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ABSTRACT
The term ‘software ecosystem’ refers to a collection of software
systems that are related in some way. Researchers have been using
different levels of aggregation to define an ecosystem: grouping
them by a common named project (e.g., the Apache ecosystem); or
considering all the projects contained in online repositories (e.g.,
the GoogleCode ecosystem).

In this paper we propose a definition of ecosystem based on
application domains: software systems are in the same ecosystem
if they share the same application domain, as described by a sim-
ilar technological scope, context or objective. As an example, all
projects implementing networking capabilities to trade Bitcoin and
other virtual currencies can be considered as part of the same "cryp-
tocurrency" ecosystem.

Utilising a sample of 100 Java software systems, we derive their
application domains using the Latent Dirichlet Allocation (LDA)
approach. We then evaluate a suite of object-oriented metrics per
ecosystem, and test a null hypothesis: ‘the OO metrics of all ecosys-
tems come from the same population’.

Our results show that the null hypothesis is rejected for most
of the metrics chosen: the ecosystems that we extracted, based on
application domains, show different structural properties.

From the point of view of the interested stakeholders, this could
mean that the health of a software system depends on domain-
dependent factors, that could be common to the projects in the
same domain-based ecosystem.
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1 INTRODUCTION
Once the dependencies between different software projects have
become documented and clear, it became also evident that a def-
inition of software ecosystem was needed, for discussion and to
agree upon: the earliest definition that has been proposed states
that a software ecosystem is A set of actors functioning as a unit and
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interacting with a shared market for software and services, together
with the relationships among them [15].

The operationalisation of this definition has been attempted in
different directions in the last few years: the term ecosystem has
been applied to collections of software projects under the same
macro-project (Apache [3], Eclipse [21], Gnome [38], etc); and to
collections of software projects that are hosted under the same
online portal (SourceForge [19], GitHub [25, 42], etc). In general,
there has been very little convergence on what indeed is a software
ecosystem, as highlighted in a systematic literature review in [26].

In this paper we propose a novel definition for software ecosys-
tem based on the context, or application domain, that software
systems implement in their requirements. We posit that systems
are similar, or connected, if they share the same topic, or domain: as
an example, we consider all the Github.com projects implementing
a bitcoin wallet1 as under the same domain-driven ecosystem.

While the primary goal of empirical papers is to achieve the
generality of the results, the domain, context and uniqueness of
a software system have not been considered very often by empir-
ical software engineering research. As in the example reported
in [31], the extensive study of all JSON parsers available would
find similarities between them or common patterns. That type of
study would focus on one particular language (JSON), one specific
domain (parsers) and inevitably draw limited conclusions. On the
other hand, considering the “parsers” domain (but without focusing
on one single language) would show the common characteristics of
developing that type of systems, and irrespective of their language.

Tools that capture the topics of software systems are and have
been proposed in the past: CLAN [29], CrossSim [33],MudaBlue [18]
and RepoPal [43] are some of the most cited tools, with various
levels of precision and accuracy. Even if such tools are available
for researchers and practitioners, their usage to practically inform
development has been so far quite limited.

In this paper we extracted the domains of the software systems
by directly analysing their source code and comments: by elimi-
nating the common constructs and keywords of the Java language,
we pulled the lexical content out of all the classes composing a
project’s source code and comments. After stemming this content,
a Python implementation of the LDA algorithm lists the most likely
topics that are contained within the code. These projects were
then clustered into groups, based on their domains. Finally, a set
of Object-Oriented (OO) structural metrics are extracted for the
projects, with the aim to answer the following research question:

RQ: are OO metrics sensitive to application domains?

1https://github.com/search?q=bitcoin+wallet
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We articulate this paper in the following parts: section 3 intro-
duces the methodology, describing how the corpus was extracted
from the source code, and how the LDA was instrumented to out-
put the topics contained in the software systems. Section 4 reports
the results, including the statistical tests of whether different ap-
plication domains come from the same distribution or not. We
also discuss the implications for software health there. Section 2
summarises the related work in the area of empirical research and
application domains; section 5 concludes, and shows what we have
planned as future work.

2 RELATEDWORK
Wermelinger and Yu [40] posit that presenting two datasets from the
same software domain (e.g., Eclipse and NetBeans) allows for future
comparative studies and facilitates the reuse of data extraction and
processing scripts. On increasing the external validity of empirical
result findings, German et al. [13] have also highlighted the need
to investigate in particular systems belonging to different domains.

This is as Software Ecosystems have been defined as “a collection
of software products that have some given degree of symbiotic
relationships” [30]. According to Bosch and Bosch-Sijtsema [5] a
software ecosystem consists of “a software platform, a set of internal
and external developers and a community of domain experts in
service to a community of users that compose relevant solution
elements to satisfy their needs”. A different definition is provided
by Manikas and Hansen “a software ecosystem is the interaction
of a set of actors on top of a common technological platform that
results in a number of software solutions or services” [26].

These definitions of Ecosystems imply that software belong-
ing to specific application domains will share similarities (e.g., in
their structure, development and evolution). Furthermore, Ecosys-
tems concern software in some form (software systems, products,
services, or a software platform) and includes some degree of re-
lationship either “common evolution” [35], “business”, “symbiotic”
or “technical” [26] in domains and this highlights the importance
of analysing empirical results in the software engineering field on
software domain-by-domain basis. Certain studies have been aimed
at defining architectural patterns that form the foundations to de-
fine and implement various software ecosystems (e.g., eLearning
ecosystem [12], farm software ecosystem [20]).

Prior research has shown that the number and size of open-
source projects are growing exponentially and open-source projects
are becoming more diverse by expanding into different domains
[11, 17]. In view of this and to reduce the effort required in manual
categorisation of software projects, Tian et al. [37] proposed a new
technique based on text mining to categorise software projects irre-
spective of the programming language used in their development.

Callau et al. [7] studied the use of dynamic programming features
such as method and class creation and removal at run-time e.g.,
during testing and how much these features are actually used in
practice, whether some are used more than others, and in which
kinds of projects. Their results revealed three application domains
prominent with the usage of dynamic programming features: (i) user
interface applications, which make heavy usage of dynamic method
invocation as a lightweight form of an event notification system,
(ii) frameworks that communicate with databases or implement

object databases, which make heavy usage of serialization and de-
serialization of objects and (iii) low-level system support code that
uses uses object field reads andwrites to implement copy operations,
saving the state of the system to disk, and convert numbers and
strings from objects to compact bit representation.

In a different study [10] software coupling metrics were studied
based on software categories to identify any impact of software
categories on coupling metrics (CBO, DAC2, ATFD3 and AC4). The
authors emphasised the need to pay special attention to software
categories when comparing systems in distinct categories with pre-
defined thresholds already available in the literature. For example,
empirical results from the study revealed that out of ten distinct
categories selected (including Audio and Video, Graphics, Secu-
rity and Games) there is a different level of coupling among the
different categories. Games had a higher coupling level while the
Development category showed less coupling than others. Statistical
tests conducted at a 0.01 significance level supported these results
which indicate the importance of analysing software engineering
research results by domain/category.

Linares-Vasquez et al.[23] analysed the energy usage of API
method calls in 55 different Android apps from different categories
such as Tools, Music, Media and others. Results revealed GUI and
imagemanipulation apps made use of the highest number of energy-
greedy API method calls followed by Database apps. Both categories
represented 60% of the energy-greedy APIs in the studied sample.
This shows a trend in this study and the previous study on the
usage of dynamic programming features [7] in terms of the signifi-
cant energy and memory usage of software in Databases category
wherein database-based software made heavy usage of serialization
and de-serialization of objects.

In a related study, the focus is on energy management in An-
droid applications [2] with an analysis of different power manage-
ment commits (including Power Adaptation, Power Consumption
Improvement, Power Usage Monitoring, Optimizing Wake Lock,
Adding Wake Lock and Bug Fix and Code Refinement). The studied
projects were clustered into 15 categories. The top three categories
in terms of the number of power management commits were found
to be Connectivity, Development and Games.

Previous studies [1, 6, 32] revealed that projects from different
domains use exception handling differently, and that poor prac-
tices in writing exception handling code are widespread. In a study
on Java projects by Osman et al. [34] they aimed to answer the
following research question: “Is there any difference in the evolu-
tion of exception handling between projects belonging to different
domains?”. The researchers manually categorized 30 projects into
6 domains, namely compilers, content management systems, ed-
itors/viewers, web frameworks, testing frameworks, and parser
libraries. Their observations showed significant distinctions in the
evolution of exception handling between these domains, like the
usage of java.lang.Exception and custom exceptions in catch
blocks. Concretely, content management systems consistently have
more exception handling code and throw more custom exceptions,
as opposed to editors/viewers, which have less error handling code
and mainly use standard exceptions instead.
2Data Abstraction Coupling
3Access to Foreign Data
4Afferent Coupling
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In general, different results have been observed when more at-
tention is paid to the categorisation of analysed software projects.

3 METHODOLOGY
In this section, we describe the projects selected as a sample for this
paper, and what metrics were extracted for each project. Figure 1
summarises the toolchain used in this paper.

3.1 Sampling Java Projects
Leveraging the GitHub.com repository, we collected the project IDs
of the 100 most successful Java projects hosted on GitHub.com as
case studies5. The “success” of the projects is determined by the
number of stars received by the community of GitHub users and
developers, as a sign of appreciation. We used this approach to
stratified sampling because the projects obtained by this filter are
likely to be used by a large pool of users [9], and potentially have a
good intake of new developers [39]. Smaller projects are less likely
to be sampled by this stratified approach.

The source code of the selected systems was downloaded for the
analysis: only the ‘master’ branch of the systems was considered.

3.2 Extracting the corpus from Java classes
We extract the lexical content (e.g., its corpus) of each Java class in
two ways: (i) by considering their class names; and (ii) parsing their
code and considering the variable names, comments and keywords.

The code of a Java class is converted into a text corpus where
each line contains elements of the implementation of a class. The
corpus in this case (“dictionary” of terms derived from comments,
keywords in source code) is built at the class level of granularity [16].
The corpus includes the class name, variable and method names
and comments for each class.

Pre-processing of the system corpus is performed to eliminate
common keywords, stop words, split and to stem class names [28].
We do not consider as a term any of the Java-specific keywords (e.g.,
if, then, switch, etc.)6. Additionally, the camelCase or PascalCase
notations are first decoupled in their components (e.g., the class
constuctor InvalidRequestTest produces the terms invalid, request
and test).

As an example, for the lines of code shown in Figure 2 (the UrSQ-
LEntry.java class from the UrSQL project), we derive the following
complete corpus using an information retrieval tool developed in
Java: {ur sql entri kei valu kei valu ur sql entiti entiti ur sql entri ur
sql entri queri split queri split ur sql control kei valu separ kei split
valu split kei kei valu valu}. The tool is available upon request.

3.3 Domain Modeling with LDA
For each system, all the Java classes were reduced to a corpus of
terms. All these terms were considered to create a model imple-
menting the Latent Dirichlet Allocation (LDA) algorithm. Python
was the language used to program the models, and the gensim NLP
package helped in the machine learning side of it.

5The list of projects is available at https://figshare.com/projects/Domains_and_OO_
metrics/57401
6The complete list of Java reserved words that we considered is available at https://en.
wikipedia.org/wiki/List_of_Java_keywords. The String keyword was also considered
as a reserved word, and excluded from the text parsing.

Through the LDA we extracted the main topics emerging from
the corpus of a software project, using a Natural Language Pro-
cessing approach termed the Term-frequency-inverse document
frequency (TF-IDF). In NLP, TF-IDF is another way to judge the
topic of a text (in our case, the source code of a class) by the words
it contains. With TF-IDF, words are given weight, because TF-IDF
measures relevance, not frequency. This is a good representation
of the source code contained in the Java classes, where the same
terms can appear multiple times (see Figure 2).

As an example, for the okhttp project7, the LDA model produces
the following topics from the corpus of its Java classes:

Topic 0: 0.003*"stream" + 0.003*"bodi" + 0.003*"header" + 0.003*"content"
+ 0.003*"id" + 0.002*"benchmark" + 0.002*"type" + 0.002*"ssl" +
0.002*"socket" + 0.002*"stori"

Topic 1: 0.002*"entiti" + 0.002*"url" + 0.002*"proxi" + 0.002*"slack"
+ 0.002*"event" + 0.001*"frame" + 0.001*"filter" + 0.001*"client" +
0.001*"equal" + 0.001*"session"

Topic 2: 0.005*"cooki" + 0.004*"header" + 0.004*"interceptor"
+ 0.003*"chain" + 0.003*"url" + 0.002*"bodi" + 0.002*"certif" +
0.002*"content" + 0.002*"client" + 0.002*"timeout"

Topic 3: 0.005*"cach" + 0.004*"socket" + 0.004*"connect" + 0.004*"bodi"
+ 0.003*"rout" + 0.003*"server" + 0.003*"web" + 0.003*"header" +
0.003*"client" + 0.003*"url"

Topic 4: 0.006*"event" + 0.006*"socket" + 0.005*"certif" + 0.005*"address"
+ 0.005*"cach" + 0.004*"file" + 0.003*"deleg" + 0.003*"connect" +
0.003*"server" + 0.003*"inet"

3.4 Assignment to Domains
In order to assign the lexical content of a software project to one
category, or domain, there are a few options: either to perform a
semi-automated task, or to execute a machine learning approach.
The semi-automated task includes a step where the lexical content is
extracted by a lexicon parser and summarised in themost prominent
topics; and a manual step where the topics are assigned to a domain
by both authors of the paper.

For this paper, we preferred to conduct a semi-automated analy-
sis, since (i) the project sample is manageable, and, most importantly
(2) a knowledge base around application domains and lexicon is not
available yet. We will summarise our contribution on the machine
learning process in the further work section below.

The second step of our approach can also be achieved in a dif-
ferent way from ours: a software project to an application domain
can be achieved by glancing at the source code, or its general de-
scription (e.g., the README file, or the project documentation);
creating categories and finally assigning a project to a category. The
research reported in [4] follows that approach: the dataset contains
5,000 GitHub project (520 Java projects).

There are two main issues with this approach: the first is that
there is hardly any consistency in how a project might get doc-
umented by its developers, so that the approach in [4] becomes
non-reproducible. The second is that the categories are arbitrarily
decided by the authors, and become overpopulated with one type
of projects. As an example, the following break-down shows the
skewness of the dataset in the reported study:

7https://github.com/square/okhttp
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Figure 1: Toolchain adopted from data extraction to domain identification

Figure 2: UrSQLEntry.java Source Code Snippet

• Application Software (30 projects in the sample)
• Documentation (48)
• Non Web Libraries And Frameworks (342)
• Software Tools (49)
• System Software (26)
• Web Libraries And Frameworks (25)

In our methodology, we use an NLP-based automatic approach
to extract the topics from the software systems, and a manual ap-
proach to assign the projects to pre-existing categories. As the list
of categories, we adopted in fact what has been historically used
by the SourceForge.net repository to classify the hosted projects:
{1:Communications, 2:Database, 3:Desktop Environment, 4:Education,
5:Formats and Protocols, 6:Games/Entertainment, 7:Internet, 8:Mobile,
9:Multimedia, 10:Office/Business, 11:Other/Nonlisted Topic, 12:Print-
ing, 13:Religion and Philosophy, 14:Scientific/Engineering, 15:Security,
16:Social sciences, 17:Software Development, 18:System, 19:Terminals,
20:Text Editors}.

We did not assign domains automatically, as the approaches de-
veloped in [29], [18] or [43]. We relied on the topics extracted by
the LDA implementation to inform the category of belonging. In
case of disagreement in terms of the application domain assigned,
we reconciled our views into a consolidated final version of the

domain assignments. The process to reconcile the views on applica-
tion domains is made available in the data repository, for inspection.
As an example, from the topics in the box above, the okhttp project
was assigned to the Internet application domain.

3.5 Clustering, Metrics and Statistical Testing
We group all the systems belonging to the same domain in the same
cluster, and gather their metrics in a common bucket. We then test
the whether these clusters come from the same distribution, by
means of a Kolmogorov-Smirnov test (KS) [41]. The null hypothesis
H0 states that ‘the clusters are drawn from the same distribution’.

The metrics extracted for the projects are well-known structural
OO attributes (NOC, DIT, CBO, RFC, WMC, LCOM, NIM, IFANIN,
NIV) [24]. Metrics were extracted using the Scitools Understand
tool8: abstract classes, interfaces and inner classes were also con-
sidered in the data extraction.

We performed the Kolmogorov-Smirnov tests for each OO at-
tribute measured, and considering the Java classes in each cluster:
a threshold value (α = 0.05) was selected for the p-values of the
statistical test. The Bonferroni correction was applied, since we
run multiple tests at the same time, thus bringing the threshold to
αB = 0.00855.

4 RESULTS AND IMPACT
Figure 3 shows the distribution of application domains in the sam-
ple of 100 Java projects, as extracted by the LDA algorithm, then
assigned by the authors of the paper, finally agreed between authors
to ensure consistency.

A few of the basic domains, as used by SourceForge.net, are
completely absent from our sample:Desktop Environment, Education
or Text Editor (and a few others) are not represented when sampling
projects based on their success (e.g., usage or further development).

On the other hand, there are 4 domains that are more prominent
than others: Internet (with 27 projects),Mobile (11),Multimedia (11)
and Software Development (33). For the statistical analysis, we use
only these 4 domains to find differences between the distributions
of metrics: using smaller sized clusters would suffer from a small
effect size, and the relative results would be less relevant.

8https://scitools.com/
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Figure 3: Domains extracted with the LDA approach

The null hypothesis states that the OO metrics of the Java classes
come from the same population. This implies that the application
domains should not induce any variability in the results. As an
example, we named as KS_CBO − 7 − 8.txt the file containing the
p-value of the Kolmogorov-Smirnov test, when considering the
CBO metric, and comparing the files belonging to the domains 7
and 8 (i.e., Internet and Mobile)

Table 1 summarises the results for the tests: with a ✓ we report
when we reject the null hypothesis for all the metrics. Otherwise,
we note for which metrics we could not reject the null hypothesis.

When considering the Internet domain, all its OO metrics show
differences with the other domains. We could generally reject the
null hypothesis: its metrics do not come from the same population.
Focusing on the Mobile domain, we found that projects in this cate-
gory could be considered different from any other domain, apart
from the NOC attribute: it is not possible to reject the hypothesis
that the projects from theMobile,Multimedia and Software Develop-
ment come from the same population, regarding the NOC attribute.
For all the other attributes, we could reject the null hypothesis.

Finally, the IFANIN attribute plays a similar part between the
projects belonging to theMultimedia and the Software Development
domains. All the other OO attributes show a significant difference
between domains.

Mobile Multimedia Software Devel
Internet ✓ ✓ ✓
Mobile x NOC NOC
Multimedia x IFANIN
Software Devel x
Table 1: Results of the Kolmogorov-Smirnov test

These results are limited to 4 application domains only, given
that other domains are less represented in our sample. Nonetheless,
it is possible to summarise our findings as follows:

OO metrics are generally sensitive to application domains

These findings could have a profound impact on how empirical
research has been conducted in the past: researchers would need
to pay a closer attention to what application domains are included

in their data sampling; and results could be also generally sensitive
to domains, when considering other metrics, not only the OO suite
that we considered in our paper. The next section illustrates what
could be the implications on the definition and measurement of
software health.

4.1 Implications for Software Health
The results gathered in the empirical study show that the projects
clustered around the domains that we proposed show indeed a
difference in the structural metrics. According to Jansen, there exists
no framework that can be used to determine the health of open
source ecosystems. This is because Health is typically looked at
from the scope of projects, not from an ecosystem scope [14]. Such
a framework will enable developers select healthiest ecosystems to
join while end-users can select robust and long-living ecosystems.

In the study, a comprehensive list of health metrics mentioned
in the literature were used to form a framework. Jansen empha-
sised that the framework can be applied by researchers who aim
to reach a goal associated with ecosystem health, such as improve
activity in an ecosystem, evaluate the health of one ecosystem over
another, or identifying weaknesses in an ecosystem with the aim of
making it healthier [14]. The metrics included high-level product
level, network level and theory based metrics such as: bug-fix time,
usage, number of active projects, active contributors, contributor
satisfaction and others. However, structural metrics are not covered
in the framework.

In this study, we have analysed source code level metrics across
domains and demonstrated the distinction in the metric patterns
across domains. Putting these metrics together to add a new layer
to the framework (e.g., structural level) will help to inform contribu-
tors or open-source developers about which domains to contribute
to and which domains are suffering structurally.

The metrics can be mapped or compared to the “standard” as
specified in the literature to detect the health of software domains
in a repository such as GitHub or SourceForge. For example, the
“standard” based on the literature is that the CBO metric has been
linked to complexity as well as the RFC [8, 22] metric. As such, if
a combination of these metrics for a domain is high then this will
give end-users a view of the health of projects in that domain, while
giving OSS contributors a view of which domains to support.

The work reported by [36] has already shown some correlation
between pairs of metrics from the C&K suite, for example, CBO
and RFC, and RFC and LCOM. If indeed there was a correlation
in all the clusters analysed above, it would suggest an increased
probability of falsely rejecting a null hypothesis within the clusters
shown in Figure 3.

In this analysis below,we report on the correlation study between
pairs of OO metrics, when clustered by application domain. The
value of the correlation coefficient lies in the range [−1; 1], where
−1 indicates a strong negative correlation and 1 indicates a strong
positive correlation. We adapt the categorisation for correlation
coefficients used in [27] ([0− 0.1] to be insignificant, [0.1− 0.3] low,
[0.3 − 0.5] moderate, [0.5 − 0.7] large, [0.7 − 0.9] very large, and
[0.9 − 1] almost perfect) if the rank correlation coefficient proves to
be statistically significant at the α = 0.01 level.
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Table 2 shows the correlations between pairs of OO metrics,
when considering the projects in the identified domain-driven clus-
ters. It becomes clear that the metrics show collinearity, but depend-
ing on the cluster considered, this collinearity could be stronger or
weaker. An example of this is between the RFC andWMC attributes:
for the projects in the Internet cluster, this association has a medium
(M) strength; the association becomes large (L) when considering
the projects in theMobile cluster; for the projects in theMultiMedia
category, the association becomes almost perfect (AP), therefore
larger than 0.9; when considering the projects in the Software De-
velopment cluster, on the other hand, such collinearity becomes
small (s), hence isolating these projects, and their characteristics,
from the rest of the sample.

Considering the definition of the RFC and WMC attributes, a
stronger correlation implies a larger complexity of the code: when
the number of methods (i.e., WMC) grows in a Java class, the re-
sponse for that class (i.e., the RFC) also grows. This is also an indi-
cation that more testing will be needed for that class: the projects
in the MultiMedia category show a different behaviour to those
belonging to the Software Development category. Evaluating the
software health therefore becomes also dependent on what type of
domain a project belongs to.

Based on these results, it is possible to summarise our correlation
findings as follows:

The correlation between OO metrics can be extremely
sensitive to application domains

5 CONCLUSION AND FURTHERWORK
Research studies based on OSS systems have exponentially in-
creased: only in the MSR series of conferences, the growth in num-
ber of OSS projects analysed by researchers had a thousandfold
increase in the last 10 years. On the flipside, most research pa-
pers have overlooked their primary distinctive characteristics: their
diversity, context, uniqueness and application domain.

In this paper, we sampled 100 GitHub projects and assigned each
to an application domain, based on the key terms appearing in the
source code. Using the LDA algorithm, we obtained the emerging
topics from these terms, and used these topics to uniquely classify
these systems into domains.

We showed that most of the sampled systems belong to a subset
of domains: we also showed that the vast majority of the extracted
metrics show a cross-domain difference in their behaviour. This
means that it is almost always possible to reject the null hypothesis
stating that they are drawn from the same population. This makes
the application domains as units of analysis: projects belonging
to different domains should be analysed separately, and their re-
sults considered also separately, at least when considering the OO
structural attributes.

As future work, we plan to assign a domain to smaller portions
of code, in particular when they are clearly connected by means
of coupling. This should take into account the presence of primary
and secondary application domains in the same software project.
Also, the presence of more and less experienced developers should

be investigated, and related to the discrepancies observed on the
NOC attribute.

We have also started to populate a large database with the lexi-
con of thousands of software systems, by application domain. The
objective will be to use such content as the oracle for other sys-
tems, to help detecting their domains through a machine learning
approach.
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