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0. Abstract

A family of explicit formulas is developed for solving a system
of second order linear ordinary differential equations with constant
coefficients and with initial conditions specified. A family of
implicit formulas for solving the same system with specified
boundary conditions is also developed.

Both families are based on Padé approximants to the exponential
function and for each formula developed the order of the formula is
seen to be one higher than the order of the Padé approximant used.

In the case of the family of implicit formulas it is seen that the
order of the formula is made arbitrarily high by using an appropriate
Pad¢ approximant.

It is shown that the families are readily applicable to the
numerical solution of second order hyperbolic partial differential
equations with constant coefficients.

The formulas developed are tested on four problems.
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Explicit Methods For Initial Value Problems

Given the linear system of N second order ordinary differential

equations

(0) Y' (=A@,

where A is a square matrix of order N which has constant elements,

with initial conditions
(1) y(0) =g, y'0)=9,
the solution may be shown to be of the form

(2)  y® = Lexp(B) (g+B719) +1 exp (-tB) (g B 19),

where B is a matrix such that BZ = A .

The determination of the elements of B is a non-trivial exercise
and an approximate method based on padé approximants to the exponential
function is now developed which does not require the elements of B to

be determined explicitly.

Suppose that a uniform discretization /¢ is superimposed on the
independent variable t ; then it is easy to show that y(t) satisfies

the recurrence relation

y (t+0)—{exp(/B) +exp(—/B) y (t) + y (t-0=0

3
) y(0)~=§ , Z(f) = %{exp(fB)+ exp(—(B)jg + (¢ +0 *)

witht= ¢,27,...

Any numerical solution of (3) will rely for its overall accuracy on
the approximation to exp(£ ¢ B). For the (m, k) Padé approximant to exp( ¢ B)

of the form

R (B) = (Qm(/B))™ P (1B) ,



)
where Pk,Qrn are matrix polynomials of degrees k, m respectively,

this leads, for m+k even,

202 44 m+k,m+k
@ oxp(B) + exp(rB) = 2]1s LB LB OB o mkez)
2! 41 (m+k)!

2 4,2 m+k , 1(m+k)
ol A A A +0(€m+k+2)
2! 41 (m+k)

since B2 = Aand for m +k odd, to
12R2 /44 L. ym+k—lgm+k-1 }+O(£m+k+1)

(5) exp (/B) + exp (—/B) = 2{l+

+
41 (m+k-1)!
2 4,2 m+k—1, {(m+k-1)
_olpe A LAY LS A +0(gm+k+1)
41 (m +k—1)!

In choosing which Padé approximant to use it must be noted in (3) that
y (/) 1is only second order accurate, (that is, its error is 0(53) ),

so that Pade approximants should be chosen for which m +k < 2. For

m +k >2 a more accurate approximation to y (/) must be found otherwise

the use of a higher order approximant is unjustified.

A table of fifteen Padé approximants to ee, where 0 is some real
scalar, together with the principal error term and the range of values
of 6 for which the approximation converges, is given in Table I.

These Padé approximants will be used in the derivation of fifteen allied
methods (given Roman numerals) in this and in Section 2 of the paper.

The matrix analog in all fifteen cases is obvious, and a bound on /|| B ,
where ||B|lg is the spectral norm of B, is given by the modulus of

the smaller bound on 0O .

Referring to Table I it is clear that Methods I, II, III, IV, VII all have
m +k <2 and may be used in (3) to give an explicit numerical solution

to the system (0) with initial conditions (1) .

Using y(t) to distinguish a computed solution from the theoretical

solution y(t) , defining the local discretization error to be y(t) — y(t),

and using E to denote the error predicted by (4) or (5), these five

explicit algorithms with t=/,27,... are as follows:
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Method I : (0, 1) Padé approximant ; E=0(€2).
Y(t+0) =2Y() + Y(t-0)=0,

(6) )

Y0)=g ,Y({)=g + o + 0(h7).

Local error = ¢2 y'(t) + %f“ y(lv)(t) +o

Method II : (1,0) Pad¢ approximant ; E=0 (62)
Same explicit algorithm and local error as Method I

Method III : (1,1) Padé approximant ; E=0 (£4) .

Y(t+0) — QI+£7A) Y(1) + Y(t-0) =0,
(7 5 3
Y(0)=g(t) = L @I+ 2A)g+ 19 + 0(7).

Local error = — ¢* y(w)(t) + — ¢© y(lv) (t) +....
12 ~ 360 ~

Method IV : (0,2) Padé approximant ; E=0 (€4).

same explicit algorithm and local error as Method III.
Method VII : (2,0) Padé approximant ; E=0 (64).

Same explicit algorithm and local error as Method III.
Replacing Z(t) with Z(t) , equations (6) and (7) may be

written in the forms
1

(8) LIY® : (0] = 3 [ojy(t+j) — 2B, y"(t+j0)]
Z s

or

(9) L [Z(t) ; 0] = Cq Z(t) + Clz'(t) + C, Z”(t)+....

assuming that y(t) has as many derivatives as required on some closed

interval.

Following Henrici [2], equation (9) is said to have order r if
(10) Co=C =..=C=C_, =0, C_, #0.

and to be consistent with (0) if r >1.
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Equation (7) is thus consistent, equation (6) is not. Defining

the first characteristic polynomial of (8) to be
(11) o +agh + (g =0,
formulas (6) and (7) are seen to be zero-stable, for in both

cases (11) has a double root at & = 1 and no other roots.

Equation (7) is therefore seen to be convergent while equation (6)

is not convergent.

Implicit Methods For Boundary Value Problems

Given, as before, the linear system of N second order ordinary

differential equations (0) with, now, the boundary conditions

(12) yO =g, . yM =g,
the solution may be shown to be of the form
13) y(t) = exp (tB) { exp(TB) - exp (-TB)}™" g, — exp(-TB)g,}

+exp (~tB) {exp(TB)—exp (-TB)}™" {exp(TB)g, —g;}

It is easy to show that the solution Z(t) as given by equation (13)

satisfies the recurrence relation

Y(t+0) = {exp(/B) + exp(-(B)} y(t) + y(t—0) = 0,

(14)
YO =g,. yD=g,.

Any numerical solution of (14) will determine the vector y(t)

implicitly and its accuracy will depend on the approximations to
exp(+¢B). Using (m, k) Padé approximants, expressions for

(exp (£/B) + exp (-¢/B)} are given in terms of powers of / and the known
matrix A in (4) and (5). The restriction m+k<2 may be relaxed

for the implicit relation (14).



)

Suppose that the interval 0<t<T is discretized into M+1
subdivisions using a time step £ , then (M+1) £=T and the
solution of (0) with (14) will be computed at the M points
t. =i/ (i=1,2,...,M).

The implicit algorithms yielded by the fifteen methods of Table I
are now derived. In each case E again denotes the error in
{exp({B) + exp (-Bt)} predicted by (4) or (5) , the local

discretization error is given by Z(t)—X(t) and t = t;,t,,., tM

(clearly t,=0 and ty+1=T)

Method I : (0,1) Padé approximant ; E=0 (62).
No implicit algorithm

Method IT : (1,0) Padé approximant ; E=0 (62).
(=AY (t+0) —2Y(t) + (I-£2A)Y(t-£) =0,

15) yO)=g, , Y=g,
Local error = — /2 y'(H)— 1% o4 y(iV)(t) - .

Method III : (1,1) Padé approximant ; E=0 (£4).
(=LA Y (t+0) — QI+3PA) Y (1) + (-1 PA) Y (t-0) =0,
16 YO =g, . YD =g

Localerror = —%54 y(lv) (t) —%66 Z(IV) (t)—...

Method IV : (0,2) Padé approximant ; E=0 (£4).
No implicit algorithm.
Method V : (1,2) Padé approximant ; E=0 (64).
(=3 PA)Y(t+0) — QI+ 1PA)Y () + I-1PA)Y (t-0) =0,
a7 YO =g, . YD =g,

Local error = — L¢% vy () — T 00 Y —
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Method VI: (2,1) Padé approximant ; E= 0(€4)

(I—l€2A+i€4A2)¥(t+€)—(21+g£2A)¥(t)+(I—é£2A+%£4A2)X(t_5) —0,
) YO0 =gy . Y(T)=g
Local error:L£4 y(iV)(t)+ 23 g6 (Vl)(t)_,_
36 2 1080 2

Method VII: (2,0) pade approximan t; E = 0(%4) .

A+ LAy Y+ 0 - @1+ 2A) Y@ + (I+%£4A2)¥(t ~n=0,

(19)
YO =gy . YD =g

Local error = 3(4 (V) () + o1 €6 Dy 4.

~ 360
Method VIII : (2,2) Padé approximant ; E=0(/°) .

(1- %I2A+ﬁﬁ4A )Y (40~ (21+6/2A+—)I4A2)Y(t)
1

1,2, 1 4,02 N
(20) HI- gy A+ At Ye-n=o,

YO0)=gy Y=g
~ ~ ~1

Local error = ——¢° y(Vi)(t) 37 2L 48 (Vm)(t)‘*'

75600

Method IX: (0,3) padé approximant ; E=0(£4)
No implicit algorithm.

Method X: (1,3) Padé approximant ; E=0(/°)
1

(I——!@ZA)X(t+€)—(21+%£2A+£54A2)¥(t)+(I—%!@zA)X(t—Z):9 ,

(21)
Y(0)=gqg » Y(T)=g

/6 (V1) 8 (V111)
2880 0= 8060€ ©-

Method X' : (2, 3) Padé approximant ; E=0(/°) .

Local error= —

3 17
=2 2 4L /4p2 Y(t+/ 21422020 7462 Y(t
( 50 400 )Y (t+H~( 25 600 )X
3 2 1 4,2
22 +(I-—/l°A+—(7A)Y(t-0)=0
(22) ( o 200 )Y (t-0)=10
YO) =g, .Y(T)=g, .

6. (vi) 23 8 (viii)
Ly O —22 O+ .
g0 L ¥ Wromeee f .M

Local error =
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Method XII : (3,2) Padé approximant ; E=O(K6)

(= 2ap L p4p2 1 OAdy(+0)- Qr+2202a+ 7 4a2yy ()
50 400 3600 25 600 ~
F A=A 421 6A3)v(i_p =0
(23) 50 400 3600 ~ ~.
YO0)=g, Y=g
Local error = 6 y(Vi)(t)+L£8 y(Viii )(t)—

3600 ~ 252000
Method XIII : (3,1) Padé approximant ; E=0 (/°) .

(- PA-— AN 021+ £2A+418£4A2)¥(t) Lioa L
@9 YO) =gy , WD=gi
Local error = - 6 y(Vi)(t) 5 S8y (viii) ()

2880 ~ 2688
Method XIV : (3,0) Padé approximant ; E=0(/*) .

OA3y (- =

-1 r4a2 L Ba3)y (i) QI+h2A)Y(t)+(1- L Aa2_ L 603y (t-n) =0,
12 36 12 36 ~ ~
(25)
Y=gy . Y(D=g,
Local error = - 254 (IV)() 49 66 (Vl)(t)

Method XV : (3,3) padé approximant ; E=0(€8)

(1—i€2A+ L2 1 — A}y (t+0)
20 600 14400
9 |

) Ay IR YL\ S Sy
10 300 7200

c0etp2a A2 L 603y py =0,
20 600 14400 ~ ~

YO)=g, Y=g, .

A%y (1)
(26)

Local error =

8 (V111) 1 KIO (x) N
“Soa00 - Y W30 © YW

Examination of their local error expressions shows that algorithms (16)

through (26) are all consistent but that (15) is not consistent.

The

first characteristic polynomials of all twelve algorithms have double

roots at £ =1 and no other roots, thus satisfying the zero-stability

criterion. Consequently only Method II based on the (1, 0) Padé

approximant fails the convergence criterion (see Lambert [3]).
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The results obtained are characterised with regard to the principal

part of the local error and are summarised in Table II, Of the

methods with 0(64) local error Method V based on the (1,2) Padé

approximant has smallest principal error term and is the most economical

in the sense that no powers of A higher than A itself are used.

Of the methods with 0(56) local error, Methods XI and XII based

respectively on the (2,3) and (3,2) Padé¢ approximants both have
the smallest modulus principal error term, but Method XI requires only

A? whilst Method XII requires A’ ; Method XI is thus the most

economical of the methods with 0(66) local error.

Every one of the implicit schemes is of the form

27) CY(t—£)+DY(t)+CY(t+()=0

where C,D are square matrices of order . More precisely , C and D
are band matrices, the band width depending on the powers of the matrix A.
Applying to the M points t; (i=1,...,M) leads to the system of

linear equations of order MN given by

D C 0 0] [¥®) gy | [0 ]
C-DC oY (ty) 0 0
0 C-DC——=1l |yt 0 0
! i ! ! |
8)] | . ! |
| o] | :
0 C-D C . (')
0 0C-D| [¥ 0 0
y tm) |t = L0

where 0 is the zero matrix of order NxN and 9=(0,0,....,0)T is the
zero vector of order N xI

System (28) is solved using any of the methods designed for block

diagonal systems (see, for example Goult et al [I]).
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Application to Hyperbolic Partial Differential Equations

Given the wave equation

o2u  8%u
29) —2°.72

ot 0x
over a region R={[0<x<1] x [t>0]} with boundary conditions
(30) u0,)=u(1,)=0, t0

and initial conditions
ou
(31) U(X,O) = g JE(XJO) = (I) s

one approach is to replace the second order space derivative with

the finite difference approximation

2
(32) a_; = fux+h0) - 2u(x, )+ u(x+h, }/h° + 0(h)
ox

at every time step. If the space interval 0<x<l is divided into

N subintervals each of width h , and if g =(U,U,,., UN)T

is the vector of computed values of u at a given time level, then (29)
becomes

a2 u
(33) q — = AU(Y)

t2

where A is the matrix given by

2] 0—————— 0
1-2 1 i
1] 0 1-21 |
S AN
h | AN \\I
| N1-2 1
0——————— 1 -2 |

It was shown in Twizell [4] that the solution of (33) satisfies the

recurrence relation



(10)

U(t+7)—{exp(/B) +exp(-/B)} U(t) + INJ(t -0)=0,

(33) 1U©0)=g . U(t) =1 exp(/B) +exp(~(B)} g+ £ ¢ + 0(¢3)

. . 2
where B 1s a matrix such that B =A.

The relation (35) is analogous to (5) and in solving numerically, the
choice of Padé approximant to exp (£/B) controls the stability
range of p , where p = ¢/h . If the (1,1) Padé approximant is
used, relation (34) yields the well known five point explicit scheme
which is stable for 0<p<l; if the (2,2) Padé approximation is

used, relation (34) , with an improved approximation to U(/),

yields the seven point explicit scheme developed in Twizell [4]

which extends the stability range to 0<p<V3.

In simulating arterial blood pressure, where the heart beats every T
seconds, the conditions (30),(31) are replaced by

(36) {u(O,t):fo(t) ;u(L,t) =1, (t) ,
u(x,0)=u(x,T)=g(x)

Where u(x, t) (0<x<L; 0<t<T) is the arterial pressure and L is
the length of the artery which is assumed to be a thin elastic

cylindrical tube.

Replacement of the space derivative in (29) with (32) again leads
to the linear system of second order ordinary differential equations (33)

whose solution is now seen to satisfy the relation

U(t+0)— fexp( /B)+exp(~¢(B)} U(t)+ U(t- 1) =0,

G7) U©0)=U(T)=¢

Relation (37) is analogous to (16) and may be solved by adapting
any of the implicit algorithms (15) through (26).
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Numerical Results

To examine the behaviour of the explicit and implicit formulas
of sections 1 and 2, three problems were solved using the explicit
methods I and III of section 1 and the twelve implicit methods

given by the recurrence relations (15) through (26) of section 2.

Problem 1
y'=y
. . t -t C e,
Here N=1, and assuming the solution y=e +e , initial
conditions were specified as

y(0)=2 ;y'(0)=0.

The theoretical solution for t =0.0(0.1)1.0 is depicted in
Fig:1 together with the computed solution using the explicit
method based on the (0,1) or (1,0) Padé approximants. Fig. 1
shows clearly that this method is not consistent with the differential
equation.

In Fig:2 the error modulus is graphed against t for t=0.0(0.1)1.0
using the explicit formula based on the (1,1), (0,2) or (2,0)
Padé approximants. The theoretical solution for t=1.0 is y= 3.086.

Boundary conditions were specified as
-1
y0)=2; y(I)=e+e

and the error moduli for t=0.0(0.1)1.0 are given in Table III
for the twelve implicit formulas given in equations (15) through (26).
It was seen in section 2 that the method based on the (1,0) Padé¢
approximant was not consistent with the differential equation, that the
methods based on the (1,2) and (2,3) Padé approximants are the
most economical and have the most favourable principal error terms of

all the methods having g O(€4) and 0(66) error terms respectively, and

that the methods based on the (2,0) and (3,1) Padé approximants have

the least favourable principal error terms of all the methods having

0(£4) and O(€6) error terms. These findings are all substantiated

by the numerical results to Problem 1.
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Problem 2
Y1 =2y +Ys »
¥2 =172y
Here N = 2and the matrix of coefficients is the 2 x2 analog of the

matrix on the right hand side of equation (34). The matrix of

coefficients has negative eigenvalues A; = -land A, = -3 and

associated eigenvectors glz(l,l)T and gzz(l,l)T- The theoretical

solution was taken to be

y1(t)
1 _ _lcost+(l+c,051jsin t cos\/ = COS\/_ in+/3t :
Yo (t) 2 2sinl 1 sm\/_ -1
and initial conditions were specified as

y1(0) _{1}' y'l(o) _(1+cosl){l} V3(1- COS\/_|: }
y,(0)|  [-1]° 75 (0) ~\ 2sinl )1 2siny3 )| -1]

The theoretical solution for t = 0 .0(0. 1) 1 .0 is shown in Fig:3,

together with the computed solution using the explicit method based on
the (0,1) or (1,0) Fade approximants. As for Problem 1, it is clear
that this method is not consistent with the system of differential
equations.

In Fig:4 the error for each component of y(t) is graphed against

t for t=0.0(0.1)1.0 using the explicit method based on the (1,1),
(0,2) or (2,0) Padé approximants. The theoretical solution for

t=1.0is y=(0,0)".

Boundary conditions were specified as

yO) =01" ; y (1)=(1,0"

and the errors in each component of y were computed for t=0.0(0.1)1.0

using the eleven consistent implicit methods of section 2.
As for Problem 1 it was found that the greatest errors were
experienced for t= 0.5 ; these errors are given in Table IV. The

theoretical solution for t=0.51s ~ (077 ~0.77)T

All numerical results obtained for Problem 2 are in agreement with

the theoretical results developed in sections 1 and 2.
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Problem 3

Y1 = 2}’1 T Yy
Yy =yt %y
Again N = 2, and the matrix of coefficients has positive eigenvalues

7»1 =1 and Ap= 3 with associated eigenvectors 9 :(1,—1)T and
[ =(l,1)T. The theoretical solution was taken to be
210 el -y [ 1
1O | 1" o, (el)let[
Yo () 2(e—¢e ) 2(e—¢e ) -1
(e_\/ngl e‘/gt— (e_\/g+1 e\/gt [l}
2(eV3 V3 2eV3 V3 !

and initial conditions were specified as
O] [0} A 2—e—e_1{ 1} L 3@+t H
Y0 | [-1]° y'z(()) 2e—eH -1 23 —e73) (1

The theoretical solution for t = 0.0(0. 1)1.0 is graphed in Fig:5,

—+

together with the computed solution using the explicit method based on
the (0,1) or(1,0)Padé approximants. In Fig:6 the error moduli
for each component of y(t) is graphed against t for t= 0.0(0.1)1.0

using the explicit method based on the (1,1), (0,2) or (2,0) Padé
approximants.

Boundary conditions were specified as
T T

and the errors in each component of y were computed for t =0.0(0.1)1.0
using the eleven consistent implicit methods of section 2 . These errors

are given in Table V for t = 0.5; the solution att = 0.5 is

y = (0.44,-044) 1.

The numerical results obtained for Problem 3 are in agreement with

the theoretical results of sections 1 and 2.
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Problem 4
Yy = 99y1 + 14y2 ,
Yy = 7y1 + 2y2 .
As before N=2; the matrix of coefficients has positive eigenvalues

7»1 =1, Xz = 100 and associated eigenvectors are ¢ = (1—7)Tand
¢ = (14,1)T . The theoretical solution was taken to be

O Ja-14e el + (14e—1)e { 1}

Y, (® 9 —e 1) -7

99(e10 — 10, 1

and the initial conditions were specified as

¥,(0) :{o} Cmo] (2_146_1451){ 1} X 10(14+e10+e‘10)[14}
»O] = Yo 99(e—e) -7 99(d 0 —¢71% I

The theoretical solution for t = 0.0 (0.1) 1. 0 and the computed
solution using the explicit method based on the (0, 1) or (1, 0)
Padé approximants are graphed in Fig: 7. In Fig: 8 the error moduli

for each component of y(t)is graphed against t fort =0. 0(0.1) 1 .0

using the explicit method based on the (1,1), (0,2) or (2,0) Padé
approximants.
Boundary conditions were specified as
¥ = ©0-n" 5 ym = a,0!
and the errors in each component of y were computed for t = 0.0(0.1)1.0
using the eleven implicit consistent methods of section 2 . These

errors are given in Table VI for t - 0.5 and are seen to be in

agreement with the theoretical results of section 2; the solution at

t=0.5is y =(0.07,-0.47) .
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5. Conclusions

Families of explicit and implicit formulas based on Padé¢
approximants to the exponential function have been developed for
solving a system of second order linear ordinary differential

equations with constant coefficients.

For each formula developed the order of the principal error
term was found to be one higher than the order of the principal
error term of the Padé approximant used.

The formulas were tested on four problems. It is clear by
studying the numerical results that, particularly for problems in
which the matrix of coefficients has one or more large positive
eigenvalues, the low order explicit methods have rapid error growth.
This is easily explained by considering the theoretical solution

of the differential equation given by

N
(38) y(O) = 'zl{aiexp(\/fim + byexp(— [0}
1=
Where, for i=1,2,........,N , A; are the eigenvalues of the matrix of

coefficients (assumed district), cjare the associated eigenvectors,

and a; and b; are constants. For any large positive eigenvalue

the terms with positive exponents in (38) grow rapidly as t increases
and the errors quickly swamp the computed solutions of the explicit
formulas. This did not happen when the consistent implicit methods

were used to solve the four problems.
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Table I : Padé approximants to e
Method (m, k) Padé Principal Convergence
approximant error term range
1+6
I (0,1) — 02 :
11 (1,0) 1 2 1<0<1
: o 0
2+0
111 1,1 3 2<0<2
(L.1) 7o 0
2
\Y 0,2) 2+20+67 03 i
2
2
% (1.2) 6+46+67 04 3<0<3
6—20
VI 2,1) 6+29 4 1.16<6<3.16
, — -1.16 <0 <3.
640+ 02 0
VII (2,0) S — 3 0.73<0<2,73
’ 2-20+62 0 ' ’
12460 +62 05 -1.58<0<7.58
VIII (2,2) 12— 66+ 02
2 a3
X 0,3) 6+60+30° +0 o4 )
6
2 3
X (13) 24+189+692 +0 95 4<0<d
24 + 60
2 .43
X 2.3) 60+ 360 +96 ;8 66 9<0<10
60 — 240 + 30
2
XII (3,2) 60+246 + ;e 5 00 -3.64<6<1.23
60+360+90“ +0
24+ 60
X111 (3.1) T 3 0> -0.97<60<2.63
24+180+60“ —0
6
X1V 3,0 4 -0.70<6<1.60
G0 6-60+30% -0 0
XV (3.3) | 120+600+126% +63
7 ]




Table II : Summary of the Implicit Methods of Section 2

(17)

Error Method Padé Coefficient of Highest
Approximant Principal part Power of A
of error
02 11 (1,0) -1 A
4 1 (1.1) A
1 A
\Y4 1,2 -——
(1,2) 36
1
VI 2.1 — 2
(2,1) 36 A
1
VIl (2.0) 3 A2
1
X1V 3,0 -— 3
(3,0) 12 A
1
6 VIII 22 — 2
/ (2,2) 360 A
X (1,3) T 2
’ 2880 A
1
XI 2.3 — 2
2.3) 3600 A
1
XII 32 - 3
(3.2) 3600 A
17
XIII 3,1 - 3
3.1 2800 A
1
8 XV 33 - 3
/ (3.3) 50400 A




Table IIT : Error Moduli for t=0.0(0. 1) 1 .0 for Problem 1 using the Implicit Methods of Section 2.

Padé

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
2R 0.0 0.84(-1) | 0.15 0.20 0.23 0.24 0.24 0.21 0.17 0.97¢-1) | 0.0
4 0.0 0.15(:3) | 027(-3) | 036(:3) | 041(-3) | 044(-3) | 0.43(-:3) | 0.38-3) | 030(-3) | 0.17(-3) | 0.0
(1,2) 0.0 025(-4) | 045(-4) | 0.59-4) | 0.69(-4) | 0.73(-4) | 0.71(-4) | 0.63(-4) | 0.49(-4) | 0.29(-4) | 0.0
@1 0.0 025(-4) | 045(-4) | 0.60(-4) | 0.69(-4) | 0.73(-4) | 0.71(-4) | 0.64(-4) | 0.50(-4) | 0.29(-4) | 0.0
(2,0) 0.0 0.53-:3) | 094(-3) | 0.12(:2) | 0.14(-2) | 0.15(-2) | 0.15(:2) | 0.13-2) | 0.10(-2) | 0.60(-3) | 0.0
(3.0) 0.0 0.76(-4) | 0.14(-3) | 0.18(-:3) | 021(-3) | 022(:3) | 022(-3) | 0.19-3) | 0.15(-3) | 0.87(-4) | 0.0
VAR RCE) 0.0 025¢-7) | 045-7) | 059¢7) | 0.69¢-7) | 0.73¢-7) | 0.71-7) | 0.63¢-7) | 0.50(-7) | 0.29¢-7) | 0.0
(1,3) 0.0 022(-7) | 039-7) | 052(-7) | 0.60(-7) | 0.64(-7) | 0.62¢-7) | 0.56(-7) | 0.43¢-7) | 0.25¢-7) | 0.0
2.3) 0.0 024(-8) | 042(-8) | 0.56(-8) | 0.65(-8) | 0.69(-8) | 0.68(-8) | 0.61(-8) | 0.48(-8) | 0.28(-8) | 0.0
(3.2) 0.0 027(-8) | 047(-8) | 0.62(-8) | 0.72(-8) | 0.76(-8) | 0.74(-8) | 0.66(-8) | 0.51(-8) | 0.29(-8) | 0.0
3.1 0.0 0.54(-7) | 0.96(-7) | 0.13(-6) | 0.15(-6) | 0.15(-6) | 0.15(-6) | 0.14(-6) | 0.11(-6) | 0.61(-7) | 0.0
863 0.0 0.18(:9) | 029-9) | 035(:9) | 039-9) | 0.44(-9) | 0.43(-9) | 037(-9) | 0.29(-9) | 0.17(-9) | 0.0

(81) 93eq
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Table IV: Errors for t= 0.5 for Problem. 2 using the implicit
methods of section 2

error Padé error in error in
y1 (0.5) v, (0.5)

A (L1) 0.19(-2)  0.19(-2)
(1,2) -0.33(-3)  0.33(-3)

(2,1) 0.31(-3)  -0.31(-3)

(2,0 0.69(-2)  0.69(-2)

(3,0) -0.94(-3)  0.94(-3)

06 (2,2) -0.98(-6)  0.98(-6)
(1,3) 0.86(-6)  -0.86(-6)

(2,3) -0.98(-7)  0.98(-7)

(3,2) 0.96(-7)  0.96(-7)

(3,1 0.21(-5)  -0.21(-5)

/8 (3.3) 0.58(-10) -0.73(-11)
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Table V: Errors for t= 0.5 for Problem 3using the implicit
methods of section 2.

error Pade error in error in

y1,(0.5) y2(0.5)

Vai (1,1) -0.86(-4) 0.86(-4)

(1,2) -0.14(-4) 0.14(-4)

2.,1) 0.14(-4) -0.14(-4)

(2,0) 0.30(-3) -0.30(-3)

(3,0) -0.43(-4) 0.43(-4)

/6 (2,2) 0.14(-7)  -0.14(-7)
(1,3) 0.12(-10)  0.12(-10)

(2,3) 0.15(-8) -0.15(-8)

(3.2) -0.13(-8) 0.13(-8)

(3,1) -0.30(-7) 0.30(-7)

/8 (3,3) -0.19(-9) 0.20(-9)




1)

Table VI: Errors for t= 0.5 for Problem 4 using the implicit
methods of section 2.

error Padé error in error in
y1(0.5) v2(0.5)

A (1,1) -0.22(-2) -0.68(-4)
(1,2) -0.45(-3) -0.17(-4)

2,1) 0.74(-3) 0.37(-4)

(2,0) 0.32(-1) 0.20(-2)

(3,0) -0.25(-2) -0.13(-3)

Al (2,2) 0.42(-4) 0.30(-5)
(1,3) -0.33(-4) -0.23(-5)

(2,3) 0.48(-5) 0.34(-6)

(3,2) -0.62(-5) -0.44(-6)

(3,1) -0.10(-3) -0.72(-5)

/8 (3,3) -0.29(-6) -0.21(-7)
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Figure 1: Theoretical and computed solutions to Problem 1 using
the explicit method based on the (0,1) or (1,0) Padé

approximants.
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Figure 2: Error moduli for Problem 1 using the explicit method

based on the (1,1), (0,2) or (2,0) Padé approximants
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Figure 3: Theoretical and computed solutions to Problem 2 using the

explicit method based on the (0,1) or (1,0) Padé approximants
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Figure 4: Errors for Problem 2 using the explicit method based on the

(1,1), (0,2) or (2,0) Padé approximants.
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Figure 5: Theoretical and computed solutions to Problem 3 using
the explicit method based on the (0,1) or (1,0) Padé¢

approximant.
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Figure 6: Error moduli for Problem 3 using the explicit method

based on the (1, 1), (0, 2) or (2, 0) Pade approximants.
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Figure 7: Theoretical and computed solutions to Problem 4 using
the explicit method based on the (0,1) or (1,0) Pad¢

approximants.
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Figure 8: Error moduli for Problem A using the explicit method based

on the (1, 1), (0, 2) or (2, 0) pade approximants.
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