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SUMMARY

Acute myeloid leukemia (AML) is an aggressive can-
cer with a poor prognosis, for which mainstream
treatments have not changed for decades. To iden-
tify additional therapeutic targets in AML, we opti-
mize a genome-wide clustered regularly interspaced
short palindromic repeats (CRISPR) screening plat-
form and use it to identify genetic vulnerabilities in
AML cells. We identify 492 AML-specific cell-essen-
tial genes, including several established therapeutic
targets such as DOT1L, BCL2, and MEN1, and
many other genes including clinically actionable can-
didates. We validate selected genes using genetic
and pharmacological inhibition, and chose KAT2A
as a candidate for downstream study. KAT2A inhi-
bition demonstrated anti-AML activity by inducing
myeloid differentiation and apoptosis, and sup-
pressed the growth of primary human AMLs of
diverse genotypes while sparing normal hemopoietic
stem-progenitor cells. Our results propose that
KAT2A inhibition should be investigated as a thera-
peutic strategy in AML and provide a large number
of genetic vulnerabilities of this leukemia that can
be pursued in downstream studies.
INTRODUCTION

The successful adaptation of the Streptococcus pyogenes-

derived type II clustered regularly interspaced short palin-

dromic repeats (CRISPR)-Cas system for genome editing is
Cell Rep
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transforming the landscape of genetic research in many organ-

isms (Cho et al., 2013; Cong et al., 2013; Jinek et al., 2012;

Mali et al., 2013). Furthermore, the system’s high efficiency

and flexibility make it ideal for use in genome-wide recessive

genetic screens. In fact, recent proof-of-principle studies

have demonstrated the potential of this technology to identify

cell-essential genes in mammalian cells (Koike-Yusa et al.,

2014; Shalem et al., 2014; Shi et al., 2015; Wang et al.,

2014). Previously, this was typically conducted using RNA

interference (RNAi) in the form of short interfering RNA (siRNA)

or short hairpin RNA (shRNA) libraries (Boutros and Ahringer,

2008; Luo et al., 2009; Schlabach et al., 2008; Silva et al.,

2008; Zuber et al., 2011). Such screens have made impor-

tant contributions to biology, but their success has been

moderated by the varying efficiencies of siRNAs/shRNAs

for the stringent and specific suppression of target genes

required for genome-wide studies (Boutros and Ahringer,

2008). CRISPR-Cas9-based functional genomics may be

able to overcome such limitations and, therefore, hold great

promise in re-shaping cell-essentiality screens. In cancer

research, such screens can be applied to identify genetic vul-

nerabilities of cancer cells that can be used to develop new

anti-cancer treatments. Recent reports on CRISPR screens

on several cancer cell lines have demonstrated their power

(Hart et al., 2015; Wang et al., 2015).

A human malignancy in urgent need of additional therapies is

acute myeloid leukemia (AML), a devastating disorder with a

long-term survival rate of less than 30% (Ferrara and Schiffer,

2013). Steady progress in deciphering its molecular pathogen-

esis has been made over the last few decades with a dramatic

acceleration in recent years, particularly as a consequence

of advances in cancer genomics (Cancer Genome Atlas

Research Network, 2013; Welch et al., 2012). Despite such

progress, the therapeutic landscape of AML has changed little
orts 17, 1193–1205, October 18, 2016 ª 2016 The Author(s). 1193
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Figure 1. Optimization of CRISPR Dropout

Screens and Validation

(A–D) Results of dropout screens in mouse ESCs

(A and C) and nucleotide-level biases on gRNA

efficiency (B and D) identified with version 1 (v1; A

and B) and version 2 (v2; C and D) of the mouse

genome-wide CRISPR libraries.

(E–G) Comparisons between gRNA counts (E)

or gene-level significance of dropout and gene

expression (F and G). An RNA-seq dataset

(GSE44067; Zhang et al., 2013) was used and a

cutoff of 0.5 FPKM was applied to distinguish ex-

pressed and non-expressed genes. The vast ma-

jority of gRNAs targeting non-expressed genes (E,

left panel) exhibited equal representation between

plasmid and day 14 mouse ESCs, indicating that

the library complexity was maintained and that off-

target effects were negligible. By contrast, a signif-

icant number of expressed genes are under- or

over-represented in surviving day 14 ESCs. This is

also evident at the gene-level analysis (F andG). The

Kolmogorov-Smirnov test was used in (G).

See also Figure S1, Table S1, and Data S1.
for 40 years, with cytarabine still representing the last signifi-

cant advance (Evans et al., 1961). Although the improved mo-

lecular understanding of AML permits some optimism that

progress may be forthcoming, an alternative approach for

the identification of therapeutic targets is the agnostic interro-

gation of AML genomes for genetic vulnerabilities using the

CRISPR-Cas9 technology. Here, we make significant improve-

ments in this technology and apply these to perform such a

screen in AML.

RESULTS

Optimization of Genome-wide CRISPR-Cas9 Dropout
Screens
We and others have demonstrated that the CRISPR-Cas9

system can be adapted for use in functional genetic screens

in the form of pooled guide RNA (gRNA) libraries, and that

enrichment screens for genes whose inactivation confers

resistance to toxins, chemotherapeutics, and targeted cancer

treatments can be successfully conducted (Koike-Yusa et al.,

2014; Shalem et al., 2014; Wang et al., 2014; Zhou et al.,

2014). However, when we applied statistical analyses (Li

et al., 2014) to our own genome-wide screen data in mouse

embryonic stem cells (ESCs), we were able to identify only

a small number of genes depleted to significant levels (Fig-

ure 1A). We reasoned that this may be secondary to non-uni-

form CRISPR-Cas9 efficiency across the large numbers of

gRNAs in the library, leading to reduced technical and statis-

tical robustness. To identify factors that affect gRNA effi-

ciency, we first compared nucleotide composition between

efficient and inefficient gRNAs in the mouse ESC screen.

This analysis revealed strong nucleotide biases between posi-

tions 16 and 20 (Figure 1B). These biases also have been

observed in human cells (Wang et al., 2014) as well as Caeno-

rhabditis elegans (Farboud and Meyer, 2015), suggesting that
1194 Cell Reports 17, 1193–1205, October 18, 2016
they may be an intrinsic feature of the current S. pyogenes

CRISPR-Cas9 platform.

To increase CRISPR-Cas9 efficiency, we first tested a gRNA

scaffold optimized for CRISPR imaging (Chen et al., 2013) and

found that, consistent with the results shown in a recent report

(Dang et al., 2015), gRNAs with the improved scaffold ex-

hibited significantly higher knockout efficiency than those

with the conventional scaffold (Figures S1A and S1B). In addi-

tion, to generate an optimal gRNA library, we re-designed

gRNAs for the mouse genome using a new design pipeline

(see Supplemental Experimental Procedures) and generated

a murine lentiviral gRNA library (version 2 [v2]) composed of

90,230 gRNAs targeting a total of 18,424 genes (Table S1).

We then tested the performance of the v2 library, with regard

to depletion (dropout) of genes, with the same experimental

setting as with our first version (v1). With the optimized plat-

form, many more genes were depleted at statistically signifi-

cant levels (360 and 1,680 genes depleted at a false discovery

rate [FDR] of 0.1 with the v1 and v2 library, respectively; Fig-

ure 1C; Data S1). Furthermore, the nucleotide biases observed

in v1 were not observed with the v2 library (Figure 1D), indi-

cating that on-target efficiency prediction (Doench et al.,

2016; Wang et al., 2015) may not be necessary with the

improved gRNA scaffold. The abundances of gRNAs targeting

non-expressed genes (fragments per kilobase of transcript per

million mapped reads [FPKM] % 0.5) remained the same as

the initial pool (plasmid), whereas large numbers of gRNAs

with increased or decreased abundance in surviving ESCs

were readily observed for expressed genes (FPKM > 0.5) (Fig-

ure 1E). At the gene level, the vast majority of depleted genes

were expressed at FPKM > 0.5 in mouse ESCs (Figures 1F and

1G). Taken together, these data show that the sensitivity of our

optimized CRISPR dropout screens for detecting cell-essential

genes is markedly increased, whereas the off-target effects

are negligible.
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Figure 2. Validation of the Human CRISPR Library in the HT-29 Colon Cancer Cell Line

(A) Effects of copy numbers on dropout efficiency in human colon cancer cell line, HT-29. Genes that were significantly depleted at day 25 (FDR < 10%) were

grouped according to their copy number.

(B) Depletion p values (top) and copy number (bottom) of genes on chromosomes 8 and 20. Note that an eight-copy region containing Myc shows a clear

distinction in the depletion pattern. Copy number data in HT-29 were obtained from the Catalogue of Somatic Mutations in Cancer (COSMIC) cell line database

(http://cancer.sanger.ac.uk/cell_lines/).

(C and D) Hierarchical clustering of gene depletion. Genes that were significantly depleted on day 25 (FDR < 10%) were analyzed.

(E) Representative gene sets enriched in early intermediate- and late-depletion groups. The full list can be found in Table S2.

The Kolmogorov-Smirnov test was used in (A). See also Figures S1–S3, Tables S1, S2, and S3, and Data S2.
Generation and Validation of a Toolkit for CRISPR
Dropout Screens in Human Cells
To perform CRISPR dropout screens in cancer cells, we gener-

ated a CRISPR functional screening toolkit composed of (1)

lentiviral gRNA expression vectors harboring the improved

scaffold (Figures S1C–S1E), (2) Cas9 activity reporters (Fig-

ures S1F–S1M), and (3) a human genome-wide CRISPR library

(v1) consisting of 90,709 gRNAs targeting a total of 18,010

genes (Table S1). We then generated a pool of Cas9-express-

ing HT-29 colon cancer cells by lentiviral transduction and

analyzed Cas9 activity using our reporter system. We found

that a proportion of cells did not show detectable Cas9 ac-

tivity despite growing under antibiotic selection (Figure S2A).

Because the presence of Cas9-inactive cells can have an

adverse impact on the efficiency of dropout screens, we sub-

cloned Cas9-expressing cells and found that this eliminated

Cas9-inactive cells (Figure S2B). We consistently observed

the presence of Cas9-inactive cells in every cancer cell line

tested thus far and found that these cells harbored mutations

in the proviral Cas9 coding sequence with an APOBEC3 muta-

tional signature (Hultquist et al., 2011) (Figure S2C). This Cas9-

inactive fraction could be reduced by approximately 70% using

a lentiviral construct carrying Cas9 upstream, rather than

downstream, of the Blasticidin-resistant gene (Figures S1C,

S2D, and S2E).
We proceeded to perform dropout screens in clonal Cas9-ex-

pressing HT-29 cells. Cells were harvested every 3 days from

days 7 to 25 after transduction, and gRNA sequencing was per-

formed (Data S2). As with the mouse ESC screen, a comparison

between the screening results and RNA sequencing (RNA-seq)

data revealed that the vast majority of depleted genes were ex-

pressed in HT-29 cells (Figures S3A and S3B), indicating that off-

target effects were also negligible in our human CRISPR library.

We identified approximately 2,000 depleted genes at a cutoff

of FDR 20% and found that essential biological processes

were enriched among them (Figures S3C–S3E).

Cancer cells often exhibit genomic instability associated with

multiple copy number alterations (Beroukhim et al., 2010; Bignell

et al., 2010; Zack et al., 2013). To investigate whether copy num-

ber affects CRISPR efficiency, we analyzed the distributions of

dropout p values for individual genes according to their copy

numbers and found no noticeable differences in dropout effi-

ciency for genes with up to five copies (Figure 2A), although

genes with three copies showed amodest but statistically signif-

icant reduction (adjusted p = 0.0217). By contrast, genes with

eight copies, located on theMyc-centered distal region on chro-

mosome 8 displayed a depletion pattern, which was very distinct

to that of the surrounding region (Figures 2B and S3F). A similar

depletion pattern in a continuous chromosome segment was

previously observed in a highly amplified region in K562 cells
Cell Reports 17, 1193–1205, October 18, 2016 1195
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Figure 3. Identification of AML-Cell-Line-

Specific Essential Genes

(A) Numbers of depleted genes in each of the seven

cancer cell lines screened according to FDRs.

(B) Venn diagram depicting AML-cell-line-specific

cell-essential genes defined as those depleted in at

least oneAMLcell line andnot inHT-1080orHT-29.

(C) Gene ontology analysis of the 66 genes

essential to three or more AML cell lines.

(D)Depletion of fivegRNAagainstMLLaccording to

their location relative to the MLL breakpoint region.

(E) Depletion of the FLT3, NRAS, and NPM1 genes

affected by known oncogenic mutations in the

specified AML cell lines and of BCL2, which was

depleted in all AML cell lines except OCI-AML3,

which carries a frameshift mutation in BAX.

See also Figures S4 andS5, Table S3, andData S2.
(Wang et al., 2015). These results indicate that most genomic

locations are amenable to dropout even when amplified and

that knowledge of genome-wide copy number can help interpre-

tation of genome-wide screens.

To investigate the timing of cell-essential gene depletion, we

performeda longitudinaldropoutanalysisusing theHT-29dataset.

A quarter of genes that were depleted at day 25 were already

depleted by day 7, but the remaining cell-essential genes were

depleted during the next 18 days (Figure S3D). An unsupervised

cluster analysis of the depletion patterns identified seven clusters

(Figure 2C). We further classified these clusters into three groups

according to the timepoint atwhich depletions reachedmaximum

significance (Figure 2D). Early genes, represented by clusters 1

and 5, were those that reached the highest significance before

day 10. The intermediate group (clusters 2, 4, and 6) reached the

highest depletion significance on day 13 or 16, whereas the late-

depleting group (clusters 3 and 7) showedslow, gradual depletion,

which reachedmaximal significance at later time points. Gene set

enrichment analysis (GSEA) revealed dynamic changes in gene

signatures over time (Figure 2E; Table S2). Essential biological

processes for cell survival were significantly enriched in the

early-depletion group,whereas processes involved in proliferation

were depleted at early-to-intermediate time points. Genes in the

late-depleting group seemed to represent genes whose loss was

likely to have a lesser impact on proliferation. For example, this

group included genes involved in glycosylphosphatidylinositol

anchor biosynthesis, disruption of which leaves cells viable but

slower to proliferate (Koike-Yusa et al., 2014). Taken together,

CRISPR-Cas9-baseddropout screenswith our improved lentiviral
1196 Cell Reports 17, 1193–1205, October 18, 2016
libraries identifiedessentialgeneswithhigh

precision and performance in human can-

cer cells. Our findings establish a technical

framework for the performance and inter-

pretationof genome-widedropout screens

using the CRISPR-Cas9 technology.

Identification of Genetic
Vulnerabilities in AML
Having optimized our platform, we pro-

ceeded to perform genome-wide dropout
screens in five AML cell lines (MOLM-13, MV4-11, HL-60, OCI-

AML2, and OCI-AML3) and the fibrosarcoma line HT-1080 as a

second non-AML reference. Similar to HT-29, bulk Cas9-ex-

pressing cells included a fraction of cells without Cas9 activity,

but single-cell cloning effectively eliminated this population

and showed uniform Cas9 activity (Figures S4A and S4B). The

karyotypes of the selected Cas9-expressing clones were

analyzed for all AML lines and found to agree closely with the

published karyotypes of the parental lines (Figures S4C and

S4D). The selected clones were transduced with the human

CRISPR library, cultured for 30 days, and harvested to determine

their gRNA content (Table S3; Data S2). The genome-wide

screens, performed using two biological replicates per line, iden-

tified circa 1,000–1,500 depleted genes in each AML cell line

(Figure 3A). We first determined that significantly depleted genes

were almost exclusively derived from those expressed at FPKM

> 0.5 in the corresponding cell line (Figures S5A–S5F), showing

that off-target effects were very limited and that gene dropouts

were likely to have phenotypic consequences on cellular growth

and/or survival. We also compared dropout efficiency of known

cell-essential genes according to the number of copies of the

chromosomes on which they are located and we found no

significant difference (Figures S5G–S5K), indicating that Cas9

disrupted genes equally effectively irrespective of copy number

in our AML cell lines.

To identify AML-specific vulnerabilities, we focused on genes

depleted in one or more AML, but not in either of the non-AML

cell lines (Table S3). This analysis identified 66–223 essential

genes for each cell line (492 genes in total; Figure 3B), including



66 genes essential to three or more and 5 genes essential to all

five AML cell lines. Gene ontology analysis of these genes

showed particular enrichment in processes pertaining to chro-

matin modification and organization and transcriptional regula-

tion (Figure 3C), in keeping with the fact that AML is driven by

corrupted epigenetic and transcriptional networks.

We also specifically checked for depletion of driver mutations

present in the AML cell lines screened. First, we looked at MLL

(also known as KMT2A) and found that gRNAs targeting the

exons upstream of the MLL breakpoint region, and therefore

predicted to disrupt the MLL-AF9 and MLL-AF4 oncogenes,

were depleted in both MOLM-13 and MV4-11 (Figure 3D). In

addition, gRNAs against FLT3 and NRAS showed specific

depletion in cell lines carrying activating mutations in these

genes, whereas NPM1 was depleted in four of the five AML

lines including OCI-AML3 (Figure 3E). Interestingly, BCL2 was

depleted in all AML cell lines except OCI-AML3, which carries

a BAX pE41fs*33 mutation (Figure 3E), suggesting BAX muta-

tions as candidate mediators of resistance to BCL2 inhibitors,

a promising therapeutic strategy in AML (Chan et al., 2015;

Pan et al., 2014).

Genetic and Pharmacological Validation of the
Screening Results
To validate the results of our screen, we first demonstrated

genetically the cell-essential nature of the five dropout

genes shared by all AML cell lines (Figure S5M). We then

selected eight dropout genes and a control non-dropout gene

(HDAC6) for targeted inhibition using genetic and pharmaco-

logical approaches. We first followed a gene-by-gene knockout

approach using the CRISPR-Cas9 system. Two gRNAs (one

from our library and one new) were designed per gene, and

the relative growth of gRNA-transduced and non-transduced

cells were compared in competitive co-culture assays. Results

were in close agreement with the findings of our dropout

screens (Figures 4A, 4B, and S5N). We then tested the ability

of existing clinical compounds to inhibit the growth of the five

AML cell lines and again found these to be in consonance

with the findings of our genome-wide screens (Figure 4C).

MAP2K1 (also known as MEK1) and MAP2K2 (also known

as MEK2) are thought to have redundant functions, but

OCI-AML2 was sensitive to depletion of either gene. To test

MEK1/2 dependency in the other AML cell lines, we devised

a lentiviral dual gRNA expression vector (Figures S1C and

S1E) and found that HL-60 and OCI-AML3 were sensitive

only to double MEK1/2 knockout. This differential sensitivity

to MEK1/2 genetic perturbation was mirrored in responses to

the dual MEK1/2 inhibitor trametinib.

Reassured by the concordance between the results of our

screening and validation experiments, we searched the ‘‘drugg-

ability’’ of the 492 genes specifically depleted in our AML cell

lines using the Drug Gene Interaction database (DGIdb) (Griffith

et al., 2013) and found that 227 (46%) of the genes are in drug-

gable categories (Figure 4D; Table S4). Among these were 33

genes, for which ‘‘clinically actionable’’ compounds are avail-

able, which overlap only partially with the ‘‘Kinase’’ and ‘‘histone

modification’’ categories. However, the majority of genes in

the druggable categories were not previously considered po-
tential therapeutic targets (Figure 4D). Of note, at least 12

dropout genes, including BRD4, that were essential to at least

three AML cell lines, as well as to HT-29 and HT-1080, are

targets of clinical inhibitors (Table S4), indicating that ‘‘pan-

essential’’ genes should not be dismissed as potential therapeu-

tic targets.

Selection of Rational Therapeutic Development Targets
Our approach thus far has enabled us to define a set of genes

that are essential to AML, but not to either of two solid cancer

cell lines. However, it is probable that some of these AML-

essential genes are also essential to normal blood cells

including hemopoietic stem cells (HSCs), and such genes may

not represent plausible therapeutic targets. Because currently

no methods are available for systematic identification of essen-

tial genes in normal HSCs, we took an alternative strategy to

identify therapeutic targets. In particular, we hypothesized that

genes displaying cell line or oncogene specificity were less likely

to cause toxicity to normal HSCs but could still be relevant to

multiple AML genotypes. To do this, we compared the cell-

essential genes of the MOLM-13 and MV4-11 cell lines. These

both carry an internal tandem duplication in the FLT3 gene

(FLT3-ITD) and multiple copies of chromosome 8, and exhibit

comparable response to DOT1L and BRD4 inhibitors, but

harbor the distinct, but related, fusion genes, MLL-AF9

(MOLM-13) and MLL-AF4 (MV4-11), known to directly establish

leukemogenic transcriptional programs. Looking at the depleted

genes (FDR < 0.2), we noted that MOLM-13 and MV4-11

showed significant overlap, but also many differences (Fig-

ure 5A; Table S3). Among these differentially essential genes,

we selected two druggable genes for further study: the histone

acetyltransferase gene KAT2A (also known as GCN5) and the

spliceosome kinase gene SRPK1. We also chose CHEK1, a

known therapeutic target (Daud et al., 2015; Zabludoff et al.,

2008), as a control gene with a similar depletion pattern in

both. In addition, we chose AURKB and HDAC3 as control

essential genes to both and HDAC6 as essential to neither cell

line (Figure 5A).

To test whether the observed essentialities for KAT2A and

SRPK1 are indeed attributable to the different MLL oncogenic

fusions rather than other differences between MOLM-13 and

MV4-11, we developed a genetically defined experimental

model (Figure 5B). First, we generated mice expressing Cas9

constitutively under the control of the ubiquitous EF1a promoter

from the Rosa26 locus (Figure S6). Rosa26Cas9/+ mice repro-

duced in the expected Mendelian ratios exhibited normal long-

term survival and had normal hemopoietic stem and progenitor

cell numbers, and normal proportions of blood cell subtypes

(Figures 5C, 5D, S6G, and S6H). Cas9-expressing stem-progen-

itor cells exhibited comparable colony-forming and serial replat-

ing activity to wild-type (WT) cells and displayed highly efficient

Cas9 function (Figures 5E and 5F). These results indicate

that Cas9 expression has no detectable effect on the hematopoi-

etic system and that any phenotype observed in gRNA-

expressing cells is likely caused by genetic perturbation of a

target gene. Rosa26Cas9/+ mice were crossed to Flt3ITD/+

mice (Lee et al., 2007), and lineage-negative hemopoietic

progenitors from RosaCas9/+;Flt3ITD/+ double transgenic mice
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Figure 4. Genetic and Pharmacological Validation of Screen Hits

(A) Significance levels for cell essentiality of selected genes in AML cell lines from our dropout screens.

(B) Validation of the findings of the screen using a 12-day competitive co-culture assay. Cells were transduced with lentivirus expressing one of two gRNAs per

gene, and the BFP-positive fraction was compared with the non-transduced population. Results were normalized to day 4 for each gRNA. Data are shown as

mean ± SD (n = 2). The full dataset can be found in Figure S5N.

(C) Effects of selected clinical inhibitors on cell growth. The results were normalized to DMSO-treated cells from each cell line cultured in parallel. Data are shown

as mean ± SD (n = 3).

(D) Drug Gene Interaction database (DGIdb) (Griffith et al., 2013) categorization of AML-specific cell-essential genes into ‘‘druggable’’ categories defined by the

DGIdb. Three categories are depicted. Full categorization can be found in Table S4. In the druggable set, representative genes in each of the three categories are

listed.

See also Figure S5 and Tables S4 and S6.
were transduced with retroviral vectors expressing MLL-AF4

(Montes et al., 2011) or MLL-AF9 (Dawson et al., 2011) and

cultured in vitro for 10–12 days, displaying similar exponential

growth rates and a myeloid phenotype (Figure 5G). The cells

were then independently transduced with individual lentiviruses
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carrying one of two gRNAs against the Kat2a, Srpk1, Aurkb,

Chek1, Hdac3, and Hdac6 genes. In keeping with the results of

our screen, this revealed significant differences in cell growth be-

tween MLL-AF4- and MLL-AF9-driven cells transduced with

Chek1, Kat2a, and Srpk1 gRNAs, whereas Aurkb and Hdac3
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Figure 5. Differential Vulnerabilities between MLL-AF4- and MLL-AF9-Driven Leukemias

(A) Comparison of dropout p values between MOLM-13 and MV4-11. AURKB and HDAC3 were significantly depleted in both lines, but HDAC6 was not in either

line. In contrast, CHEK1, KAT2A, and SRPK1 were depleted only in MOLM-13. Genes that are specifically depleted in either cell line (FDR < 0.1) but not in either

non-AML cell line are highlighted in pale red.

(B) Schematic of CRISPR-based validation of genotype-specific essentialities using ex vivo mouse leukemia model.

(C and D) Normal percentages of LK (Lin�/Kit+) and LSK (Lin�/Sca1+/Kit+) hemopoietic stem-progenitor cells were identified in the bone marrow of Rosa26Cas9/+

mice. Data are shown as mean ± SD (n = 3).

(E) Colony-forming assays of bone marrow cells derived from WT and Rosa26Cas9/Cas9 mice, showing no differences in replating ability of Rosa26Cas9/Cas9 cells

compared with WT.

(F) Validation of Cas9 activity in Lin� or LK/LSK cells from Rosa26Cas9/+ mice using the Cas9 activity reporter.

(G) Growth kinetics of primary Lin� cells from Flt3ITD/+;Rosa26Cas9/+ mice transformed with a retrovirus expressing MLL-AF4 or MLL-AF9. Data are shown as

mean ± SD (n = 4).

(H) Competitive co-culture assay showing oncogene-specific vulnerabilities in the ex vivo leukemia model. As a normal cell control, non-leukemic HPC-7 mouse

hematopoietic cells were used. Results were normalized to day 4 for each gRNA. Data are shown as mean ± SD (n = 3).

The Student’s t test was performed in (D) and (E). Two-way ANOVA was performed in (G). See also Figure S6 and Table S6.
gRNAs were equally effective against both cell types (Figure 5H).

In addition, we tested the essentiality of each gene to the non-

leukemic mouse multipotent HPC-7 cells, which represent an

early blood stem-progenitor cell and are capable of generating

functional hematopoietic cells in vivo (Wilson et al., 2016). As
shown in Figure 5H, all three of the MLL-AF9-specific essential

genes had no effects on proliferation of HPC-7 cells. Taken

together, these results support our strategy to use oncogene-

specific essentialities for candidate prioritization and provide ge-

netic evidence that KAT2A and SRPK1 are attractive drug
Cell Reports 17, 1193–1205, October 18, 2016 1199
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Figure 6. KAT2A Suppression Induces Myeloid Differentiation and Apoptosis

(A) CRISPR-based validation of KAT2A depletion in the five AML cell lines. Full results can be found in Figure S5N.

(B) Western blot analysis of KAT2A expression in MOLM-13 targeted by KAT2A-specific gRNA.

(C and D) Drug response (C) and 50% inhibitory concentration (IC50) values (D) of the five AML cell lines treated with the KAT2A inhibitor MB-3.

(E) Differentially expressed genes in MB-3-treated MOLM-13. AML program genes (downregulated) and myeloid marker genes (upregulated) are highlighted.

(F) Gene set enrichment analysis (GSEA) showing significant enrichment for the AML program and myeloid differentiation.

(G) Histone H3 acetylation status of genes downregulated by MB-3 treatment using ChIP-qPCR assay.

(H and I) Microscopic (H) and flow cytrometric (I) analyses of myeloid differentiation after 24-hr treatment with 100 mMMB-3. No changes were observed in MB-3-

insensitive MV4-11 cells. Scale bar, 10 mm.

(J) Increased apoptosis after treatment with 100 mM MB-3.

Data are shown as mean ± SD (n = 3 in C, D, and J; n = 2 in G). The Student’s t test was performed in (D) and (G). *p < 0.05; **p < 0.01. See also Figure S5 and

Table S6.
targets. We chose to investigate KAT2A further because this

gene is essential to three of the five AML cell lines studied

(MOLM-13, OCI-AML2, and OCI-AML3), and as such may

be relevant to a wider group of AML patients. Of note, the

OCI-AML3 line carries a mutation in NPM1, which is also found

in 25%–35% of primary AMLs.
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Mechanistic Insights into the Effects of KAT2A
Inhibition in AML
First, using two separate gRNAs, we confirmed that genetic

disruption of KAT2A reduced the growth of MOLM-13, OCI-

AML2, and OCI-AML3, but not MV4-11 and HL-60 (Figures 6A

and S5N). We confirmed that targeting with KAT2A-specific
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Figure 7. KAT2A Inhibition Shows Suppression of Leukemic Cell Growth In Vivo and Human Primary AML Cells

(A) Bioluminescence imaging of mice transplanted luciferase-labeled gRNA-transduced MOLM-13 cells at indicated time points.

(B) Quantification of luminescence. ****p < 0.0001.

(C) Kaplan-Meier plot showing survival of mice transplanted with MOLM-13 expressing the indicated gRNA. Log rank test was performed.

(D and E) Colony-forming cell (CFC) assay of 10 primary AMLs of diverse genotypes with 100 and 200 mMMB-3. Detailed information can be found in Table S5.

Mean values of 10 samples are shown in (E). Error bars represent SD. *p < 0.05.

(F) CFC efficiency of CD34+ human cord blood cells (n = 4).

The Student’s t test was performed in (B), (E), and (F). See also Table S5. N, normal karyotype; ND, not determined.
gRNAwas associated with significantly reduced levels of KAT2A

protein (Figure 6B). We then tested the effects of the KAT2A

inhibitor MB-3 (Biel et al., 2004) on the growth of these lines

and found that drug response mirrored the genetic validation

studies (Figures 6C and 6D). To obtain mechanistic insights

into the molecular effects of pharmacological KAT2A inhibition,

we performed RNA-seq analysis on the sensitive MOLM-13

line after a 48-hr exposure to MB-3. We identified significant

changes in gene expression including downregulation of genes

associated with the MLL-AF9 leukemogenic program such as

HOXA9,HOXA10,MEIS1, andMYC, and concomitant upregula-

tion of genes associated with myeloid differentiation including

ANPEP (CD13), ITGB2 (CD18), ITGAM (CD11b), and IL17RA

(CD23) (Figures 6E and 6F). In keeping with these effects

being the results of reduced KAT2A function, we confirmed

that using chromatin immunoprecipitation (ChIP)-qPCR MB-3

led to reduction of the acetylation level at lysine-9 and lysine-

27 of histone H3 at the downregulated gene loci: HOXA9,

HOXA10, MEIS1, and MYC (Figure 6G). Microscopic and flow

cytometry analyses of MOLM-13 cells after a 48 hr exposure

to MB-3 confirmed monocytic-macrophage differentiation (Fig-

ure 6H) and increased CD13 surface expression (Figure 6I),

whereas neither was observed in the MB-3-insensitive MV4-11

cells. Furthermore, prolonged incubation with MB-3 caused

a marked increase in apoptosis of MOLM-13 and OCI-AML3,
but not MV4-11 (Figure 6J). Taken together, these results

indicated that KAT2A inhibition suppresses AML cell prolifera-

tion through inhibition of leukemogenic transcriptional pro-

grams and induction of differentiation leading to cell death by

apoptosis.

Clinical Potential of KAT2A Inhibition in AML Therapy
We next investigated whether KAT2A inhibition reduces cell pro-

liferation in vivo. We first introduced the luciferase gene into

MOLM-13-Cas9 cells and then transduced the cells with either

an empty gRNA scaffold or a gRNA targeting the KAT2A gene.

After 3 days of puromycin selection, transduced cells were trans-

planted into immunocompromised Rag2�/�;Il2rg�/�mice, which

were then imaged for bioluminescence until death. We found

that KAT2A disruption was associated with a significant reduc-

tion in AML cell expansion (Figures 7A and 7B) and prolongation

of mouse survival (Figure 7C), indicating that KAT2A inhibition

suppresses AML cell proliferation in vivo. Encouraged by these

results, we proceeded to test the effects of MB-3 on primary hu-

man AML cells. Treatment of 10 primary AMLs of diverse geno-

types (Table S5) with MB-3 led to significant reduction of colony

formation in methylcellulose media at both 100 and 200 mM con-

centration (Figures 7D and 7E). By contrast, the colony-forming

cell (CFC) efficiency of CD34+ human cord blood cells was not

significantly affected by 100 or 200 mM MB-3 (Figure 7F). Taken
Cell Reports 17, 1193–1205, October 18, 2016 1201



together, our results show that KAT2A inhibition does not exhibit

adverse effects on hematopoietic stem-progenitor cells and of-

fers itself as a potential anti-AML therapeutic strategy for future

studies.

DISCUSSION

Despite important advances in understanding their genomic and

molecular pathogenesis, many cancers including AML continue

to represent unmet clinical challenges (Cancer Genome Atlas

Research Network, 2013; Döhner et al., 2015). It is therefore

crucial to develop additional therapeutic strategies by identifying

vulnerabilities in cancer cells. This can be achieved by either

hypothesis-driven mechanistic studies or hypothesis-free unbi-

ased genetic screening. In AML, recent detailed mechanistic

studies have identified DOT1L as a vulnerability of MLL-rear-

ranged leukemia (Bernt et al., 2011), and both a mechanistic

and an RNAi-based epigenetics-focused screen identified

BRD4 as a therapeutic target against AMLs of different geno-

types (Dawson et al., 2011; Zuber et al., 2011). Drug develop-

ment against these targets has rapidly progressed and their

therapeutic efficacy is now being tested in clinical trials. Never-

theless, despite these successes, AML remains a lethal disease

for most patients, and a complete set of genetic vulnerabilities

for this and other cancers remains unknown, leaving many can-

didates with a therapeutic potential undiscovered.

To this end, we optimized and validated a robust CRISPR-

Cas9 platform for the performance of genome-wide essentiality

screens and applied this to catalog genetic vulnerabilities in

AML. Our results have not only confirmed known therapeutic tar-

gets but also revealed a large number of genetic vulnerabilities in

the AML cell lines studied, many of which represent plausible

direct or indirect targets for drug development. Importantly, the

unbiased nature of genome-wide screens such as ours makes

them a powerful instrument for the identification of such targets,

which is both orthogonal and complementary to mechanistic

studies of disease pathogenesis and also able to reveal both

intuitive and non-intuitive vulnerabilities.

Nevertheless, not all genetic vulnerabilities represent viable

therapeutic targets. An important hurdle in selecting these is

the real possibility that any genes essential to AML cells may

also be essential to normal hemopoietic and/or non-hemopoietic

cells, making their pharmacological inhibition harmful. To select

targets that are likely to exhibit minimal adverse effects and thus

have a higher likelihood of success in drug development, we

applied a differential essentiality filter to our screen dataset

and identified and characterized a potential AML therapeutic

target, namely KAT2A. Genetic or pharmacological suppression

of KAT2A did not show detectable adverse effects in either

mouse HPC-7 hematopoietic precursor cell line or human cord

blood CD34+ cells, further supporting that our approach was

valid. It would be important to identify any toxic effects on hemo-

poietic stem-progenitor cells using a potent and bioavailable

KAT2A inhibitor. Of course, in the absence of comprehensive

datasets from other normal cell types, we cannot rule out the

possibility that KAT2A suppression can cause side effects, and

the generation of such datasets would significantly enhance

our ability to predict clinical toxicity and identify the most prom-
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ising therapies. It is, however, noteworthy that at least a dozen

targets that have been in clinical use already were essential to

cell types other than AML, suggesting that valuable targets can

be found even among genes within this category andmay poten-

tially have a broad spectrum of antitumor activity.

Notwithstanding limitations in predicting clinical toxicity, our

results demonstrate that KAT2A inhibition induces cellular differ-

entiation and apoptosis of AML cells. Although the precise mo-

lecular basis of these effects will need to be investigated in future

studies, the transcriptional changes associated with KAT2A inhi-

bition suggest that the effects may be secondary to inhibition of

leukemogenic transcriptional programs, in a manner reminiscent

of BRD4 and DOT1L inhibition (Bernt et al., 2011; Dawson et al.,

2011). KAT2A encodes a histone lysine acetyltransferase that

functions within the multi-protein transcriptional co-activator

complexes SAGA (Spt-Ada-Gcn5-acetyltransferase) or ATAC

(Ada2a-containing); the former predominantly localizes at a sub-

set of active promoters, whereas the latter localizes at distinct

active promoters and enhancers (Krebs et al., 2011). As such,

KAT2A influences diverse transcriptional programs and partici-

pates in multiple developmental and cellular processes (Wang

and Dent, 2014). It has been shown that leukemia induction by

MLL-AF9 requires the Myb-p300 interaction, which is thought

to be responsible for the methylation-to-acetylation switch at

the lysine-27 residue of histone H3 upon MLL-AF9 expression

in HSCs (Pasini et al., 2010). One hypothesis is that a KAT2A-

containing complex serves as a transcriptional coactivator that

is also recruited to the target sites by MLL-AF9 and activates

and/or maintains the leukemic transcriptional program. Alterna-

tively, KAT2A might maintain the leukemic program through

acetylation of non-histone proteins as exemplified by direct

acetylation of the RUNX1/MDS1/EVI1 (Senyuk et al., 2003) and

E2A-PBX1 (Holmlund et al., 2013) fusion oncoproteins by

KAT2A and its homolog KAT2B (also known as PCAF). Further

work is required to investigate the molecular function of KAT2A

and determine the full therapeutic potential of this finding.

Our work demonstrates the power of unbiased genome-wide

screens to catalog a comprehensive set of genetic vulnerabilities

in cancer cells. Such catalogs enable not only the rapid identifi-

cation of new targets and development of therapeutic strategies,

but also generate hypotheses pertinent to the study of molecular

mechanisms underlying tumorigenesis.

EXPERIMENTAL PROCEDURES

All reagents and detailed methods are described in the Supplemental

Information.

Plasmids, Cell Lines, Mouse Lines, and Reagents

Guide RNA expression vectors with the improved scaffold, pKLV2-U6gRNA5

(BbsI)-PKGpuro2ABFP-W and pKLV2.2-h7SKgRNA5(SapI)-U6gRNA5(BbsI)-

PGKpruo2ABFP-W, for a single and dual gRNA expression, respectively,

were generated in this study and have been deposited with Addgene. The

optimized human and murine CRISPR libraries were also available through

Addgene. Guide RNA sequences used in a gene-by-gene approach are listed

in Table S6. All AML cell lines (MOLM-13, MV4-11, HL-60, OCI-AML2, and

OCI-AML3), colon cancer cell line HT-29, and fibrosarcoma cell line HT-1080

were obtained from the Sanger Institute Cancer Cell Line Panel and were my-

coplasma free. Cas9-expressing cell lines were generated by lentiviral trans-

duction using pKLV2-EF1aBsd2ACas9-W, and Cas9 activity in individual



subclones was tested using a lentiviral reporter pKLV2-U6gRNA(gGFP)-

PGKBFP2AGFP-W. ACas9-expressingmouse linewas generated by inserting

the human EF1a promoter-driven Cas9 expression cassette into the Rosa26

locus in mouse ESC line JM8 (Pettitt et al., 2009) and is kept in the C57BL/6N

background. See also Supplemental Information. All animal studies were car-

ried out in accordance with the Animals (Scientific Procedures) Act 1986 (UK)

and approved by the Ethics Committee at the Sanger Institute.

Generation of Genome-wide Mutant Libraries and Screening

A total of 3.03 107 cells were transduced with a predetermined volume of the

genome-wide gRNA lentiviral supernatant. Two days after transduction, the

cells were selected with puromycin for 4 days and further cultured. For HT-

29, approximately 1 3 108 cells were harvested every 3 days between day 7

and day 25 post-transduction. The AML cell lines and HT-1080 were harvested

on day 25 post-transduction. See also Supplemental Information.

gRNA Competitive Proliferation Assay

Cas9-expressing cells were transduced with a lentivirus expressing a gene-

specific gRNA, and the percentage of blue fluorescent protein (BFP)-positive

cells was measured between days 4 and 12 post-transduction and normalized

to the percentage of BFP-positive cells at day 4. See also Supplemental

Information.

Drug and Proliferation Assays

A total of 3 3 104 human or primary mouse cells were plated onto 96-well

plates with vehicle or the indicated concentrations of compounds. Plates

were measured 72 hr post-treatment using CellTiter 96 AQueous Non-Radio-

active Cell Proliferation Assay (Promega). See also Supplemental Information.

Adult Primary Leukemia and Cord Blood Sample Analysis

All human AML and cord blood samples were obtained with informed consent

under local ethical approval (REC 07-MRE05-44). Primary AML cells or

cord-blood-derived CD34+ cells were tested for colony-forming efficiency in

H4435 semi-solidmedium (StemCell Technologies) in the presence of the indi-

cated concentration of MB3 or DMSO. Colonies were counted by microscopy

10–11 days (AML cells) or 12–14 days (CD34+ cells) after plating. See also

Supplemental Information.

Statistical Analysis

Statistical analyses performed and the numbers of replicates were mentioned

in the associated figure legends. Differences were considered significant for

p < 0.05.

ACCESSION NUMBERS

The accession numbers for the CRISPR data reported in this paper are Euro-

pean Nucleotide Archive (http://www.ebi.ac.uk/ena): ERP006734 (mouse

ESCs), ERP005600 (HT-29), and ERP008475 (AML and HT-1080). The acces-

sion numbers for the RNA-seq data reported in this paper are European Nucle-

otide Archive: ERP006662 and ERP003933. The CRISPR toolkit and the

CRISPR libraries are available from Addgene.
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