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The dynamics of bearing is a classical problem in machinery vibration. It is well known that 

rolling element bearings are susceptible to large vibration response at suitable parameter values 

arising due to instability. In the present work, we formulate the governing equations of motion 

of rolling element bearings. Herein, the rolling elements are modeled as lumped spring ele-

ments. With odd number of rolling elements, due to asymmetric effects of the bearing cross-

section a parametric excitation effect is introduced in the system of governing equations. Fur-

ther, due to the load zone effect this system represents a non-smooth dynamical system. The 

parametric stiffness term flips its sign depending on the sign of the displacement response. As 

such the governing equations of the system resemble the classical asymmetric Mathieu equa-

tion. In the literature, the method of Lyapunov-like exponents has been used to determine the 

stability boundaries of the asymmetric Mathieu equation. Herein, a positive Lyapunov-like ex-

ponent indicates instability whereas a stable response manifests as a negative Lyapunov-like ex-

ponent. In the present work, we use this method in detecting the stability and instability charac-

teristics over the different bearing parameters. Stability diagrams are presented which can aid 

the designers and the user of the bearing in confirming the stability and instability zone. The 

method is validated by numerically integrating the governing equations. It is verified through 

numerical analysis that parameter combinations associated with an unstable zone manifest an 

exponential growth in response. Similarly, the parameter combinations associated with stable 

zone of the stability diagram shows bounded response. 
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1. Introduction

The dynamic instability characteristic of bearings is a problem of interest for both industry

and academia. Despite being a well-developed topic, there are certain aspects of bearing vibration 

that have not been investigated thoroughly. The vibration in rolling element bearings due to para-

metric excitation is one such area. As the bearing rotates, the configuration of rolling elements be-

tween the inner and outer race continuously change, thereby leading to a periodic variation of the 

effective stiffness of the bearing assembly. This dynamic stiffness is responsible for the parametri-

cally excited vibration. However in case of bearings with odd number of rolling elements, the stiff-

ness of the bearing becomes asymmetric, thereby making the analysis complicated. This work aims 

to throw light into the stability characteristics of parametrically excited vibration in bearings with 

odd number of rolling elements. 

The effect of number of balls and pre-load on bearing vibration was studied by        et. al. 

[1]. The dynamic effects of varying compliance in bearings has been investigated by Walters [2] 

using motion simulation but without the effect of geometry of the rolling elements taken into con-

sideration. A dynamic model for both ball and cylindrical roller bearings was later developed by 

Gupta [3] with the assumption of non-linear Hertzian contact stiffness. Estimation of static stiffness 

parameters was done by Shimizu et. al. [4] and overall stiffness was found to be changing with dif-
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ferent positions of the rolling elements. Thus natural frequency of the system in various configura-

tions changes over a full cycle of rotation. Analysis based on Floquet theory is a classical method of 

solution for such parametrically excited system as done by Nayfeh et. al. [5].  

Srinath et.al. [6] studied the parametrically excited vibration in rolling element bearing by 

formulating governing equations of motion into 2-DOF coupled Mathieu equations. Floquet theory 

was used for determining the instability. But the asymmetry involved in Mathieu equation was not 

taken into consideration owing to the complexity involved in its solution. Marathe et.al. [7] studied 

the parametric instability in single degree of freedom systems (inverted pendulum) with asymmetric 

stiffness condition using Lyapunov-like exponent. 

The current work aims to predict the stable and unstable operational ranges of speed for a par-

ticular rolling element bearing configuration by numerically solving the governing two dimensional 

coupled asymmetric Mathieu equation and evaluating the value of a Lyapunov-like exponent. The 

inclusion of asymmetry in the analysis makes the study closer to reality than previous works on this 

problem. 

2. Formulation 

A typical rolling element bearing comprises of inner and outer race,   rolling elements and cage. 

The races are assumed to be rigidly connected to separate machine elements, and the rolling ele-

ments to be elastic with a stiffness value. Zero clearance is assumed between the rollers and races, 

which leads to a load zone of 180
0
 as shown in Fig. 1(a). The load is transferred between the races 

through the rolling elements within the load zone. Roller bearings are modelled as individual 

springs as shown in Fig. 1(b) and hence the system is modelled as a spring-mass system with two 

degrees of freedom as in Fig. 1(c). New on’s second law applied  o  his sys em gives the equation 

of motion as shown in Eq. (1). 

 
Figure 1: (a) Bearing load zone (b) Spring modelling (c) Spring mass system 

 [ ] {
 ̈
 ̈
}  [ ( )]  {

 
 }                                           (1) 

Where [M] is the mass matrix and [ ( )]  is the dynamic stiffness matrix of the bearing system. 

Calculation of [ ( )] has been done by Srinath et. al [6]. The static stiffness values of individual 

rolling elements were evaluated using finite element simulations in ANSYS 13.0 by applying verti-

cal load and measuring the compression. To measure the static stiffness of the bearing system, hori-

zontal and vertical loads were applied in the positive   and   direction respectively and the corre-

sponding deflections were measured. The ratio of vertical reaction and vertical displacement gave 

static direct stiffness and ratio of horizontal reaction and vertical deflection gave static cross-

coupled stiffness. As the bearing rotates the number of rolling elements and their configuration 

within the load zone changes. This leads to time varying stiffness as shown in Fig. 2. This variation 

of stiffness as the bearing rotates was expanded into a Fourier series. Taking only the dominant 

harmonics in the Fourier series expansion, dynamic stiffness matrix [ ( )] can be expressed as per 

Eq. (2). 
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Figure 2: Angular variation of (a) Direct Stiffness and (b) Cross coupled stiffness; taken from [6] 
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Here     and     are the mean values of stiffness variation along   and   directions respective-

ly,   is the amplitude of variation of direct stiffness.     and     are the amplitudes of cross cou-

pled stiffness variation. The shortcoming of this analysis by Srinath et. al. [6] was that loads were 

applied only in the positive direction to calculate the stiffness values. In reality, the stiffness ob-

tained will be different when the loads are applied in the negative direction. This asymmetric nature 

of stiffness is not captured in Eq. (2) and needs to be determined. From Eq. (2), when force is ap-

plied in positive y direction as shown in Fig. 3(a) at time  , the direct stiffness     is     

    (   ). However on applying force in negative y direction at the same instant     should 

change because the number of active springs in the load zone changes as shown in Fig. 3(b). But it 

can be observed from Fig. 3(c) that applying force in negative y direction at the same instant is 

equivalent to applying force in positive y direction when the bearing has rotated by an additional 

angle of  , which would take time equal to    . Hence the value of     changes as per Eq. (3) 

when force is applied in negative y direction. 

 
Figure 3: Load applied in (a) Positive y direction (b) Negative y direction (c) Positive y direction for a 

180  rotated configuration. Active springs that transfer the load in load zone are shown in thick colour.  

                                         (  (  
 

 
))          (   )                                 (3) 

Thus we see that the direct stiffness in y direction changes its sign depending upon the direction 

of force or displacement response. The same analogy applies to cross coupled stiffness as well. It 

should be noted that the sign changes because   is an odd number. The asymmetry does not arise if 

n is even. This asymmetric nature of bearing stiffness makes the vibration analysis complicated 

because we now have to account for different bearing stiffness depending upon the displacement 

response. Equations (4)-(7) correspond to expressions for the stiffness parameters depending on the 

sign of displacement response. 
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Considering that         and        , and substituting the value of [ ( )], Eq. (1) can be 

simplified and non-dimensionalized to two dimensional coupled asymmetric Mathieu equation as 

Eqs. (8) and (9). The non-dimensional parameters are defined in Eq. (10).  
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     Where   is the mass of inner race,   is the number of rollers and   is the angular speed of rota-

tion. This is a linear, coupled, un-damped and parametric equation of motion. For a given geometry 

and material of bearing, the only parameter that changes in the equation of motion is the operating 

speed  . The objective is to predict the speed ranges for which the system turns unstable. This is 

done by analysing the value of a Lyapunov-like exponent [7]. In the current work we have used the 

same stiffness parameters as calculated by [6]. The values of stiffness parameters are given in Ta-

ble 1. The system has five rolling elements (   ) and mass ( ) of unity.  

Table 1 : Stiffness values and Bearing data  

Attributes Values Stiffness parameter Mean value 
(N/m) 

1
st
 harmonic 
(N/m) 

Bore diameter 20 mm    
 5 x 10

8
 24 x 10

6 

Outer diameter 47 mm     5 x 10
8
 24 x 10

6 

Width 14 mm     or     0 60 x 10
6 

3. Lyapunov-like exponent 

A system is said to be stable if the amplitude of its vibration does not grow exponentially with 

time. For simple systems, stability can be numerically verified by plotting displacement vs time and 

checking if the amplitude shoots up with time. A more scientific approach to check stability of sys-

tems governed by asymmetric Mathieu equations was proposed by Marathe et. al. [7]. They formu-

lated a parameter called Lyapunov-like exponent whose value can indicate the stability or instability 

of the system. Their work however was confined to single degree of freedom systems such as an 

inverted pendulum with asymmetric elastic restraints.  

Since governing equations of motion Eqs. (8) and (9), are in two variables namely   and  , a 

four dimensional phase space can be defined whose four axes correspond to     ̇   and  ̇. To calcu-

late the Lyapunov-like exponent, time evolution of a vector in this four dimensional phase space is 

studied. This is done by making use of Matlab ordinary differential equation solver ODE45 which 

makes use of Runge-Kutta method to numerically solve for the equation. By employing a more effi-

cient computational approach which involves passing vectorized arguments to the ODE solver, we 
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extended the concept of Lyapunov-like exponent from single DOF system to the case of 2-DOF 

coupled asymmetric Mathieu equations. The in-build Matlab routine for implementing event detec-

tion algorithm was used to correctly estimate the sign changes occurring in the stiffness terms.  

A random initial unit vector  ⃗  ( ) is defined at time    . The non-dimensionalized equation 

has a time period    . Hence the unit vector is evolved in first iteration from time     to     . 

Thus the vector  ⃗   becomes  ⃗  ( ) by the end of first iteration. Let    be the Euclidean norm of the 

vector  ⃗   after first iteration, that is    ‖ ⃗  ( )‖. Now the initial vector for the second iteration 

 ⃗  ( )  is defined as  ⃗  ( )  
 ⃗⃗  ( )

‖ ⃗⃗  ( )‖
 
 ⃗⃗  ( )

  
. After second iteration    will be the norm of the 

tor  ⃗  ( ). Thus the Lyapunov-like exponent is defined after numerically evaluating the norm for 

sufficient number of iterations. If   iterations are carried out, then Lyapunov-like exponent   is de-

fined as Eq. (11).  

      
 

(    )
∑     (  )
 
                      (11) 

Here for calculating the Lyapunov-like exponent, only the values starting from 51
st
 iteration are 

taken in order to avoid the initial transient effects. The system is stable if the value of   is negative 

and unstable if it is positive. Figure 4 shows the time history of solutions for the Eqs. (8) and (9) for 

particular values of      and   . Figures 4(a) and 4(b) correspond to stable      and    values since 

the amplitude of vibration in x and y directions are bounded and the value of Lyapunov-like expo-

nent is negative. Figures 4(c) and 4(d) corresponds to unstable      and    values since the ampli-

tude of vibration grows unbounded with time and a positive value is obtained for the Lyapunov-like 

exponent. 

 

Figure 4: Time history of vibration (a) along x for stable system (b) along y for stable system 

 (c) along x for unstable system (d) along y for unstable system 



ICSV24, London, 23-27 July 2017 
 

 

6  ICSV24, London, 23-27  July 2017 

Since      and   are the three parameters that accounts for the parametric excitation, a three 

dimensional stability lobe plot can be created for a given range of      and    values by calculating 

Lyapunov-like exponent corresponding to each (       ) triplet. Unlike the case of a particular 

bearing configuration with varying rotational speed, these 3-D plots with (       ) as the three axes 

will provide the unstable regions of operation for any given bearing configuration. However, it is 

difficult to represent the three dimensional stability lobe plot and infer data from it. A two 

dimensional plot of one of the planes (  =0.05) of the (       ) space is shown in Fig. 5. The black 

regions correspond to unstable parametric values and white regions correspond to stable parametric 

values. A dense 500 500 grid of points of (    ) pairs were taken for plotting the same. In the 

Matlab ODE solver ODE45, if the arguments are passed sequentially as done in [7], computation 

would span over a week for obtaining a fine two dimensional grid of Lyapunov-like exponent 

values. Vectoriation of arguments to ODE45 enabled the evaluation of Lyapunov-like exponents 

corresponding to all 250,000 (    ) pairs in a matter of hours. The fractals of instability appearing 

within major stability regions point out that suggesting a safe range of operational speeds for a 

particular bearing configuration is challenging.  

 

 
 

 

 

The presence of damping makes this system more stable. When damping effects are taken in to 

consideration, the governing equations of motion get modified as Eqs. (12) and (13) in the non-

dimensionalized form.  
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Where  ̂  
  ̂

   
.  ̂ is the damping coefficient. Figure 6 shows the stability lobe plot generated 

with  ̂ taken to be 1% of the value of critical damping   . It can be observed that most of the small 

instability fractals disappear for such a small percentage of damping and only the major instability 

lobes remain. This suggests that in real bearing operation conditions where damping is present, only 

the major instability regions cause unstable vibrations, and it is possible to attain continuous ranges 

of operational speeds where the system is stable. But it must be emphasized that when bearing op-

erational parameters come within the major instability lobes, parametric vibration with large ampli-

Figure 6: Stability lobe plot for the system in 

presence of damping 

Figure 5: Stability lobe plot for 2-D plane of the 

(𝛿 𝜀  𝜀 ) space without damping 
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tude occurs and the system becomes unstable. Hence such speeds are definitely to be avoided for 

safe operation. This is illustrated in the next section.  

4. Results 

A 3-D plot which shows the value of Lyapunov-like exponent for each (    ,  )  triplet can help 

in identifying the unstable operational speeds for any bearing. But it is computationally very costly 

to calculate Lyapunov-like exponent for all (    ,  ) triplets. Here we calculate Lyapunov-like 

exponent and determine the unstable operational speed range for the particular bearing given in Ta-

ble 1. The variation of (    ,  ) as per bearing specifications is dictated by Eq. (10). Values of      
and    varies as the inverse of  2 

when mass, stiffness and number of rollers are fixed. Thus   

(rotational speed) is the only parameter that is responsible for the variation of (    ,  ) when only a 

single bearing assembly is considered. Hence to determine instability of a bearing over a speed 

range, we calculate (    ,  )  for each   and then calculate the corresponding Lyapunov-like ex-

ponent. The value of Lyapunov-like exponent determines if the system is unstable for that 

lar  . Hence a plot of Lyapunov-like exponent against   can represent the unstable operational 

speeds. Such a plot is shown in Fig. 7. 

For generating Fig. 7, a range of   values from 10 rad/s to 50,000 rad/s was taken in steps of 20 

rad/s. Whenever there is a major peak in Fig.7, it denotes a major instability region over that range 

of  . Table 2 lists the unsafe range of operational speeds corresponding to the major instability 

peaks of Fig. 7. 

 

 
Figure 7: Variation of Lyapunov-like exponent with rotational speed 

 

Table 2: Major instability regions in the absence of damping 

 Major instability 

regions 

Unsafe operational speed range (rad/s) 

1 3100-5650 

2 12950-13800 

3 22300-22400 

4 31300-31400 

Major 

instability 

regions 
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5. Conclusion 

In the present work, stability analysis of roller element bearing system is done when parametric 

excitation is present and the motion of the system is governed by coupled asymmetric Mathieu 

equation. The asymmetry effect of stiffness values in rolling element bearings was evaluated and 

governing equations were formulated. Time evolution of magnitude of a unit vector in four dimen-

sional phase space was evaluated numerically using Matlab ODE solver ODE45. A Lyapunov-like 

exponent defined as the summation of normalized magnitudes of such unit vectors after sufficient 

number of iterations was taken as the indicator of instability. The effect of damping on the stability 

of system was demonstrated using a stability lobe plot where it was observed that the instability 

fractals disappeared even for a damping value equal to 1% that of critical damping. This suggests 

that in a real bearing operation where damping is present, a continuous range of safe operational 

speeds can be obtained. A particular bearing configuration was chosen and Lyapunov-like expo-

nents for a range of values of rotational speeds were calculated to suggest the operational speeds 

which are definitely unsafe in terms of parametric vibration.   

The study has been conducted for a specific bearing configuration, but the formulation devel-

oped can predict the unstable speed ranges for any rolling element bearing if the mass and stiffness 

values of the bearing are known. This can aid a bearing manufacturer in cross-checking whether 

their specified speed ranges for a bearing are coherent with stable vibration regions. This becomes 

an immediate industrial application of the work. 
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