. However, only 12 bytes BFD echo message is required

as keep alive messages during the session between each participating nodes in one link

through the path in Asynchronous Echo. In the case of Asynchronous Non-Echo

the tow end systems keep exchanging the same control message of size 24 bytes.

For the restoration scheme, each SDWSN node exchanges keep alive message pe-

riodically with the controller. This takes place through echo_request and echo_reply

each containing timestamp, bandwidth and liveness liveness information. Once a failure

takes place the controller will send flow_mod to each SDWSN in the new alternative

backup path.

The use of keep-alive messages form nodes to the controller informs about the

node status and once a node depletes energy, the controller can update the path of

the effected nodes following restoration scheme. In the case of BFD the tow nodes ex-

change periodical ping messages to keep the communication alive. Once BFD signal is

not received, the SDWSN can utilise group tables to choose the highest priority rule

through protection mechanism. The shortest that a BFD entity can recieve control mes-

107

Chapter 5 : Failure Recovery in SDWSN

sages is min_rx. The default min_rx in Open vSwitch is 1000 milliseconds [52][134]

. This is used in the experiment for the BFD Asynchronous Echo. For the BFD

Asynchronous Non-Echo the time is set 1000 milliseconds for the smaller echo mes-

sages although it can be set to lower rates for achieving more aggressive error detection.

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000

BFD Async.

BFD Demand

Keep-Alive

Control Messages (Bytes)

Topology (b) : 29 Nodes, 64 Links

OFPT_HELLO FEATURES_REQUEST FLOW_MOD

BFD_Control BFD_Session ECHO_Request/Replay

Figure 5.14 – Control Traffic In Topology a

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000

BFD Async.

BFD Demand

Keep-Alive

Control Messages (Bytes)

Topology (b) : 29 Nodes, 64 Links

OFPT_HELLO FEATURES_REQUEST FLOW_MOD

BFD_Control BFD_Session ECHO_Request/Replay

Figure 5.15 – Control Traffic In Topology b

108

Model and Simulation

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000

BFD Async.

BFD Demand

Keep-Alive

Control Messages (Bytes)

Topology (c) : 29 Nodes, 55 Links

OFPT_HELLO FEATURES_REQUEST FLOW_MOD

BFD_Control BFD_Session ECHO_Request/Replay

Figure 5.16 – Control Traffic In Topology c

The use of BFD Asynchronous Echo, as shown in Figures 5.14 5.17 and

5.18, provides huge savings in the amount of control traffic compared to the normal BFD

and Keep-Alive schemes. This is due to the smaller message size.

The control traffic of the OpenFlow session through ofpt_Hello, and the

features_request has no major effect on the produces traffic. The BFD in the two exam-

ined modes shows a great advantage in utilising the Asynchronous Echo mode. The

control traffic is reduced from 0.056 megabyte to 0.028 megabyte in Topology a 5.14. The

echo_request and echo_replay messages used in the restoration scheme consume

0.045 megabyte in 5.14.

Similar results are noticed in 5.17 where the Asynchronous Echo mode

spares almost half of the control traffic due to increasing the frequency of the BFD session

messages from the default 1000 milliseconds. The Keep-Alive scheme, on the other hand,

maintains the same behaviour compared to BFD in Asynchronous Non-Echo mode.

109

Chapter 5 : Failure Recovery in SDWSN

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

BFD Async.

BFD Demand

Keep-Alive

Control Messages (Bytes)

Topology (d) : 44 Nodes, 93 Links

OFPT_HELLO FEATURES_REQUEST FLOW_MOD

BFD_Control BFD_Session ECHO_Request/Replay

Figure 5.17 – Control Traffic In Topology d

The difference of the control traffic between the tow schemes is 17 kilobytes. The gain of

using the BFD Asynchronous Non-Echo mode is w 42 kilobytes.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 1 · 105 1.1 · 105 1.2 · 105 1.3 · 105

BFD Async.

BFD Demand

Keep-Alive

Control Messages (Bytes)

Topology (e) : 59 Nodes, 148 Links

OFPT_HELLO FEATURES_REQUEST FLOW_MOD

BFD_Control BFD_Session ECHO_Request/Replay

Figure 5.18 – Control Traffic In Topology e

110

Conclusion

5.5 Conclusion

In this chapter, the feasibility of SDN was examined as a possible solution for recovering

WSN in the case of failure. Three different failure detection mechanisms, namely Keep-

Alive, BFD Asynchronous Echo and BFD Asynchronous Non-Echo mode were

examined. Simulation results show that adopting Asynchronous Non-Echo mode for

WSN/IoT in SDN environment reduces control traffic for failure detection by 27-48%.

The protection mechanism provided faster recovery time compared to restora-

tion. On average, protection using GroupTables of OpenFlow protocol, has up to 8 times

faster recovery time than restoration, and fewer signalling control traffic over time. How-

ever, the choice of Asynchronous Echo or Asynchronous Non-Echo mode had

negligible effect on the recovery time. The only only drawback of the protection scheme

is the required amount of memory to store flow entries of both the FlowTable and

GroupTable.

The second experiment was carried out through monitoring the SDN controller

traffic. The results showed the traffic behaviour of BFD protocol has less overhead on

the SDN controller than Keep-Alive messaging.

The final experiment categorised the control traffic and deeply examined the size

of each type of control messages and its traffic volume. This experiment examined not only

the SDN controller messages but also the traffic between the two entities participating

in an BFD session. The drawback of the BFD in Asynchronous Echo mode was

the noticeably larger than Keep-Alive (echo_request and echo_replay messages).

However, signalling in the case of BFD in Asynchronous Non-Echo mode provided

a reduction of the traffic size by 27-48% against BFD in Asynchronous Echo mode.

This is due to the difference between the packet size of the two schemes. The overload

signalling of the Keep-Alive scheme is noticeably fewer than Asynchronous Echo.

111

Chapter 5 : Failure Recovery in SDWSN

The traffic of the earlier is from the data plane of the node to the control plane of the

SDN controller. While in the later the BFD traffic is between the two data planes of the

participating SDWSN node. The speed of which signal is faster depends on the placement

of the SDN controller. However, as the numerical experiments showed earlier, BFD has

faster failure detection time.

112

Chapter 6 Conclusion

The IoT is a revolutionary technology that can take humans to the next chapter of tech-

nological evolution. It has applications in almost all walks of life, and its implementation

not only improves quality of life but also increases the stability and security of humans

and their surroundings. Research is focused on improving IoT systems and eliminating

the challenges and issues currently hindering its wide-scale adaptation. Some of these

challenges include data security, privacy, energy consumption, lack of standardisation,

mobility, and interoperability. However, many new technologies are being developed to

overcome these challenges and IoT is expected to progress rapidly in the near future.

6.1 Addressed Problems

This thesis addressed some aspects of the survivability problem in WSNs. With the

increased interest in the IoT, with WSNs as its major building blocks, the need to increase

IoT survivability and dependability is impartial. Our approach proposed the utilisation

of network programmability as a mean to solve these challenges. With SDN gaining much

popularity and sense, its application in WSNs raises the question of added benefit to such

an environment. To achieve that, we first conducted a comprehensive literature review

with a focus on SDN applications in wireless networks. The advantages of SDN technology

and its potential are enormous. However, the challenge is the limited resources/research

tools for applying this new concept to the existing complex environment of WSNs.

A Software-Defined Survivability Approach for WSN in Future IoT

Chapter 6 : Conclusion

With the goal of taking advantage of the unlimited possibilities of SDN, the

second step was adapting this new networking paradigm to WSNs. We addressed the

following survivability challenges in existing WSN environments.

6.1.1 Lifetime Maximisation for SDWSN

We investigated practical solutions that extend WSN lifetime and address the resource-

constrained nature of wireless nodes when migrated into SDN (i.e. SDWSN). The problem

was mathematically formulated as a linear program conforming with the centralised na-

ture of an SDN environment, and residual energy level constraints were imposed on WSN

nodes to determine the route that maximises the network lifetime in an SDN environment.

We proposed also an A-star-based routing algorithm to maximise WSNs in an

SDN environment. The algorithm, in addition to finding the shortest path for WSN

nodes, benefits from the SDN controller to obtain fair distribution of traffic to maximise

resource utilisation among the nodes. We built a simulation model of the algorithm, in

which it was deployed within the SDN controller. The algorithm was then evaluated

against existing WSN energy-saving algorithms.

Our simulation results indicate that SDN improved network lifetime by 16%

compared with the traditional LEACH. This result is due to the fact that SDN technology

requires a smaller number of control messages and that less processing power is consumed

because the route calculations are performed in the SDN controller rather than in the

sensor nodes in traditional routing. However, considering network lifetime definition as

being 50% of the depleted network nodes offers a brighter perspective; the lifetime has

gained an impressive 22.6% increase. These results confirm the feasibility of our proposed

approach compared with classical routing algorithms.

In particular, this centralised routing scheme provided a graceful network out-

114

Addressed Problems

age and energy consumption drop. Due to the balancing of power use in the network,

wireless sensor nodes depleted their energy sources at approximately the same time. This

finding is highly beneficial since all the nodes can be recharged or replaced simultaneously,

instead of constantly monitoring and servicing individual devices.

6.1.2 Failure Recovery of SDWSN

To address the failure detection problem, we presented a comparative evaluation of exist-

ing SDN failure detection techniques and evaluated their applicability in IoT simulation

environment. The control traffic overhead and failure detection time were the main cri-

teria in this evaluation. The selection of any particular technique is an application based

decision, which our work contributing to clarify. For failure recovery, we measured the

performance various combinations of existing failure recovery techniques that adhere to

SDN specifications constrains and suit IoT applications. At the centre of this contribu-

tion lie the identification of architectural aspects and considerations of OpenFlow SDN

protocol when applied to a resource-constrained environment like IoT.

Our extensive experimentation of the feasibility of SDN as a viable environment

for solving failure recovery in WSN and future IoT. Three different failure detection mech-

anisms, namely Keep-Alive, BFD Asynchronous Echo and BFD Asynchronous

Non-Echo mode were examined.

The protection mechanism provided faster recovery time compared to restora-

tion. However, the choice of Asynchronous Echo or Asynchronous Non-Echo

mode had no significant effect on the recovery time. The only only drawback of the

protection scheme is the required extra memory space to store flow entries of both the

FlowTable and GroupTable. The second experiment was carried out through mon-

itoring the SDN controller traffic. The results showed the traffic behaviour of BFD

protocol has less overhead on the controller than Keep-Alive messaging. The final exper-

115

Chapter 6 : Conclusion

iment categorised the control traffic and deeply examined the size of each type of control

messages and its traffic volume. This experiment examined not only the SDN controller

messages but also the traffic between the two entities participating in an BFD session.

The drawback of the BFD in Asynchronous Echo mode was noticeably larger than

Keep-Alive (echo_request and echo_replay messages). However, the custom BFD

in Asynchronous Echo mode provided a reduction of the traffic size of no less than

half the BFD in Asynchronous Non-Echo mode.

6.2 Discussion and Future Work

The failure detection techniques investigated here provide an insight into the viability

of the BFD Asynchronous Echo mode. However, not all IoT applications require

continuous sensing activity. Therefore, the periodic echo process might not suit these

applications. One possible solution to this problem is the use of the BFD demand mode.

This mode can be implemented, for example, based on the number of transmitted or

received packets. In this context, the BFD protocol depends on the interface statistics to

trigger the error detection functionality. Currently, however, Open vSwitch does not sup-

port this functionality; the implementation of such a functionality requires modifications

of OvS kernel.

In failure recovery, the protection mechanism that utilises GroupTables had a

quicker recovery time than the restoration scheme. However, the larger the size of the

network, the more memory storage for both FlowTables and GroupTables. This factor

raises the question of the trade-off between memory cost and performance, which could

be a future optimisation research problem.

Our proposed lifetime maximisation algorithm provided nodes with remaining

power after the end network coverage. This finding could lead to future improvement

by investigating network lifetime regarding coverage. In addition, the feasibility of using

116

Discussion and Future Work

multiple SDN controllers in the future could result in greater network lifetime.

Although software defined networking shows good improvements in terms of

lifetime compared to some well-known protocols such as LEACH, there is an area of

improvement in terms of optimising the number of SDN controllers. For example, the

study of energy hole problem could be solved by this optimisation. In the energy hole

problem, nodes near the sink or controller exhaust their energy much sooner than other

nodes.

117

Bibliography

[1] J. Rak, Resilience of Wireless Mesh Networks, pp. 85–120. Cham: Springer Inter-

national Publishing, 2015.

[2] G. Bell, “Bell’s law for the birth and death of computer classes: A theory of the

computer’s evolution,” IEEE Solid-State Circuits Society Newsletter, vol. 13, no. 4,

pp. 8–19, 2008.

[3] T. Nakagawa, G. Ono, R. Fujiwara, T. Norimatsu, T. Terada, M. Miyazaki,

K. Suzuki, K. Yano, Y. Ogata, A. Maeki, et al., “1-cc computer: Cross-layer inte-

gration with uwb-ir communication and locationing,” IEEE Journal of Solid-State

Circuits, vol. 43, no. 4, pp. 964–973, 2008.

[4] J. Postel, “Transmission Control Protocol.” RFC 793 (Internet Standard), Sept.

1981. Updated by RFCs 1122, 3168, 6093, 6528.

[5] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N. Handigol,

N. McKeown, and G. Parulkar, “Blueprint for introducing innovation into wire-

less mobile networks,” in Proceedings of the second ACM SIGCOMM workshop on

Virtualized infrastructure systems and architectures, pp. 25–32, ACM, 2010.

[6] M. P. Gallaher and B. R. Rowe, “The costs and benefits of transferring technology

infrastructures underlying complex standards: The case of ipv6,” The Journal of

Technology Transfer, vol. 31, pp. 519–544, Sep 2006.

A Software-Defined Survivability Approach for WSN in Future IoT

Bibliography

[7] S. Ruthfield, “The internet’s history and development: from wartime tool to fish-

cam,” Crossroads, vol. 2, no. 1, pp. 2–4, 1995.

[8] “Ietf document statistics.” https://www.arkko.com/tools/rfcstats/.

[9] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation chal-

lenges for software-defined networks,” IEEE Communications Magazine, vol. 51,

pp. 36–43, July 2013.

[10] N. Operators, “Network functions virtualization, an introduction, benefits, en-

ablers, challenges and call for action,” in SDN and OpenFlow SDN and OpenFlow

World Congress, 2012.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74, Mar. 2008.

[12] ONF, “OpenFlow Switch Specification 1.3.” https://www.opennetworking.

org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

[13] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using openflow:

A survey,” IEEE Communications Surveys Tutorials, vol. 16, pp. 493–512, First

2014.

[14] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of

programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–98,

Apr. 2014.

[15] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, Y. Iwata, H. Inoue, T. Hama, et al., “Onix: A distributed control

platform for large-scale production networks.,” in OSDI, vol. 10, pp. 1–6, 2010.

119

https://www.arkko.com/tools/rfcstats/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf

Bibliography

[16] ONF, “OpenFlow Switch Specification Version 1.0.0.” https://

www.opennetworking.org/wp-content/uploads/2013/04/

openflow-spec-v1.0.0.pdf, December 2009.

[17] ONF, “OpenFlow Switch Specification Version 1.4.0.” https://

www.opennetworking.org/wp-content/uploads/2014/10/

openflow-spec-v1.4.0.pdf, October 2013.

[18] ONF, “OpenFlow Switch Specification Version 1.5.0.” https://

www.opennetworking.org/wp-content/uploads/2014/10/

openflow-switch-v1.5.0.pdf, December 2014.

[19] H. Karl and A. Willig, Protocols and architectures for wireless sensor networks.

John Wiley & Sons, 2007.

[20] B. Bhatta, Research Methods In Remote Sensing. Springer, 2013.

[21] R. R. Brooks, Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad

Hoc Wireless, and Peer-to-Peer Networks. SAGE Publications Sage UK: London,

England, 2008.

[22] J. Gao, “Analysis of energy consumption for ad hoc wireless sensor networks using

a bit-meter-per-joule metric,” IPN Progress Report, vol. 42, no. 150, 2002.

[23] A. M. H. G. P. Kobo, Hlabishi I.; Abu-Mahfouz, “A survey on software-defined

wireless sensor networks: Challenges and design requirements,” IEEE access, vol. 5,

pp. 1872–1899, 2017.

[24] “Open Networking Foundation Members.” https://www.opennetworking.

org/member-listing/.

[25] MATLAB, Release 2014b. Natick, Massachusetts: The MathWorks Inc., 2014.

120

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/member-listing/
https://www.opennetworking.org/member-listing/

Bibliography

[26] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-

munication protocol for wireless microsensor networks,” in System sciences, 2000.

Proceedings of the 33rd annual Hawaii international conference on, pp. 10–pp,

IEEE, 2000.

[27] Y. Perwej, K. Haq, F. Parwej, M. Mumdouh, and M. Hassan, “The internet of things

(iot) and its application domains,” International Journal of Computer Applications,

vol. 975, p. 8887.

[28] BBC, “Bcc research report on internet of things (iot) networks: Technologies and

global markets to 2022.,” report, 2017.

[29] J. Ramson, Jino; Moni, “Applications of wireless sensor networks - a survey,” in

2017 International Conference on Innovations in Electrical, Electronics, Instru-

mentation and Media Technology (ICEEIMT), 2017.

[30] M. G.-M. A. A. M.-M. M. O.-L. M. A. Q.-L. F. J. Moreno-Moreno, Carlos D.; Brox-

Jiménez, “Wireless sensor network for sustainable agriculture,” Multidisciplinary

Digital Publishing Institute Proceedings, vol. 2, no. 20, p. 1304, 2018.

[31] Y. C.-S. I. S. Ali, Ahmad; Ming, “A comprehensive survey on real-time applications

of wsn,” Future Internet, vol. 9, no. 4, p. 77, 2017.

[32] M. Mittal and S. C. Pandey, The Rudiments of Energy Conservation and IoT,

pp. 1–17. Springer, 2019.

[33] K. Chopra, K. Gupta, and A. Lambora, “Future internet: The internet of things-

a literature review,” in 2019 International Conference on Machine Learning, Big

Data, Cloud and Parallel Computing (COMITCon), pp. 135–139.

[34] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot): A literature

review,” Journal of Computer and Communications, vol. 3, no. 05, p. 164, 2015.

121

Bibliography

[35] 2016.

[36] E. C.-F. M. F. Mekki, Kais; Bajic, “A comparative study of lpwan technologies for

large-scale iot deployment,” ICT express, vol. 5, no. 1, pp. 1–7, 2019.

[37] T. N. Z. Z. T. H. W. T. Queralta, J. Penã; Gia, “Comparative study of lpwan

technologies on unlicensed bands for m2m communication in the iot: beyond lora

and lorawan,” Procedia Computer Science, vol. 155, pp. 343–350, 2019.

[38] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,

“Nox: Towards an operating system for networks,” ACM SIGCOMM Computer

Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[39] “POX Controller.” https://github.com/noxrepo/.

[40] “Ryu Component-Based Software Defined Networking Framework.” https://

github.com/osrg/ryu.

[41] “OpenDayLight Project.” http://www.opendaylight.org/.

[42] “Floodlight Project.” http://www.projectfloodlight.org/

floodlight/.

[43] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking, pp. 13–18,

ACM, 2013.

[44] “OpenMUL Controller.” http://www.openmul.org/.

[45] “Trema : Full-Stack OpenFlow Framework in Ruby and C.” https://trema.

github.io/trema/.

[46] “OpenStack Foundation.” https://www.openstack.org/.

122

https://github.com/noxrepo/
https://github.com/osrg/ryu
https://github.com/osrg/ryu
http://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.openmul.org/
https://trema.github.io/trema/
https://trema.github.io/trema/
https://www.openstack.org/

Bibliography

[47] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers: A compara-

tive study,” in 2016 18th Mediterranean Electrotechnical Conference (MELECON),

pp. 1–6, April 2016.

[48] “OF–CONFIG 1.2.” https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/

openflow-config/of-config-1.2.pdf.

[49] R. Enns (Ed.), M. Bjorklund (Ed.), J. Schoenwaelder (Ed.), and A. Bierman (Ed.),

“Network Configuration Protocol (NETCONF).” RFC 6241 (Proposed Standard),

June 2011. Updated by RFC 7803.

[50] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C. Popovici, “A

comparison between several software defined networking controllers,” in 2015 12th

International Conference on Telecommunication in Modern Satellite, Cable and

Broadcasting Services (TELSIKS), pp. 223–226, Oct 2015.

[51] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown, “Im-

plementing an openflow switch on the netfpga platform,” in Proceedings of the

4th ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, ANCS ’08, (New York, NY, USA), pp. 1–9, ACM, 2008.

[52] “The Openflow Switch.” http://www.openvswitch.org/.

[53] ONF, “OpenFlow Switch Specification Version 1.1.0.” https://

www.opennetworking.org/wp-content/uploads/2014/10/

openflow-spec-v1.1.0.pdf, October 2014.

[54] V. K. S. J. V. Bala, Tarun; Bhatia, “A survey: issues and challenges in wireless

sensor network,” International Journal of Engineering & Technology, vol. 7, no. 2,

p. 77, 2018.

123

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
http://www.openvswitch.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf

Bibliography

[55] A. Kharb, Seema; Singhrova, Next-Generation Networks, ch. Review of Industrial

Standards for Wireless Sensor Networks. Singapore, 2018.

[56] C. Lim, “A survey on congestion control for rpl-based wireless sensor networks,”

Sensors, vol. 19, no. 11, p. 2527, 2019.

[57] J. J. R. R. A. A.-M. J. K. V. Sobral, José VV; Rodrigues, “Routing protocols for

low power and lossy networks in internet of things applications,” Sensors, vol. 19,

no. 9, p. 2144, 2019.

[58] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Bog-

gia, and M. Dohler, “Standardized protocol stack for the internet of (important)

things,” IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1389–1406,

2012.

[59] T. Winter, “Rpl: Ipv6 routing protocol for low power and lossy networks,”

RFC6550, 2011.

[60] O. Iova, F. Theoleyre, and T. Noel, “Using multiparent routing in rpl to increase

the stability and the lifetime of the network,” Ad Hoc Networks, vol. 29, pp. 45–62,

2015.

[61] D. Culler and U. Berkeley, “Hydro: A hybrid routing protocol for lossy and low

power networks draft-tavakoli-hydro-01,” Netw. Work. Group IETF, Fremont, CA,

USA, Tech. Rep, 2009.

[62] K. Kim, G. Montenegro, S. Park, I. Chakeres, and C. Perkins, “Dynamic manet

on-demand for 6lowpan (dymo-low) routing,” Internet Engineering Task Force,

Internet-Draft, 2007.

124

Bibliography

[63] T. Clausen, J. Yi, and U. Herberg, “Lightweight on-demand ad hoc distance-vector

routing-next generation (loadng): Protocol, extension, and applicability,” Com-

puter Networks, vol. 126, pp. 125–140, 2017.

[64] G. Wu, C. Yang, S. Li, and G. Y. Li, “Recent advances in energy-efficient networks

and their application in 5g systems,” IEEE Wireless Communications, vol. 22, no. 2,

pp. 145–151, 2015.

[65] M. S. Al-Kahtani, “Efficient cluster-based sleep scheduling for m2m communication

network,” Arabian Journal for Science and Engineering, vol. 40, no. 8, pp. 2361–

2373, 2015.

[66] R. Ahmad, M. A. Asim, S. Z. Khan, and B. Singh, “Green iot—issues and chal-

lenges,” Available at SSRN 3350317, 2019.

[67] I. Al Ridhawi, M. Aloqaily, Y. Kotb, Y. Jararweh, and T. Baker, “A profitable

and energy-efficient cooperative fog solution for iot services,” IEEE Transactions

on Industrial Informatics, 2019.

[68] G. Yang, X.-W. Wu, Y. Li, and Q. Ye, “Energy efficient protocol for routing and

scheduling in wireless body area networks,” Wireless Networks, pp. 1–9, 2019.

[69] J. Pullmann and D. Macko, “A new planning-based collision-prevention mechanism

in long-range iot networks,” IEEE Internet of Things Journal, 2019.

[70] D. Ghose, “Protocol design and performance evaluation of wake-up radio enabled

iot networks,” Doctoral dissertations at University of Agder, 2019.

[71] Y. Sasaki, T. Yokotani, and H. Mukai, “Mqtt over vlan for reduction of overhead

on information discovery,” in 2019 International Conference on Information Net-

working (ICOIN), pp. 354–356, IEEE.

125

Bibliography

[72] R. Piyare, O. Berder, and R. L. Cigno, Wake-up Radio based Approach to Low-

Power and Low-Latency Communication in the Internet of Things. Thesis, 2019.

[73] S. Y. Shahdad, M. Khan, H. Sultana, M. A. Hussain, and S. M. Bilfaqih, “Rout-

ing protocols for constraint devices internet of things network,” in 2019 Interna-

tional Conference on Communication and Signal Processing (ICCSP), pp. 0114–

0117, IEEE.

[74] M. B. Yassein, A. Flefil, D. Krstic, Y. Khamayseh, W. Mardini, and M. Shat-

nawi, “Performance evaluation of rpl in high density networks for internet of things

(iot),” in Proceedings of the 2019 8th International Conference on Software and

Information Engineering, pp. 183–187, ACM.

[75] M. D. Alshehri, F. Hussain, M. Elkhodr, and B. S. Alsinglawi, A Distributed Trust

Management Model for the Internet of Things (DTM-IoT), pp. 1–9. Springer, 2019.

[76] J. Bauwens, B. Jooris, S. Giannoulis, I. Jabandžić, I. Moerman, and E. De Poorter,

“Portability, compatibility and reuse of mac protocols across different iot radio

platforms,” Ad Hoc Networks, vol. 86, pp. 144–153, 2019.

[77] 2019.

[78] M. A. L. Peña and I. M. Fernández, “Sat-iot: An architectural model for a high-

performance fog/edge/cloud iot platform,” in 2019 IEEE 5th World Forum on In-

ternet of Things (WF-IoT), pp. 633–638, IEEE.

[79] G. Hosangadi, D. Wang, and A. Rao, “System design considerations for in-

ternet of things (iot) with category-m devices in lte networks,” arXiv preprint

arXiv:1902.00408, 2019.

[80] A. Capone, C. Cascone, A. Q. T. Nguyen, and B. Sansò, “Detour planning for fast

and reliable failure recovery in SDN with OpenState,” in 2015 11th International

126

Bibliography

Conference on the Design of Reliable Communication Networks (DRCN), pp. 25–32,

mar 2015.

[81] M. Johnston, H. W. Lee, and E. Modiano, “A Robust Optimization Approach To

Backup Network Design With Random Failures,” Proceedings - IEEE INFOCOM,

vol. 23, no. 4, pp. 1512–1520, 2011.

[82] S. S. W. Lee, K. Y. Li, K. Y. Chan, G. H. Lai, and Y. C. Chung, “Path layout plan-

ning and software based fast failure detection in survivable OpenFlow networks,”

DRCN 2014 - Proceedings, 10th International Conference on Design of Reliable

Communication Networks, 2014.

[83] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and A. Singla,

“Brief announcement,” Proceedings of the 2012 ACM symposium on Principles of

distributed computing - PODC ’12, 2012.

[84] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with sdn local fast

failover,” in Principles of Distributed Systems (R. Baldoni, N. Nisse, and M. van

Steen, eds.), (Cham), pp. 68–82, Springer International Publishing, 2013.

[85] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker, “Ensuring

connectivity via data plane mechanisms.,” in NSDI, pp. 113–126, 2013.

[86] S. Yamaguchi, A. Nakao, M. Oguchi, A. Goto, and S. Yamamoto, “Monitoring

dynamic modification of routing information in openflow networks,” in Proceedings

of the 10th International Conference on Ubiquitous Information Management and

Communication, IMCOM ’16, (New York, NY, USA), pp. 27:1–27:7, ACM, 2016.

[87] N. A. Jagadeesan and B. Krishnamachari, “Software-defined networking paradigms

in wireless networks: a survey,” ACM Computing Surveys (CSUR), 2015.

127

Bibliography

[88] D. B. Rawat and S. Reddy, “Recent advances on Software Defined Wireless Net-

working,” SoutheastCon, pp. 1–8, 2016.

[89] OpenFlow for Wireless Mesh Networks, IEEE, 2011.

[90] J. Chung, G. González, I. Armuelles, T. Robles, R. Alcarria, and A. Morales, “Expe-

riences and Challenges in Deploying OpenFlow over Real Wireless Mesh Networks,”

IEEE Latin America Transactions, vol. 11, no. 3, pp. 955–961, 2013.

[91] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector

(AODV) Routing,” RFC 3561, Internet Engineering Task Force, July 2003.

[92] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better approach to

mobile ad-hoc networking (batman),” tech. rep., Internet Engineering Task Force,

2008.

[93] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh networks,” in Com-

puter Communications and Networks (ICCCN), 2011 Proceedings of 20th Interna-

tional Conference on, pp. 1–6, IEEE, 2011.

[94] G. Araniti, J. Cosmas, A. Iera, A. Molinaro, R. Morabito, and A. Orsino, “Openflow

over wireless networks: Performance analysis,” in Broadband Multimedia Systems

and Broadcasting (BMSB), 2014 IEEE International Symposium on, pp. 1–5, IEEE,

2014.

[95] A. Varga and R. Hornig, “An overview of the omnet++ simulation environment,” in

Proceedings of the 1st international conference on Simulation tools and techniques

for communications, networks and systems & workshops, p. 60, ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering),

2008.

128

Bibliography

[96] W.-S. Kim, S.-H. Chung, C.-W. Ahn, and M.-R. Do, “Seamless handoff and perfor-

mance anomaly reduction schemes based on openflow access points,” in Advanced

Information Networking and Applications Workshops (WAINA), 2014 28th Inter-

national Conference on, pp. 316–321, IEEE, 2014.

[97] A. S. Yuan, H.-T. Fang, and Q. Wu, “Openflow based hybrid routing in wireless

sensor networks,” in Intelligent Sensors, Sensor Networks and Information Pro-

cessing (ISSNIP), 2014 IEEE Ninth International Conference on, pp. 1–5, IEEE,

2014.

[98] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh software

defined networks (wmsdn),” in 2013 IEEE 9th international conference on wireless

and mobile computing, networking and communications (WiMob), pp. 89–95, IEEE,

2013.

[99] T. Clausen and P. Jacquet, “Optimized link state routing protocol (olsr),” tech.

rep., ietf.org, https://tools.ietf.org/html/rfc3626, October 2003.

[100] F. Yang, V. Gondi, J. O. Hallstrom, K.-C. Wang, and G. Eidson, “Openflow-based

load balancing for wireless mesh infrastructure,” in Consumer Communications and

Networking Conference (CCNC), 2014 IEEE 11th, pp. 444–449, IEEE, 2014.

[101] S. Hasan, Y. B. David, R. C. Scott, E. Brewer, and S. Shenker, “Enabling rural

connectivity with sdn,” Technical Report No. UCB/EECS-2012–201, 2012.

[102] S. Hasan, Y. Ben-David, C. Scott, E. Brewer, and S. Shenker, “Enhancing ru-

ral connectivity with software defined networks,” in Proceedings of the 3rd ACM

Symposium on Computing for Development, p. 49, ACM, 2013.

[103] S. Ruponen, “On software-defined networking for rural areas: controlling wireless

networks with openflow,” in International Conference on e-Infrastructure and e-

Services for Developing Countries, pp. 39–48, Springer, 2013.

129

Bibliography

[104] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-defined net-

working in heterogeneous networked environments,” in Proceedings of the 2012

ACM conference on CoNEXT student workshop, pp. 59–60, ACM, 2012.

[105] G. Sato, N. Uchida, and Y. Shibata, “Performance evaluation of pc router based

cognitive wireless network for disaster-resilient wans,” in Advanced Information

Networking and Applications Workshops (WAINA), 2014 28th International Con-

ference on, pp. 611–616, IEEE, 2014.

[106] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Dräxler, R. Gupta, V. Mancuso,

L. Roullet, and V. Sciancalepore, “Crowd: an sdn approach for densenets,” 2013.

[107] B. O. Kahjogh and G. Bernstein, “Energy and latency optimization in software de-

fined wireless networks,” International Conference on Ubiquitous and Future Net-

works, ICUFN, pp. 714–719, 2017.

[108] A. Alfieri, A. Bianco, P. Brandimarte, and C. F. Chiasserini, “Maximizing system

lifetime in wireless sensor networks,” vol. 181, pp. 390–402, 2007.

[109] B. Behdani, Y. S. Yun, J. Cole Smith, and Y. Xia, “Decomposition algorithms for

maximizing the lifetime of wireless sensor networks with mobile sinks,” Computers

and Operations Research, vol. 39, no. 5, pp. 1054–1061, 2012.

[110] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy Minimization in

Multi-Task Software-Defined Sensor Networks,” IEEE Transactions on Computers,

vol. 64, no. 11, pp. 3128–3139, 2015.

[111] L. Peizhe, W. Muqing, L. Wenxing, and Z. Min, “A game-theoretic and energy-

efficient algorithm in an improved software-defined wireless sensor network,” IEEE

Access, vol. 5, pp. 13430–13445, 2017.

130

Bibliography

[112] R. Huang, X. Chu, J. Zhang, and Y. H. Hu, “Energy-efficient monitoring in soft-

ware defined wireless sensor networks using reinforcement learning: A prototype,”

International Journal of Distributed Sensor Networks, vol. 11, no. 10, p. 360428,

2015.

[113] M. F. Tuysuz, Z. K. Ankarali, and D. Gözüpek, “A survey on energy efficiency in

software defined networks,” Computer Networks, vol. 113, pp. 188–204, 2017.

[114] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg, “Mininet-

wifi: Emulating software-defined wireless networks,” in Network and Service Man-

agement (CNSM), 2015 11th International Conference on, pp. 384–389, IEEE,

2015.

[115] M. H. R. Jany, N. Islam, R. Khondoker, and M. A. Habib, “Performance analysis

of openflow based software defined wired and wireless network,” in Computer and

Information Technology (ICCIT), 2017 20th International Conference of, pp. 1–6,

IEEE, 2017.

[116] J. H. Cox, R. Clark, and H. Owen, “Leveraging sdn and webrtc for rogue access

point security,” IEEE Transactions on Network and Service Management, vol. 14,

no. 3, pp. 756–770, 2017.

[117] N. Apolónia, F. Freitag, L. Navarro, S. Girdzijauskas, and V. Vlassov, “Gossip-

based service monitoring platform for wireless edge cloud computing,” in Network-

ing, Sensing and Control (ICNSC), 2017 IEEE 14th International Conference on,

pp. 789–794, IEEE, 2017.

[118] M. Ozcelik, N. Chalabianloo, and G. Gur, “Software-defined edge defense against

iot-based ddos,” in 2017 IEEE International Conference on Computer and Infor-

mation Technology (CIT), pp. 308–313, IEEE, 2017.

131

Bibliography

[119] H. T. Larasati, F. H. Ilma, B. Nuhamara, A. Mustafa, R. Hakimi, and E. Mulyana,

“Performance evaluation of handover association mechanisms in sdn-based wireless

network,” in Wireless and Telematics (ICWT), 2017 3rd International Conference

on, pp. 103–108, IEEE, 2017.

[120] I. D. F. Tarigan and D.-S. Kim, “Wireless station mobility and load balancing for

wireless lan,” 2016.

[121] H. T. Larasati, R. Hakimi, and T. Juhana, “Extended-llf: A least loaded first

(llf)-based handover association control for software-defined wireless network,” In-

ternational Journal of Computer Engineering and Information Technology, vol. 9,

no. 9, p. 203, 2017.

[122] S. Indriyanto, M. N. D. Satria, A. R. Sulaeman, R. Hakimi, and E. Mulyana,

“Performance analysis of vanet simulation on software defined network,” inWireless

and Telematics (ICWT), 2017 3rd International Conference on, pp. 81–85, IEEE,

2017.

[123] B. Van Leeuwen, J. Eldridge, and V. Urias, “Cyber analysis emulation platform for

wireless communication network protocols,” in Security Technology (ICCST), 2017

International Carnahan Conference on, pp. 1–6, IEEE, 2017.

[124] M. Chan, C. Chen, J. Huang, T. Kuo, L. Yen, and C. Tseng, “Opennet: A sim-

ulator for software-defined wireless local area network,” in 2014 IEEE Wireless

Communications and Networking Conference (WCNC), pp. 3332–3336, April 2014.

[125] T. Hu, K. Xue, W. Wei, and W. Jiang, “Lenv: A new light-weighted edge network

virtualization framework in software-defined wireless networks,” in 2015 Interna-

tional Conference on Wireless Communications Signal Processing (WCSP), pp. 1–6,

Oct 2015.

132

Bibliography

[126] Y. Liu, C. Chen, and S. Chakraborty, “A software defined network architecture for

geobroadcast in vanets,” in 2015 IEEE International Conference on Communica-

tions (ICC), pp. 6559–6564, June 2015.

[127] M. Karimi, M. S. Najafi, R. Akbari, and M. Keshtgari, “Presenting a new method,

using topology virtualization for stabilizing flow tables in sdwn,” in 2017 IEEE 3rd

International Conference on Collaboration and Internet Computing (CIC), vol. 00,

pp. 219–226, Oct 2018.

[128] F. Pakzad, S. Layeghy, and M. Portmann, “Evaluation of mininet-wifi integration

via ns-3,” in 2016 26th International Telecommunication Networks and Applications

Conference (ITNAC), vol. 00, pp. 243–248, Dec. 2016.

[129] N. Cardona, J. F. Botero, and D. Ospina, “Handoff management for smart access

points in ieee 802.11 networks,” in 2017 IEEE Colombian Conference on Commu-

nications and Computing (COLCOM), pp. 1–6, Aug 2017.

[130] H. H. R. Sherazi, L. A. Grieco, and G. Boggia, “A comprehensive review on energy

harvesting mac protocols in wsns: Challenges and tradeoffs,” Ad Hoc Networks,

vol. 71, pp. 117 – 134, 2018.

[131] Z. Hu and B. Li, “On the fundamental capacity and lifetime limits of energy-

constrained wireless sensor networks,” in Real-Time and Embedded Technology

and Applications Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE, pp. 2–

9, IEEE, 2004.

[132] E. J. Duarte-Melo, M. Liu, and A. Misra, “A modeling framework for computing

lifetime and information capacity in wireless sensor networks,” in Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks, Cambridge, UK, March,

2004.

133

Bibliography

[133] R. Fourer, D. M. Gay, and B. Kernighan, Ampl, vol. 117. Boyd & Fraser Danvers,

MA, 1993.

[134] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD) for Multihop

Paths,” RFC 5883, Internet Engineering Task Force, June 2010.

[135] A. Yaqini, “Managing wireless mesh networks–a survey of recent fault recovery

approaches,” in International Conference on Mobile Computing, Applications, and

Services, pp. 317–324, Springer, 2015.

[136] L. Paradis and Q. Han, “A survey of fault management in wireless sensor networks,”

Journal of Network and systems management, vol. 15, no. 2, pp. 171–190, 2007.

[137] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication

and Computer Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2004.

[138] M. Pióro and D. Medhi, “CHAPTER 10 - Application of Optimization Techniques

for Protection and Restoration Design,” in Routing, Flow, and Capacity Design

in Communication and Computer Networks (M. Pióro and D. Medhi, eds.), The

Morgan Kaufmann Series in Networking, pp. 403 – 454, San Francisco: Morgan

Kaufmann, 2004.

[139] M. Pióro and D. Medhi, “CHAPTER 9 - Restoration and Protection Design of

Resilient Networks,” in Routing, Flow, and Capacity Design in Communication

and Computer Networks (M. Pióro and D. Medhi, eds.), The Morgan Kaufmann

Series in Networking, pp. 353 – 401, San Francisco: Morgan Kaufmann, 2004.

[140] “IEEE Std 802.1AB-2009 : IEEE Standard For Local And Metropolitan Area

Networks– Station And Media Access Control Connectivity Discovery,” IEEE

Std 802.1AB-2009 (Revision of IEEE Std 802.1AB-2005) 3561, IEEE, http://

ieeexplore.ieee.org/servlet/opac?punumber=5251688, Sept. 2009.

134

http://ieeexplore.ieee.org/servlet/opac?punumber=5251688
http://ieeexplore.ieee.org/servlet/opac?punumber=5251688

Bibliography

[141] ONF, “Mininet: Rapid Prototyping for Software Defined Networks.” https://

github.com/mininet/mininet.

[142] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for

software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, p. 19, ACM, 2010.

[143] “Wireshark.” https://www.wireshark.org/.

[144] E. Mannie (Ed.) and D. Papadimitriou (Ed.), “Recovery (Protection and Restora-

tion) Terminology for Generalized Multi-Protocol Label Switching (GMPLS).” RFC

4427 (Informational), Mar. 2006.

[145] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network recovery: Protection and

Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier, 1st edition ed., July

2004.

[146] C. Pham, “Communication performances of ieee 802.15.4 wireless sensor motes

for data-intensive applications: A comparison of waspmote, arduino mega, telosb,

micaz and imote2 for image surveillance,” Journal of Network and Computer Ap-

plications, vol. 46, pp. 48 – 59, 2014.

135

https://github.com/mininet/mininet
https://github.com/mininet/mininet
https://www.wireshark.org/

	List of Acronyms
	Introduction
	Introduction
	Network Virtualisation
	Characteristics of Software Defined Networking

	Wireless Sensor Networks
	Motivations
	Aim and Objectives of the Research
	Contributions to Knowledge
	WSN Lifetime Maximisation in the SDN Environment
	IoT Failure Recovery in the SDN Environment

	Thesis Organisation

	Background
	Internet of the Things: An Overview
	Internet of the Things Applications
	 Applications in Environmental Monitoring
	 Applications in the Agricultural Sector
	 Applications in the Healthcare Sector
	 Applications in Wildlife

	Internet of the Things Architecture
	Communication Technologies
	Short-Range Communication Technologies
	Long-Range Communication Technologies

	Characteristics of Software-Defined Networking
	 SDN Controllers
	 OpenFlow
	 OpenFlow Switch
	 OpenFlow Protocol Messages

	Wireless Sensor Networks (WSN)
	 Functionality
	 Wireless Sensor Network Standards
	 Zigbee
	 6LoWPAN Standard
	 WirelessHART
	 IPv6 Routing Protocol Standard

	Literature Review
	Introduction
	Low Power Protocols
	Energy Efficiency in Internet of the Things
	Energy Conservation in Internet of the Things
	Energy Conservation Issues
	Energy Conservation Approaches

	Software Defined Networking
	Survivability in Software Defined Networking

	Software Defined Networking (SDN) Applications in Wireless Networks
	Performance Improvement
	Load Balancing and QoS
	Rural Connectivity
	Heterogeneous Networks

	Survivability In Wireless SDN
	Emulating Solutions for SDN and IoT

	Lifetime Maximisation of SDWSN
	Lifetime of a Wireless Sensor Networks
	State of the Art
	Traditional WSN
	Software Defined Wireless Sensor Network

	Problem Formulation
	Illustrative Example

	Proposed Algorithm
	Assumptions
	A-star Algorithm
	Energy Model

	Simulation
	LEACH protocol

	Results and Discussion
	Conclusion

	Failure Recovery in SDWSN
	Overview
	Failure Detection in SDWSN
	Failure Recovery Techniques
	Fast Failover Procedure in Software Defined Networking

	Model and Simulation
	Evaluation
	Evaluating Recovery Time
	Evaluating Failure Detection Traffic
	Evaluating Number of Control Messages

	Conclusion

	Conclusion
	Addressed Problems
	Lifetime Maximisation for SDWSN
	Failure Recovery of SDWSN

	Discussion and Future Work

	Bibliography

