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Abstract 12 

A technical and environmental evaluation of an innovative scheme for the co-treatment of domestic 13 

wastewater and domestic organic waste (DOW) was undertaken by coupling an upflow anaerobic sludge 14 

blanket (UASB), a sequencing batch reactor (SBR) and a fermentation reactor. Alternative treatment 15 

configurations were evaluated with different waste collection practices as well as various schemes for 16 

nitrogen and phosphorus removal. All treatment systems fulfilled the required quality of the treated 17 

effluent in terms of chemical oxygen demand (COD) and total suspended solids (TSS) concentrations. 18 

However, only the configurations performing the short-cut nitrification/denitrification with biological 19 

phosphorus removal met the specifications for water reuse. The environmental assessment included the 20 

analysis of impacts on climate change (CC), freshwater eutrophication (FE) and marine eutrophication 21 

(ME). A functional unit (FU) of 2,000 people receiving treatment services was considered. The most 22 

relevant sources of environmental impacts were associated to the concentration of dissolved methane 23 

in the UASB effluent that is emitted to the atmosphere in the SBR process (accounting for 37% of 24 

impacts in CC), electricity consumption, mainly for aeration in the SBR (representing 13% of the impacts 25 

produced in CC), and the discharge of the treated effluent in receiving waters (contributing 98% and 26 
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57% of impacts in FE and ME, respectively). The scheme of separate waste collection together with 27 

biological nitrogen removal and phosphorus uptake via nitrite was identified as the best configuration, 28 

with good treated effluent quality and environmental impacts lower than those of the other examined 29 

configurations.  30 
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Nomenclature 36 

Abbreviation Description 
AOB Ammonium oxidising bacteria 
BNR Biological nutrient removal 
BOD5 Five-day biochemical oxygen demand 

CC Climate change 
COD Chemical oxygen demand 

DNBPR Denitrifying via nitrite biological phosphorus removal 
DO Dissolved oxygen 

DOW Domestic organic waste 
DPAO Denitrifying phosphorus accumulating organism 
EBPR Enhanced biological phosphorus removal 

FE Freshwater eutrophication 
FWD Food waste disposer 
GHG Greenhouse gas 
HRT Hydraulic retention time 
LCA Life cycle assessment 
ME Marine eutrophication 
ND Nitrification/denitrification 

NOB Nitrite oxidising bacteria 
OLR Organic loading rate 
PAO Phosphorus accumulating organism 
PE Population equivalent 

SBR Sequencing batch reactor 
scND Short-cut nitrification/denitrification 
sNUR Specific nitrogen uptake rate 
sPUR Specific phosphorus uptake rate 
SRT Solids retention time 
TN Total nitrogen 
TP Total phosphorus 
TS Total solids 

TSS Total suspended solids 
UASB Upflow anaerobic sludge blanket 
VFA Volatile fatty acid 
vNLR Volumetric nitrogen loading rate 
vPLR Volumetric phosphorus loading rate 
VS Volatile solids 

WWTPs Wastewater treatment plants 

 37 

 38 
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1. Introduction 40 

Centralised wastewater treatment may not be feasible or the most cost-effective option for all sites. For 41 

instance, due to geographical conditions and dispersed settlements, more than 9,000 wastewater 42 

treatment plants (WWTPs) in Italy are designed for 2,000 population equivalent (PE) or lower (Libralato 43 

et al., 2012). The European legislation on urban wastewater treatment defines discharge limits for 44 

biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) 45 

for WWTPs serving PE higher than 2,000, while for lower agglomerations, it only states that appropriate 46 

treatment must be implemented (EEC, 1991). Moreover, when it comes to nutrient concentrations, 47 

limitations for total phosphorus (TP) and nitrogen (TN) are only specified for treated effluents from 48 

facilities with a treatment capacity larger than 10,000 PE discharging into sensitive recipients. The 49 

option of reusing the treated water from small scale WWTPs in agriculture is interesting, provided that 50 

the treated effluent is available near the potential points of use, thus, decreasing the costs of reclaimed 51 

water distribution systems (Hophmayer-Tokich, 2000). Currently, there is no European Union legislation 52 

concerning the use of reclaimed water; therefore, countries should apply national or regional 53 

regulations (Norton-Brandão et al., 2013). 54 

Considering the requirements imposed for the treated effluent, the applied treatment process should 55 

accomplish a number of objectives: relatively low capital and operating expenses, reduced energy 56 

consumption and enhanced reuse potential of water and other valuable by-products, such as biogas. In 57 

this context, the application of anaerobic processes, i.e. upflow anaerobic sludge blanket (UASB), 58 

appears as a robust and attractive technology, particularly for hot climates (Latif et al., 2011). Compared 59 

to aerobic treatment, the UASB process has several advantages, such as low operating expenses, high 60 

efficiency, simplicity, flexibility, low requirements of space, energy and chemicals as well as reduced 61 

sludge production (Latif et al., 2011). However, there are still some barriers that limit the use of 62 

anaerobic processes, including the process instability at temperatures below 20oC, low pathogen 63 

removal, negligible nutrient removal, odours, long start-ups and the need for adequate post-treatment 64 

(Latif et al., 2011). In addition, it is important to consider the concentration of dissolved methane in the 65 
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anaerobic effluent since low temperature raises methane solubility, which promotes its release into the 66 

environment (Cookney et al., 2016, 2012; Matsuura et al., 2015).  67 

Biological nutrient removal (BNR) from the low strength anaerobic effluent can be applied as a polishing 68 

step (Frison et al., 2013b; Malamis et al., 2013). Biological nitrogen removal via nitrite has several 69 

benefits compared to  conventional nitrification/denitrification such as 25% of oxygen savings during 70 

nitrification and 40% less need for organic carbon source during heterotrophic denitrification (Galí et al., 71 

2007). Enhanced biological phosphorus removal (EBPR) can be performed using nitrite as electron 72 

acceptors (Katsou et al., 2015). Denitrifying via nitrite biological phosphorus removal (DNBPR) offers the 73 

possibility of integrating phosphorus and nitrogen removal in a robust process. In the presence of nitrite 74 

and lack of oxygen, nitrite is denitrified to gaseous nitrogen and simultaneously, phosphate is taken by 75 

denitrifying phosphorus accumulating organisms (DPAOs) (Peng et al., 2011). DPAOs are able to 76 

accumulate significant amounts of polyphosphate under anoxic conditions, similarly to the phosphorus 77 

accumulating organisms (PAOs) in the conventional EBPR process. 78 

Due to the substantial organic matter removal attained in the anaerobic treatment, the addition of an 79 

external carbon source is required in the subsequent aerobic process for effective BNR (Frison et al., 80 

2013a). The latter opens up the possibility of integrating the management of domestic organic waste 81 

(DOW) with sewage. The use of organic waste (i.e. fermented liquids) from households as external 82 

carbon source achieves satisfactory rates of denitrification and phosphorus accumulation, while 83 

decreasing operational costs (Frison et al., 2013a). Food waste disposers (FWDs) are being promoted as 84 

an alternative practice for the collection of DOW (Iacovidou et al., 2012). Specifically, the 85 

implementation of FWDs entails reduced transport requirements and odours when compared to the 86 

conventional collection (Battistoni et al., 2007; Bernstad et al., 2013). However, the environmental 87 

assessment of FWD use is required, with specific focus on energy demand, water consumption and 88 

increased organic loads in the WWTP (Battistoni et al., 2007; Marashlian and El-Fadel, 2005). 89 

 Several works on the environmental performance of WWTPs have been published following the life 90 

cycle assessment (LCA) approach. Rodriguez-Garcia et al. (2011) assessed the environmental impact of 91 

24 WWTPs, classifying them in six different typologies by the quality requirements according to their 92 
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final use or discharge point. Besides, LCA has also been applied for the environmental assessment of 93 

integrated processes for waste and wastewater management. Weichgrebe et al. (2008) compared, in 94 

terms of energy and environmental impact, the conventional, separate treatment of wastewater and 95 

organic waste with their combined treatment by psychrophilic anaerobic digestion and aerobic post-96 

treatment, which showed greenhouse gas (GHG) savings compared to conventional wastewater 97 

treatment. Nakakubo et al. (2012) compared different technologies for the disposal of sewage sludge 98 

and food waste in order to identify the best option regarding the reduction of GHG emissions. Similarly, 99 

Righi et al. (2013) analysed the environmental profile of a decentralised scheme for the management of 100 

sewage sludge and biodegradable municipal solid waste (MSW). However, no LCA study has been 101 

conducted on the assessment of the environmental performance of anaerobic – aerobic processes for 102 

domestic sewage and DOW at community level.  103 

This work evaluates the feasibility of an integrated system designed for the decentralised co-104 

management of wastewater and DOW in a small community of 2,000 PE. Various scenarios were 105 

evaluated including (i) alternatives in the collection of DOW regarding the integration rates of FWDs 106 

within the community, (ii) different nitrogen removal processes and (iii) the potential of including 107 

phosphorus removal in the treatment scheme. 108 

2. Materials and methods  109 

2.1. Integrated treatment system: UASB – SBR configuration 110 

The selection of the treatment configuration was based on the results of a pilot scale UASB-SBR system 111 

operating at the premises of the University of Verona, taking into consideration cost criteria, legislative 112 

aspects for the treated effluent and DOW management in Italy, as well as the characteristics of the small 113 

community in terms of waste collection and sewage management. The treatment scheme included: (i) 114 

an UASB reactor to treat sewage and produce biogas (ii) a fermentation process to produce volatile fatty 115 

acids (VFAs) from DOW, a sequencing batch reactor (SBR) to remove nutrients from the UASB effluent 116 

and produce reusable water (iii) composting to treat the excess sludge and convert it to compost to be 117 

applied as soil conditioner. Nutrient removal in small scale wastewater treatment systems is not 118 
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required by European Legislation; however, depending on the relevant National and or Regional Law of 119 

countries, compliance to specific nitrogen and phosphorus limits of the treated effluent before 120 

discharge to specific water recipients. Mass balances were developed for the whole treatment scheme 121 

for total solids (TS), volatile solids (VS), COD and nutrients (TN and TP) to model the different streams of 122 

the treatment system. The flowchart of the baseline treatment scheme is shown in Figure 1. 123 

Figure 1 around here 124 

UASB process 125 

The average sewage flow was 400 m3/d, assuming a production of 200 L wastewater/capita d for a 126 

community population of 2000 people. The production rates of COD, N and P were taken as 120 g 127 

COD/capita d, 12 g N/capita d and 1.8 g P/capita d, respectively. The UASB reactor operated at ambient 128 

temperature (222oC), at an average organic loading rate (OLR) of 1.4-2.1 kgCOD/m3
reactor d, a hydraulic 129 

retention time (HRT) of 8 h and an upflow velocity of 1 m/s. According to the experimental results, the 130 

UASB produced 7.2-13.2 L/d of biogas with a methane content ranging between 60-65%, which 131 

corresponded to an average experimental methane yield of 0.26 m3CH4/kg CODremoved. This value is 132 

lower compared to the theoretical value of methane yield of 0.35 m3 CH4/kg CODremoved since it does not 133 

include the dissolved methane present in the UASB effluent which is not recovered. For calculation 134 

purposes, global removal efficiencies of 77% and 70% were considered for COD and TSS respectively, 135 

assuming that 1 kg of COD degraded produced 0.26 m3 of methane. The dissolved methane derived 136 

from the operation of the UASB at moderate temperature was also taken into account in terms of its 137 

environmental impact, by considering concentrations of 20 mg CH4/L under supersaturation conditions 138 

(Souza et al., 2011). The biogas produced in the UASB was treated in a biotrickling filter to remove 139 

hydrogen sulphide. The biogas was burnt in a boiler for heat production, appropriate for small and 140 

decentralised systems. The boiler had a thermal efficiency of 90% and 10% of losses. 141 

Fermentation process 142 

Considering that the UASB effluent had a very low COD/N ratio (2.5 kg COD/kg N), fermentation of DOW 143 

was applied to produce VFAs, which would then be fed to the SBR to promote nutrient removal from the 144 
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UASB effluent. Furthermore, the surplus of fermented DOW was sent to the UASB in order to increase 145 

the OLR and, thus, biogas production. A production rate of 0.30 kg DOW/capita d was considered 146 

(Bolzonella et al., 2003). Assuming a collection efficiency of 83%, 500 kg of DOW are separately collected 147 

at household level and transported to the treatment facility on a daily basis for a community of 2,000 148 

inhabitants. Regarding its physicochemical composition, TS of DOW was 25%, including 1,200 mg COD/g 149 

TS, 25 mg N/g TS and 3 mg P/g TS. Moreover, its content in carbohydrates was 600 g/kg VS, in proteins 150 

200 g/kg VS and in sugars 160 g/kg VS. In the baseline configuration, DOW was firstly ground to produce 151 

a homogeneous mixture and then diluted with water up to 6% TS. The fermenter was fed at an average 152 

OLR of 11 kg COD/m3 d and operated at 35°C and at a HRT of 5.2 d (Katsou et al., 2015; Lee et al., 2014; 153 

Traverso et al., 2000). During the fermentation process, organic matter is converted to acids (e.g. acetic 154 

acid, butyric acid, lactic acid etc.) while CO2 is also released as a result of metabolic processes. 155 

Furthermore, hydrolysis of organic nitrogen and subsequent ammonification takes place, pH increases 156 

and some ammonia is released into the atmosphere. It was assumed that 8.5% of COD was converted 157 

into carbon dioxide and methane, and losses of TN (2%) as ammonia and TS (2%) take place (Battistoni 158 

et al, 2002). 159 

Dewatering unit 160 

The fermented DOW and the excess sludge from the UASB and SBR were separated into a liquid and a 161 

solid fraction by applying a screw-press. Therefore, a liquid fraction rich in VFAs was produced to be 162 

used in the SBR and a solid fraction to be further treated in the composting unit. The separation 163 

efficiencies of fermented DOW and sludge are different. More specifically, in the case of fermented 164 

DOW 65% of TS, 40% of COD and TN and 50% of TP are transferred to the solid stream and the 165 

remaining in the liquid fraction; when sludge was separated 95% of TS, COD, TN and TP ended up in the 166 

solid fraction (Albertson et al., 1991; Battistoni et al., 2002). The produced solid fraction was sent to the 167 

composting unit, while the liquid fraction was stored in an equalisation tank with a HRT of 10 h before 168 

being fed to the SBR. 169 

 170 
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SBR 171 

The SBR was applied as a post-treatment stage of the UASB effluent and of the liquid stream generated 172 

from the screw-press. The SBR cycle comprised of filling, the sequential operation under anaerobic, 173 

aerobic and anoxic conditions, settling and decanting. The system operated at low dissolved oxygen 174 

level (around 1 mg/L) in order to perform short-cut nitrification/denitrification (scND) instead of the 175 

conventional nitrification/denitrification (ND) process. Previous work has shown that the combination of 176 

a suitable vNLR and low DO can result in effective via nitrite nutrient removal from domestic sewage 177 

(Katsou et al., 2015). The calculation of the oxygen demand was based on the organic carbon and 178 

ammonia load. 179 

Composting process 180 

Sludge composting took place in an enclosed system equipped with a biofilter (Colón et al., 2009). 181 

Wheat straw was used as a bulking agent and was mixed with sludge in order to improve aeration, to 182 

provide a C/N ratio in the range of 25:1-35:1 and adjust the moisture content of the mixture in the range 183 

of 60-65% (Hernandez et al., 2006; Tremier et al., 2005). The addition of the bulking agent also 184 

prevented the compost mixture from excessive compacting. The straw had the following characteristics: 185 

90% of TS out of which 90% were VS, 60% of total carbon, 0.9% of TN and 0.1% of TP (Rihani et al., 186 

2010).  187 

2.2. Integrated treatment schemes for wastewater and DOW management 188 

Alternative approaches were examined to identify the best treatment configuration from a technical 189 

and environmental point of view. More specifically, three options were analysed considering different 190 

integration levels of FWDs in the community, diverse nitrogen removal options in the SBR and the 191 

possibility of including phosphorus removal. 192 



10 

 

DOW collection 193 

The collection of DOW in the community was considered with various FWDs integration rates. These 194 

disposal units are equipped with a shredding system, allowing effective collection of DOW, which is 195 

pumped together with wastewater to the treatment plant. 196 

- Configuration 1 involved the separate collection of wastewater and DOW (0% FWDs 197 

integration). Wastewater was pumped from the households to the WWTP, whereas DOW was 198 

separately collected at households and transported by trucks to the WWTP. 199 

- Configuration 2 included FWD integration in 50% of the households in the community (Evans et 200 

al., 2010). The remaining DOW that was not managed through FWDs was transported by trucks to 201 

the treatment plant. 202 

- Configuration 3 considered complete integration of FWDs (100%) in the community. 203 

Wastewater and DOW streams produced were delivered together to the WWTP.  204 

The introduction of FWDs has been reported to cause an additional load of 60 g TSS/capita d, 95 g 205 

COD/capita d, 2.1 g N/capita d and 0.3 g P/capita d in the influent wastewater (Bernstad et al., 2013; De 206 

Koning, 2003). The application of FWDs leads to an increase in tap-water consumption (up to 4.5 207 

L/capita d) required for pumping wastewater and DOW to the WWTP (Bernstad et al., 2013; 208 

Rosenwinkel and Wendler, 2001). A primary settler was implemented before the UASB to receive the 209 

mixture of wastewater and shredded DOW for the effective settling of the primary sludge (Figure 2). The 210 

removal efficiencies of COD, TSS, TP and TN in the primary settler were assumed to be 30%, 50%, 10% 211 

and 5%, respectively (Tchobanoglous et al., 2014). The produced sludge was fed to the fermentation 212 

unit to produce VFAs, while the supernatant was fed into the UASB. 213 

Alternative processes for nitrogen removal 214 

Biological nitrogen removal was integrated in the scheme by applying conventional 215 

nitrification/denitrification (ND) and short-cut nitrification/denitrification (scND) in the SBR.  216 
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Phosphorus removal  217 

Biological phosphorus removal using oxygen and nitrate or nitrite as electron acceptors in the SBR was 218 

also evaluated. Nitrogen and phosphorus removal accomplished under anoxic conditions  require lower 219 

amounts of external carbon source and energy compared to aerobic conditions (Malamis et al., 2013). 220 

The tested configurations are summarised in Table 1. 221 

Table 1 around here 222 

2.3. Environmental impact of the decentralised schemes   223 

This section includes the quantification of the environmental impact of each configuration for the 224 

identification of the most favourable one from an environmental point of view, using the LCA 225 

methodology (ISO 14040, 2006). The functional unit (FU) selected was the treatment of the wastewater 226 

and DOW produced by a community of 2,000 PE per day.  227 

System boundaries 228 

The processes considered within the system boundaries of the tested configurations are outlined in 229 

Figure 2. The generation of waste streams (wastewater and DOW) was excluded from the 230 

environmental analysis, since it does not affect the resource valorisation. The sewer network has an 231 

important contribution to the total environmental impact of wastewater management (Doka, 2007). 232 

However, in this work, the sewer system was excluded for the purpose of comparison because it was 233 

considered to be similar for all scenarios.  234 

In LCA studies, when waste treatment systems are converted into alternatives for resource recovery, 235 

they are usually credited by considering the avoided environmental impacts of producing a different 236 

product with the same function (Finnveden et al., 2005). In this manner, the environmental benefits of 237 

the production of valuable products can be quantified. The produced heat from biogas was partially 238 

used to heat the fermentation reactor, while the surplus heat can be exploited for heating nearby 239 

households 8 months per year. Fuel oil was assumed as the fuel used for accounting the environmental 240 

credits, since it was considered the most appropriate for a small and decentralised community. 241 
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Numerous studies have demonstrated the horticultural properties of compost, being able to substitute 242 

peat in the production of ornamental plants (Ceglie et al., 2015; Russo et al., 2011), although its fertiliser 243 

capacity is lower than that of other organic substrates such as manure or digestate (De Vries et al., 244 

2012). Therefore, it was assumed that the produced compost can be used as soil conditioner avoiding 245 

the extraction, transport and use of a similar quantity of peat (Boldrin et al., 2009; Saer et al., 2013).  246 

Figure 2 around here 247 

Inventory data 248 

Inventory data regarding all inputs and outputs for each configuration were based on experimental 249 

results from the UASB-SBR pilot plant and mass balances. A description of the bibliographic sources used 250 

to build the life cycle inventory is given in Table 2. A detailed description of inventory data of the base 251 

case can be found in Table S2 of the supplementary material. 252 

Table 2 around here 253 

The ecoinvent® database (2016) was used to introduce background data for production of electricity, 254 

heat from fuel oil and peat (Dones et al., 2007), manufacturing of chemicals (Althaus et al., 2007), 255 

transportation (Spielmann et al., 2007) and waste disposal (Doka, 2007). Concerning the production of 256 

electricity, the process included in the database has been updated using data for the average electricity 257 

generation and import/export data for Italy in 2014 (Terna Rete Italia, 2015).  258 

Impact assessment methodology 259 

This section describes the methodology used to select representative impact categories. Direct and 260 

indirect GHG emissions and eutrophication attributed to the discharge of the treated effluent have 261 

important environmental impacts in most WWTPs (Rodriguez-Garcia et al., 2011). Hence, among all the 262 

available impact categories within the LCA methodology, only three were considered: climate change 263 

(CC), freshwater eutrophication (FE) and marine eutrophication (ME). In particular, CC estimates the 264 

contribution of the system to the global warming effect and it is influenced by the amount of direct and 265 

indirect GHGs. The categories of FE and ME measure the potential enrichment of nutrients in water 266 
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bodies (freshwater and marine water, respectively). FE is affected by phosphorus-based substances, 267 

while ME accounts for nitrogen-based compounds. Finally, the potential impacts regarding CC were 268 

determined by considering the characterisation factors provided by IPCC (2013), while the potential 269 

damages due to FE and ME were measured through the characterisation factors reported by the ReCiPe 270 

Midpoint H methodology (Goedkoop et al., 2009). 271 

The relation between the background processes and CC used in the study is shown in Table S3 of the 272 

supplementary material. 273 

3. Results and discussion 274 

3.1. Effluent quality, bioenergy generation and compost production 275 

This SBR had a HRT of 10 days, a solids retention time (SRT) of 18 days, a volumetric nitrogen 276 

loading rate (vNLR) of 0.15 kg N/m3 d and a volumetric phosphorus loading rate (vPLR) of 0.022 kg 277 

P/m3 d. These parameters were considered to be invariable among all the configuration schemes 278 

Regarding dissolved oxygen (DO) concentration in the aerobic reactor, the SBR performing BNR via 279 

nitrate operated at DO concentrations of 2 mg/L; whereas the DO level was kept close (and even 280 

below) 1 mg/L in the process via nitrite. It was observed that under these conditions the ratio of 281 

NO2-N/NOx-N gradually increased and was steadily maintained above 99% during the operation of 282 

the SBR. In the ND configurations, sNUR was on average 2.02 g N/kg VSS h, while in the scND 283 

configurations, the sNUR was on average 4.93 g N/kg VSS h, as supported by experimental results. 284 

The lower needs of external carbon source in the BNR process via nitrite can maintain higher 285 

average sNUR in the reactor. When enhanced biological phosphorus removal was performed, the 286 

pathway schemes integrating processes via nitrite resulted in slightly higher specific phosphorus 287 

uptake rates (sPUR) compared to the processes via nitrate: 3.85 g P/kg VSS h and 3.19 g P/kg VSS h, 288 

respectively. Table 3 shows the characteristics of the treated effluent as this is calculated for each 289 

scenario in terms of COD, TSS, TN and TP.  290 

Table 3 around here 291 
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All the scenarios achieved COD levels between 36.4 and 69.5 mg/L and TSS concentrations from 14.1 - 292 

25.9 mg/L in the treated effluent; therefore the treated effluent met the EU limits of COD and TSS for 293 

discharge into water bodies. However, the quality of the treated effluent regarding nutrients and TSS 294 

was not appropriate for reuse. Regardless of the waste collection strategy, only the systems which 295 

performed the BNR through the short-cut nitrification/denitrification together with biological 296 

phosphorus uptake via nitrite (scND-P configurations) is able to reduce the nutrients to the levels 297 

required by existing National standards in Europe in. In any case, to comply with the reuse criteria 298 

tertiary treatment (coagulation and sand filtration) followed by appropriate disinfection is required.     299 

The configurations applying scND achieved 85-86% nitrogen removal, while the nitrogen removal 300 

efficiency was 67-85% for ND configurations. Phosphorus removal, when applied, was higher than 80% 301 

for BNR via nitrite and around 43-73% via nitrate. The relation between the carbon source supplied and 302 

the one required for the BNR process is the reason behind these results, since in some configurations 303 

such as Configuration 1-ND, the carbon source required for the denitrification process is significantly 304 

higher than the one that is available and is thus supplied by the system. In this case, high levels of 305 

external carbon source were required for BNR in the conventional treatment system. The COD 306 

consumed for denitritation ranged from 49.6-57.2 kg COD/day, while the COD required for conventional 307 

denitrification via nitrate varied from 61.2-99.8 kg COD/day. The latter was not enough to remove 308 

nitrogen and this is the reason why the nutrient concentrations of the treated effluent are higher in the 309 

conventional nitrification/denitrification processes. Diverting fermented DOW liquid from the UASB to 310 

the SBR resulted in lower biogas production in the UASB (Table 4). More specifically, the application of 311 

conventional ND allowed recirculation rates of fermented liquid to the UASB from 0%-11% of the 312 

amount of fermented liquid produced, while the respective recirculation rates were up to 45% for the 313 

scND scheme. As a result, when scND was performed, the average biogas production was usually higher. 314 

Regarding the food waste collection options, the use of FWDs (Configurations 2 and 3) increased the 315 

COD levels at the head of the plant. After primary settling, the settled sludge was fed to the 316 

fermentation unit to produce VFAs, while the clarified effluent was sent to the UASB. Part of the 317 

fermented liquid was sent to cover the BNR needs of the SBR and the remaining part to the UASB to 318 
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increase biogas recovery. More specifically, 59% and 52% of the inlet COD was fed to the UASB in 319 

configurations 2 and 3, respectively.  320 

Table 4 around here 321 

The treatment and disposal of sludge is an important issue in WWTPs (Wei et al., 2003). The most 322 

commonly applied methods for sludge disposal at EU level include landfills, land application and 323 

incineration. In the examined systems, sludge was valorised through composting. The compost 324 

properties must be in line with the quality assurance protocol. As seen in Table 4, sludge production was 325 

directly affected by the food waste collection system. The partial or total application of FWDs 326 

(Configurations 2 and 3) resulted in higher sludge production compared to the separate collection 327 

schemes (Configuration 1) (around 18-19% increase). The larger sludge production is attributed to the 328 

operation of the primary settler required when FWDs are used. The implementation of the primary 329 

settler implies the separation of primary sludge that is further sent to the fermentation reactor. 330 

Furthermore, the amount of sludge produced was 2-4% lower in the scND configurations. Finally, the 331 

schemes with EBPR produced more sludge than the respective ones without EBPR (around 3-7% 332 

increase). 333 

3.2. Environmental profile of the UASB – scSBR configuration 334 

Table 5 summarises the LCA characterisation results for the scND configuration per functional unit, split 335 

up by the processes involved. Positive values indicate environmental burdens, whereas negative values 336 

are indicative of environmental credits. 337 

Table 5 around here 338 

Despite the differences in environmental results among the examined impact categories, it is important 339 

to highlight the general positive effect of avoided processes. Avoided peat use had a modest 340 

contribution, while avoided heat production from fuel oil played an important role in offsetting the GHG 341 

emissions. In LCA studies, the choice of avoided products has a strong influence in the results. For this 342 

reason, a detailed analysis of the influence of these methodological assumptions was performed in 343 

section 3.5. In addition, the treatment scheme under assessment was evaluated excluding 344 
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environmental credits; therefore, each impact category was examined in detail considering only 345 

negative loads in order to identify the system components with greater environmental impacts. Figure 3 346 

summarizes the relative contributions of each process to CC for the baseline scenario.  347 

Figure 3 around here 348 

Regarding the environmental impact in CC (467 kg CO2 eq/FU), the electricity requirements contributed 349 

up to 13% of the global impact produced in CC. From the total electricity consumed in the treatment 350 

plant, aeration in SBR accounted for 60%. The environmental impact of the consumption of electricity is 351 

directly linked to the electricity mix of the specific country under study. In this case, the Italian electricity 352 

profile produces 0.46 kg CO2 eq/kWhproduced. If the treatment plant would have a solar system installed, 353 

the emissions would be only 0.08 kg CO2 eq/kWhproduced (Dones et al., 2007). Direct emissions in the SBR 354 

unit (76 kg CO2 eq/FU) were significant contributors to the environmental profile of the treatment 355 

scheme, representing 37% of the total impact produced in CC. Dissolved methane from the UASB 356 

effluent is by far the most influential compound (201 kg CO2 eq/FU), followed by nitrous oxide emitted 357 

from the SBR (11 kg CO2 eq/FU). Emissions derived from the composting unit also contributed with 13% 358 

of the impacts in CC; these environmental impacts were related to direct emissions of methane and 359 

nitrous oxide that were generated during biomass decomposition. Despite the fact that composting is an 360 

aerobic process, methane emissions may occur, especially for enclosed systems, in anaerobic pockets of 361 

the substrate/mixture that is composted (Boldrin et al., 2009). Methane and nitrous oxide emissions 362 

derived from the application of compost on land were accounted according to Bruun et al. (2006); 363 

representing 13% of the total impact produced in CC. In addition, these processes were also a source of 364 

carbon dioxide; particularly, the composting and the SBR process. However, due to the natural carbon 365 

cycle, carbon from biogenic sources can be considered as climate-neutral, since the equivalent amount 366 

of carbon dioxide emitted from an organic source is previously uptaken in the photosynthesis. Other 367 

minor sources of GHG emissions were waste disposal in landfill (10%), infrastructure (4%), 368 

transportation (3%) and biogas losses (2%).  369 

The relative contributions of each process to the eutrophication related categories are outlined in Figure 370 

4. The discharge of treated effluent was the main source for eutrophication emissions, contributing up 371 
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to 98% in FE and 57% in ME. Emissions of phosphorus from the treated effluent were responsible for FE, 372 

while nitrogen emissions from the treated effluent were related to ME. In addition, leachates of nitrate 373 

derived from the application of compost on land had an important contribution in ME (37%).  374 

Figure 4 around here 375 

3.3. Towards increased environmental sustainability 376 

The different treatment configurations were analysed in terms of their environmental profile to identify 377 

the most sustainable scheme. Characterisation results for each configuration are given in Table 6. Figure 378 

5a, b and c summarizes the comparative results for each impact category. 379 

Table 6 around here 380 

Figure 5 around here 381 

In terms of CC, the profile of the system depended on the collection scheme (Figure 5a). The partial use 382 

of FWDs (Configuration 2) resulted in GHG emissions between 1.80 and 2.17 times higher than in the 383 

baseline scenario. As shown in Table 5, the use of FWDs resulted in less methane generation and 384 

subsequently, in lower environmental credits due to avoided heat production that highly affected this 385 

category (Table 4). Additionally, this collection system increased the production of sludge, increasing the 386 

environmental impacts from direct emissions of nitrous oxide and methane from composting and land 387 

application processes. Finally, the implementation of FWDs was associated with additional energy 388 

consumption compared to the separate collection of DOW (Table 2). Concerning the removal of 389 

nutrients, the denitrification process entailed different emissions and aeration requirements, resulting 390 

in different electricity consumption (Table 2). In particular, energy consumed for air supply was 14% 391 

higher in the Configurations performing nitrogen removal via nitrate than via nitrite. As a consequence, 392 

ND configurations exhibited 15% more environmental impact on average regarding CC than scND 393 

configurations.  394 

As shown in Figure 4, the discharge of the treated effluent was the most important contributor to FE 395 

and ME impact categories. Therefore, the treated effluent quality can explain the differences observed 396 
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in Figures 5b and 6c among the examined configurations. A reduction of 28%-82% in the FE category 397 

was observed in the systems that perform EBRP, since this impact category is only influenced by 398 

phosphate-based emissions. Finally, the configurations that perform nitrogen removal via nitrate 399 

together with EBPR resulted in high nitrogen levels in the final effluent since the carbon source was not 400 

enough for complete denitrification. This adversely affecting ME, which was 44-90% higher compared to 401 

the baseline scenario. 402 

3.4. Sensitivity analysis 403 

A sensitivity analysis was performed to analyse three selected, key parameters: (i) the COD removal 404 

efficiency in the UASB process, (ii) the efficiency in the separate collection of DOW at household level 405 

and (iii) the bulking agent used for composting. The outcomes from the sensitivity analysis are 406 

presented in Tables S4, S5 and S6 of the supplementary material, respectively. 407 

COD removal efficiency in UASB.  COD removal of 77% was considered in the UASB for calculations as 408 

the base case. In sensitivity analysis 1 (SA1), it has been considered that only around 50-55% of the COD 409 

input was removed, which implied lower biogas and sludge production in the UASB. In addition, in spite 410 

of the higher COD concentration in the UASB effluent compared to the base case, the quality of the 411 

treated effluent has low nutrient concentrations in Configurations 2 and 3-scND-P allowing the potential 412 

reuse. However, this resulted in higher energy consumption for aeration and sludge production in the 413 

SBR process. Therefore, the decrease in biogas production (29-35% lower compared to the base case) 414 

was not only attributed to lower COD removal but also to lower flow of fermented liquid recirculated to 415 

the UASB reactor. Moreover, total sludge production in the treatment scheme was higher, which was 416 

attributed to the sludge production in SBR (48-77% more), which ended up in a larger production of 417 

compost (10-19%). From an environmental perspective, all these changes entailed an increase in GHG 418 

emissions by 65 kg CO2 eq/d with respect to base case.  419 

DOW collection efficiency. In the base case assessment, it was assumed that 83% of DOW produced at 420 

household level was separately collected and delivered to the treatment facility. In Configurations 1, this 421 

meant that from the total 600 kg DOW produced each day, 500 kg were delivered to the treatment 422 
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facility; in Configurations 2 this meant that 250 kg DOW/d were delivered to the facility because the 423 

remaining 300 kg were collected through FWDs. Configurations 3 were not influenced since all DOW 424 

produced was collected in FWDs. However, the values of collection efficiency can vary from one 425 

community to another. Therefore in sensitivity analysis 2 (SA2), it was assumed that only 40% of the 426 

produced DOW was successfully separated in the households. The lower collection efficiency resulted in 427 

lower amount of DOW sent to the fermentation reactor, implying less available carbon source and/or 428 

biogas production, but also greater amount of DOW sent to landfill. Under this assumption, although 429 

100% of the fermented liquid is sent to the SBR in Configurations 1, it is not enough for efficient nutrient 430 

removal and the treated effluent is characterized by elevated nutrient concentration. Conversely, the 431 

collection efficiency had a lower influence in Configurations 2, where the supply of DOW is guaranteed 432 

by the implementation of FWDs in 50% of the households. In these cases, the quality of the effluent was 433 

similar in comparison to the base case due to the effective collection of DOW in the FWDs, which 434 

allowed the proper supply of carbon source in the SBR. Moreover, the total amount of sludge produced 435 

and compost are lower especially in Configurations 1 due to the lower amount of DOW handled; 436 

however, due to the higher amount of organic waste sent to landfill and the lower amount of biogas 437 

produced, the environmental impacts produced in Configurations 1 were on average around 40 kg CO2 438 

eq/FU higher. 439 

Bulking agent used for composting. In the base case, wheat straw was used as bulking agent in the 440 

composting process. In sensitivity analysis 3 (SA3), wheat straw was substituted by sawdust. The change 441 

in the bulking agent meant different compost mixture composition, resulting in different emissions from 442 

composting and from compost application. Wheat straw had a composition in terms of 10% moisture, 443 

TC, TN and TP of 60%, 0.9% and 0.1%, respectively as percent of dry solids; the composition of sawdust 444 

was 20% moisture, 60% TC, 0.2% TN and 0.03% TP. The lower content in nutrients resulted in (i) lower 445 

amount of sawdust required to achieve the appropriate C/N ratio and (ii) lower emissions of nutrient-446 

based compounds derived from the composting process and the application of compost on land 447 

(including emissions of nitrous oxide and ammonia and leachates of nitrate and phosphate). In terms of 448 

CC, this change meant a reduction in GHG emissions of 6% in average, while in ME the global impacts 449 

produced by the treatment schemes proposed were reduced up to 10%. However, no significant 450 
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changes occurred in terms of FE (<0.1%), since almost all of the effects produced in this impact category 451 

(>98%) were allocated to the discharge of the treated effluent. 452 

3.5. Assessment on the reliability of the environmental results 453 

The influence of the selection of important parameters in the environmental balance was assessed. A 454 

comparison between the baseline case and alternative scenarios was performed to identify sensible 455 

variations in the results. 456 

Biogas losses. Fugitive biogas emissions from anaerobic processes are usually included in the 457 

environmental analysis. These emissions directly affect CC, not only due to direct methane emissions, 458 

but also by decreasing the potential heat production from biogas. In the baseline scenario of the current 459 

study, 1.5% of biogas produced was taken into account as biogas losses in accordance to De Vries et al. 460 

(2012). Poeschl et al. (2012) considered that these losses can vary from 1 to 1.8%. A sensitivity analysis 461 

was performed to assess the influence of different rates of biogas losses in CC (i.e. 1% and 1.8%). The 462 

decrease of the emissions to 1% of the biogas produced can save from 3-4 kg CO2 eq/FU; whereas when 463 

the biogas losses were 1.8%, the environmental profile can increase by 5-7 kg CO2 eq/FU. Therefore, this 464 

assumption had a slight effect on the definition of the environmental profile (±1%). 465 

Avoided products. As described in Section 3.2., credits from the avoided products played an important 466 

role in offsetting the environmental impacts of the applied treatment scheme, especially regarding CC. 467 

Alternative avoided products were analysed to identify their impact. The baseline case where the 468 

avoided heat was produced from fuel oil at small-scale in Europe, was compared with the substitution of 469 

heat produced from different fuels, such as natural gas and hard coal (Dones et al., 2007). The 470 

substitution of peat for compost is usually done on a 1:1 volume basis (Boldrin et al., 2009). In this 471 

study, identical density was assumed for compost and peat. However, Boldrin et al. (2009) stated that 472 

compost and peat densities are very variable and can be different; it is possible that 1 tonne of compost 473 

can replace the use of 0.2-1 tonne of peat. Accordingly, an equivalence of 0.2, 0.6 and 0.8 t peat/t 474 

compost was considered. Concerning avoided heat, the production of heat from fuel oil generates 0.32 475 

kg CO2 eq/kWh (base case), while the environmental impact of heat production from natural gas and 476 
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hard coal is 0.26 and 0.57 kg CO2 eq/kWh, respectively. Considering natural gas as the substitute fuel, 477 

the environmental impacts can increase around 13-24 kg CO2 eq/FU; whereas, when considering hard 478 

coal, it can be improved by 35-63 kg CO2 eq/FU; meaning an environmental profile 5-13% lower 479 

compared with the base case. Therefore, the substitution of heat from fuel oil to heat from hard coal 480 

has a considerable effect. With regard to avoided peat, the lowest replacement ratio (0.2 t peat/t 481 

compost) means an increase of the environmental profile up to 3% (~15 kg CO2 eq/FU).  482 

Treated effluent reuse. The quality of the treated effluent in the scND-P configurations met the 483 

specifications for water reuse in Italy provided that effective tertiary filtration and appropriate 484 

disinfection take place (Section 3.1.). Therefore, the treated water can be reused for irrigation instead of 485 

being discharged in water bodies. This practice reduces the impact of direct discharge of nutrients; 486 

however, it entails other potential environmental burdens from the filtration and disinfection as well as 487 

the use of agricultural machinery and emissions derived from the treated effluent discharge on land. In 488 

the sensitivity analysis, it has been considered that the effluent is further treated in a sand filter using 489 

aluminium sulphate as coagulant, followed by UV disinfection, as described in (Meneses et al., 2010). In 490 

addition, derived emissions were computed using the methodology described in IPCC (2006). 491 

As shown in Figure 6, the use of treated effluent for irrigation had an adverse impact in the 492 

environmental profile regarding CC (by 18-20%) due to the tertiary treatment as well as the use of 493 

agricultural machinery for irrigation. On the contrary, the performance was improved by 69-83%% and 494 

37-41%% for FE and ME, respectively, due to the reduction of direct P and N emissions into water 495 

recipients.  496 

Figure 6 around here 497 

LCA works dealing with wastewater treatment have also identified environmental benefits (i.e. 498 

replacement of mineral fertilisers) from the use of reclaimed water for agricultural purposes (Meneses 499 

et al., 2010). The application of scND-P configurations can result in savings of 3.85-4.10 kg N/FU and 500 

0.95-1.59 kg P2O5/FU of nitrogen and phosphorus based fertilisers. This results in a reduction of 501 
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approximately 44.7 kg CO2 eq/FU, 8.24 g P eq/FU and 10.5 g N eq/FU for CC, FE and ME, respectively, 502 

which enhances the environmental profile of the systems by 11-17%.  503 

3.6. Wastewater treatment alternatives in small communities 504 

Several systems have been reported in literature for wastewater treatment in small and decentralised 505 

communities. The most common treatment scheme for wastewater treatment in small communities is 506 

constructed wetlands (Barros et al., 2008; Chan et al., 2008; Wu et al., 2011; Ye and Li, 2009). Other 507 

configurations have also been proposed, such as trickling filter, activated sludge, membrane bioreactor 508 

or extended aeration (Molinos-Senante et al. (2012) and an integrated step-feed biofilm process (Liang 509 

et al., 2010). A review of different schemes designed for the treatment of domestic wastewater at 510 

decentralised level can be found in Table 7. In more detail, Nogueira et al. (2009) compared the 511 

economic and environmental profile of energy-saving and intensive wastewater treatment systems. 512 

Energy-saving technologies such as slow rate infiltration plants and constructed wetlands exhibited 513 

better results compared to the activated sludge processes. Yildirin and Topkaya (2012) evaluated the 514 

environmental behaviour of constructed wetlands, vegetated land and activated sludge (with and 515 

without phosphorus removal), which reported similar results in CC impact but also in terms of the 516 

eutrophication-related categories.  517 

Table 7 around here 518 

Regarding more advanced treatment technologies, Zeeman et al. (2008) analysed the operational 519 

performance of UASB for the separate treatment of both grey and black water. Grey water was treated 520 

in a UASB-SBR system, while a struvite precipitation process was applied after the UASB process for 521 

black water. The comparison of the proposed treatment configurations with conventional sanitation 522 

showed energy savings of 200 MJ/PE year and phosphorus recovery via struvite of 0.14 kg P/PE year. In 523 

comparison with our study, important water reductions related with the use of vacuum toilets are 524 

shown. The production of grey and black water was in the range of 60-90 L/PE year and 6.8-7.5 L/PE 525 

year, respectively, while a production of 73 m3/PE year was considered in the current work. Energy 526 

consumption was estimated as 151 MJ/PE year. Despite the differences among the treatment systems 527 

examined in the current work, similar results were obtained in configurations 1 (160 MJ/PE year), while 528 
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in configurations 2 and 3, energy consumption was higher (300 MJ/PE year). Alternatives of the 529 

conventional SBR were also analysed in the literature, including the performance of a sequencing batch 530 

membrane bioreactor (SBMBR) (Krampe, 2013). One of the advantages of coupling a membrane to a 531 

SBR is the reduced cycle time as a result of the elimination of the settling phase and complete 532 

elimination of suspended solids in the treated effluent. However, they are associated with higher 533 

operating costs due to membrane fouling. 534 

 535 

4. Conclusions 536 

The technical evaluation of the systems revealed: 537 

- The co-management of wastewater and DOW is feasible for a small community (i.e. up to 2,000 538 

PE), regardless of the applied collection scheme; the treated effluent met the discharge 539 

requirements. 540 

- The removal of nitrogen via nitrite with EBPR in the SBR upgraded the treated effluent quality 541 

allowing its reuse for agricultural purposes. Nitrogen and phosphorus uptake rates were higher in 542 

the processes removing nutrients via nitrite  543 

- Configurations performing denitrification via nitrite allowed higher levels of fermented liquid 544 

recirculation in the UASB, resulting in higher biogas generation.  545 

The environmental assessment of the alternative processes in the integrated systems showed:  546 

- Climate change achieved the lowest results in Configuration 1-scNSD (467 kg CO2 eq/FU) and 547 

the highest GHG emissions were produced in Configuration 2-ND-P (622 kg CO2 eq/FU). The 548 

environmental impacts were mainly attributed to the energy requirements for FWD operation and 549 

SBR aeration. The use of FWDs increased GHG emissions by 57% - 67% compared to the separate 550 

collection, while denitrification via nitrate entailed 15% higher impacts in CC compared to nitrogen 551 

removal via nitrite.  552 
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- Impacts in eutrophication related categories derived from the discharge of the treated effluent. 553 

Thus, the collection scheme does not affect the environmental performance. The systems which 554 

perform nitrogen removal via nitrite and EBPR via nitrite resulted in better environmental profile 555 

concerning FE and ME. 556 

Considering technical and environmental aspects, it can be concluded that the separate collection of 557 

waste combined with nitrogen removal and phosphorus uptake via nitrite is the best configuration for 558 

the combined treatment of wastewater and DOW in a small community of 2,000 PE. However, the 559 

collection efficiency highly influences the performance of the treatment scheme. 560 

 561 
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