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0.        Abstract

Given  a   system  of   fist   order  differential   equations,   whose 

coefficient  matrix  has   constant  elements,   with  initial   conditions 

specified,   a  family  of  extrapolating  algorithms  based  on  Pade 

approximants  to   the  exponential   function  is  developped. 

An  important  application  of   such  methods   is   seen  to   be   the 

numerical   solution  of   the   diffusion  equation. 
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1. Extrapolating   algorithms

Given   the   system  of     N     linear  first  order  ordinary  differential 

equations 

(0) y' (x)   =  Ay,(x) 

to  be   abbreviated  as    y'   =   Ay   ,   with   initial   conditions 

(1) y(0)   = g    , 

it   is   trivial   to   show  that   the   solution  is 

(2) y(x)   =   exp(xA)y(0)   =  exp (xA)g

The  matrix     A   ,   which  is   of   order     NxN   ,   will   be   assumed   to  have 

constant   elements   and   any  numerical   solution   of   (2)   will   rely  for   its 

accuracy  on   the  approximation   to     exp(xA)    -      Certain  polynomial   and 

rational   approximations   to     exp(xA)   ,   together  with  appropriate 

convergence   criteria,   were   discussed   in  Legras   [6]   .      In   the   present 

paper  Pade   approximants   to     exp(xA)     will  be   used  and  it  will  be   seen 

that,   by  a   process   of   extrapolation,   it   is   possible   to   improve   an 

approximation  by  one   or   two  powers   of     x   . 

 
The (m,k) Pade  approximant  to  e   θ     ,   where     6     is   some   scalar 

quantity,   is   of   the   form 

Rm,k(θ) = pk(θ)/Qm(θ) 

where     pk(θ)      and     Qm(θ )     are   polynomials   in      6     of   degrees     k  and   m 

respectively,   and     Rm,k   (θ)      is   such   that 
 

Rm,k   (θ)   -   eθ   =   0(θm+k+1) 
  

A   table   of   Padé   approximants   to   the   exponential   function  may  be   found 
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in   a  number   of   texts   and   an   analysis   and   a   review   of   computational 

methods   appears   in  Chisolm  [1].      If     Qmθ)      is   of   the  form 

q0+q1θ+q2θ2 + . . . + qmθm     with     q0 > 0  ,   then   for  convergence   the   condition 

(3) |q1θ   +   q 2θ2   +...+   qmθm |   <   q 0

must  be  satisfied.      The  matrix  analog  of   (3)   is   obvious   and   for  each 

Pade   approximant   to     exp(xA)     yields   a  bound  on  some  norm  of    A   . 

Equation   (2)   may  be  written   in   step  wise   fashion  as 

(4) y(x +  h)   =  exp(hA)y(x)      , 

where     h     is   the  stepsize,   and writing   (4)   over  a  double   interval 

2h     with     exp(2hA)      replaced  by   its      (1,0)     Pade   approximant   gives 

(5) y(x+2h)   =   (I  -   2hA)-1y(x) 

=   (I   +  2hA  +  4h2A2)y(x)   +  0(h3)   . 

Alternatively   if  equation   (4)   is   applied   twice,   y(x+2h)      is   given  by 

(6) y(x+2h)   -   (I  -  hA)-1(I  -  hA)-1 y(x)

=   (I  +   2hA  +   3h2A2)y(x)   +  0(h3) 

The  Maclaurin  expansion  of     exp(2hA)      produces 

,)x(y.....)Ah
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3
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and  defining   the   the  values   of     y(x+2h)     produced  by   (6)   and   (5)   to 
                                                                                                                    

be   y(1) and    y(2)     respectively,   it   is   seen  that  neither   is     0(h 2 ) 

accurate. However, defining y by 

(8) Y    =     2y (1)  -  y (2)    , 

gives 

(9) Y     =     (I  +  2hA  +  2h2A2)y(x)   +  0(h3) 
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whose  error   is     0(h3 )   .   The   first   order  method  based  on   the      (1,0) 

Padé   approximant   has   been   extrapolated   to   give   second   order   accuracy. 

It   is   obvious   that   the  method  based  on   the      (0,1)      Padé 

approximant   to     exp(hA)    ,   the   Euler  predictor   formula,   which   is   also 

first   order  accurate,   can  be   extrapolated   in   the   same  way   to   give 

second  order   accuracy. 

The      (1,1)      Padé   approximants   to     exp(hA)      and     exp(2hA)     yield 
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and 

(11) y(2)   =   (I - hA) -1(I + hA)y(x) 

= (1+ 2hA+  2h2A2 +   2h3A3+   2h4A4 +  2h5A5)y(x) + 0(h 6) 

Comparing   (10)   and   (11)   with   (7)   shows   that     y (1)       and       y (2)          are 

both  only   second   order   accurate  but   that     y    defined  by 

(12)         Y  = )1(y
3
4   -  )2(y

3
1

is   fourth   order   accurate.      In   this   case   the   extrapolation  proceedure 

has   produced   an  extra   order   of   accuracy,   a  phenomenon  which   is   a 

useful     feature   of  methods  based   on      (m,m)     Padé   approximants   to 

exp(hA)      which   is   not   evident    in   methods   based   on    (m,k)  approximants. 

A   table   of   fifteen  extrapolation  methods   based   on  Padé 

approximants   is   given   in   Table   I   together  with   bounds   for   convergence 

on      h  ||A||S as   given   in   (3),   where     ||A||S        is   the   spectral   norm  of     A 

The  extrapolating   formulas   connecting     Y   ,  y (1)    and   y ( 2 )satisfy 

the  relation 
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Table   I:     Extrapolation  algorithms  

Method Pade 
approximant 

Bound   on 
h||A||s

Order  of 
error 

Extrapolation 
algorithm 

Order of 
error 

1 (0,1) - h2 2y(1)-y (2) h3

2 (1,0) 1 h2 2y(1)-y (2) h3

3 (1,1) 2 h3 (4y (1) -y(2) )/3 h5

4 (0,2) - h3 (4y (1) -y(2) )/3 h4

5 (1,2) 3 h4 (8y (1) -y(2) )/7 
 h5

6 (2,1) 1.16 h4 (8y (1) -y(2) )/7 
 h5

7 (2,0) 0.70 h3 (4y (1) -y(2) )/3 
 h4

8 (2,2) 1.58 h5 (16y (1) -y(2) )/15 h7

9 (0,3) - h4 (8y (1) -y(2) )/7 
 h5

10 (1,3) 4 h5 (16y (1) -y(2) )/15 
 h6

11 (2,3) 2 h6 (32y (1) -y(2) )/31 
 h7

12 (3,2) 1.23 h6 (32y (1) -y(2) )/31 
 h7

13 (3,1) 0.97 h5 (16y (1) -y(2) )/15 
 h6

14 (3,0) 0.70 h4 (8y (1) -y(2) )/7 
 h5

15 (3,3) 1.49 h7 (64y (1) -y(2) )/63 
 

h9
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when     m  ≠   k,   or,   when     m  =  k   ,   the   relation 
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As  will   be   seen   in   Section   3,   Lawson  and   Morris  [5]   employed 

extrapolation  methods   which   satisfy   (13)   or   (14).      Given   that   these 

methods   are   to  be   used,   any  strategy   for   solution  will   require   the 

user   to: 

(i)      determine    ||A||S       ; 

(ii)      isolate   the   family   of   extrapolating  algorithms   which  will 

converge   for     h||A||s     ,  where     h    is   the  known   stepsize; 

(iii)      select   that   algorithm  which  will   give   the   required  accuracy, 

choosing,   if  possible,   a  method  based  on  an     (m,m)     Pade 

approximant. 
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2.   Numerical  results

To  demonstrate  the  behaviour  of  the  extrapolation  formulas  of  the 

previous   section,   the  following  four  problems  were   solved  by   the  fifteen 

methods   of  Table   I  using  a  FORTRAN  program  which  calculated  all  fifteen 

results   for  each  problem  simultaneously,   computing  successive  powers  of 

the   coefficient  matrix  as   these  were  needed. 

Problem   1      (Lawson   [4]) 

   
21'

2

21'
1

y25yy
,y23yy

−=
 

with  initial  vector    Y(0)   =  [1,1] T    .     The  eigenvalues  of  the   coefficient 

matrix    A    are     λ1  =  -2  and  λ2  =  -24   ,   and    ||A||S -  33.97   .     The  exact 

solution  is 
 

Problem 2 

=       10y1  -  9y2     , 

=   -  10y1  +   11y2   , 

with  initial  vector    y(0)   =  [10,-9]T        .     The  eigenvalues   of   the  coefficient 

matrix     A    are      λ1     =  1  and   λ2  =   20   ,     and     ||A||s    -   20.025   .     The  exact 

solution  is 

y1     =    ex  +  9e20x

y2     =     ex  -  l0e20x

Problem  3     (Lambert [3]) 

=  -21y1  +  19y2  -  20y3          ,

=    191   -   21y2  +  20y3     , 

=    40y1  -   40y2  -  40y3  ,
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with   initial   vector     y(0)   =  [1,0,-1]T      .      The   eigenvalues   of   the 

coefficient   matrix     A      are     λ1      =   -2,    λ 2   =      40+40i,    λ 3   =   -40-40 i     and 

||A||S=  75.0   .      The   exact   solution   is 

y1        =     ½e -2x+   ½e -40x (cos40x  +   sin40x)    ,   
y2      =      ½ -20x- ½e -40x  (cos40x  +   sin40x)   ,    
y3      =   - e -40x   (cos40x  -   sin40x) 

Problem   4      (Henrici  [2]) 

y '
1  = y2 , 

y '  =       -y2 1 , 

y '  = y3 4 , 

y '  =       -y4 3 , 

with   initial   vector     y(0)   =   [ 1,0,0, 1]T .      The  eigenvalues   of   the 

coefficient  matrix     A     are          λ1=   λ2     =  -λ3   = - λ4    =   i     and    ||A||s  =   1    . 

The   exact   solution   is 

y1     =    cos  x , 

y2        =  - sin  x , 

y3        =     sin  x , 

y4      =     cos  x . 

Each  problem  was   tested   on   all   fifteen  methods   of   Table   I  with 

h   =   0.05,   0.1,   0.2   for     x     in   the   interval     0≤  x≤  1   .      It  was  noted 

that   for   Problems   1,3,4   the   errors   decreased   as     x     increased   and 

that   for   Problem   2,   for  which  partial   instability   is   experienced, 

the   errors   increased   as     x     increased-      A  discussion   of   stability 

regions   and   difficulties   encountered  with   stiff   systems   is   given   in 

Lambert [3].      The   largest  modulus   component   of   the   error  vector   for 

x   =  0.4,   0.8     for   all   three  values   of     h     are  given   in     Tables   II(i), 

(ii),    (iii),    (iv).      The   theoretical   solutions   of   the  four  problems 
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for     x  =   0.4,   0,8     are   given   in  Table   III.      The   convergence  bounds 

of  Table   I   on     h||A||s       indicate   that   in   the  case  of   Problem  1   the 

results   obtained  for     h  -  0.1,   0.2     and  in  the  case  of  Problem  3   the 

results  obtained  by  most  of   the  fifteen  algorithms  for     h  -  0.05,  0.1, 

0.2     may  be  unreliable.     Results  obtained  in  the  numerical  experiments 

were   largely  in  agreement  with  the   convergence  bounds  of  Table  I  and, 

when  these  were  not  violated,   the  errors  were  largely  in  keeping  with 

the  predicted  values,   that   is,   the   indicated  power  of     h     in 

Table   1. 
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Table   II(i) Largest   error  modulus   for      x   =   0.4,   0.8      and 
h   =   0.05,   0.1,   0.2      for   Problem   1   using   all   fifteen 
methods    of   Table   I    .  

x  0.4   0.8  

h 0.05 0.1 0.2 0.05 0.1 0.2 

1 0.1(-2) 0.7(-l) 0.4(+2) 0.7(-3) 0.6(-2) 0.6(-1) 
2 0.4(-1) 0.8 0.6(+3) 0.2(-1) 0.1 0.9 

3 
0.3(-2) 0.4 0.5(+3) o.K-2) 0.1l(-1) 0.9(-1) 

4 
0.7 (-3) 0.1 0.1(+3) 0.3(-4) 0.6(-3) 0.8(-2) 

5 
0.4(-3) 0.1 0.3(+3) o.1(-5) 0.4(-4) 0.2(-1) 

6 0.4(-3) 0.1 0.3(+3) 0.1(-5) 0.4(-4) 0.2(-1) 

7 
0.7(-3) 0. 1 0.1(+3) 0.3 (-4) 0.6(-3) 0.8(-2) 

8 0.6(-4) 0.6(-1) 0.7(+3) 0.4(-8) 0.4(-4) 0.5(-1) 

9 
0.4(-3) 0.1 0.3(+3) 0.1(-5) 0.4(-4) 0.2(-1) 

10 0.2(-3) 0.9(-1) 0.5(+3) 0.3(-7) 0.6(-5) 0.3(-1) 
11 

0.6(-4) 0.6(-1) 0.7(+3) 0.3(-8) 0.4(-5) 0.5(-1) 

12 
0.6(-4) 0.6(-1) 0.7(+3) 0.3(-8) 0.4(-5) 0.5(-1) 

13 0.2(-3) 0.9(-1) 0.5(+3) 0.3(-7) 0.6(-5) 0.3(-1) 

14 
0.4(-3) 0.1 0.3(+3) 0.1(-5) 0.4(-4) 0.2(-1) 

15 0.5(-5) 0.2(-1) 0.1(+4) 0.3(-9) 0.2(-5) 0.7(-1) 
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Table   II(ii)        Largest   error  modulus   for     x  =  0.4,   0.8     and 
h  =  0.05,   0.1,   0.2     for  Problem  2  using  all 
fifteen  methods   of  Table   I   .  

x  0.4   0.8  

h 0.05 0.1 0.2 0.05 0.1 0.2 

1 0.1(+5) 0.2(+5) 0.3(+5) 0.3(+8) 0.7(+8) 0.9(+9) 

2 0.1(+5) 0.3(+5) 0.3(+5) 0.3(+8) 0.9(+8) 0.9(+9) 

3 0.1(+5) 0.2 (+5) 0.3(+5) 0.3(+8) 0.6(+8) 0.8(+8) 

4 0.4(+4) 0.2(+5) 0.3(+5) 0.l(+8) 0.5(+8) 0.9(+8) 

5 0.2(+4) 0.1(+5) 0.3(+5) 0.5(+7) 0.3(+8) 0.8(+8) 

6 0.2(+4) 0.1(+5) 0.3(+5) 0.5(+7) 0.3(+8) 0.8(+8) 

7 0.4(+4) 0.2 (+5) 0.3(+5) 0.1(+8) 0.5(+8) 0.9(+8) 

8 0.1(+3) 0.3(+4) 0.2(+5) 0.4(+6) 0.1(+8) 0.6(+8) 

9 0.2(+4) 0.1(+5) 0.3(+5) 0.5(+7) 0.3 (+8) 0.8 (+8) 

10 0.5(+3) 0.6(+4) 0.2(+5) 0.1(+7) 0.2(+8) 0.7(+8) 

11 0.1(+2) 0.3(+4) 0.2(+5) 0.4(+6) 0.l(+8) 0.6(+8) 

12 0.1(+3) 0.3(+4) 0.2(+5) 0.4(+6) 0.1(+8) 0.6(+8) 

13 0.5(+3) 0.6(+4) 0.2(+5) 0.1(+7) 0.2(+8) 0.7(+8) 

14 0.2( + 4) 0.1(+5) 0.3(+5) 0.5(+7) 0.3(+8) 0.8(+8) 

15 0.7(+l) 0.6(+3) 0.1(+5) 0.2(+5) 0.2(+7) 0.4(+8) 
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Table   I I(iii)      Largest   error  modulus   for     x  =   0.4,   0.8     and 
h  =   0.05,   0.1,   0.2      for   Problem  3   using   all   fifteen 
methods   of   Table   I   .  

x  0.4   0.8  

h 0.05 0.l 0.2 0.05 0.1 0.2 

1 0.4(-3) 0.2(-l) 0.2(+3) 0.2(-3) 0.1(-2) 0.2(-l) 

2 0.1(-1) 0.4 0.6(+4) 0.6(-2) 0.3(-l) 0.2 

3 0.2(+l) 0.2(+3) 0.1(+5) 0.8(+l) 0.8(+2) 0.9(+3) 

4 0.1(-3) 0.9(-l) 0.1(+4) 0.8(-5) 0.1(-3) 0.3(-2) 

5 0.2(-3) 0.2 0.1(+5) 0.3(-6) 0.1(-4) 0.1(-2) 

6 0.2(-3) 0.2 0.1(+5) 0.3(-6) 0.1(-4) 0.1(-2) 

7 0.1(-3) 0.9(-1) 0.1(+4) 0.8(-5) 0.1(-3) 0.3(-2) 

8 0.1(-3) 0.8 0.1(+6) 0.4(-9) 0.9(-7) 0.2(-l) 

9 0.2(-3) 0.2 0.1(+5) 0.3(-6) 0.1(-4) 0.1(-2) 

10 0.1(-3) 0.3 0.6(+5) 0.1(-7) 0.8{-6) 0.7(-2) 

11 0.1(-3) 0.8 0.1(+6) 0.4(-9) 0.9(-7) 0.2(-l) 

12 0.1(-3) 0.8 0.1(+6) 0.4(-9) 0.9(-7) 0.2(-l) 

13 0.1(-3) 0.3 0.6(+5) 0.1(-7) 0.8(-6) 0.7(-2) 

14 0.2(-3) 0.2 0.1(+5) 0.3(-6) 0.1(-4) 0.1(-2) 

15 0.9(-4) 0.1(+l) 0.2(+7) 0.1(-9) 0.2(-6) 0.1 
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Table   II (iv)              Largest   error  modulus   for     x  =  0.4,   0.8     and 
h  =  0.05,   0.1,   0.2     for  Problem  4  using   all 
fifteen  methods   of   Table   I   .  

x  0.4   0,8  

h 0.05 0.1 0.2 0.05 0.1 0.2 

1 0.2(-3) 0.1(-2) 0.l(-l) 0.1(-3) 0.1(-2) 0.9(-2) 

2 0.1(-1) 0,4(-l) 0.2 0.8(-2) 0.2(-1) 0.2 

3 0.2(-3) 0.2(-2) 0.3(-l) 0.2(-3) 0.2(-2) 0.1(-1) 

4 0.4(-5) 0.6(-4) 0.1(-2) 0.3(-5) 0.5(-4) 0.9(-3) 

5 0.8(-7) 0.3(-5) 0.9(-4) 0.6(-7) 0.2(-5) 0.8(-4) 

6 0.8(-7) 0.3(-5) 0.9(-4) 0.6(-7) 0.2(-5) 0.8(-4) 

7 0.4(-5) 0.6(-4) 0.1(-2) 0.3(-5) 0.5(-4) 0.9(-3) 

8 0.2(-10) 0.2(-8) 0.3(-6) 0.2(-10) 0.2(-8) 0.3(-6) 

9 0.8(-7) 0.3(-5) 0.9(-4) 0.6(-7) 0.2(-5) 0.8(-4) 

10 0.1(-8) 0.9(-7) 0.6(-6) 0.1 (-8) 0.7(-7) 0.5(-5) 

11 0.2(-10) 0.2(-8) 0.3(-6) 0.2 (-10) 0.2(-8) 0.3(-6) 

12 0.2(-10) 0.2(-8) 0.3(-6) 0.2 (-10) 0.2(-8) 0.3(-6) 

13 0.1(-8) 0.9(-7) 0.6(-5) 0.1(-8) 0.7(-7) 0.5(-5) 

14 0.8(-7) 0.3 (-5) 0.9(-4) 0.6(-7) 0.2(-5) 0.8(-4) 
15 0.7(-11) 0.4(-11) 0.7(-9) 0.3 (-10) 0.1(-10) 0.7(-9) 
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Table   III Theoretical   solutions   of   Problems   1,2,3,4   for 
x  =   0,4,   0,8   .  

x 0.4 0.8 

Problem   1   

y1 0.939 0.422 

y2   -0.041  -0.018 

Problem 2   

y1 0.268(+5) -0.298(+5) 

Y2 0.800 (+8) -0.889(+8) 

Problem 3   

y1 0.225 0.101 

y2 0.225 0.101 

y3  -0.000  -0.000 

Problem 4   

y1 0.921 0.697 

y2  -0.389  -0.717 

y3 0.389 0.717 

y4 0.921 0.697 
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3. Application   to  parabolic   partial   differential   equations

 
InsoIvind    numerically   the   one-dimensional   heat   equation 

(1.5) 

2

2

x
u

t
u

∂
∂=

∂
∂

over   a  region     R  =   {[0 <  x <  1 ] x [t >  0] }    ,   with  boundary   conditions 

(16) u(0,t)   =  u(1,t)   =0      ,      t >  0 

and   initial   conditions 

(17) u(x,0)   =  g(x)      ,     0≤  x≤  1 
one   approach   is   to   replace   the   second   order   space   derivative  with 

finite   difference   approximations   at   every   time   step   and   then   to 

solve   the   resulting  system  of   first   order   linear  ordinary  differential 

equations   in   time.      If   the   space   interval     0 ≤  x ≤  1      is   divided   into 

N-1  subintervals   each  of  width     h   ,   and   if     U  =   (U1 ,U2 . . . ,UN) T       is   the 

vector  of   computed  values   of     u     at   a  given   time   level,   this   system  of 

ordinary  differential   equations   is   given  by 

(18)                  
dt
dU

 

=     AU      , 

where   the   elements   of   the   matrix   operator     A     depend   on   the   finite 

  ... 

difference   replacement   of       ∂ 2u/∂x2      .      As   in   Section   1,   it   is   easy   to 

show   that   the   solution   of   (18)   subject   to   (17)   may  be  written   in   the 

stepwise   form 

(19) U(t   +   ℓ)   =   exp(ℓA)U(t) 

where      ℓ      is   the   time   step,   and  U (0)   =  g     is   the   vector   of   initial 

conditions. 
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The   accuracy   in   time   of   the   vector      U      is   dependent   on   the 

approximation    to      exp(ℓA)      and   the   extrapolation   techniques   based 

on   Padé   approxiniants   of   Section   1   may   thus   be   used.      This   approach 

was   employed   by   Lawson   and   Morris   [5]  who   extrapolated   the   low 

order      (1,0),    (0,1)   and    (1,1)      Padé   approximants   to     exp(ℓA). 

Clearly,    the   use   of   higher   order   approximants   involves   higher   powers 

of    the   matrix      A      and   thus   more   values   of   the   computed   function    U     

at    each    time   step. 

An   examination   of   how   extrapolation   techniques   carry   over   to 

hyperbo1ic   equations   was   given   in   Twizell   [7]. 



(16) 
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