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Abstract – In this paper we investigate whether social learning or 
the combination of individual and social learning can provide an 
adaptive advantage for artificial embodied agents that have to 
develop behavioural abilities that are too difficult or too costly to 
be acquired through individual learning. Obtained results 
demonstrate that social learning provides an adaptive advantage 
when individuals are allowed to learn socially from experienced 
individuals and individually. Moreover, the obtained results 
indicate how the iteration of a social and individual learning 
through out generations lead to a cumulative cultural 
evolutionary process in which novelties are integrated with 
previously developed skills and are successfully transmitted in 
further generations.  
 

I. INTRODUCTION 

 
Social learning refers to the process in which agents learn new 
skills by interacting with other agents (for a discussion on the 
definition of the term and of the relation between social 
learning and other adaptive processes, see [1, 2, 3, 4]). Many 
species have evolved a capacity to use information provided 
by other individuals to enhance their individual learning 
capabilities [5]. By exploiting the interaction with other 
experienced individuals (e.g. parents or adults), in fact, 
learning individuals might shortcut the time required to 
develop the skills already developed by these individuals 
and/or might increase the chances to acquire skills that are 
hard to be developed through individual learning. Indeed 
social learning played an important role in the evolution of 
complex behaviours in vertebrates [5] and in humans [6, 7].  

Using social learning algorithms to evolve artificial 
embodied agents poses a series of interesting questions. To 
begin with, social learning in nature is supposed to be realized 
by numerous different mechanisms at individual level, from 
cognitive high-demanding intentional imitation learning [8] to 
simple heuristics in which individual learning is “guided” by 
social interactions [9, 10, 5]. In addition, whether or not social 
learning can provide an adaptive advantage in specific 
conditions, in respect to individual learning, depends on 
several factors such as the characteristics of the specific 
behavioural skill to be acquired, the rate at which 
environmental conditions varies, the availability of the 
necessary cognitive and behavioural pre-requisites, the 
existence of a variety of strategies in the population etc. For 
example, as demonstrated through analytic models developed 
by the anthropologist Alan Rogers [1] and by Richerson and 
Boyd [7, 2], imitating the behaviour of other individuals is 

adaptive only when the imitation is relatively unusual and 
most individuals acquire the same behavioural skills through 
individual learning. 

In this paper we investigate through a simulation study the 
factors that affect the relative costs and benefits of developing 
a skill through individual versus social learning. As we will 
clarify in the next sections, by individual and social learning 
we mean a learning process in which variations of free 
parameters are retained or discarded on the basis of whether 
they lead or not to an improvement of individual performance 
or on the basis of whether they reduce or not the differences 
between the sensory-motor mapping produced by an 
inexperienced and an experienced individual, respectively.  

In particular we show that social learning can successfully 
lead to the acquisition of skills that are difficult to acquire 
through individual learning if the process of social learning is 
accompanied by a phase in which individuals adjust on their 
own what they have learn socially. Indeed, at least in the case 
in which social learning consists of an attempt to imitate the 
fine-grained behaviour displayed by experienced individuals, 
minor differences between the sensory-motor mapping 
produced by experienced and inexperienced individuals at the 
end of learning might lead, in the case of sequential 
behaviours, to different outcomes that significantly impact on 
the individuals' performance. 

Finally, we show how an iterated form of social learning, in 
which inexperienced individuals of a given generation learn 
socially, by interacting with the best individuals of the 
previous generation, and individually lead to a cumulative 
cultural evolution process. 

In section 2 we describe our experimental set-up. In section 
3 we describe a model in which inexperienced individuals 
learn on the basis of a social learning process or of a 
combination of social and individual learning. In section 4, we 
present the results obtained by iterating the social learning 
process through out generations. Finally, in section 5 we 
discuss the implications of the obtained results from a 
theoretical point of view (i.e. from the point of view of 
understanding in which conditions social learning can have an 
adaptive value) and from an engineering point of view (i.e. 
from the point of view of developing artificial agents 
displaying complex behaviours). 
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II. EXPERIMENTAL SETUP 
 

In this section we describe the experimental set-up used to 
perform our experiments and the learning algorithm used to 
develop experienced agents, i.e. agents able to correctly 
perform a foraging task. These agents will be used, in the 
experiments described in the following sections, to study 
whether inexperienced agents can acquire the skills of 
experienced agents through a combination of social and 
individual learning. 

The foraging task involves two qualitatively different 
abilities: (a) an ability to categorize objects, and (b) an ability 
to approach or avoid objects depending on whether they 
belong to a food or poisonous element category. The latter 
skill involves the ability to produce a sequential behaviour (i.e. 
sequence of motor movements that, in interaction with the 
environment, allow the robot to reach or avoid the perceived 
element). 

 
The agents, the environment, and the task 
 
Consider the case of agents that "live" in an environment 
containing edible and poisonous food elements (α and β, 
respectively) that should be able to reach ("eat") α and avoid 
β. Both α and β objects occur in two different varieties that 
have different perceptual properties.  

Agents are allowed to "live" for 200 trials, each lasting 50 
time steps. During each trial the agent is placed in a bounded 
squared arena with a side of 1 unit, containing a single object 
located in the centre randomly selected from the four object 
types. At the beginning of each trial the agent is placed in a 
location randomly selected around the object and at a 
minimum distance from the object of 0.5 units. The 
performance of the agent is measured by computing a score of 
0.01 and -0.01 for each trial in which the agent reach an object 
α or β, respectively. Since each agent face during its life one 
hundred α objects and one hundred β objects, agents' 
performance might range from -1.0 to +1.0.  

Agents are provided with a neural network controller that 
includes eight sensory neurons, five internal neurons, and two 
motor neurons (Fig. 2). The architecture of the neural 
controller include two modules: (1) a module A that receive as 
input the perceptual property of the current food element (i.e. 
"11" or "00" in the case of α objects and "10" or "01" in the 
case of β objects) and that should produce as output an 
appropriate categorization, (2) a module B that receive as 
input the data from a simulated camera, and the category of 
the current food element (produced by module A) and that 
should produce as output the appropriate motor action (Fig. 2). 
The simulated camera is a linear camera with a visual degree 
of 60° provided with 60 photoreceptors with a view angle of 
1° each. Each photoreceptor is activated to 1.0 or to 0.0 
depending on whether the food object is located in its view 
field or not. Each of the 6 sensory neurons encodes the 
average activation level of 10 corresponding photoreceptors. 
Noise is simulated by adding a random value in the range [0.0, 
0.05] to the value of each sensory neuron. The two motors 

neurons control two simulated wheels. The activation state of 
the motor neuron is normalized in the range [-0.03, 0.03] 
corresponding to the maximum distance covered by each 
wheel during 100ms.  

 

 
 

Fig. 1. The environment and a typical behavior exhibited by an 
agent able to solve the problem in the case of an edible food 

element. 

 
 

Fig. 2. The agents’ neural controller.  
 
Creating experienced agents through an individual learning 
procedure 
 
To synthesize experienced agents to be used in the 
experiments on social learning we decided to train agents 
provided with the neural architecture described in the previous 
section through a simulated annealing algorithm [11]. 
Simulated annealing was chosen for its simplicity and for the 
fact that it does not pose any constraint on the learning 
procedure or on the architecture of the learning agent.  

More precisely we used the following procedure: (1) The 
free parameters of the agents neural controller (i.e. the 
connection weights and biases) are set randomly with an 
uniform distribution within the range [-5.0, 5.0]; (2) The agent 
is allowed to live for 200 trials and its performance are 
evaluated; (3) The free parameters are varied; (4) The 
performance of the agent are re-evaluated and the variation of 
the free parameters are retained or discarded depending on 
whether they produce an increase or a decrease of the agent's 
performance. To reduce the computational cost, maladaptive 
variations are discarded after 20 trials while possibly adaptive 
variations are retained only after a test period of 200 trials; (5) 
The third and fourth step are repeated for 100000 learning 
cycles.  
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Variations are introduced by replacing each free parameter 
with a new value, randomly selected with a uniform 
distribution on the same range, with a probability of 5 %.  

 
Fig. 3. Performance of 10 agents trained with simulated annealing at the 

end of the training phase. Test performance is obtained by testing the agent for 
1000 trials. 

 
Variations that lead to equal or better performance are 

always retained. Variations that lead to worse performance, 
instead, are retained only with a probability computed 
according to the following equation: 

 

  p = exp
f(t ) − f(t−1)

T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                  (1) 

 
Where f is the evaluation function, t is the learning cycle, and 
T is a temperature that decreases linearly from 0.02 to 0.0 
during the 100000 learning cycles. This means that 
maladaptive variations are retained only with a probability that 
is inversely proportional to their negative effects and that is 
progressively reduced as the learning process proceeds.  

 
Fig. 4. Output of the categorization module produced for the four 

objects. Each column represents the categorization output produced 
by the individual of a different replication of the experiment at the 
end of the learning phase. Circles and squares indicate the output 

produced for α and β objects, respectively. 

The experiment was replicated for 10 individuals starting with 
different randomly assigned free parameters (Fig. 3). As can 
be seen, performance varies in different replications from 
rather good performance (in the case of replications 7 and 10) 
to very poor performance (in the case of replications 1, 2 and 
4). 

Significant differences in performance within the 10 
replications of the experiment are also observed with respect 
to agent's categorization abilities (Fig. 4). In fact, an effective 
categorization, in which objects corresponding to the same 
category are represented similarly and objects of α and β 
categories are well separated in the representation space, only 
occurs in the case of replication 7 and 10 that corresponds to 
the best performing individuals.  

These results indicate that the chosen problem is difficult to 
learn individually. In the following section we will analyze 
whether social learning and the combination of individual and 
social learning can enhance agents' learning capabilities. 
 

III. SOCIAL LEARNING 
 
In this section we describe the results obtained by training 
agents with the architecture described in section II in two 
different conditions: (1) on the basis of a social learning, or (2) 
on the basis of a combination of social and individual learning. 
Social learning consists in the attempt to approximate the 
behaviour produced by an experienced agent (i.e. the best 
agent obtained through the individual learning procedure 
described in the previous section). Individual learning consists 
in the attempt to improve agent’s foraging abilities (i.e. the 
same process described in section II). 

Since the problem to be solved require two abilities, i.e. an 
ability to categorize different food elements and an ability to 
display an approaching or avoidance behaviour, for both 
conditions we run three sets of experiments in which social 
learning involved the approximation of: (1) the motor actions 
produced by the experienced agent only, (2) the motor and 
categorization actions produced by the experienced agent, (3) 
the categorization output produced by the experienced agent 
(see Fig. 5). 

It should be noticed that in a realistic setting the motor and 
categorization actions produced by the experienced agents are 
not directly accessible to inexperienced agents. They are 
accessible only indirectly through sensory states that provide 
indirect and often incomplete information on what another 
agent is doing and on how it is categorizing different 
environmental conditions (e.g. by producing different 
vocalizations in different environmental circumstances). This 
aspect implies that agents that learn socially need to solve the 
so-called "correspondence problem" [12] that consists in the 
need to translate the sensory information that provide indirect 
information on what another agent is doing into corresponding 
motor outputs to be produced by the inexperienced agent. This 
important aspect is simplified in our experiments by assuming 
that the learning and the experienced agents are placed in the 
same environmental condition (i.e. that the learning agent is 
“on the shoulder” of the experienced agent) and that the 
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learning agent has direct access to the motor commands 
executed by the experienced agent. The rational for this 
simplification is that in this paper we want to study whether 
and in which conditions social learning can produce an 
adaptive advantage independently from the extent to which 
this correspondence problem is solved. 

 
Fig. 5. A schematisation of the social learning process. The 

learning robot try to approximate the motor action produced by the 
experienced robot (full arrow) and/or the categorization performed 

by the experienced robot (dotted arrow). 
 

Our hypothesis in performing these experiments is that the 
availability of a an explicit good model, constituted by the best 
experienced individual, would eases the task of developing the 
requested capability with respect to an individual learning 
scenario in which the solution of the problem should be 
discovered from scratch. 
 
Experimental setting and results 

 
During social learning the inexperienced agent is placed “on 
the shoulder” of the experienced agent (i.e. the inexperienced 
agent receives the same sensory state of the experienced agent 
and moves on the basis of the motor actions produced by the 
experienced agent, for other related models see [13-19]). 
Social learning is realised on the basis of the simulated 
annealing algorithm described in section II. The evaluation 
function, however, is based on the sum of the discrepancies of 
the motor and/or categorization outputs of the two agents: 
variations are retained or discarded on the basis of their impact 
on the ability to approximate the experienced agent’s output.  

In the experiments in which agents are allowed to learn 
socially and individually, the learning process involves two 
phases. During the first phase, lasting 50000 learning cycles, 
variations are retained or discarded on the basis of their impact 
on the approximation learning task only, During the second 
phase, lasting 50000 learning cycles, variations are retained or 
discarded on the basis of the weighted sum of agent’s ability 
to approximate the sensory-motor mapping produced by the 
experienced individual and to forage. Such weighted sum of 
(∆w) is computed according to the following equations: 

 
     ∆w = f (I)W + f (S)(1−W )             (2) 

 
     W = C

Cmax
                         (3) 

 

 
Fig. 6. Average performance and standard deviation for 10 

replications in the following experimental conditions: IL: agents 
that learning individually only (see section 2.2); SIL: agents that 

learn socially and individually; SL: agents that learn socially only. 
Social learning has been realized in three different conditions:  (1) 
by approximating only the motor output of the experienced agent; 

(2) by approximating the motor and the categorization output of the 
experienced agent; (3) by approximating only the categorization 

output of the experienced agent. 
 

Where f(I) indicates the performance with respect to the 
individual learning task and f(S) indicates the performance 
with respect to the social learning task, C is the learning cycle 
during the second phase (ranging between 0 and 50000), and 
Cmax is a constant equal to 50000. 

As shown in Fig. 6, the possibility to learn socially only 
from the best experienced agent do indeed lead to better 
performance with respect to the situation in which agents learn 
to forage individually only, with respect to the average 
performance of the group. Notice that condition SL3, i.e. the 
experimental condition in which agents learn socially by 
approximating the categorization of the experienced agents, 
can’t be adaptive by definition since the performance of the 
learning agents are never evaluated in respect to the foraging 
ability.  

We nonetheless can observe a significant difference 
between the condition in which agents learn socially and 
individually and the condition in which they learn only 
socially --- the performance in the former condition are much 
better both from the point of view of the average performance 
and from the point of view of the performance of the best 
learning individual.  

The fact that the social learning alone lead to worse 
performance with respect to the combination of individual and 
social learning can be explained by considering that the 
reduction of the discrepancy between the outputs produced by 
the inexperienced and the experienced agents does not 
necessary produce an improvement on the foraging 
performance (Fig. 7).    Indeed, small differences between the 
outputs of the two agents (e.g. summed square error < 0.05) 
might correspond to huge differences in term of performance. 
This fact, in turn, can be explained by considering that 
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sequential behavioural abilities, such us for example reaching 
a food element through a sequence of movements, are 
dynamical properties resulting from a sequence of non-linear 
interactions between the agent and the environment where 
small differences at the level of the interactions might lead to 
significant differences at the level of the resulting behaviour 
[20, 21].  

Other differences between the cases in which agents learn 
socially or socially and individually will be discussed in the 
following sections. 

 

 
Fig. 7.  Summed square difference (error) between the motor 
actions produced by the experienced and the learning agent 

(bottom) and performance of the learning agent on the foraging 
task (top) during a typical experiment in which an inexperienced 
agent learns to approximate the sensory-motor mapping produced 
by the best experienced agent. Performance on the foraging task 

has been measured by stopping the learning process and by testing 
the learning individual after each learning trial. 

 
IV. ITERATED CULTURAL TRANSMISSION 

 
In this section we describe a set of experiments in which we 
tested whether the abilities acquired through the social or 
social and individual process described in the previous section 
can be further transmitted to other individuals so to realize an 
iterated cultural transmission process in which learning agents 
later become and act as experienced agents.  

This iterated cultural transmission process was realized by 
repeating the social learning process described in the previous 
section for a certain number of generations, by selecting as 
experienced agent for generation g+1 the agent of generation g 
with the best performance with respect to the foraging task, 
and by using as inexperienced agents individuals with 
randomly assigned free parameters. Notice how this 
experimental setting involves a vertical transmission process 
only (for related experiments involving both vertical and 
horizontal transmission process, see [22, 15]). In the 
experiment reported in this section the populations of learning 
agents consisted on 10 individuals, with randomly initialised 
free parameters. Only a single learning agent was selected as 

experienced agent for the succeeding generation. The best 
individual obtained through individual learning (see section II) 
was used as experienced agent for generation 1. Iterated 
learning was realized by using the simulated annealing 
algorithm described in the previous section and by allowing 
the inexperienced agent to approximate the motor and 
categorization outputs of the experienced agent (i.e. we 
selected the variation of the experiments performed in the 
previous section that produced the best results). All other 
parameters were kept the same as those described in the 
previous section. 

 
Fig. 8.  Best and average performance through out generations in 

an iterated cultural transmission process in which agents learn 
through a combination of individual and social learning The plain 

line represents the moving average of the data. 
 

 
Fig. 9. Best and average performance through out generations in an 
iterated cultural transmission process in which agents learn through 
social learning only. The plain line represents the moving average of 

the data. 
 

The obtained results indicate that, in the condition in which 
individuals learn socially and individually, the skills 
developed by the best individuals of previous generations are 
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successfully transmitted to individuals of succeeding 
generations (Fig. 8) while, in the case in which individuals 
learn socially only,  performance deteriorate through out 
generations (Fig. 9). The increase in the average performance 
observed in the former case indicates that social learning in 
combination with individual learning enhances agents’ ability 
to develop effective foraging skills. The increase in the 
performance of the best individual through out generations 
indicate that the iterated social learning process lead to a 
cumulative cultural evolutionary process in which the skills 
and the characteristics of the skills that are acquired through 
social and individual leaning evolve through out generations 
(for a related result in the context of the emergence of a 
communication system, see [23]).  

These conclusions are further demonstrated by comparing 
the performance agents that have been subjected to: (1) an 
individual learning process only, (2) a social and individual 
learning process (i.e. individuals of generation 2), and (3) an 
iterated social and individual learning process (i.e. individuals 
of generation 10). As shown in Fig. 10, in fact, agents 
subjected to the iterated learning process outperform both 
agents that have been subjected to individual and social 
learning (but not to the iterated learning process) and agents 
that have be subjected to individual learning only. The 
difference between the three conditions is significant 
according to a non-parametric analysis of variance (Kruskall-
Wallis test). 

To identify the nature of the innovations occurred through 
out generations and successfully transmitted to individuals of 
successive generations in the experiments in which agents 
learned individually and socially we measure the percentage 
of α and β elements reached (Fig. 11) and the average time 
needed to reach α elements (Fig. 12) for agents of generation 
2 and 10 (i.e. for agents that were not or where exposed to 
iterated individual and social learning processes, respectively). 
Obtained results indicate that from generation 2 to generation 
10 performance increase both with respect to the ability to 
produce correct behaviors (i.e. by reaching α elements and 
avoiding β elements) and with respect to the ability to reach α 
elements quickly so to reduce the risk to not reach the food 
elements within the given time. The fact that agents of 
generation 10 reach food elements more quickly than agents of 
generation 2 indicate that progresses through out generations 
concern agents’ motor skills. The fact that the best agent of 
generation 2 erroneously reach β2 (i.e. one of the two 
poisonous elements) in about 10% of the cases while the best 
agent of generation 10 never produce this type of error 
demonstrates how progresses through out generation concern 
also agents’ categorization abilities (i.e. agent ability to treat 
β1 and β2 objects in the same manner).  
  

 
Fig. 10.  Performance of 100 agents trained in the three 

experimental conditions: (IL) individual learning, (ICT-gen 1) 
individual and social learning, (ICT – gen 10) iterated individual 

and social learning. Boxes represent the inter-quartile range of the 
data. The horizontal lines inside the boxes indicate the median 

values. The horizontal lines outside the boxes indicate the 
minimum and maximum values.  

 

 
Fig. 11.  Percentage of objects reached in 1000 trials. α1, α2, β1, 

and β2 indicate the performance for the two food and two 
poisonous elements, respectively. The black and white histograms 

indicate the performance for agents of generation 2 and 10, 
respectively.  
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Fig. 12.  Average time (in simulation step) in which agents reach 

the two “edible” elements. The black and white histograms 
indicate the performance for agents of generation 2 and 10, 

respectively.  
 

V. DISCUSSION AND CONCLUSIONS 
 

In this paper we investigated whether social learning or the 
combination of individual and social learning can provide an 
adaptive advantage for artificial embodied agents that have to 
develop behavioral abilities that are difficult or too costly to 
acquire through individual learning only.   

To achieve this objective we devised a simple experimental 
scenario that requires the acquisition of an ability to categorize 
different environmental conditions (i.e. edible and poisonous 
food elements) and to produce simple sequential behaviors 
(i.e. approaching and avoiding a food element). We developed 
a new algorithm that allows embodied agents to adapt on the 
basis of the combination of a social and individual learning 
processes and a cultural evolutionary algorithm in which 
individuals of succeeding generations learn socially and 
individually by interacting with the best individuals of 
previous generations. We showed how agents that learn on the 
basis of social and individual learning outperform agents that 
learn on the basis of an individual learning only or social 
learning only. Finally, we showed how the iteration of this 
process for several generations can lead to the emergence of 
an ‘artificial culture’ in which new skills or new 
characteristics of agents’ skills discovered by specific 
individuals through learning are culturally transmitted 
throughout generations together with other pre-existing skills.   

The adaptive advantages obtained by combining social and 
individual learning can be explained by considering that: (a) 
the possibility to develop through social learning strategies 
that resemble that of successful individuals reduces the risk 
that individual learning is stacked in local minima, and (b) the 
possibility to refine the strategy acquired through social 
learning through individual learning overcomes the problem 
that small differences between the sensory-motor mapping 
produced by the experienced and inexperienced agent might 
cause significant differences in performance. 

The fact that the iteration of individual and social learning 
processes combined with the selection of the best individual 
and the end of the learning process as experienced individual 
leads to an increase in performance through out generations 
can be explained by considering that: (a) the combination of 
individual and social learning leads to a reliable transmission 
of skills acquired in previous generations, and (b) the 
possibility to develop skills that are similar but not identical to 
those of experienced individuals allow agents to explore new 
types of solutions that can be further optimized through 
individual learning so to lead to solutions that are better than 
those of current experienced individuals. Overall these two 
factors lead to a cumulative cultural evolutionary process in 
which skills developed in previous generations are preserved 
in successive generations and in which novelties occurring as 
the result of social and individual learning are integrated with 
previously developed skills. 

 The obtained results also indicate how social and individual 
learning have different characteristics that make these two 
forms of learning effective in certain cases and weak in other 
cases. In particular, we showed how social learning, if realized 
by reducing the differences in the sensory-motor mapping 
produced by an inexperienced agents and an experienced 
agents at the level of fine-grained behavior, might produce 
rather poor performance when the skills to be acquired consist 
of sequential behaviors.  

 The complementary characteristics of the two learning 
processes confirm the importance of combining them and 
indicate that the two processes might play partially different 
roles. In particular, these considerations suggest that the main 
role of imitational learning might be in the acquisition of 
macro-behaviors and behavioral arbitration mechanisms (i.e. 
the acquisition of an ability to identify the type and the 
number of behaviors to be executed in different 
circumstances) while the main role of individual learning 
might be in the acquisition of elementary behavioral abilities 
(i.e. the ability to produce a sequence of fine-grained 
interaction with the environment that lead to the production of 
a given elementary behavior). For a similar view, see [16, 24].  

These considerations are coherent with the observation that 
social learning in real animals is always paired and intertwined 
with individual learning [3, 5]. 

 In future work we plan to apply the model proposed in this 
paper in more realistic robotic scenarios and to investigate the 
possibility to implement in artificial agents simpler forms of 
social learning [3, 9, 10] that do not require an explicit 
imitation of the behavior exhibited by experienced agents and 
in which the social transmission of skills occur more 
indirectly. 
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