Bézier Polynomials over Triangles
and the Construction of Piecewise
C^k Polynomials

By

G. FARIN
Introduction

Bézier polynomials and their generalization to tensor-product surfaces provide a useful tool in surface design (Bézier 1970, 1977; Forrest 1972). They were developed as early as 1959 by de Casteljau at Citroën but owe their name to P. Bézier from Renault who was first to employ them in car body design in the late sixties.

De Casteljau 1959 also describes triangular patches, but these scarcely received any attention until Sabin 1977. Farin 1979 generalizes and extends results obtained by de Casteljau and Sabin, sharing their restrictions to domains that consist of congruent triangles only.

The present paper restates some of the results of Farin 1979, including a short outline of the univariate case, and then generalizes them to Bézier polynomials defined over arbitrary triangles; formulas describing C^r continuity of adjacent triangular patches are provided.

The last two sections give applications of the theory: the C^1 Clough-Tocher scheme is generalized to the C^2 case and a formula for the dimension of the linear space of piecewise C^r polynomials (of degree n) is derived.
I Univariate Bézier Polynomials

1. Definition

A Bézier polynomial $B_n\phi$ is defined by

\[(1) \quad [B_n\phi](t) = \sum_{i=0}^{n} b_i B_i^n(t)\]

where the B_i^n are Bernstein polynomials

\[(2) \quad B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i} ; \quad 0 \leq i \leq n\]

and ϕ is the piecewise linear function joining the points $(\frac{i}{n}, b_i); 0 \leq i \leq n$. ϕ is called the Bézier polygon associated with $B_n\phi^*$. The b_i are called Bézier ordinates of $B_n\phi$.

Since the B_i^n satisfy

\[(3) \quad B_i^n(t) \leq 0; 0 \leq i \leq n; 0 \leq t \leq 1,\]

\[(4) \quad \sum_{i=0}^{n} B_i^n(t) = 1,\]

* In classical approximation theory, $B_n\phi$ is called the "Bernstein approximant" to ϕ (Davis 1975) the graph of $B_n\phi$, $0 \leq t \leq 1$, lies in the convex hull of the graph of ϕ. (Bézier 1970, Bézier 1976, Forrest 1970).
2. **Degree Elevation**

Every polynomial of degree \(n \) can be written as a polynomial of degree \(n+1 \); let \(E\phi \) be a polygon joining points \(\left(\frac{i}{n+1}, b_i^* \right) \), \(0 \leq i \leq n+1 \). If

\[
(5) \quad b_i^* = \phi \left(\frac{i}{n+1} \right) = \frac{i}{n+1} b_{i-1} + \left(1 - \frac{i}{n+1} \right) b_i, \quad 0 \leq i \leq n+1,
\]

it is easy to show that

\[
(6) \quad B_n\phi = B_{n+1} E\phi
\]

3. **Derivatives**

For the \(r \)-th derivative of \(B_n\phi \) we find

\[
(7) \quad \frac{d^r}{dt^r}[B_n\phi](t) = \frac{n!}{(n-r)!} \sum_{i=0}^{n-r} \Delta^r b_i B_i^{n-r}(t)
\]

This yields immediately

\[
(8a) \quad \frac{d^r}{dt^r}[B_n\phi](0) = \frac{n!}{(n-r)!} \Delta^r b_0
\]

\[
(8b) \quad \frac{d^r}{dt^r}[B_n\phi](1) = \frac{n!}{(n-r)!} \Delta^r b_{n-r}
\]

i.e. the \(r \)-th derivative at an endpoint depends only on the \((r+1)\) adjacent Bézier ordinates.

We also note that for \(\zeta \in [a,b] \) instead of \(t \in [0,1] \), (7) becomes
4. Recursive Algorithm (de Casteljau 1959)

The B^n_i satisfy a recurrence relation

\begin{equation}
B^n_i(t) = (1-t) B^n_{i-1}(t) + t B^n_{i-1}(t)
\end{equation}

(with $B^n_i(t) = 0$ for $i < 0$ or $i > n$).

(10) allows to expand B^n_ϕ in terms of Bernstein polynomials of lower degree:

\begin{equation}
[B^n_\phi](t) = \sum_{i=0}^{n-r} b^r_i(t) B^r_1(t) \Delta^r b_i B^r_i(\zeta)
\end{equation}

where the $b^r_i(t)$ are defined by

\begin{equation}
b^0_i(t) = b_i
\end{equation}

\begin{equation}
b^r_i(t) = (1-t)b^r_{i-1} + t b^r_{i+1}
\end{equation}

Since

\begin{equation}
[B^n_\phi](t) = b^n_0(t)
\end{equation}

(12) provides an easy and stable algorithm for the numerical evaluation of $[B^n_\phi](t)$. This is illustrated in fig. 1.
Fig. 1 construction of \([B_3\phi](\frac{1}{2})\)

One can show that

\[
\begin{align*}
\phi(r, n) & : n \geq 0, \\
\phi(t) & = \sum_{i=0}^{n-r} b_{i+r} B_{i+j}^r (t) ; 0 \leq r \leq n, 0 \leq i \leq n-r
\end{align*}
\]

The \(b_i^r(t)\) can also be used to determine the \(r\)-th derivative of \(B_n\phi\);

\[
\frac{d^r}{dt^r} [B_n\phi] (t) = \frac{n!}{(n-r)!} \sum_{i=0}^{n-r} b_{i+r} B_{i+j}^r (t) B_{i}^r (t)
\]

For \(r=1\), (15) states that \(b_0^{n-1}(t)\) and \(b_1^{n-1}(t)\) determine the tangent to \([B_n\phi](t)\) and, for \(r=2\), that \(b_0^{n-2}(t)\), \(b_1^{n-2}(t)\), \(b_2^{n-2}(t)\) determine the osculating parabola.
5. C^r-Continuity

Suppose we are given a Bézier polygon ϕ with Bézier ordinates b_i over $t \in [0,1]$. We seek a Bézier polygon ψ with Bézier ordinates C_i over $\zeta \in [1,2]$ such that the two polynomials defined by ϕ and ψ form a function in $C^r[0,2]$. From (8a) and (8b) we get the conditions

\[(16) \Delta^\rho b^{n-\rho} = \Delta^\rho c_o ; \ 0 \leq \rho \leq r.\]

(16) implies that, for fixed ρ, the Bézier polynomials defined by $b^{n-\rho}$, $b^{n-\rho+1}$, ..., b_n and $c_0, c_1, ..., c_\rho$ coincide since all their derivatives coincide at $t=1$ resp. $\zeta=0$.

Hence

$$\sum_{i=0}^{\rho} b_{n-\rho+i} B_i^\rho (t) = \sum_{i=0}^{\rho} c_i B_i^\rho (1).$$

since $\zeta = t - 1$. This is true for all t, i.e. also for $t=2$:

$$\sum_{i=0}^{\rho} b_{n-\rho+i} B_i^\rho (2) = \sum_{i=0}^{\rho} c_i B_i^\rho (1).$$

The right-hand side equals c_ρ, and we get

\[(17) c_\rho = \sum_{i=0}^{\rho} b_{n-\rho+i} B_i^\rho (2) \ ; \ 0 \leq \rho \leq r.\]

Note that this is equivalent to:

\[(18) c_\rho = b_{n-\rho}^\rho (2) \ ; \ 0 \leq \rho \leq r.\]
We can define the second Bézier polynomial over \([1, \beta]\) instead of \([1, 2]\); in this case, (18) becomes

\[
(19) \quad c_{\rho} = b_{n-\rho}^{\beta}(\beta).
\]

Thus we have a condition for \(C^r\)-continuity given by (16) and a construction given by (17). Note that fig. 1 can be interpreted as the construction of the \(b_{1}^{o}, b_{2}^{o}, \ldots, b_{n}^{o}\) from the \(b_{1}^{o}, b_{2}^{o}, \ldots, b_{n}^{o}\) to obtain \(C^n\)–continuity. We also note that the two corresponding Bézier polynomials coincide with the original polynomial given by \(b_{1}^{o}, b_{2}^{o}, \ldots, b_{n}^{o}\).
II Bezier Polynomials over a Triangle

1. Definition

We consider a triangle T in the plane with vertices P_1, P_2, P_3 and edges e_1, e_2, e_3 in which we assume barycentric coordinates defined such that for each point P in the plane

$$P = uP_1 + vP_2 + wP_3$$

where

$$0 \leq u, v, w \leq 1$$

for all $P \in T$,

$$u + v + w = 1,$$

and

$$u = \frac{[P_3 P P_2]}{[P_1 P P_3]}, v = \frac{[P_1 P P_3]}{[P_1 P P_3]}, w = \frac{[P_1 P P_2]}{[P_1 P P_3]}.$$

Here, $[P_3 P P_2]$ denotes the area of the triangle P_1, P, P_2 etc.

![Diagram of the triangle with barycentric coordinates]

We define Bernstein polynomials $B_{\frac{n}{i}}(u)$ over T:

$$B_{\frac{n}{i}}(u) = \frac{n!}{i! j! k!} u^i v^j w^k; \quad u + v + w = 1 \quad i + j + k = n \quad u = (u, v, w) \quad i = (i, j, k)$$

Since the $B_{\frac{n}{i}}(u)$ are terms of

$$u + v + w = \sum_{i+j+k=n} \frac{n!}{i! j! k!} u^i v^j w^k,$$

we have immediately

$$B_{\frac{n}{i}}(u) \leq 0 \quad \text{for} \quad 0 \leq u, v, w \leq 1,$$
The summation \(\sum_{i \in \mathbb{L}} B^n_i (u) \) in (23) is short for the one used in (21).

The \(\frac{1}{2} (n+1) (n+2) \) polynomials \(B^n_i \) form a basis for the linear space of all bivariate polynomials of degree \(n \).

A Bézier polynomial over \(T \) is defined by

\[
[B_n \phi] (u) = \sum_{i \in \mathbb{L}} b_i \ B^n_i (u),
\]

where \(\phi \) is the piecewise linear function determined by the points \((\frac{i}{n}, \frac{j}{n}, k, b_i) \). The \(b_i \) are called Bézier ordinates of \(B_n \phi \); \(\phi \) is called the Bézier net of \(B_n \phi \).\(^*)\) (22) and (23) imply that the graph of \(B_n \phi \) lies in the convex hull of the graph of \(\phi \). The structure of \(\phi \) is illustrated in fig. 3.

\[
\text{Fig. 3: Structure of } \phi \text{ for } n = 3
\]

We also note that the boundary curves of \(B_n \phi \) are the (univariate) Bézier polynomials determined by the boundary points of \(\phi \).

\(*\) This notation is chosen to be like the one in the univariate case to point out the similarity of both methods. No confusion should arise, however, since the meaning of \(B_n \phi \), \(\phi \), etc. will be clear from the context.
2. **Degree elevation**

Every bivariate polynomial of degree n can be written as a polynomial of degree $n + 1$; let $E\phi$ be a net determined by points $(\frac{i}{n+1}, \frac{j}{n+1}, \frac{k}{n+1}, b^*_i)$, $i+j+k = n+1$. If

$$b^*_i = (\frac{1}{n-1}\cdot i) = \frac{i}{n+1} b_{i+1,j,k} + \frac{j}{n+1} b_{i,j+1,k} + \frac{k}{n+1} b_{i,j,k+1}; i+j+k = n+1,$$

it is easy to show that

$$B_n\phi = B_{n+1}E\phi.$$

This is illustrated in fig. 4 and the following example.

![Diagram](image)

fig. 4: Elevation of degree from 2 to 3.

Example 1: The following two Bézier nets determine the same polynomial:

```
\[ \phi: 0 3 0 \]
```

```
\[ E\phi: 2 1 0 0 \]
```

3. **Derivatives**

Let $u = u(s)$ be the equation of a straight line in terms of the barycentric coordinates of T, e.g. $u(s) = (1-s)u_0 + su_1$ with two points u_0, u_1.
Hence

\[(27) \quad \frac{d^r}{ds^r} u(s) = 0 \quad \text{for } r > 1\]

(here, \(\emptyset = (0,0,0)\)).

For \(r = 1\), we set \(\dot{u} = \frac{d}{ds} u(s)\)

Since \(u + v + w = 1\) we have \(\dot{u} + \dot{v} + \dot{w} = 0\).

The term \(\dot{u}\) defines a direction with respect to which we can take directional derivatives. We set \(D^r_{\dot{u}} = \frac{d^r}{ds^r}\).

For the Bernstein polynomials \(B_{\frac{i}{\lambda}}^n\) we get

Theorem 1: Set \(\lambda = (\lambda, \mu, \nu)\). Then

\[(28) \quad D^r_{\dot{u}} B^n_{\frac{i}{\lambda}}(u) = \frac{n!}{(n-r)!} \sum_{\lambda} \binom{r}{\lambda} B^r_{\lambda} (\dot{u}) B^{n-r}_{\frac{i}{\lambda}}(u)\]

Remarks: (a) The term \(B^r_{\frac{i}{\lambda}} (\dot{u})\) is well-defined even if the sum of the arguments does not equal 1. (b) For \(\frac{i}{\lambda}, \frac{\nu}{\lambda}\) that do not satisfy \(i - \lambda \geq 0\) (componentwise), we set \(B^n_{\frac{i}{\lambda} - \frac{\nu}{\lambda}}(u) = 0\).

Proof

i) For triple products of functions of one variable \(s\) the Leibniz formula

\[\frac{d^r}{ds^r} f(s) \cdot g(s) \cdot h(s) = \sum_{\lambda} \frac{r!}{\lambda! \mu! \nu!} f(\lambda)(s) \cdot g(\mu)(s) \cdot h(\nu)(s)\]

is true.
ii) Because of the linearity of \(u(s), v(s), w(s) \) repeated applications of the chain and product rules yield:

\[
\frac{\lambda}{ds} f[u(s)] = f(\lambda)(u) \cdot \lambda
\]

etc.

iii) Setting \(f(u(s)) = [u(s)]^i \) etc., we obtain

\[
D^r_{\dot{u}} B^n_{\lambda}(u) = \frac{d^r}{ds^r} \frac{u!}{i!j!k!} [u(s)]^i [v(s)]^j [w(s)]^k
\]

This implies

Theorem 2: The \(r \)-th directional derivative wrt \(\dot{u} \) of a Bézier polynomial \(B_n^\phi \) over \(T \) is given by

\[
(29) \quad D^r_{\dot{u}} [B_n^\phi](u) = \frac{n!}{(n-r)!} \sum_{i} \sum_{\lambda} \binom{n}{i} \binom{i}{\lambda} b_{i+\lambda} \sum_{\lambda} B^r_{\lambda}(\dot{u}) B^{n-r}_{i}(u)
\]

We note that this can be rearranged to

\[
(30) \quad D^r_{\dot{u}} [B_n^\phi](u) = \frac{n!}{(n-r)!} \sum_{\lambda} \binom{n}{i} \sum_{\lambda} \sum_{\lambda} b_{i+\lambda} B^r_{\lambda}(\dot{u}) B^{n-r}_{i}(u).
\]

4. **Recursive Algorithm (de Casteljau 1959)**

Let us define \(a_1 = (1,0,0), a_2 = (0,1,0), a_3 = (0,0,1) \).

Lemma 3: The \(B^n_i \) satisfy a recurrence relation

\[
(31) \quad B^n_i(u) = u \cdot B^{n-1}_{i-a_1}(u) + v \cdot B^{n-1}_{i-a_2}(u) + w \cdot B^{n-1}_{i-a_3}(u), \quad i + j + k = n
\]

Proof: Use the identity

\[
\frac{n!}{i!k!} = \binom{n}{i} \binom{n-i}{j}
\]

and the recursion formula for binomial coefficients.
This lemma allows to expand $B_n \phi$ in terms of Bernstein polynomials of lower degree, with polynomial coefficients $b^r_i (u)$:

Theorem 4:

(32) $[B_n \phi] (u) = \sum_{i}^{n-r} b^r_i (u) B_i^{n-r} (u) , \quad 0 \leq r \leq n$

where the $b^r_i (u)$ are defined by

$$
\begin{cases}
 b^r_i (u) = u \cdot b^{r-1}_{i+a_1} (u) + v \cdot b^{r-1}_{i+a_2} (u) + w \cdot b^{r-1}_{i+a_3} (u) ; i + j + k = n - r \\
 b^0_i (u) = b_i
\end{cases}
$$

(33)

Proof is by induction on r. (32) is true for $r = 0$.

Induction:

$$
[B_n \phi] (u) = \sum_{i}^{n-r} b^r_i (u) B_i^{n-r} (u)
$$

(31) $\sum_{i}^{n-r} b^r_i (u) [u \cdot B_{i-a_1}^{n-r-1} (u) + v \cdot B_{i-a_2}^{n-r-1} (u) + w \cdot B_{i-a_3}^{n-r-1} (u)]$

$= \sum_{i}^{n-r-1} [u \cdot b^r_{i-a_1} (u) + v \cdot b^r_{i-a_2} (u) + w \cdot b^r_{i-a_3} (u)] B_i^{n-r-1} (u)$

(33) $= \sum_{i}^{n-r-1} b^{r+1}_i (u) B_i^{n-r-1} (u)$

Since

$[B_n \phi] (u) = b^n_0 (u)$,

(33) provides an algorithm for the evaluation of $[B_n \phi] (u)$. This is illustrated in figure 5.
The $b^r_{\lambda}(u)$ have an explicit form similar to (14):

$$b^r_{\lambda}(u) = \sum_{\lambda} B^r_{\lambda}(u); \quad i + j + k = n - r.$$ \hfill (34)

To prove this one checks that (34) is consistent with the recursive definition (33) of the $b^r_{\lambda}(u)$.

With (34), we can simplify (30) to

$$D^r_{u_i}[B_n(\phi)]_\lambda(u) = \frac{n!}{(n-r)!} \sum_{\lambda} b^{n-r}_{\lambda}(u) B^r_{\lambda}(u).$$ \hfill (35)

Hence to take the rth (directional) derivative of B_n, we first perform $n-r$ steps of the evaluation algorithm (33) to obtain the $b^{n-r}_{\lambda}(u)$ and then evaluate the Bezier polynomial (35) using the same algorithm, but now with weights \bar{u}, \bar{v}, \bar{w} instead of u, v, w. For $r = 1$, (35) means that the $b^{n-1}_{\lambda}(u)$ determine the tangent plane to $[B_n(\phi)]_\lambda(u)$ for $r = 2$ we see that the osculating paraboloid is determined by the $b^{n-2}_{\lambda}(u)$.

Another possibility to compute $D^r_{u_i}B_n$ is given by

$$D^r_{u_i}[B_n(\phi)]_\lambda(u) = \frac{n!}{(n-r)!} \sum_{\lambda} b^r_{\lambda}(\bar{u}) B^{n-r}_{\lambda}(u),$$ \hfill (36)

which is proved from (29) (Farin 1979). We have thus a second method to compute the rth derivative of $B_n(\phi)$: first, perform r steps of
algorithm (33) with weights \(\hat{u}, \hat{v}, \hat{w} \) to obtain the \(b^{r}_{i}(u) \), then evaluate the Bézier polynomial (36) using (33) with weights \(u, v, w \). Actually, one can switch from one method to the other at each step. *

Let us now evaluate derivatives across a boundary of \(T \), say \(e_3 \), this implies \(\hat{w} = 0 \). From (36) we see that the \(r \)th derivative of \(B_n \phi \) is a Bézier polynomial of degree \(n-r \) with Bézier ordinates \(b^{r}_{i}(\hat{u}) \). On the boundary \(e_3 \), this Bézier polynomial will only depend on those \(b^{r}_{j}(\hat{u}) \) for which \(k = 0 \).

Therefore \(D^{r}_{\hat{u}}[B_n \phi]|_{e_3} \) depends only on the \(r+1 \) parallels (of Bézier ordinates) to \(e_3 \).

Note also that \(D^{r}_{\hat{u}}[B_n \phi]|_{e_3} \) is an \((n-r) \)th degree univariate polynomial in \(\hat{v} \):

\[
(37) \quad D^{r}_{\hat{u}}[B_n \phi]|_{e_3} = \frac{n!}{(n-r)!} \sum_{j=0}^{n-r} b^{r}_{j}(\hat{u}) B^{n-r}_{j}(\hat{v})
\]

where \(i_3 \) is short for \((n-r-j, j, 0) \).

* The relationship of this statement with the univariate case becomes clear if we view terms in \(\hat{u} \) as generalizations of the difference operator \(\Delta \).
III Composite Surfaces

1. C^r-Continuity between adjacent triangles

Let a Bézier polynomial $B_n\phi_1$ be defined over a triangle $T_1 = P_1P_2P_3$.

Let a second triangle $T_2 = P_1P_4P_2$ with

$$P_4 = u_0P_1 + \nu_0P_2 + w_0P_3$$

be given. We seek a Bézier polynomial $B_n\phi_2$ defined over T_2 that has C^r-continuity with $B_n\phi_1$ along the common edge P_1P_2.

Let the barycentric coordinates in T_i be $u_i, i = 1, 2$. Then there exists a linear transformation

$$u_2 = u_1A, \quad \bar{u}_2 = \bar{u}_1A$$

with a nonsingular matrix A such that

$$a_1 = u_0A, \quad a_2 = a_{21}A, \quad a_3 = a_{31}A$$

(see also Fig. 6). We find for A:

$$A = \frac{1}{w_0} \begin{bmatrix} 0 & 0 & w_0 \\ 0 & w_0 & 0 \\ 1 & -\nu_0 & -\nu_0 \end{bmatrix}; \quad w_0 \neq 0$$

Figure 6. Two adjacent (cubic) triangles
Let the Bézier ordinates of $B_{n\theta}$, be b_i, those of $B_{n\phi}$ be c_i.

The rth cross-boundary derivative with respect to some direction \hat{u}_1 (resp. \hat{u}_2) of $B_{n\theta}$ is determined by the $(r+1)$ rows of Bézier ordinates in T_i parallel to the edge e_3. The next theorem gives a simple method to compute the relevant c_i from the relevant b_i.

Theorem 5: With the above notations $B_{n\theta}$ and $B_{n\phi}$ have C^r-continuity along e_3 if and only if

$$c_{\rho,j,n-\rho-j} = b_{n-\rho-j,j,0}(u_o) ; \quad 0 \leq \rho \leq r, 0 \leq j \leq n-\rho$$

Example 2: For $r = 1$, (39) becomes for $\rho = 0$:

$$c_{0,j,n-j} = b_{n-j,j,0} ; \quad 0 \leq j \leq n$$

and for $\rho = 1$:

$$c_{1,j,n-1-j} = b_{n-1-j,j,0}(u_o) \quad 0 \leq j \leq n-1$$

$$= u_0 b_{n-j,j,0} + v_0 b_{n-1-j,j+1,0} + w_0 b_{n-1-j,j,1}.$$

The first equation ensures that $B_{n\theta}$ and $B_{n\phi}$ have a common boundary curve. The second equation states that every shaded quadrilateral in fig. 7 is plane. (Figure 7 shows the projection into the plane only).

![Fig. 7](image)

Proof of theorem 5:

Let i_1 be of the form $(0, j, k)$ and i_3 of the form $(i, j, 0)$. (37) gives the C^r-condition
\[
\sum_{j=0}^{n-\rho} b_{j,3}^{\rho} (\bar{u}_1) \ B_{n-j}^{n-\rho} (v) = \sum_{j=0}^{n-\rho} c_{j,1}^{\rho} (\bar{u}_2) \ B_{n-j}^{n-\rho} (v); \ 0 \leq \rho \leq r.
\]

Comparison of coefficients yields

\[(40) \ b_{j,3}^{\rho} (\bar{u}_1) = c_{j,1}^{\rho} (A\bar{u}_1); \quad 0 \leq \rho \leq r \quad 0 \leq j \leq n-\rho
\]

The term \(b_{j,3}^{\rho} (\bar{u}_1) \) can be viewed as the \(\rho \)-th directional derivative of the Bézier polynomial defined by \(b_{j,3}^{\rho} (\bar{u}_1) \); the same is true for \(c_{j,1}^{\rho} (A\bar{u}_1) \). These two polynomials coincide in their derivatives up to order \(\rho \); hence they are equal:

\[
b_{j,3}^{\rho} (\bar{u}_1) = c_{j,1}^{\rho} (A\bar{u}_1); \quad 0 \leq \rho \leq r \quad 0 \leq j \leq n-\rho
\]

This is true for all \(\bar{u}_1 \), e.g. also for \(\bar{u}_1 = \bar{u}_0 \):\[
\begin{align*}
b_{j,3}^{\rho} (\bar{u}_0) &= c_{j,1}^{\rho} (A\bar{u}_0) \\
&= c_{j,1}^{\rho} (1,0,0) \quad 0 \leq \rho \leq r \\
&= c_{j,n-\rho,j}^{\rho}
\end{align*}
\]

Example 3: Consider the two triangles below. Let \(P_2 \) be the centroid of \(P_1, P_4, P_3 \), such that \(P_4 = 3P_2 - P_1 - P_3 \).

\(P_4 \) has barycentric coordinates \(\bar{u}_0 = (-1, 3, -1) \) with respect to \(T_1 \).
Let ϕ_1 be defined over T_1 by the Bézier ordinates
\[
\begin{pmatrix}
4 \\
3 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
We seek ϕ_2, defined over T_2, such that $B_3 \phi_1$ and $B_3 \phi_2$ have common first and second cross-boundary derivatives along P_1, P_2.

Theorem 5 suggests the following construction of the Bézier ordinates c_i of ϕ_2:

Step 1:
\[
c_{1, j, 2-j} = b_{2-j, j, 0}^1 (-1, 3, -1).
\]
The scheme of the b_i^1 is given by
\[
\begin{pmatrix}
7 \\
9 & 5 \\
0 & 0 & 2
\end{pmatrix}
\]
and hence the underlined numbers are the desired $c_{1, j, 2-j}$.

Step 2:
\[
c_{2, j, 1-j} = b_{1-j, j, 0}^2 (-1, 3, -1).
\]
The scheme of the b_i^2 is given by
\[
\begin{pmatrix}
27 & 7 \\
13 & 1
\end{pmatrix}
\]
The Bézier ordinates of ϕ_1 and ϕ_2 are therefore
Example 4: Suppose we are given ϕ_1 and ϕ_2 from the previous example and want to verify that the two corresponding Bézier polynomials join in C^2. This is easily accomplished by means of (40): Choosing \hat{u}_1 to be a direction perpendicular to P_1P_2, we get

$$\hat{u}_1 = [-1, 3, -2]; \quad \hat{u}_2 = \hat{u}_1 \cdot A = [2, -3, -].$$

The C^1 condition becomes (for $j = 0, 1, 2$)

$$3b_{n-1-j, j+1, 0} = b_{n-j, j, 0} + c_{0, j, n-j} + b_{n-1-j, j, 1}$$

and for the C^2 condition we get (for $j = 0, 1$)

$$b_{n-1-j, j, 1} + 3b_{n-2-j, j+1, 1} + b_{n-2-j, j, 2}$$

$$= c_{1, j, n-1-j} - 3c_{1, j+1, 1-j} + b_{2, j, n-2-j}.$$
2. Degrees of Freedom

Theorem 5 enables us to construct a \(B_n\phi_2\) that joins a given \(B_n\phi_1\) in \(C^r\). There are \(n-r\)*) Bezier ordinates in \(\phi_2\) that we can specify arbitrarily, the remaining ones being fixed by \(C^r\)-continuity. Since we could specify all \(n+1\) Bézier ordinates of \(\phi_1\) arbitrarily, the piecewise surface given by \(B_n\phi_1\) and \(B_n\phi_2\) has \(n+1 + n-r\) degrees of freedom (d.o.f's).

This construction may be repeated, thus adding \(n-r\) d.o.f's for each new \(B_n\phi\).

We may eventually encounter a situation where a new \(B_n\phi\) cannot be added in this fashion because two of its edges are shared by previously constructed Bézier polynomials. One can in fact easily give examples where such a construction must fail. It is always possible, however, to add two Bézier polynomials simultaneously as is shown in figure 8. Our problem is now to determine how many Bézier ordinates in these two triangles can be arbitrarily specified; we call this number of degrees of freedom \(\rho(n,r)\).

*) We define \(k = \frac{1}{2} k(k+1) = 1 + 2 + \ldots + k\).
Theorem 6

\[
\rho(n,r) = \begin{cases}
 \frac{n^2}{r-1 + (n-2r)(n-r)} & r = 0 \\
 \frac{n-r-1}{1/n - 1/(n-r)} & 1/n \leq r \leq n \\
 0 & r = n
\end{cases}
\]

The method used for the proof is illustrated in example 5: search every quadrilateral of "side length" \(r + 1 \) responsible for \(C' \) for the number of d.o.f.'s it offers, proceeding from left (close to predetermined points) to right. A more detailed description of this procedure is given in Farin 1979.

Remark: The two vertices shared with previously determined polynomials must not form a straight line.

Example 5. (see Fig. 8 and the \(C^1 \) conditions in Fig. 7). Let the "•" be determined by \(C^1 \), then "■" is fixed because the quadrilateral must be plane (this justifies the above remark). We can specify the "▲" arbitrarily; together with "■", they will determine "O". Hence, \(\rho(3,1) = 2 \).

Consider a triangle \(T \) that is subdivided into three subtriangles \(T_i \) by its centroid (see Fig. 9). Define \(\tau_r \) to be the linear space of \(n \)-th degree polynomials defined over each \(T_i \) and joining in \(C' \). Its dimension is given by

\[
\dim \tau_r = n+1 + \rho(n,r)
\]

This leads to a somewhat surprising result:
Theorem 7

(45) \(\tau_{n-1}^n = \tau_n^n \)

Proof: Combining (44) with (43), we get

\[
\dim \tau_{n-1}^n = \dim \tau_n^n.
\]

(45) follows since \(\tau_{n-1}^n \) is a subspace of \(\tau_n^n \).

A simple consequence is

Corollary 8: Every element of \(\tau^n \) has continuous derivatives of order \(O, 1, \ldots, r+1 \) at the centroid of \(T \).

Proof: An element of \(\tau^n \) contains a subtriangle that can be considered an element of \(\tau_{r+1}^n \). This subtriangle is responsible for the derivatives at the centroid, and an application of Theorem 7 completes the proof.

IV Interpolation in \(\tau^n \).

1. The case \(\tau^1 \).

We define

\[
Q_{k,j}^{i,j} = \frac{j}{k+1} P_i + (1 - \frac{j}{k+1}) P_{i+1},
\]

\[
m = n - 2r - 1.
\]

Let \(D^r f(P_i); i = 1,2,3; \) denote all \(r+1 \) partials of order \(0,1,\ldots \) of \(f \) at \(P_i \); we shall always require that the three \(D^r f(P_i) \) be consistent with each other (this is trivially the case if \(2r < n \))

Let \(\hat{u}_i \) denote a direction not parallel to the edge \(P_i P_{i+1} \).

*) vertices are counted mod (3).
Our interpolation problem will be:

Find an element \(f \) in \(\tau^n_3 \) that assumes the followi

\[
(V_t) \quad D^i f(P_i) \quad ; \quad i = 1, 2, 3
\]

\[
(E_{t}) \quad D^i_{u_j} f(Q^{m+\rho}_{i,j}) \quad ; \quad \rho = 0, 1, ..., r
\quad j = 0, 1, ..., m+\rho < l.
\]

Note that \((E_t) \) is void for \(m+\rho < l \).

The solution to the interpolation problem given by \((V_1) \) and \((E_1) \) for \(\tau^1_1 \) is known as the \(C^1 \)-clough-Tocher scheme (Strang/Fix 1973).

This solution can easily be constructed using Bézier polynomials; it consists of three steps, see also fig. 9.

Fig. 9; Constructing the \(C^1 \) solution.

1. The Bézier ordinates "•" are given by \((V_1) \); the "■" stem from \((E_1) \).
2. \(C^1 \) across the interior vertices determines the "\(\sigma \)", cf. (41)
3. \(C^1 \) at the centro id determines "\(\varnothing \)"; it has to be the centroid of the "\(\sigma \)".

Note that this construction also implies the uniqueness of the
interpolant. Moreover, Corollary 8 implies that it has (though constructed in C^1 context) continuous second derivatives at the centroid. This interpolation scheme has cubic precision.

The above case $r = 1$ cannot be generalized:

Theorem 9: The interpolation problem for τ_{n+1}^r given by (V_r) and (E_r) is overdetermined for $r \geq 2$, $n \geq r + 2$.

Proof: In fig. 10, let "●" denote Bezier ordinates determined by (V_r) and (E_{r-1}) (for $(n, r) = (5, 2)$).

![Figure 10: Incompatibility in interpolation problem.](image)

The "fat butterfly" - which is responsible for C^2 continuity, see (42) - is determined by six independent pieces of information, five of which are already fixed; i.e. one of the two Bézier ordinates "□" determines the butterfly completely (by equations (42) and (41)). Since (E_r) prescribes both of them arbitrarily, the problem is overdetermined.
2. **C^2 Interpolation in τ^2_6**

Theorem 9 suggests to consider the following C^2-interpolation problem:

Find an element in τ^r_6 that satisfies (E_2) and $(V_3)'$.

V_3' demands that third derivatives parallel to edges are organized as to determine seven (instead of eight) Bézier ordinates per boundary curve. This does not maintain C^3 continuity at the vertices any more, by (a) retains C^2 continuity there and (b) eliminates the incompatibility that caused the failure of schemes using (E_2) and (V_2).

The choice of τ^2_6 is suggested by the following reasoning:

We want to be able to solve the C^2 problem in adjacent triangles. If we were working in, say, τ^2_5 (defined for each triangle), C^2 information along the common edge and (consistent !) C^3 information at the corresponding vertices would not guarantee C^2 continuity between the two interpolants; but it is guaranteed using τ^2_6.

We shall now turn to the solution of the C^2 problem.

Since $\dim \tau^2_6 = 37$ and (E_2) and $(V_3)'$ provide 33 constraints, we may specify four additional Bézier ordinates. Again, the construction of the solution consists of three steps, see Figure 11:

Step 1: The Bezier ordinates "*" and the a_i, $i=1,...,15$, are given by (V_3) and (E_2).
Step 2: We specify the Bezier ordinates s_1, s_2, s_3 in order to determine the g_i. This is done by solving a 2×2 linear system for each of the "fat butterflies", e.g.

$$(41') \quad a_{15} + g_5 + g_4 = 3s_3.$$
$$(42') \quad a_{11} + a_{10} - 3g_5 = a_7 + a_8 - 3g_4.$$

These two equations are readily solved for g_4 and g_5.

Step 3: We specify s_4 and determine the x_i by solving a 6×6 linear system, the first four equations being applications of (41), the last two corresponding to (42).

Figure 11: Constructing the C^2 solution.
The system is

\[
\begin{bmatrix}
-3 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & -3 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -3 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & -3 & 3 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{bmatrix}
=
\begin{bmatrix}
-s_1 \\
-s_2 \\
-s_3 \\
3s_4 \\
g_3 + g_4 - g_1 - g_2 \\
g_5 + g_6 - g_3 - g_4 \\
\end{bmatrix}
\]

and has the solution

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{bmatrix}
=
\begin{bmatrix}
-15 & 15 & 9 & 27 & -6 & 2 \\
18 & 54 & 18 & 54 & -36 & -12 \\
9 & -9 & 9 & 27 & -6 & -6 \\
9 & -9 & 9 & 27 & 18 & -6 \\
6 & -6 & -18 & 18 & 12 & 4 \\
9 & -9 & 9 & 27 & 18 & 18 \\
\end{bmatrix}
\begin{bmatrix}
-s_1 \\
-s_2 \\
-s_3 \\
3s_4 \\
g_3 + g_4 - g_1 - g_2 \\
g_5 + g_6 - g_3 - g_4 \\
\end{bmatrix}
\]

The above choice of the \(s_i\) is not the only one possible; but it minimizes the sizes of the linear systems that have to be solved.

Corollary 8 and the derivation of \(\rho(n,r)\) yield

Theorem 10 The above scheme has sextic precision. Any interpolant constructed by it has continuous third derivatives at the centroid.
V. The Dimension of $\tau^r_n(i, b)$

Let $\tau(i, b)$ be a simply-connected (but not necessarily convex) triangulation with i interior vertices and b boundary vertices, such that the piecewise linear boundary curve is a simply closed curve. We exclude triangulations that contain vertices whose star is a convex quadrilateral with the diagonals drawn in.*)

Let $\tau^r_n(i, b)$ be the linear space of C' piecewise polynomials of degree n over $\tau(i, b)$.

Theorem 11

(48) \[\dim \tau^r_n(i, b) = n + 1 + i \cdot \rho(n, r) + (b - 3)n - r \]

Proof: We use induction on the number of triangles in $\tau(i, b)$ ($\tau(i, b)$ consists of $b + 2i - 2$ triangles).

1. If $\tau(i, b)$ consists of one triangle only,
 \[\dim \tau^r_n(0, 3) = n + 1. \]

2. Suppose (48) holds for a simply-connected subtriangulation $\tau(j, c)$ of $\tau(i, b)$. We add a new triangle to $\tau(j, c)$, thus obtaining $\tau(j', c')$. We have to consider two cases.

Case a: $j' = j, \ c' = c + 1$

The dimension of $\tau^r_n(j, c)$ is increased by $\frac{n - r}{n - r}$:

\[\dim \tau^r_n(j, c + 1) = \dim \tau^r_n(j, c) + n - r \]
\[= n + 1 + j \cdot \rho(n, r) + (c - 2) \cdot n - r \]

*) This restriction is a consequence of the remark after theorem 6.
Case b: \[j' = j + 1, \ c' = c - 1 \]

We define
\[q(n, r) = \rho(n, r) - \frac{n-r}{n-r}. \]

Since \(\dim \tau_{n}^{r}(i, b) \) was increased by \(\rho(n, r) \) when two triangles are added simultaneously (see figure 8), \(q(n, r) \) denotes the change if only one triangle is added:
\[
\dim \tau_{n}^{r}(j+1, c-1) = \dim \tau_{n}^{r}(j, c) + q(n, r)\
= n + 1 + (j = 1)p(n, r) + (c - 4) \frac{n-r}{n-r}
\]

Remarks:

1. Every simply-connected triangulation can be constructed by using steps a) and b) from the above proof.

2. If an optimization procedure is applied to a triangulation (Barnhill 1977), the dimension of the corresponding linear spaces does not change.

3. The above proof can be used to construct a basis for \(\tau_{n}^{r}(i, b) \) in terms of Bezier polynomials.

4. For \(n \geq 4, \ r = 1 \), theorem 11 coincides with a result obtained by Morgan/Scott, 1975.

The proof of theorem 11 can easily be adapted to triangulations \(\tau'(i, b) \) that have a hole, where the vertices around the hole are considered boundary vertices:

Thus adding a triangle to \(\tau(i, b) \) may decrease \(\dim \tau_{n}^{r}(i, b) \)!
Corollary 12

\[\dim \tau_{n-1}^{i}(i, b) = n+1 + (i+1)\rho(n, r) + (b-3) n-r \]

Theorem 11 implies that univariate B-splines cannot be generalized:

Theorem 13

No \(\tau_{n-1}^{i}(i, b) \) can contain a non-zero element \(f \) such that

i) \(f \) is identically zero outside \(\tau(i, b) \)

ii) \(f \in C^{n-1} (\mathbb{R} \times \mathbb{R}) \)

Proof: Suppose such an \(f \) existed. Construct a triangulation \(\tau(i', 3) \) that contains \(\tau(i, b) \). (This is trivially possible since \(\tau(i, b) \) is finite.)

i) and ii) imply \(f \in \tau_{n-1}^{i'}(i', 3) \). Since \(\dim \tau_{n-1}^{i'}(i', 3) = n+1 \), we have \(\tau_{n-1}^{i'}(i', 3) = P_{n} \) (the linear space of bivariate polynomials of degree \(\leq n \)), i.e. \(f \) is a (global) polynomial. But no non-zero polynomial can satisfy i).
REFERENCES

ACKNOWLEDGMENTS

I wish to thank R. E. Barnhill (Utah/Brunei), J.A. Gregory (Brunel), and F. F. Little (Utah) for many helpful discussions.

This research was supported by the Science Research Council with Grant GR/A 92238 and by the National Science Foundation with Grant MCS 78-01966 to the University of Utah.