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Abstract.

There are two main examples where a version of the Minimal
Model Program can, at least conjecturally, be performed successfully:
the first is the classical MMP associated to the canonical divisor, and
the other is Mori Dream Spaces. In this paper we formulate a frame-
work which generalises both of these examples. Starting from divisorial
rings which are finitely generated, we determine precisely when we can
run the MMP, and we show why finite generation alone is not sufficient
to make the MMP work.

§1. Introduction

There are two classes of projective varieties whose birational ge-
ometry is particularly interesting and rich. The first family consists of
varieties where the classical Minimal Model Program (MMP) can be
performed successfully with the current techniques. The other class is
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that of Mori Dream Spaces. We now know that, in both cases, the geom-
etry of birational contractions from the varieties in question is entirely
determined by suitable finitely generated divisorial rings.

More precisely, let X be a Q-factorial projective variety that be-
longs to one of these two classes. Then, there are effective Q-divisors
D1, . . . , Dr strongly related to the geometry of X such that the multi-
graded divisorial ring

R = R(X;D1, . . . , Dr) =
⊕

(n1,...,nr)∈Nr

H0(X,n1D1 + · · ·+ nrDr)

is finitely generated. In the first case, R is an adjoint ring; in the second,
it is a Cox ring. Then, for any divisor D in the span S =

∑
R+Di, finite

generation implies the existence of a birational map ϕD : X 99K XD,
where ϕD is a composition of elementary surgery operations that can be
fully understood. Both XD and (ϕD)∗D have good properties: XD is
projective and Q-factorial, and (ϕD)∗D is semiample.

In addition, there is a decomposition of S =
⋃Sj into finitely many

rational polyhedral cones, together with birational maps ϕj : X 99K Xj ,
such that the pushforward under ϕj of every divisor in Sj is a nef divi-
sor on Xj . In this paper, we say that these models ϕj : X 99K Xj are
optimal ; the precise definition is in Section 2. By analogy with the clas-
sical case, the map ϕj : X 99K Xj is called a D-MMP. After Shokurov,
the decomposition of S above is called a geography of optimal models
associated to R.

The goal of this paper is twofold. On the one hand, we want to
put these two families of varieties under the same roof. That is to say,
we want to identify the maximal class of varieties and divisors on them
where a suitable MMP can be performed. On the other hand, we want to
understand why this class is the right one, i.e. what the key ingredients
that make the MMP work are.

Let D be a Q-divisor on a variety X in one of the two families above.
The D-MMP has two significant features, which we would like to extend
to a more general setting:

(i) all varieties in the MMP are Q-factorial,
(ii) the section ring R(X,D) is preserved under the operations of

the MMP.

Condition (ii) is by now well understood: contracting maps that preserve
sections of D are D-nonpositive – we recall this definition in Section 2.
Somewhat surprisingly, preserving Q-factoriality is the main obstacle to
extending the MMP to arbitrary varieties X and divisors D, even when
the rings R(X,D) are finitely generated; this is explained in Section 4.
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In this work, we introduce the notion of gen divisors. We say that
a Q-divisor D on a Q-factorial projective variety X is gen if every Q-
divisor in its numerical equivalence class has a finitely generated section
ring. Ample divisors are examples of gen divisors. As we explain in
Section 4, in the situations of interest to us, these form essentially the
only source of examples: indeed, all gen divisors there come from ample
divisors on the end products of some MMP. However, one should bear
in mind that semiample divisors are not necessarily gen.

The main result of this paper is the following.

Theorem 1.1. Let X be a projective Q-factorial variety, let D1, . . . ,
Dr be effective Q-divisors on X, and assume that the numerical classes
of Di span N1(X)R. Assume that the ring R(X;D1, . . . , Dr) is finitely
generated, that the cone

∑
R+Di contains an ample divisor, and that

every divisor in the interior of this cone is gen.
Then there is a finite decomposition∑

R+Di =
∐
Ni

into cones having the following properties:

(1) each Ni is a rational polyhedral cone,
(2) for each i, there exists a Q-factorial projective variety Xi and a

birational contraction ϕi : X 99K Xi such that ϕi is an optimal
model for every divisor in Ni.

In fact, we prove a stronger result: we show that for any Q-divisor
D ∈∑R+Di, we can run a D-MMP which terminates, see Theorem 5.4
for the precise statement. The decomposition in Theorem 1.1 determines
a geography of optimal models associated to R(X;D1, . . . , Dr). The
techniques used in this paper build on and extend those from [4].

Our work has been influenced by several lines of research. The
original idea that geographies of various models are the right thing to
look at is due to Shokurov [17], and the first unconditional results were
proved in [1]. Similar decompositions were considered in the context of
Mori Dream Spaces by Hu and Keel [8], and as we demonstrate here,
these are closely related to the study of asymptotic valuations in [6].
Theorem 1.1 reproves and generalises some of the main results from
these papers. We obtain in Corollary 5.6 the finiteness of models due
to [1] by using the main theorem from [3]. Further, in Corollary 5.7
we prove a characterisation of Mori Dream Spaces in terms of the finite
generation of their Cox rings due to [8] without using GIT techniques.

Along the way, we establish several results of independent interest.
Theorem 3.8 shows that the nef and movable cones on Calabi-Yau va-
rieties are locally rational polyhedral inside the big cone, and Lemma
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3.11 gives a sufficient condition for the stable base loci of numerically
equivalent divisors to coincide.

We spend a few words on the organisation of the paper. Section 2
sets the notation and gathers some preliminary results. Section 3 focuses
on finite generation of divisorial rings, and contains a number of results
which are either of independent interest, or are used later in the paper.

In Section 4, we show the existence of a decomposition
∑

R+Di =∐Ai similar to that from Theorem 1.1, where all divisors in a given
chamberAi have a common ample model, see Theorem 4.2. We study the
geography of ample models. The main drawback of this decomposition is
that the corresponding models are not Q-factorial in general. Moreover,
we show in Example 4.8 that the conditions of Theorem 4.2 are not
sufficient to ensure the existence of optimal models as in Theorem 1.1.
We explain why the presence of gen divisors is essential to the proof of
Theorem 1.1. However, we give a short proof that some of these models
are indeed Q-factorial in the case of adjoint divisors in Theorem 4.5.

In Section 5, we define what is meant by the MMP in our setting; it
is easy to see that this generalises the classical MMP constructions. We
then prove Theorem 5.4, which is a strengthening of Theorem 1.1. The
main technical result is Theorem 5.2, and the presence of gen divisors is
essential to its proof. We mention here that this reveals the philosophical
role of the gen condition: it enables one to prove a version of the classical
Basepoint free theorem, which is why we can then run the Minimal
Model Program and preserve Q-factoriality in the process. We end the
paper with several corollaries that recover quickly some of the main
results from [1] and [8].

§2. Preliminary results

Throughout this paper we work with varieties defined over C. Unless
otherwise stated, all varieties are projective and normal. We denote by
R+ and Q+ the sets of non-negative real and rational numbers.

Convex geometry. Let C ⊆ RN be a convex set. A subset F ⊆ C is a
face of C if it is convex, and whenever tu+(1− t)v ∈ F for some u, v ∈ C
and 0 < t < 1, then u, v ∈ F .

The topological closure of a set S ⊆ RN is denoted by S. The
boundary of a closed set C ⊆ RN is denoted by ∂C.

A rational polytope in RN is a compact set which is the convex hull
of finitely many rational points in RN . A rational polyhedral cone in
RN is a convex cone spanned by finitely many rational vectors. The



Finite generation and geography of models 5

dimension of a cone in RN is the dimension of the minimal R-vector
space containing it.

A finite rational polyhedral subdivision C =
⋃ Ci of a rational poly-

hedral cone C is a fan if each face of Ci is also a cone in the decomposition,
and the intersection of two cones in the decomposition is a face of each.

Divisors and line bundles. Let X be a normal projective variety
and let k ∈ {Z,Q,R}. We denote by Divk(X) the group of k-Cartier
k-divisors on X, and ∼k and ≡ denote the k-linear and numerical equiv-
alence of R-divisors. If there is a morphism X → Y to another normal
projective variety, numerical equivalence over Y is denoted by ≡Y . We
denote Pic(X)k = Divk(X)/ ∼k and N1(X)k = Divk(X)/ ≡.

The ample, big, nef, effective, and pseudo-effective cones in N1(X)R
are denoted by Amp(X), Big(X), Nef(X), Eff(X), and Eff(X). The
movable cone Mov(X) is the closure of the cone in N1(X)R spanned by
the classes of divisors whose base locus has codimension at least 2.

If X is a normal projective variety, and if D is an R-divisor on X,
then the group of global sections of D is

H0(X,D) =
{
f ∈ k(X) | div f +D ≥ 0

}
,

and the associated section ring is defined as

R(X,D) =
⊕
m∈N

H0(X,mD).

A pair (X,∆) consists of a normal projective variety X and an R-
divisor ∆ ≥ 0 on X such that KX + ∆ is R-Cartier. When (X,∆) is a
pair, KX +∆ is an adjoint divisor. The pair (X,∆) has klt (respectively
log canonical) singularities if for every log resolution f : Y → X, the
divisor KY − f∗(KX + ∆) has all coefficients > −1 (respectively ≥ −1).

A projective variety X is said to be of Calabi-Yau type if there exists
a Q-divisor ∆ ≥ 0 such that (X,∆) is klt and KX + ∆ ≡ 0.

If X is a normal projective variety, and if D is an integral divisor
on X, we denote by Bs |D| the base locus of D, whereas Fix |D| and
Mob(D) denote the fixed and mobile parts of D. If D is an R-divisor on
X, we denote

|D|R = {D′ ≥ 0 | D ∼R D
′} and B(D) =

⋂
D′∈|D|R

SuppD′,

and we call B(D) the stable base locus of D. We set B(D) = X if
|D|R = ∅.
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As mentioned in the introduction, we pay special attention to two
classes of varieties: varieties for which the classical MMP can be per-
formed successfully on the one hand, and Mori Dream Spaces on the
other. We recall some definitions related to their study.

Definition 2.1. LetX be a projective Q-factorial variety, let S1, . . . ,
Sp be distinct prime divisors on X, denote V =

∑p
i=1 RSi ⊆ DivR(X),

and let A be an ample Q-divisor on X. We define

L(V ) = {∆ ∈ V | (X,∆) is log canonical},
EA(V ) = {∆ ∈ L(V ) | |KX +A+ ∆|R 6= ∅}.

It is easy to check that L(V ) is a rational polytope, cf. [1, Lemma
3.7.2]. On the other hand, the fact that EA(V ) is a rational polytope is
much harder, see Corollary 3.6.

Definition 2.2. A projective Q-factorial variety X is a Mori Dream
Space if

(1) Pic(X)Q = N1(X)Q,
(2) Nef(X) is the affine hull of finitely many semiample line bun-

dles, and
(3) there are finitely many birational maps fi : X 99K Xi to pro-

jective Q-factorial varieties Xi such that each fi is an isomor-
phism in codimension 1, each Xi satisfies (2), and Mov(X) =⋃
f∗i
(

Nef(Xi)
)
.

Models. LetX be a normal projective variety and letD be an R-Cartier
divisor on X. We adopt some of the definitions of models of D from [1].
The models defined below are significant because they provide correct
generalisations of minimal and canonical models for divisors which are
not necessarily adjoint.

Definition 2.3. Let D ∈ DivR(X) and let ϕ : X 99K Y be a con-
traction map to a normal projective variety Y such that D′ = ϕ∗D is
R-Cartier.

(1) The map ϕ is D-nonpositive (respectively D-negative) if it is
birational, and for a common resolution (p, q) : W → X × Y ,
we can write

p∗D = q∗D′ + E,

where E ≥ 0 is q-exceptional (respectively E ≥ 0 is q-ex-
ceptional and SuppE contains the strict transform of the ϕ-
exceptional divisors).

(2) The map ϕ is an optimal model of D if ϕ is D-negative, Y is
Q-factorial and D′ is nef.
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(3) The map ϕ is a semiample model of D if ϕ is D-nonpositive
and D′ is semiample.

(4) The map ϕ is the ample model of D if there exist a birational
contraction f : X 99K Z which is a semiample model of D, and
a morphism with connected fibres g : Z → Y such that ϕ = g◦f
and f∗D = g∗A, where A is an ample R-divisor on Y .

Remark 2.4. (i) If the birational contraction ϕ : X 99K Y
is D-nonpositive for some D ∈ DivQ(X), then H0(X,D) '
H0(Y, ϕ∗D).

(ii) The ample model is unique up to isomorphism. Indeed, with
the notation from Definition 2.3, we may assume that D is a
Q-divisor, and (i) shows that R(X,D) ' R(Z, f∗D). This last
ring is isomorphic to R(Y,A), and therefore Y ' ProjR(X,D).
Note that in Definition 2.3(4), when D is a Q-divisor, the map
g is the semiample fibration associated to D, see [14, Theorem
2.1.27].

(iii) In this paper we require that the ample model factors through
a semiample model (compare with [1, Definition 3.6.5, Lemma
3.6.6(3)]).

(iv) When D is an adjoint divisor, then optimal, semiample and
ample models are called log terminal, good and log canonical
models, respectively.

We recall the following important result known as the Negativity
lemma, see [10, Lemma 2.19]. This result and its corollary will be used
in Sections 4 and 5.

Lemma 2.5. Let f : X → Y be a proper birational morphism, where
X is normal, and let E be an f-exceptional divisor on X. Assume that
E ≡Y H +D, where H is f -nef and D ≥ 0 has no common components
with E. Then E ≤ 0.

Corollary 2.6. Let X → Z and Y → Z be projective morphisms of
normal projective varieties. Let f : X 99K Y be a birational contraction
over Z, and let (p, q) : W → X × Y be a resolution of f . Let D and D′

be R-Cartier divisors on X such that f∗D and f∗D′ are R-Cartier on
Y , and assume that D ≡Z D′. Then

p∗D − q∗f∗D = p∗D′ − q∗f∗D′.

In particular, f is D-nonpositive (respectively D-negative) if and only if
f is D′-nonpositive (respectively D′-negative).
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Proof. This result is [1, Lemma 3.6.4]. The divisor E = p∗(D −
D′)−q∗f∗(D−D′) is q-exceptional since f is a contraction, and we have
E ≡Y 0. We conclude by Lemma 2.5. Q.E.D.

Asymptotic valuations. A geometric valuation Γ over a normal va-
riety X is a valuation on k(X) given by the order of vanishing at the
generic point of a prime divisor on some birational model f : Y → X. If
D is an R-Cartier divisor on X, we abuse notation and write multΓD
to denote multΓ f

∗D.
The following definition is due to Nakayama.

Definition 2.7. Let X be a normal projective variety, let D be an
R-Cartier divisor such that |D|R 6= ∅, and let Γ be a geometric valuation
over X. The asymptotic order of vanishing of D along Γ is

oΓ(D) = inf{multΓD
′ | D′ ∈ |D|R}.

If D is a big divisor, we define

Nσ(D) =
∑

Γ oΓ(D) · Γ and Pσ(D) = D −Nσ(D),

where the sum runs over all prime divisors Γ on X.

Remark 2.8. On a surface X, the construction above gives the
classical Zariski decomposition: this is a unique decomposition D =
Pσ(D)+Nσ(D), where Pσ(D) is nef, and Nσ(D) =

∑
γiΓi is an effective

divisor such that Pσ(D) · Γi = 0 for all i, and the matrix (Γi · Γj) is
negative definite. We use this characterisation in Example 4.8.

Lemma 2.9. Let X be a Q-factorial projective variety, let D be
a big R-divisor, and let Γ be a prime divisor. Then oΓ(D) depends
only on the numerical class of D. The function oΓ is homogeneous of
degree one, convex and continuous on Big(X). The formal sum Nσ(D)
is an R-divisor, the divisor Pσ(D) is movable, and for any R-divisor
0 ≤ F ≤ Nσ(D) we have Nσ(D − F ) = Nσ(D) − F . If E ≥ 0 is an
R-divisor on X such that D − E ∈ Mov(X), then E ≥ Nσ(D).

Proof. See [15, §III.1]. Q.E.D.

In certain situations we have more information on the divisor Pσ(D).

Lemma 2.10. Let X be a Q-factorial projective variety, and let
D be a big Q-divisor on X. Assume that the cone Mov(X) is rational
polyhedral.

Then Pσ(D) is a Q-divisor, and R(X,D) is finitely generated if and
only if R(X,Pσ(D)) is finitely generated.
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Proof. Let Γi be the components of Nσ(D), and denote

H = D −
∑

R+Γi and G = Pσ(D)−
∑

R+Γi.

Then we have Mov(X) ∩ H ⊆ G by Lemma 2.9. Since Mov(X) ∩ H
is an intersection of finitely many rational half-spaces, and as Pσ(D) ∈
Mov(X) is an extremal point of G, we conclude that Pσ(D) is a Q-divisor.

For the second statement, we may assume that D is an integral
divisor and that |D| 6= ∅, so the claim follows from Pσ(mD) ≥ Mob(mD)
for every positive integer m. Q.E.D.

The proof of the following lemma is analogous to that of [4, Lemma
5.2], and it will be used in Section 5 to ensure that a certain MMP
terminates.

Lemma 2.11. Let f : X 99K Y be a birational contraction between
projective Q-factorial varieties, and let C ⊆ DivR(X) be a cone such
that f is D-nonpositive for all D ∈ C. Let Γ be a geometric valuation
on k(X).

Then oΓ is linear on C if and only if it is linear on the cone f∗C ⊆
DivR(Y ).

Proof. Let (p, q) : W → X×Y be a resolution of f . Then for every
D ∈ C we have p∗D = q∗f∗D + ED, where ED ≥ 0 is a q-exceptional
divisor. This implies that f∗ restricts to an isomorphism between |D|R
and |f∗D|R. Denote

VD = {DX−D | DX ∈ |D|R} and WD = {DY −f∗D | DY ∈ |f∗D|R}.

By the above, we have the isomorphism f∗|VD
: VD ' WD, and also

multΓ PX = multΓ f∗PX for every PX ∈ VD by [4, Lemma 5.1(2)].
Therefore

oΓ(D)−multΓD = inf
PX∈VD

multΓ PX

= inf
PX∈VD

multΓ f∗PX = oΓ(f∗D)−multΓ f∗D,

hence the function oΓ(·) − oΓ

(
f∗(·)

)
: C → R is equal to the linear map

multΓ(·)−multΓ f∗(·). The lemma follows. Q.E.D.

§3. Around finite generation

In this section, we recall the definition of divisorial rings on a normal
projective variety from [3, 4], and we give some examples that we use
later – adjoint rings, and rings spanned by big divisors on varieties of
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Calabi-Yau type. We then relate finite generation to asymptotic valua-
tions and to properties of the stable base locus.

Divisorial rings. If X is a normal projective variety, and if S ⊆
DivQ(X) is a finitely generated monoid, then

R(X,S) =
⊕
D∈S

H0
(
X,D)

is a divisorial S-graded ring . If C ⊆ DivR(X) is a rational polyhedral
cone, then S = C ∩ Div(X) is a finitely generated monoid by Gordan’s
lemma, and we define the ring R(X, C) to be R(X,S). We also use
divisorial rings of the form

R = R(X;D1, . . . , Dr) =
⊕

(n1,...,nr)∈Nr

H0(X,n1D1 + · · ·+ nrDr),

where D1, . . . , Dr ∈ DivQ(X). If Di are adjoint divisors, the ring R is
an adjoint ring . The support of R is the cone

SuppR = {D ∈∑R+Di | |D|R 6= ∅} ⊆ DivR(X),

and similarly for rings of the form R(X, C).
If X is a Q-factorial projective with Pic(X)Q = N1(X)Q, and if

D1, . . . , Dr is a basis of Pic(X)Q such that Eff(X) ⊆ ∑
R+Di, then

R(X;D1, . . . , Dr) is a Cox ring of X. The finite generation of this ring
is independent of the choice of D1, . . . , Dr.

Throughout the paper, we use several properties of finitely generated
divisorial rings without explicit mention, see [3, §2.4] for details and
background. The one we use most is recalled in the following lemma.

Lemma 3.1. Let X be a normal projective variety, let D1, . . . , Dr

be divisors in DivQ(X), and let p1, . . . , pr be positive rational numbers.
Then the ring R(X;D1, . . . , Dr) is finitely generated if and only if

the ring R(X; p1D1, . . . , prDr) is finitely generated.

Relation to asymptotic valuations. Finite generation of a divisorial
ring R has important consequences on the behavior of the asymptotic
order functions, and therefore on the convex geometry of SuppR, as
observed in [6].

Theorem 3.2. Let X be a projective Q-factorial variety, and let
C ⊆ DivR(X) be a rational polyhedral cone. Assume that the ring R =
R(X, C) is finitely generated. Then:

(1) SuppR is a rational polyhedral cone,
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(2) if SuppR contains a big divisor, then all pseudo-effective divi-
sors in SuppR are in fact effective,

(3) there is a finite rational polyhedral subdivision SuppR =
⋃ Ci

such that oΓ is linear on Ci for every geometric valuation Γ
over X, and the cones Ci form a fan,

(4) there is a positive integer d and a resolution f : X̃ → X such
that Mob f∗(dD) is basepoint free for every D ∈ SuppR ∩
Div(X), and Mob f∗(kdD) = kMob f∗(dD) for every positive
integer k.

Proof. This is essentially [6, Theorem 4.1], see [4, Theorem 3.6].
Q.E.D.

Part (i) of the following lemma is [4, Lemma 3.8]. Part (ii) is a
result of Zariski and Wilson, cf. [14, Theorem 2.3.15].

Lemma 3.3. Let X be a normal projective variety and let D be a
divisor in DivQ(X).

(i) If |D|Q 6= ∅, then D is semiample if and only if R(X,D) is
finitely generated and oΓ(D) = 0 for all geometric valuations
Γ over X.

(ii) If D is nef and big, then D is semiample if and only if R(X,D)
is finitely generated.

Proof. If D is semiample, then some multiple of D is basepoint free,
thus R(X,D) is finitely generated by Lemma 3.1, and all oΓ(D) = 0.
Now, fix a point x ∈ X. If R(X,D) is finitely generated and ox(D) = 0,
then x /∈ B(D) by Theorem 3.2(4), which proves (i).

For (ii), let A be an ample divisor. Then D + εA is ample for any
ε > 0, hence oΓ(D+ εA) = 0 for any geometric valuation Γ over X. But
then oΓ(D) = lim

ε→0
oΓ(D + εA) = 0 by Lemma 2.9, so we conclude by

(i). Q.E.D.

Corollary 3.4. Let X be a normal projective variety and let D1, . . . ,
Dr be divisors in DivQ(X). Assume that the ring R = R(X;D1, . . . , Dr)

is finitely generated, and let SuppR =
⋃N
i=1 Ci be a finite rational poly-

hedral subdivision as in Theorem 3.2(3). Denote by π : DivR(X) →
N1(X)R the natural projection.

Then there is a set I1 ⊆ {1, . . . , N} such that

SuppR ∩ π−1
(
Mov(X)

)
=
⋃
i∈I1
Ci.
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Assume further that SuppR contains an ample divisor. Then there
is a set I2 ⊆ {1, . . . , N} such that the cone SuppR∩π−1

(
Nef(X)

)
equals⋃

i∈I2 Ci, and every element of this cone is semiample.

Proof. For every prime divisor Γ on X denote CΓ = {D ∈ SuppR |
oΓ(D) = 0}. If CΓ intersects the interior of some C`, then C` ⊆ CΓ since
oΓ is a linear non-negative function on C`. Therefore, there exists a set
IΓ ⊆ {1, . . . , N} such that CΓ =

⋃
i∈IΓ Ci. Now the first claim follows

since Mov(X) is the intersection of all CΓ.
For the second claim, note that since SuppR∩π−1

(
Nef(X)

)
is a cone

of dimension dim SuppR, we can consider only maximal dimensional
cones C`. Now, for every C` whose interior contains an ample divisor,
all asymptotic order functions oΓ are identically zero on C` similarly as
above. Therefore, by Lemma 3.3, every element of C` is semiample, and
thus C` ⊆ SuppR ∩ π−1

(
Nef(X)

)
. The claim follows. Q.E.D.

Examples of finitely generated rings. The following is a small
variation of the main result of [3], where it is proved by a self-contained
argument avoiding the techniques of the MMP. It was first proved in the
seminal paper [1] by MMP methods.

Theorem 3.5. Let X be a Q-factorial projective variety, and let
∆1, . . . ,∆r be Q-divisors such that all pairs (X,∆i) are klt.

(1) If A1, . . . , Ar are ample Q-divisors, then the adjoint ring

R(X;KX + ∆1 +A1, . . . ,KX + ∆r +Ar)

is finitely generated.
(2) If ∆i are big, then the adjoint ring

R(X;KX + ∆1, . . . ,KX + ∆r)

is finitely generated.

Proof. See [4, Theorem 3.2]. Q.E.D.

Corollary 3.6. Let X be a projective Q-factorial variety, let S1, . . . ,
Sp be distinct prime divisors on X, denote V =

∑p
i=1 RSi ⊆ DivR(X),

and let A be an ample Q-divisor on X. Let C ⊆ L(V ) be a rational
polytope such that for every ∆ ∈ C, the pair (X,∆) is klt.

Then the set C ∩ EA(V ) is a rational polytope, and the ring

R(X,R+(KX +A+ C ∩ EA(V )))

is finitely generated.



Finite generation and geography of models 13

Proof. Let B1, . . . , Br be the vertices of C. Then the ring R =
R(X;KX +B1 +A, . . . ,KX +Br +A) is finitely generated by Theorem
3.5, and we have SuppR = R+(KX + A + C ∩ EA(V )). Now the result
follows from Theorem 3.2(1). Q.E.D.

The following corollary is well known.

Corollary 3.7. Let X be a projective Q-factorial variety of Calabi-
Yau type, and let B1, . . . , Bq be big Q-divisors on X. Then the ring
R(X;B1, . . . , Bq) is finitely generated.

Proof. Let ∆ ≥ 0 be a Q-divisor such that (X,∆) is klt and KX +
∆ ≡ 0, and write Bi = Ai + Ei, where each Ai is ample and Ei ≥ 0.
Let ε > 0 be a rational number such that all pairs (X,∆ + εEi) are klt,
and denote A′i = εBi − (KX + ∆ + εEi). Then each A′i is ample since
A′i ≡ εAi, hence the adjoint ring

R(X;KX+∆+εE1 +A′1, . . . ,KX+∆+εEq+A′q) = R(X; εB1, . . . , εBq)

is finitely generated by Theorem 3.5. Therefore R(X;B1, . . . , Bq) is
finitely generated by Lemma 3.1. Q.E.D.

Part (1) of the following theorem was proved in [11], while part (2)
is a generalisation of the analogous result for 3-folds proved in [12].

Theorem 3.8. Let X be a projective Q-factorial variety of Calabi-
Yau type.

(1) The cone Nef(X) is locally rational polyhedral in Big(X), and
moreover, every element of Nef(X) ∩ Big(X) is semiample.

(2) The cone Mov(X) is locally rational polyhedral in Big(X).

Proof. We prove the result for Mov(X); the case of Nef(X) is anal-
ogous.

Let V be a relatively compact subset of the boundary of Mov(X)∩
Big(X), and denote by π : DivR(X) → N1(X)R the natural projec-
tion. Then we can choose finitely many big Q-divisors B1, . . . , Bq such
that V ⊆ π(

∑q
i=1 R+Bi). Corollary 3.7 implies that the ring R =

R(X;B1, . . . , Bq) is finitely generated, and hence π−1
(
Mov(X)

)
∩SuppR

is a rational polyhedral cone by Corollary 3.4. But then V is contained
in finitely many rational hyperplanes. Q.E.D.

Remark 3.9. The proof of Theorem 3.8 shows existence of a locally
polyhedral decomposition of the big cone on a variety X of Calabi-Yau
type, which comes from the behaviour of asymptotic valuations on this
cone. This is a consequence of the finite generation of any divisorial ring
which is supported on Big(X). On the other hand, it was shown in [2]
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that an analogous decomposition exists on any smooth surface, and it
is not a consequence of finite generation. It is an interesting problem to
establish in which contexts that result generalises to higher dimensions.

Relations to the stable base locus. As Example 3.10 shows, the
stable base locus and finite generation of section rings are not, in general,
numerical invariants. However, we prove in Lemma 3.11 that under
some finite generation hypotheses, the stable base loci of numerically
equivalent big divisors coincide.

Example 3.10. We recall [14, Example 10.3.3]. Let B be a smooth
elliptic curve, and let A be an ample divisor of degree 1 on B. Let
X = P(OB ⊕ OB(A)) be a projective bundle with the natural map
p : X → B. Let P1 be a torsion divisor on B, let P2 be a non-torsion
degree 0 divisor on B, and consider Li = OX(1) ⊗ p∗OB(Pi). Then
L1 and L2 are numerically equivalent nef and big line bundles with
∅ = B(L1) 6= B(L2), and R(X,L1) is finitely generated while R(X,L2)
is not by Lemma 3.3(2).

Lemma 3.11. Let X be a Q-factorial projective variety, and let
D1 and D2 be big Q-divisors such that D1 ≡ D2. Assume that the
rings R(X,Di) are finitely generated, and consider the maps ϕi : X 99K
ProjR(X,Di).

Then we have B(D1) = B(D2), and there is an isomorphism

η : ProjR(X,D1)→ ProjR(X,D2)

such that ϕ2 = η ◦ ϕ1.

Proof. Since finite generation holds, we have B(Di) = {x ∈ X |
ox(Di) > 0}, so the first claim follows immediately from Lemma 2.9.

For the second claim, by passing to a resolution and by Theorem 3.2,
we may assume that there is a positive integer k such that Mob(kDi) are
basepoint free, and Mob(pkDi) = pMob(kDi) for all positive integers p.
Note that then Pσ(Di) = 1

k Mob(kDi), and that

Pσ(D1) ≡ Pσ(D2)(1)

since Nσ(D1) = Nσ(D2) by Lemma 2.9. Thus ϕi is given by the linear
system |kpPσ(Di)| for some p� 0. But then (1) shows that ϕ1 and ϕ2

contract the same curves, which implies the claim. Q.E.D.

§4. Geography of ample models

In this section we study the geography of ample models associated
to a finitely generated divisorial ring R = R(X;D1, . . . , Dr). More
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precisely, there is a decomposition SuppR =
∐Ai into finitely many

chambers together with contracting maps ϕi : X 99K Xi, such that ϕi is
the ample model for every divisor in Ai. We study these ample models in
the special case of adjoint divisors; then, the varieties Xi are Q-factorial
when the numerical classes of the elements of Ai span N1(X)R. This is
a highly desirable feature which we would like to preserve in the general
case. We then formally introduce the gen condition, and show – both
by analysis and by example – that it is necessary in order to perform a
Minimal Model Program in a more general setting.

We first recall the following important result [16, Proposition 1.2].
We follow closely the proof of [5, Lemma 7.10].

Lemma 4.1. Let X be a smooth variety and let D be a big divisor
on X. Assume that, for every positive integer m, the divisor Mm =
Mob(mD) is basepoint free, that Mm = mM1, and that Fix |D| has
simple normal crossings. Let ϕ : X → Y be the semiample fibration
associated to M1.

Then every component of Fix |D| is contracted by ϕ. In particular,
we have R(X,D) ' R(Y, ϕ∗D).

Proof. Denote n = dimX. We may assume that ϕ is the morphism
associated to M1, and then OX(M1) = ϕ∗OY (1) for a very ample line
bundle OY (1) on Y . Let Γ be a component of Fix |D|. We need to show
that h0(ϕ(Γ),Oϕ(Γ)(m)) ≤ O(mn−2).

Since OX(Mm) = ϕ∗OY (m) and the natural map Oϕ(Γ) → ϕ∗OΓ is
injective, we have

(2) h0(ϕ(Γ),Oϕ(Γ)(m)) ≤ h0(ϕ(Γ),OY (m)⊗ϕ∗OΓ) = h0(Γ,OΓ(Mm)).

Write Γ|Γ ∼ G+ − G−, where G+, G− ≥ 0 are Cartier divisors on Γ.
Consider the exact sequences

(3) 0→ H0(Γ,Mm|Γ −G−)→ H0(Γ,Mm|Γ)→ H0(G−,Mm|G−)

and

H0(X,Mm)→ H0(X,Mm + Γ)(4)

→ H0(Γ, (Mm + Γ)|Γ)→ H1(X,Mm).

Since Fix |mD| = mFix |D|, the divisor Γ is a component of Fix |mD|,
hence the first map in (4) is an isomorphism and the last map in (4) is



16 Anne-Sophie Kaloghiros, Alex Küronya, and Vladimir Lazić

an injection. Therefore, from (2), (3) and (4) we have

h0(ϕ(Γ),Oϕ(Γ)(m)) ≤ h0(Γ,Mm|Γ)

≤ h0(Γ,Mm|Γ −G−) + h0(G−,Mm|G−)

≤ h0(Γ, (Mm + Γ)|Γ) + h0(G−,Mm|G−)

≤ h1(X,Mm) + h0(G−,Mm|G−).

As h0(G−,Mm|G−) ≤ O(mn−2) for dimension reasons, it is enough to

show that h1(X,Mm) ≤ O(mn−2). To this end, consider the Leray
spectral sequence

Hp(Y,R1−pϕ∗OX(Mm))⇒ H1(X,OX(Mm)).

The terms H1(Y, ϕ∗OX(Mm)) = H1(Y,OY (m)) vanish for m � 0 by
Serre vanishing, so we need to prove

(5) h0(Y,R1ϕ∗OX(Mm)) ≤ O(mn−2).

Let U ⊆ Y be the maximal open subset over which ϕ is an isomorphism.
By [7, III.11.2], for each m the sheaf R1ϕ∗OX(Mm) is supported on the
set Y \ U of dimension at most n− 2, hence

χ(Y,R1ϕ∗OX(Mm)) ≤ O(mn−2).

But by Serre vanishing again, all the higher cohomology groups of the
sheaf R1ϕ∗OX(Mm) vanish for m� 0, and this implies (5). Q.E.D.

The following is the main result of this section – the geography of
ample models.

Theorem 4.2. Let X be a projective Q-factorial variety, and let C ⊆
DivR(X) be a rational polyhedral cone such that the ring R = R(X, C)
is finitely generated. Assume that SuppR contains a big divisor. Then
there is a finite decomposition

SuppR =
∐
Ai

into cones such that the following holds:

(1) each Ai is a rational polyhedral cone,
(2) for each i, there exists a normal projective variety Xi and a

rational map ϕi : X 99K Xi such that ϕi is the ample model for
every D ∈ Ai,
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(3) if Aj ⊆ Ai, then there is a morphism ϕij : Xi → Xj such that
the diagram

X
ϕi //

ϕj   

Xi

ϕij~~
Xj

commutes.
(4) if Ai contains a big divisor, then ϕi is a semiample model for

every D ∈ Ai.
Proof. Let SuppR =

⋃ Ci be a finite rational polyhedral decom-
position as in Theorem 3.2, and let Ai be the relative interior of Ci for
each i. We show that this is the required decomposition.

Let f : X̃ → X be a resolution and let d be a positive integer as in
Theorem 3.2. For each i, fix Di ∈ Ai ∩Div(X), and denote

Mi = Mob f∗(dDi) and Fi = Fix |f∗(dDi)|.

Then Mi is basepoint free, and let ψi : X̃ → Xi be the semiample fibra-
tion associated to Mi. Let ϕi : X 99K Xi be the induced map.

X̃

ψi

  
f

��
X

ϕi // Xi

Claim 4.3. Assume that Aj ⊆ Ai, and let C ⊆ X̃ be a curve such
that Mi ·C = 0. Then Mj ·C = 0. In other words, all curves contracted
by ψi are contracted by ψj.

Indeed, since Ai is relatively open, there exist a divisor D◦ ∈ Ai ∩
Div(X) and positive integers ki, kj , k

◦ such that kiDi = k◦D◦ + kjDj .
By the definition of f and d, the divisor M◦ = Mob f∗(dD◦) is basepoint

free, and we have kiMi = k◦M◦ + kjMj . In particular, if C ⊂ X̃ is a
curve such that Mi ·C = 0, then M◦ ·C = Mj ·C = 0, which shows the
claim.

The claim immediately implies ϕj = ϕij ◦ ϕi for some morphism
ϕij : Xi → Xj , which shows (3). In particular, when i = j and since
the divisors Di are arbitrary, this shows that the definition of ϕi is
independent of the choice of Di up to isomorphism.
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Finally, we prove (2) and (4). For any j, pick an index i such
that Aj ⊆ Ai and Ai contains a big divisor, and let E be the sum of
all f -exceptional prime divisors. Since Mob(f∗(dDi) + E) = Mi and
Fix |f∗(dDi) +E| = Fi +E, the divisors Fi and E are ψi-exceptional by
Lemma 4.1, and in particular, ϕi is a contraction.

Let D be any divisor in Aj ; without loss of generality, we may

assume that D = Dj . Since all functions oΓ are linear on Ai, we have
SuppFj ⊆ SuppFi, hence Fj is ψi-exceptional by the argument above.
As Mj = ψ∗jOXj (1), by (3) we have

f∗(dDj) = ψ∗i (ϕ∗ijOXj
(1)) + Fj ,

and the divisor (ϕi)∗(dDj) = (ψi)∗Mj = ϕ∗ijOXj (1) is basepoint free.
We conclude that ϕi is a semiample model for Dj , and ϕj is the ample
model for Dj . Q.E.D.

An immediate corollary is the following result from [8]; we prove the
converse statement in the next section.

Corollary 4.4. Let X be a Q-factorial projective variety. If X is a
Mori Dream Space, then its Cox ring is finitely generated.

Proof. We first show that the divisorial ring R(X,Mov(X)) is fi-
nitely generated. Indeed, with notation from Definition 2.2, we have
that

Mov(X) =
⋃
Cj , where Cj = f∗j Nef(Xj),

and hence it is enough to show that each ringR(X, Cj) ' R(Xj ,Nef(Xj))
is finitely generated. But this is clear because each Nef(Xj) is spanned
by finitely many semiample divisors.

Let Fi be all the faces of all Cj with the property that Fi ⊆ ∂Mov(X)
and Fi∩Big(X) 6= ∅. Let ϕi : X 99K Xi be the ample models associated
to interiors of Fi, cf. Theorem 4.2, and let Eik be the exceptional divisors
of ϕi. Denote Di = Fi +

∑
k R+Eik, and note that each Di is a rational

polyhedral cone.
We claim that

Eff(X) = Mov(X) ∪
⋃

i
Di.

To see this, let D ∈ Big(X)\Mov(X) be a Q-divisor. Then Pσ(D) is
a big Q-divisor which belongs to ∂Mov(X) by Lemma 2.10, and hence
the ring R(X,D) is finitely generated by the above. There is a face Fi0
which contains Pσ(D) in its relative interior, and ϕi0 is the ample model
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of Pσ(D) by Theorem 4.2. The divisor Nσ(D) is contracted by ϕi0 by
Lemma 4.1, and thus D ∈ Di0 . Therefore, we have

Big(X) ⊆ Mov(X) ∪
⋃

i
Di,

and by taking closures we obtain Eff(X) ⊆ Mov(X) ∪⋃iDi. The con-
verse inclusion is obvious.

In particular, the cone Eff(X) is rational polyhedral, and the ring
R(X,Eff(X)) is a Cox ring of X. Fix an index i and pick generators
G1, . . . , Gp of Di. It is enough to show that the ring R(X;G1, . . . , Gp)
is finitely generated. The map ϕi is a semiample model for each G` by
Theorem 4.2(4), and thus G` = ϕ∗iM` + F`, where M` is a semiample
Q-divisor on Xi and F` is ϕi-exceptional. But then

R(X;G1, . . . , Gp) ' R(Xi;M1, . . . ,Mp),

and the finite generation follows. Q.E.D.

The next theorem shows that in the classical setting of adjoint di-
visors, some of the ample models Xi from Theorem 4.2 are Q-factorial.
This is a known consequence of the classical Minimal Model Program
[9, Theorem 3.3], however here we obtain the result directly.

Theorem 4.5. Let X be a projective Q-factorial variety, and let
∆1, . . . ,∆r be big Q-divisors such that all pairs (X,∆i) are klt. Let

R = R(X;KX + ∆1, . . . ,KX + ∆r),

and note that R is finitely generated by Theorem 3.5. Assume that
SuppR contains a big divisor. Then there exist a finite decomposition
SuppR =

∐Ai and maps ϕi : X 99K Xi as in Theorem 4.2, such that:

(i) if ϕi is birational, then Xi has rational singularities,
(ii) if the numerical classes of the elements of Ai span N1(X)R,

then Xi is Q-factorial.

Proof. We assume the notation from the proof of Theorem 4.2. For
(i), pick a big Q-divisor ∆ such that (X,∆) is klt and KX + ∆ ∈ Ai.
Then (Xi, (ϕi)∗∆) is also klt because ϕi is (K + ∆)-nonpositive, hence
Xi has rational singularities.

We now show (ii). Let B be a Weil divisor on Xi, and let B̃ be its

proper transform on X̃. As X̃ is smooth, B̃ is Q-Cartier. Let E1, . . . , Ek
be all the f -exceptional prime divisors on X̃. Since f is a resolution, we
have

(6) N1(X̃)R = f∗N1(X)R ⊕
⊕k

j=1 R[Ej ].
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Let B1, . . . , Br be integral divisors in Ai whose numerical classes gener-
ate N1(X)R. Then, by (6) there are rational numbers pj , rj such that

B̃ ≡
∑

pjf
∗(dBj) +

∑
rjEj .

Denote

M =
∑

pj Mob f∗(dBj) and F =
∑

pj Fix |f∗(dBj)|+
∑

rjEj .

By Theorem 4.2(4), there exist ample Q-divisors Aj on Xi such that
Mob f∗(dBj) = ψ∗iAj , hence M ≡Xi

0. Therefore

B̃ − F ≡Xi 0.

Observe that SuppF ⊆ Supp(Fi+
∑
Ej), and that the divisor Fi+

∑
Ej

is ψi-exceptional by Lemma 4.1. By (i) and by [13, Proposition 12.1.4],

there is a divisor T ∈ DivQ(Xi) such that B̃ − F ∼Q ψ
∗
i T , and thus the

divisor B = (ψi)∗B̃ ∼Q T is Q-Cartier. Q.E.D.

It is natural to ask whether the conclusion on Q-factoriality from
Theorem 4.5 can be extended to the general situation of Theorem 4.2.
We argue below that such a statement is, in general, not true, and we pin
down precisely the obstacle to Q-factoriality. The astonishing conclusion
is that, in some sense, Q-factoriality of ample models is essentially a
condition on the numerical equivalence classes of the divisors in SuppR.

With the notation from Theorem 4.2, what we are aiming for is the
following statement. We would like to have a (possibly finer) decompo-
sition SuppR =

∐Ni together with birational maps ϕi : X 99K Xi such
that ϕi is an optimal model for every D ∈ Ni, and in particular, every
Xi is Q-factorial. It is immediate that, if the numerical classes of the
elements of Ni span N1(X)R, then ϕi is also the ample model for every
D ∈ Ni.

The following easy result gives us a necessary condition for the ample
model of a big divisor to be Q-factorial.

Lemma 4.6. Let X be a Q-factorial projective variety, and let D
be a big Q-divisor such that the ring R(X,D) is finitely generated, and
the map ϕ : X 99K ProjR(X,D) is D-nonpositive. Let D′ be a Q-divisor
such that D ≡ D′.

Then the ring R(X,D′) is finitely generated if and only if the Q-
divisor ϕ∗D′ is Q-Cartier.

Proof. If R(X,D′) is finitely generated, then by Lemma 3.11, ϕ is
equal to the map X 99K ProjR(X,D′) up to isomorphism. Therefore
ϕ∗D′ is ample, and in particular Q-Cartier.
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For the converse implication, denote Y = ProjR(X,D) and let
(p, q) : W → X × Y be a resolution of ϕ. By Lemma 2.6, we have

p∗(D −D′) = q∗ϕ∗(D −D′),

hence ϕ∗D ≡ ϕ∗D′. Since ϕ∗D is ample, so is ϕ∗D′, hence the ring
R(Y, ϕ∗D′) is finitely generated. By Lemma 4.1, the divisor E = p∗D−
q∗ϕ∗D is effective and q-exceptional, and since E = p∗D′ − q∗ϕ∗D′, we
have R(X,D′) ' R(Y, ϕ∗D′). Q.E.D.

Therefore, in the notation of Lemma 4.6, if the ample model of D
is Q-factorial, then the ring R(X,D′) is finitely generated for every Q-
divisor D′ in the numerical class of D. This motivates the following key
definition.

Definition 4.7. Let X be a Q-factorial projective variety. We say
that a divisor D ∈ DivQ(X) is gen if for all Q-Cartier Q-divisors D′ ≡ D,
the section ring R(X,D′) is finitely generated.

There are three main examples of gen divisors of interest to us:

(i) ample Q-divisors are gen,
(ii) every adjoint divisor KX + ∆ +A is gen, where A is an ample

Q-divisor on X, and the pair (X,∆) is klt; indeed, this follows
from Theorem 3.5,

(iii) if Pic(X)Q = N1(X)Q, then every divisor with a finitely gen-
erated section ring is gen.

As we show in Section 5, having lots of gen divisors is essentially equiva-
lent to being able to run a Minimal Model Program. We have seen above
that this is a necessary condition for the models to be optimal, and in
particular Q-factorial. We show in Theorem 5.4 that, remarkably, this
is also a sufficient condition. This, together with (ii) and (iii), explains
precisely why we are able to run the MMP for adjoint divisors and on
Mori Dream Spaces, and the details are worked out in Corollaries 5.6
and 5.7.

We conclude this section with an example where all the conditions
of Theorem 4.2 are satisfied, but the absence of gen divisors implies that
there is no decomposition of SuppR into regions of divisors that share
an optimal model. In particular, we cannot run the MMP as explained
in Section 5, and therefore the conditions from Theorems 5.2 are 5.4 are
not only sufficient, but they are optimal. The example shows that the
finite generation of a divisorial ring in itself is not sufficient to perform
the Minimal Model Program.
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Example 4.8. Let X, L1 and L2 be as in Example 3.10, and note
that X is a smooth surface with dimN1(X)R = 2. We show that there
exist a big divisor D and an ample divisor A on X such that the ring
R = R(X;D,A) is finitely generated, the divisor L1 belongs to the
interior of the cone SuppR = R+D + R+A, and none of the divisors
in the cone R+D + R+L1 ⊆ SuppR is gen. In particular, we cannot
perform the MMP for D.

We first claim that there exists an irreducible curve C on X such
that

(7) L1 · C = 0 and C2 < 0.

Indeed, since L1 is semiample but not ample, there exists an irreducible
curve C ⊆ X such that L1 · C = 0. Since L1 is big and nef, we have
L2

1 > 0, so the Hodge index theorem then implies C2 < 0.
Now, set D = L1 + C. Since dimN1(X)R = 2 and D is not nef,

it is immediate that there exists an ample divisor A on X such that
L1 ∈ R+D + R+A. In order to show that R is finitely generated, it is
enough to show that the rings R(X;D,L1) and R(X;L1, A) are finitely
generated, and this latter ring is finitely generated since both L1 and A
are semiample.

For k1, k2 ∈ N, consider the divisor

Dk1,k2
= k1D + k2L1 = (k1 + k2)L1 + k1C.

Then (7) implies that Pσ(Dk1,k2) = (k1 + k2)L1, hence H0(X,Dk1,k2) '
H0(X, (k1 + k2)L1). Therefore the ring

R(X;D,L1) ' R(X;L1, L1)

is finitely generated.
Finally, note that Dk1,k2

≡ (k1 + k2)L2 + k1C, and that Pσ((k1 +
k2)L2 + k1C) = (k1 + k2)L2. Therefore the ring

R(X, (k1 + k2)L2 + k1C) ' R(X, (k1 + k2)L2)

is not finitely generated, thus the divisor Dk1,k2
is not gen.

Remark 4.9. The notion of genness is a very subtle one. For in-
stance, every Q-divisor D with κσ(D) = 0 is gen (for the definition and
properties of κσ see [15]). Indeed, for every Q-divisor D′ ≡ D we have
κ(D′) ≤ κσ(D′) = 0, hence the ring R(X,D) is isomorphic to either C
or to the polynomial ring C[T ].
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§5. Running the D-MMP

Let X be a projective Q-factorial variety, and let C ⊆ DivR(X) be
a rational polyhedral cone such that the divisorial ring R = R(X, C) is
finitely generated. Then by Theorem 4.2 we know that SuppR has a
decomposition into finitely many rational polyhedral cones giving the
geography of ample models associated to R.

In this section we explain how, when all divisors in the interior of
SuppR are gen, the aforementioned decomposition can be refined to give
a geography of optimal models. As indicated in the previous sections,
the main technical obstacle is to prove Q-factoriality of models, and this
is the point where the gen condition on divisors plays a crucial role.

We assume that SuppR contains an ample divisor, and fix a divisor
D ∈ SuppR. Then we can run the Minimal Model Program for D as
follows.

We define a certain finite rational polyhedral decomposition C =⋃Ni in Theorem 5.4. If D is not nef, we show in Theorem 5.2 that there
is aD-negative birational map ϕ : X 99K X+ such thatX+ is Q-factorial,
and ϕ is elementary – this corresponds to contractions of extremal rays
in the classical MMP. We also show that there is a rational polyhedral
subcone D ∈ C′ ⊆ C which is a union of some, but not all of the cones
Ni, such that R(X, C′) ' R(X+, ϕ∗C′) and the cone ϕ∗C′ ⊆ DivR(X+)
contains an ample divisor. Now we replace X by X+, D by ϕ∗D, and
C by ϕ∗C′, and we repeat the procedure. Since there are only finitely
many cones Ni, this process must terminate with a variety XD on which
the proper transform of D is nef, and this is the optimal model for D.
It is then automatic that XD is also an optimal model for all divisors in
the cone Ni0 3 D. The details are given in Theorem 5.4.

In the context of adjoint divisors and the classical MMP, we can
additionally direct the MMP by an ample Q-divisor A on X, as in [4].
The proofs of Theorems 5.2 and 5.4 can be easily modified to obtain the
D-MMP with scaling of A, however we do not pursue this here.

First we define elementary contractions.

Definition 5.1. A birational contraction ϕ : X 99K Y between nor-
mal projective varieties is elementary if it not an isomorphism, and it
is either an isomorphism in codimension 1, or a morphism whose excep-
tional locus is a prime divisor on X.

The following theorem is the key result: it shows that in our situa-
tion elementary contractions exist.

Theorem 5.2. Let X be a projective Q-factorial variety and let
C ⊆ DivR(X) be a rational polyhedral cone. Denote by π : DivR(X) →
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N1(X)R the natural projection. Assume that the ring R = R(X, C) is
finitely generated, that SuppR contains an ample divisor, that π(SuppR)
spans N1(X)R, and that every divisor in the interior of SuppR is gen.
Let SuppR =

⋃ Ci be a decomposition as in Theorem 3.2. Let D ∈
SuppR be a Q-divisor which is not nef. Then:

(1) the cone SuppR ∩ π−1
(

Nef(X)
)

is rational polyhedral, and
every element of this cone is semiample,

(2) there exists a rational hyperplane H ⊆ N1(X)R which inter-
sects the interior of π(SuppR) and contains a codimension 1
face of π(SuppR) ∩ Nef(X), such that π(D) and Nef(X) are
on the opposite sides of H,

(3) let W ⊆ N1(X)R be the half-space bounded by H which does
not contain Nef(X), and let C′ = SuppR ∩ π−1(W). Then
there exists a Q-factorial projective variety X+ together with
an elementary contraction ϕ : X 99K X+, such that ϕ is W -
nonpositive for every W ∈ C′, and it is W -negative for every
W ∈ C′\π−1(H),

(4) we have R(X, C′) ' R(X+, C+), where C+ = ϕ∗C′ ⊆ DivR(X+),
and C+ contains an ample divisor,

(5) for every cone Ci and for every geometric valuation Γ over X,
the function oΓ is linear on the cone ϕ∗(C′ ∩ Ci) ⊆ C+.

C′D
Nef(X)

H

SuppR

Proof. Step 1. The statement (1) follows immediately from Corol-
lary 3.4, statement (4) follows from (3) by Remark 2.4(i) and from the
construction below, while (5) follows from (3) by Lemma 2.11. To show
(2), let α be any ample class in the interior of π(SuppR) ⊆ N1(X),
and let β be the intersection of the segment [π(D), α] with ∂Nef(X).
Then β lies in the interior of π(SuppR), and by (1) there is a rational
codimension 1 face of π(SuppR) ∩ Nef(X) containing β. We define H
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to be the rational hyperplane containing that face.

Step 2. It remains to show (3). By Corollary 3.4, there are cones
Cj * π−1

(
Nef(X)

)
and Ck ⊆ π−1

(
Nef(X)

)
such that dimπ(Cj) =

dimπ(Ck) = dimN1(X)R and π(Cj) ∩ π(Ck) ⊆ H; denote Cjk = Cj ∩ Ck.
Let ϕ : X 99K X+ and θ : X 99K Y be the ample models associated to
relative interiors of Cj and Cjk as in the proof of Theorem 4.2, and note
that θ is a morphism by (1) since

Cjk ⊆ SuppR ∩ π−1
(

Nef(X)
)
.

Then, by Theorem 4.2(3), there is a morphism θ+ : X+ → Y such that
the diagram

X
ϕ //

θ   

X+

θ+
}}

Y

is commutative. The following is the key claim:

Claim 5.3. Let F be an R-divisor on X such that π(F ) ∈ H. Then
F ∼R θ∗FY for some FY ∈ DivR(Y ). If additionally π(F ) ∈ π(Cjk),
then FY is ample. In particular, a curve C is contracted by θ if and
only if C · δ = 0 for every δ ∈ H.

Pick Q-divisors B1, . . . , Br in Cjk and nonzero real numbers λi such
that π(Bi) span H and π(F ) =

∑
λiπ(Bi). We may assume that λi ≥ 0

for all i when π(F ) ∈ π(Cjk). Hence, there is a Q-divisor B′1 ≡ B1 such
that

F = λ1B
′
1 +

∑
i≥2

λiBi.

Note that, by the definition of θ, there are ample divisors Ai on Y such
that Bi ∼Q θ

∗Ai for all i ≥ 2.
Since B1 is gen, the ring R(X,B′1) is finitely generated, and therefore

B′1 is semiample by Lemma 3.3(2) as it is nef and big. Denote by θ′ : X →
Y ′ the semiample fibration associated to B′1. By Lemma 3.11, there is
an isomorphism η : Y → Y ′ such that θ′ = η ◦ θ. Since B′1 ∼Q (θ′)∗A′1
for an ample divisor A′1 on Y ′, we have B′1 ∼Q θ

∗A1, where A1 = η∗A′1.
Therefore F ∼R θ

∗(
∑
λiAi), which proves the claim.

Step 3. We next show that X+ is Q-factorial.
Consider a Weil divisor P+ on X+, and let P be its proper trans-

form on X. Since X is Q-factorial, the divisor P is Q-Cartier. Since
dimπ(Cj) = dimN1(X)R, there exist a Q-divisor G ∈ Cj and α ∈ Q such
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that π(P + αG) ∈ H. By Claim 5.3, there exists M ∈ DivQ(Y ) such

that P +αG ∼Q θ
∗M . Let (p, q) : X̃ → X×X+ be a resolution of ϕ. By

the definition of ϕ and by Theorem 4.2, there is an ample Q-divisor A

on X+ and a q-exceptional Q-divisor E on X̃ such that p∗G = q∗A+E.
It follows that

p∗P ∼Q (θ ◦ p)∗M − α(q∗A+ E) = (θ+ ◦ q)∗M − αq∗A− αE.

Since ϕ is a contraction, we have P+ = q∗p∗P , and therefore the divisor

P+ ∼Q (θ+)∗M − αA

is Q-Cartier.

Step 4. In this step we show that ϕ is an elementary map.
If θ is an isomorphism in codimension 1, then so are ϕ and θ+ as ϕ

is a contraction.
Hence, we may assume that there exists a θ-exceptional prime di-

visor E. Let C be a curve contracted by θ, and let R be a ray in
N1(X)R orthogonal to the hyperplane H. Then the class of C belongs
to R by Claim 5.3, and so E · R < 0 by Lemma 2.5. In particular, we
have E · C < 0, thus C ⊆ E, and the exceptional locus of θ equals E.
Therefore, θ is an elementary contraction.

Observe that π(E) and Nef(X) lie on opposite sides of H. This
implies that there is a Q-divisor GE in the relative interior of Cj such
that π(GE − E) belongs to the relative interior of Cjk. Then, by Claim
5.3, there exists an ample divisor ME ∈ DivQ(Y ) such that GE −E ∼Q
θ∗ME , and thus

(8) H0(X,mGE) ' H0(X,mθ∗ME)

for every positive integer m. Since ϕ is the map X 99K ProjR(X,GE)
by definition, we may assume that X+ = Y and ϕ = θ by (8), which
shows that ϕ is an elementary contraction.

Step 5. The only thing left to prove is the last statement in (3). For
W ∈ C′, there exists an R-divisor GW ∈ Cj such that π(W −GW ) ∈ H.
Thus W ≡Y GW by Claim 5.3. Since ϕ is GW -nonpositive by Theorem
4.2(4), this implies that ϕ is W -nonpositive by Corollary 2.6. If ϕ is
an isomorphism in codimension 1, it is automatic that it is then also
W -negative.

IfW ∈ C′\π−1(H) and ϕ contracts a divisor E, there exists a positive
rational number λ such that π(W − λE) ∈ H. Again by Claim 5.3, and
since X+ = Y and ϕ = θ, there is a divisor MW ∈ DivR(X+) such that
W − λE ∼R ϕ

∗MW . But then it is clear that ϕ is W -negative. Q.E.D.
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The following is the main result of this paper – the geography of
optimal models.

Theorem 5.4. Let X be a projective Q-factorial variety, and let
C ⊆ DivR(X) be a rational polyhedral cone. Denote by π : DivR(X) →
N1(X)R the natural projection. Assume that the ring R = R(X, C) is
finitely generated, that SuppR contains an ample divisor, that π(SuppR)
spans N1(X)R, and that every divisor in the interior of SuppR is gen.

Then for any Q-divisor D ∈ C, we can run a D-MMP which termi-
nates.

Furthermore, there is a finite decomposition

SuppR =
∐
Ni

into cones having the following properties:

(1) each Ni is a rational polyhedral cone,
(2) for each i, there exists a Q-factorial projective variety Xi and a

birational contraction ϕi : X 99K Xi such that ϕi is an optimal
model for every divisor in Ni,

(3) every element of the cone (ϕi)∗Ni is semiample.

Proof. Denote by V ⊆ DivR(X) the minimal vector space con-
taining C, and define C1 = SuppR. Let C1 =

⋃
i∈I1 C1

i be the rational

polyhedral decomposition as in Theorem 3.2. By subdividing C1 further,
we may assume that the following property is satisfied:

(\) let G ⊆ V be any hyperplane which contains a codimension 1
face of some C1

i0
. Then every C1

i is contained in one of the two
half-spaces of V bounded by G.

For each i ∈ I1, let Ni be the relative interior of Ci. We claim that
C1 =

∐
i∈I1 Ni is the desired decomposition.

Let D be a point in some Ni0 . If D is nef, then every divisor in Ni0
is semiample by Corollary 3.4, so the theorem follows.

Therefore, we may assume that D is not nef. Denote Y1 = X and
D1 = D. We show that there exists a D1-MMP which terminates.

By Theorem 5.2, the cone C1 ∩π−1
(
Nef(Y1)

)
is rational polyhedral.

Let H ⊆ N1(Y1)R be a rational hyperplane as in Theorem 5.2, and let
C1
` , for ` ∈ I2 ( I1, be those cones for which π(C1

` ) and π(D) are on the
same side of H, cf. (\). Let f1 : Y1 99K Y2 be an elementary map as in
Theorem 5.2(3), and denote D2 = (f1)∗D1. Define rational polyhedral
cones C2

` = (f1)∗C1
` ⊆ DivR(Y2), and set

(9) C2 =
⋃
`∈I2 C2

` .
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Then the ring R2 = R(Y2, C2) is finitely generated by Theorem 5.2(4).
By Theorem 5.2(5), the relation (9) gives a decomposition of C2 as in
Theorem 3.2. Also note that (f1)∗(Ni0) ⊆ C2.

In this way we construct a sequence of divisors Dp on Q-factorial
varieties Yp. Since the size of the index sets Ip drops with each step,
this process must terminate with a model Xp0

on which the divisor
Dp0 is nef. Similarly as above, Xp0 is an optimal model for all divisors
in Ni0 , and the proper transform on Yp0 of every element of Ni0 is
semiample. Q.E.D.

Corollary 5.5. Let X be a projective Q-factorial variety, let S1, . . . ,
Sp be distinct prime divisors on X, denote V =

∑p
i=1 RSi ⊆ DivR(X),

and let A be an ample Q-divisor on X. Let C ⊆ L(V ) be a rational
polytope such that for every ∆ ∈ C, the pair (X,∆) is klt.

Then there exists a positive integer M such that for every ∆ ∈ C ∩
EA(V ), there is a (KX + ∆)-MMP consisting of at most M steps.

Proof. By enlarging V and C, we may assume that the numerical
classes of the elements of C ∩EA(V ) span N1(X)R. The set C ∩EA(V ) is
a rational polytope by Corollary 3.6, and let B1, . . . , Br be its vertices.
Choose a positive integer λ � 0 such that all KX + A + Bi + λA are
ample. Denote

D =
∑

R+(KX +A+Bi) +
∑

R+(KX +A+Bi + λA).

Then the ring R = R(X,D) is finitely generated by Theorem 3.5, and

we have R+(KX + A + C ∩ EA(V )) ⊆ SuppR. Let SuppR =
∐N
i=1Ni

be the decomposition as in Theorem 5.4. Then it is immediate from the
proof of Theorem 5.4 that we can set M = N . Q.E.D.

The following corollary is finiteness of models, cf. [1, Lemma 7.1].

Corollary 5.6. Let X be a projective Q-factorial variety, let S1, . . . ,
Sp be distinct prime divisors on X, denote V =

∑p
i=1 RSi ⊆ DivR(X),

and let A be an ample Q-divisor on X. Let C ⊆ L(V ) be a rational
polytope such that for every ∆ ∈ C, the pair (X,∆) is klt.

Then there are finitely many rational maps ϕi : X 99K Yi, with the
property that if ∆ ∈ C ∩ EA(V ), then there is an index i such that ϕi is
a log terminal model of KX + ∆.

Proof. By enlarging V and C, we may assume that the numerical
classes of the elements of C ∩EA(V ) span N1(X)R, and that there exists
a divisor B ∈ C ∩ EA(V ) such that KX + A + B is ample. The ring
R(X,R+(KX + A + C ∩ EA(V ))) is finitely generated by Corollary 3.6,
so the result follows immediately from Theorem 5.4. Q.E.D.
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Finally, we recover one of the main results of [8].

Corollary 5.7. Let X be a Q-factorial projective variety such that
Pic(X)Q = N1(X)Q. Then X is a Mori Dream Space if and only if its
Cox ring is finitely generated.

In particular, if (X,∆) is a klt log Fano pair, then X is a Mori
Dream Space.

Proof. Let D1, . . . , Dr be a basis of Pic(X)Q such that Eff(X) ⊆∑
R+Di. The associated divisorial ring R = R(X;D1, . . . , Dr) is a Cox

ring of X. Corollary 4.4 shows that if X is a Mori Dream Space, then
R is finitely generated. We now prove the converse statement.

Assume that R is finitely generated, and let SuppR =
∐N
i=1Ni

be the decomposition from Theorem 5.4. Then Nef(X) is the span of
finitely many semiample divisors by Corollary 3.4, and by the definition
of the sets Ni and by Corollary 3.4, there is a set I ⊆ {1, . . . , N} such
that

Mov(X) =
⋃

i∈I
Ni.

By taking a smaller index set I, we may assume that the dimension of
Ni equals dimN1(X)R for all i ∈ I. For i ∈ I, let ϕi : X 99K Xi be the
maps as in Theorem 5.4. Then Ni ⊆ ϕ∗i

(
Nef(Xi)

)
, and hence

Mov(X) ⊆
⋃

i∈I
ϕ∗i
(

Nef(Xi)
)
.

Each ϕi is an optimal model for every divisor in Ni, thus each ϕi is an
isomorphism in codimension 1. Therefore, R(Xi; (ϕi)∗D1, . . . , (ϕi)∗Dr)
is a Cox ring of Xi, and it is finitely generated since it is isomorphic to
R. In particular, every Nef(Xi) is spanned by finitely many semiample
divisors by above, and hence

Mov(X) ⊇
⋃

i∈I
ϕ∗i
(

Nef(Xi)
)
.

This shows that X is a Mori Dream Space.
Now, if (X,∆) is a klt log Fano pair, then Hi(X,OX) = 0 for all

i > 0 by Kawamata-Viehweg vanishing. The long exact sequence in
cohomology associated to the exponential sequence

0→ Z→ OX → O∗X → 0

shows that Pic(X)Q = N1(X)Q. Let D1, . . . , Dr be a basis of Pic(X)Q
such that Eff(X) ⊆ ∑R+Di, and pick a rational number 0 < ε � 1
such that Ai = εDi − (KX + ∆) is ample for every i. Then the ring

R(X; εD1, . . . , εDr) = R(X;KX + ∆ +A1, . . . ,KX + ∆ +Ar)
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is finitely generated by Theorem 3.5, hence the ring R(X;D1, . . . , Dr)
is finitely generated by Lemma 3.1. Q.E.D.
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