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Abstract. In this paper we propose an adaptive algorithm based on a combina-
tion of selective reproduction, individual learning, and social learning. Social 
learning consists of a simple facilitation process that regulates the strength of 
individual learning on the basis of the number of individuals located nearby. By 
testing this model in an experimental scenario, in which a population of 10 mo-
bile robots has to develop a simple foraging behavior, we demonstrate how the 
model proposed produces effective results. By comparing the results obtained in 
different experimental conditions we also show how the method proposed out-
performs other alternative algorithms based on genetic evolution or individual 
learning. Finally, we briefly discuss how the model proposed can help us to un-
derstand the role of social learning in biological organisms.  
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1   Introduction 

It is a widespread opinion that social learning dynamics can account both for the di-
versity of humans’ behavioral repertoire [12] and for the complexity of humans’ cog-
nitive skills [13]. This consideration has lead most of the researchers that deal with 
social learning to focus on high–level, human–like, forms of social learning and to 
attempt to reproduce them through specific algorithms that aim to replicate a behavior 
of a model by explicitly copying it. 

However, when considering learning as a set of adaptive modifications that take 
place within each single agent in response to environmental stimuli [9], we have to 
consider that the environment of a single agent also includes its conspecifics. In this 
perspective, their behavior becomes a valuable source of information that can be ex-
ploited in several ways besides from explicit copying. Indeed, especially in the last 
twenty years, ethologists have shown how other forms of social learning that are 
much simpler and less cognitive demanding than explicit imitation play an important 
role in the development of complex behaviors in various vertebrate species. For ex-
ample, the food preferences developed by Norway rats (Rattus norvegicus) are influ-
enced by the food eaten by conspecifics through indirect information obtained by 
sniffing conspecifics’ breath [4]. Similarly, female guppies (Poecilia reticulata) pre-
fer to mate with males that they have seen mating before [3]. Again, the development 
of several primates’ behaviors, which have been previously interpreted as a result of 
explicit imitation, are now considered as an outcome of more simple forms of social 
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learning like emulation or stimulus enhancement (for reviews on social learning in 
animals, but also in simulated agents and robots see [2][5][6][14]). 

The development of artificial organisms (robots or simulated agents) through arti-
ficial life techniques is an excellent way of exploring the feasibility of simple models 
of social learning [7][8] with particular reference to the possibility to take into ac-
count different aspects of the individuals (their body, their nervous system, and the 
way their adapt to the environment), of the population, and of their interaction. As 
formerly pointed out in [8], identifying alternative models of social learning, besides 
imitative learning, is interesting for both scientific and technological reasons. From a 
scientific point of view, identifying how a population of artificial agents can obtain 
adaptive advantages by dealing with simple forms of social learning can shed light on 
how the interaction between individual learning, social interactions, and evolution 
might produce effective and robust collective dynamics. Indeed, understanding the 
interaction between these processes through empirical and laboratory experiments can 
be very difficult. From a technological point of view, on the other hand, the identifica-
tion of algorithms that allow embodied agents to adapt by exploiting the interaction 
between evolution, individual learning, and social learning can lead to the develop-
ment of innovative methods for developing multi-agent systems, spanning from 
autonomous robots to ubiquitous computing devices.  

In this paper we demonstrate how a simple form of social learning, in which agents 
learn individually but in which the strength of individual learning is modulated by the 
number of individuals located nearby, can lead to the development of effective behav-
iors. This will be demonstrated in an experimental scenario in which a population of 
simulated robotic agents should develop an ability to forage by discriminating differ-
ent type of foraging areas. Moreover, we show how, in this type of experimental sce-
narios, the combination of selection at populational level, individual learning, and 
social learning outperforms other adaptive processes such as individual learning and 
genetic evolution. 

In section 2 we will describe the experimental setup and the different experimental 
conditions. In section 3 we show how the results obtained in the social learning condi-
tion outperform those obtained in the individual learning and genetic evolution condi-
tions. Finally, in section 4, we discuss the implications. 

2   Experimental Setup 

A team of 10 e-puck robots is placed in an environment that consists in a square arena 
of 200 x 200 cm surrounded by walls. The floor of the arena is grey and contains two 
circular target areas with a diameter of 60 cm colored in black and white, respectively 
(Fig. 1). Robots are provided with simple sensory-motor capabilities that allow them 
to move, gather information from the environment and to produce sound signals with 
a fixed intensity.  

The robots (Fig. 2 Left) have a circular body with a radius of 37 mm, 8 infrared 
sensors placed around the body, 1 ground sensor placed on the bottom of robot, 1 
microphone and 1 speaker. Robots’ neural controllers consist of neural networks with 
10 sensory neurons and 3 motor neurons (Fig. 2 Right). Eight sensory neurons encode 
the activation states of the 8 infrared sensors (which detect obstacles up to a distance  
 



 Development of Foraging Behaviors in a Population of Autonomous Robots 627 

 
Fig. 1. The environment of the experiment. Black and white circles represent the two foraging 
areas. Small grey circles represent the 10 robots. 

                                                                                                                     
Fig. 2. Left: the e-puck robot – Right: the neural controller. Thick lines represent the weights 
that are modified in the second phase of the simulation. As it is shown the speed modulator 
does not operate on the outputs but it acts directly on the motors’ activations. The intensity of 
the sound signal is used to set the learning rate in the social condition.   

of ~4 cm) and two neurons that measure the activation of the ground sensors that 
encode the color of the floor below the robot (grey [0 0], white [1 0], and black [0 1]). 
The first two motor neurons encode the desired speed of the two corresponding 
wheels normalized between -MaxSpeed and +MaxSpeed. The third motor neuron 
instead encodes the maximum speed of both wheels (i.e. the MaxSpeed parameters 
normalized in the range [0, 10]). The third motor neuron thus acts as a modulator that 
regulates the speed with which the robot moves or turns at each time step. The 8 sen-
sory neurons that encode the state of the infrared sensors are connected to all the three 
motor neurons. The two sensory neurons that encode the color of the ground, instead, 
are connected to the third motor neuron only (i.e. to the motor neuron that regulates 
the maximum speed of the two wheels).  

The robots emit a sound signal through their speakers when they are located in the 
black or white foraging areas. Moreover, the robots can detect through their micro-
phones the signals produced by other robots located nearby.  
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2.1 Simulation and Experimental Conditions  

The training process is divided in two phases. During the first phase the robots are 
trained for developing an ability to avoid obstacles (i.e. walls and other robots) and to 
explore the environment. During the second phase the robots are trained to live as 
longer as possible in an environment that contains the white and the black target ar-
eas. Given that the black area causes a loss of energy, the robots should avoid (i.e. to 
quickly abandon) it and spend time on the white one. Notice that, in this phase, the 
behavior of the robots outside the areas has been already determined during the first 
phase of the training process and cannot be modified, therefore robots can only mod-
ify their behavior inside the target areas.  

During the first phase, the free parameters that encode the strength of the connec-
tions between the 8 infrared sensors and the three motor neurons are selected through 
an evolutionary method [10]. The robots are placed in an environment without target 
areas. The free parameters of each robot, encoded with 8 bits, are set randomly and 
normalized in the range [-10.0; + 10.0]. The robots are evaluated on the basis of their 
ability to move and to avoid obstacles in 20 trials after being placed in the environ-
ment with randomly selected positions and orientations. The best 20 individuals are 
allowed to reproduce by generating 5 offspring each. Offspring inherit the same free 
parameters of their parents but each bit of their free parameter is mutated with a prob-
ability of 3%. The evaluation, selection, and reproduction processes are repeated for 
50 generations.  

During the second phase, the free parameters that encode the strength of the con-
nections between the two ground sensors (that encode the color of the floor) and the 
third motor neuron (that encodes the maximum speed of the two wheels) are trained 
through different training procedures corresponding to the five different training con-
ditions described below. In all experimental conditions, individual robots are evalu-
ated for 1 trial lasting 10000 time steps (of 100ms each). At the beginning of the trials 
the robots are placed in the environment with a randomly selected position and orien-
tation and are provided with an initial energy of 200 units. Every time step spent on 
the black target causes the loss of 1 unit of energy. When a robot finishes up its en-
ergy it “dies” and it is replaced with a new robot placed in the environment in a ran-
domly chosen position and orientation, with full initial energy (the initialization of the 
free parameters of the new robots depends on the different experimental conditions, 
see below).   

Notice that the robots do not have any direct feedbacks about the “quality” of a tar-
get area or about their own energy, i.e. they only have information about the colors of 
an area, but they do not know the way in which staying in a particular area affects 
their energy state. In practice, given the exploratory behavior acquired during the first 
phase, the free parameters that encode the strength of the connection between the two 
ground sensor neurons and the third motor neuron should be set so to allow the robot 
to slow down and, eventually, to stop in the white target area and to quickly move out 
from the black target area.  

Individual Learning. The two weights that connect the ground sensor neurons to 
the third motor are initialized, at the beginning of each trial, with a null value, that is, 
the robots tend to go away from both the areas. When a robot happens to stay inside a 
target area, a learning algorithm acts to reinforce, with a positive feedback, the indi-
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vidual “preference” for that area, independently from the color of the area and conse-
quently, from the effect on its energy. This positive feedback mechanism is realized 
by modifying the two free parameters every time an individual is inside one area 
through the addition of a randomly chosen value in the interval [-lrate, +lrate] to their 
current value, and by retaining only the variations that lead to an increase of the time 
spent by the individual in the corresponding target area. This procedure has been 
tested in two experimental conditions in which the learning rate parameter (lrate) has 
been set to 0.1 and 1.0, respectively. Individual learning has been tested in these two 
conditions to verify whether the different results obtained in this condition and in the 
next condition depend on the absolute value of the learning rate or not. 

Social Learning. In this condition the free parameters are varied according to the 
same procedure described above but the learning rate is modulated by the number of 
other individuals located nearby. More precisely the learning rate is set to a value 
corresponding to the intensity of the signal detected, which varies linearly in the range 
[0.1, 1.0] according to the number of individuals located in the same foraging area. 

Notice that in both cases (individual and social learning) the learning algorithm is 
totally “blind” in respect to the adaptiveness of the behaviors. In the former condition, 
the only way to orient the learning is related to the fact that individuals with adaptive 
behavior tend to survive and they are not replaced with naïve individuals. In the latter 
condition, moreover, the robots can exploit an equally blind conformist bias [12], that 
is, they tend to assume with more probability a behavior if other robots show already 
this behavior. 

Genetic Evolution. In this condition, at the beginning of the experiment, the two 
free parameters are initialized with randomly selected value in the range [-10.0; 
+10.0]. During the trial, dying robots are replaced with newborn individuals that in-
herit their free parameters from the robot that currently has the highest energy value 
and that lives since longer time, with the addition of mutations that are realized by 
adding to the value that are inherited a randomly selected value in the range [-2.0, 
2.0]. This value was chosen among a large number of tests as it produces the best 
performance in this condition (results not shown). 

Random Search. This is a control condition identical to the Genetic Evolution con-
dition but in which the free parameters of newborn individuals are assigned randomly 
in the range [-10.0; +10.0]. 

For time reasons all the experiments have been carried out using a simulator that 
carefully reproduces the characteristics of the e-puck robots.  

3 Results 

By analyzing the obtained results we observed that performance varies significantly in 
different experimental conditions and that the Social Learning condition outperforms 
all the other conditions (henceforth when we use capital letters and italics we refer to 
the experimental conditions).  

Table 1 shows the average performance obtained in the five experimental condi-
tions at the end of the training process, as well as the average value of some indexes 
that characterize individuals’ behavior. The Target W and Target B indexes indicate 
the percentage of the robots of a team located, at the end of each trial, inside the white 
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and the black target areas, respectively. The mortality index indicates the number of 
robots that died during the trial, which is inversely correlated with robots’ ability to 
discriminate between the two target areas. The overall performance index is calcu-
lated by means of the following equation:    
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Where Wperc is the percentage of the robots of the team located inside the target W 
at the end of the trial, MMAX is the maximum number of dead robots in all the five 
experimental conditions and Mn is the number of dead robots in the specific experi-
mental condition. In other words, this index measures robots’ ability to minimize the 
risk of mortality by minimizing the energy lost in the black target area and maximiz-
ing the time spent on the white area. 

The last two columns of Table 1 show the average value of the two free parameters 
that regulate the time spent by each robot in the white and black target areas, respec-
tively. 

Table 1. Average results and average index values at the end of the training process for the five 
experimental conditions (see text). Each data represents the average result of 100 trials and the 
respective standard deviation.  

 Target W Target B Mortality Overall 
Performance Weight 1 Weight 2 

Individual 0.1 0.78 
(±0.11) 

0.018 
(±0.03) 

14.7 
(±4.35) 

0.63 
(±0.08) 

8.13 
(±0.99) 

1.95 
(±0.56) 

Individual 1.0 0.97 
(±0.06) 

0.003 
(±0.01) 

12.75 
(±6.32) 

0.76 
(±0.06) 

9.71 
(±0.58) 

0.09 
(±0.24) 

Social Learning 0.98 
(±0.04) 

0 
(±0) 

6 
(±0.39) 

0.88 
(±0.04) 

9.86 
(±0.39) 

1.45 
(±0.57) 

Genetic Evolu-
tion 

0.56 
(±0.31) 

0.037 
(±0.06) 

26.04 
(±10.22) 

0.32 
(±0.22) 

5.63 
(±4.58) 

0.74 
(±4.65) 

Random Search 0.37 
(±0.14) 

0.052 
(±0.07) 

28.75 
(±6.01) 

0.18 
(±0.10) 

1.77 
(±1.86) 

-1.34 
(±1.58) 

In particular, by observing the overall performance we can see that the best per-
formances have been obtained by the Social learning condition, followed by the Indi-
vidual Learning 1.0 and the Individual Learning 0.1. These results indicate that, in 
order to prevent the loss of energy caused by the black area and to minimize the risk 
of dying, individuals should locate the white target area as fast as possible and as 
accurately as possible. Moreover, these results indicate how the regulatory effect of 
social learning on individual learning ensures both speed and accuracy of learning. 
The fact that Social Learning and the two Individual Learning conditions significantly 
outperform the Genetic Evolution condition indicates that the latter method is much 
slower than the formers (for all the Overall Performance results: p < 0.001).  

By analyzing how Target W (i.e. the percentage of the individuals of a team that 
are located in the white target) and the mortality indexes vary during the adaptive 
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process (Figure 3) we can see how the curves referring to the Genetic Evolution and 
Random Search conditions substantially overlap during the first phase and start to 
diverge only after approximately 2200 and 6000 time steps with respect to the two 
indexes. Moreover we can observe how the index of mortality of the Social Learning 
condition is similar to those of the Genetic Evolution and Random Search conditions 
rather than to Individual Learning conditions during the first phase but significantly 
diverges after 2000 time steps.  

 
Fig. 3. Left: Percentage of robots located within the white area during the training process. 
Right: Mortality per trial (i.e. number of robots died during a trial). Both graphs represent the 
average results of 100 replications for each experimental condition. SL, IL1, IL2, GE, RS indi-
cate the Social Learning, Individual Learning 1.0, Individual Learning 0.1, Genetic Evolution, 
and Random Search conditions. 

4 Discussion 

The results presented in the previous section clearly show that the Social Learning 
condition overcomes the other conditions. The Individual Learning 1.0 condition 
leads to similar results with respect to the number of robots located in the white area 
but it is characterized by a higher mortality rate. Overall the results obtained indicate 
how the combination of a simple non-directional individual learning process, a simple 
social mechanism that regulates the strength of the individual learning process, and a 
selection process that operates at the level of the population (the robots that happen to 
learn non-adaptive behaviors tend to die and to be replaced by robots with no prefer-
ence for the white or for the black target) can produce an extremely effective adaptive 
process.  

The individual learning process is non-directional since the mechanism with which 
it is realized is totally “blind” to whether the variations that are retained are adaptive 
or not with respect to a single agent per se. Similarly, the mechanism that regulates 
how social interactions affect individual learning consists of a simple conformist bias 
[12] which is also “blind” to whether it leads to adaptive or to counter-adaptive varia-
tions at the level of a single individual. However, the combination of these two 
mechanisms together with the selection process ensures that, after an initial phase, the 
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population of individuals displays an ability to quickly and reliably acquire the re-
quired adaptive skill.  

In general terms, the mechanisms included in the model described in this paper are 
also plausible from a biological point of view. Indeed, most animals have the ten-
dency to be neophobic (i.e. reluctant to taste food that they have never eaten before) 
and to prefer food which they know other conspecifics have eaten [1]. In our model, 
in fact, at the beginning of the trials that involve learning, the weights that connect the 
ground sensor neurons to the third motor (the modulator) are initialized with a null 
value, that is, the robots tend to go away from both the areas. Moreover, as we made 
clear before, in the Social Learning condition the strength of individual learning is 
modulated by the presence of the other robots in the areas. 

The fact that the Genetic Evolution condition displays poor performance, on aver-
age, can be explained by considering the following three points: (a) the limited size of 
the population which is composed of only 10 individuals (for an analysis of genetic 
algorithms in small populations see [10]), (b) the fact that the searching space of good 
solutions becomes more narrow as the number of robots that show a good solution 
increases, and (c) the high sensitivity to the initial conditions. The high sensitivity of 
the results to the initial conditions is demonstrated by the variability of the perform-
ance observed in different replications (Figure 4). 

 
Fig. 4. Distribution of the final percentage of robots in the white area (target W) for 100 trials 
in the five experimental conditions. Boxes represent the inter-quartile range of the data. The 
horizontal lines inside the boxes indicate the median values. The horizontal lines outside the 
boxes indicate the minimum and maximum values. Crosses represent outliers. 

The obtained results also indicate that while genetic algorithm applied to small 
populations might not be effective, the combination of selection at populational level, 
individual learning, and social learning might produce effective results also in small 
populations.  

The importance of the interaction between the three processes (selection at popula-
tion level, individual learning, and social learning) can be appreciated by comparing 
the dynamics in the different experimental conditions. By comparing the mortality 
rate of the Individual Learning 0.1 with the mortality rate of the Social Learning con-
dition (Figure 3, right) we can see that, during the first 2000 time steps, the latter is 
substantially higher than the former. This means that, at the beginning of the process, 
social interactions produce an increase of the number of counter-adaptive behaviors 
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among the group. In fact, as shown in Figure 5, the percentage of robots located in the 
black target area at the beginning of the training phase is higher in the case of the 
Social Learning condition than in the case of the Individual Learning 0.1 condition. 
This can be explained by considering that social learning act as a conformist bias 
behavior that tend to strengthen the most common behaviors during this phase, inde-
pendently from their adaptiveness, since the mechanisms that regulate individual 
learning and social learning are not necessarily adaptive by themselves. However, the 
same conformist behavior, combined with the fact that the ratio between adaptive and 
maladaptive individuals tends to increase thanks to the selection process operating at 
the level of the population, allows the Social Learning conditions to produce better 
results later on. 

 
          

Fig. 5. Percentage of robots inside the black area (target B) through time. Data averaged over 
100 trials. The black and gray line indicate the results in the case of the Social learning and 
Individual Learning 0.1 conditions, respectively.   

5 Conclusion and Future Works 

We have demonstrated on a simple experimental scenario how social facilitation of 
individual learning combined with a selection process operating at the population 
level can be useful in developing adaptive behaviors in small populations of autono-
mous robots.  

In future, we plan to investigate further the scalability of this mechanism in differ-
ent environmental conditions, e.g., by increasing the number of foraging areas, by 
increasing (or decreasing) the number of robots, or by increasing the complexity of 
the perceptual categorization process. We plan to test the ability of the model to cope 
with changing environmental conditions. Finally, we plan to encode in the genotype 
of evolving individuals the learning rules that regulate individual and social learning. 
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