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Abstract 

This paper presents a novel probabilistic approach of random discrete element analysis (RDEA) 

to investigate the mechanism of rock fragmentation under uniaxial compression. This model 10 

combines the advantages of both random field theory and discrete element method in 

characterizing the spatial variation and uncertainty of microscopic material properties. The 

numerical results reveal that the stress-strain curves of a group of tests can match well the 

general trend of the experimental data, with the mean uniaxial compressive strength (UCS) of 

10.18 MPa and the mean Young’s modulus of 1.73 GPa. The coefficient of variation (COV) for 15 

the rock samples is much lower than that of the initial random fields due to the averaging effect 

of microscopic material property in obtaining the bulk values. The rock fragmentation is 

initiated by the breakage of weak particles within the rock mass and it develops rapidly as the 

vertical loading stress approaches the UCS. The final damage zone resides dominantly in the 

weak region of the rock sample and the distribution of material coefficients follows a similar 20 

Beta distribution as the corresponding initial random field. Rock samples with persistent 

“pillar-like” structures of strong particles can effectively resist the normal compression, 

resulting in high rock strengths. The traditional DEM simulation with a set of constant material 

properties can only represent one extreme realization of random field, which could significantly 

overestimate the rock strength. The proposed RDEA approach can effectively capture the 25 

uncertainty and complex interactions of rock fragmentation in a more realistic and reliable way.  
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1 Introduction 

Rock fragmentation occurs commonly in some natural events such as rockslides, rockfalls 30 

and rock avalanches 1-4. It has been considered as an important factor governing the extremely 

high mobility and destructive power of these hazards 1, 2. In general, the fragmentation process 

can be affected by many factors, such as the local topography, microstructure of rock mass and 

the loading rate. The related research focus mainly on the mechanism of rock fragmentation 

and its influence on the runout distance and the involved energy losses of rock fragments, 35 

through field observations, laboratory tests and numerical simulations 5-7.  

In the field, the properties of rock can vary significantly at different locations due to the 

variability of constituent material properties and the formation history, which should intuitively 

be considered as spatial variables. The complex spatial microstructure of rock can affect its 

geotechnical properties, such as discontinuity, inhomogeneity, anisotropy, and nonlinear 40 

elasticity. For example, under external loading, the damage of rock is likely to be initiated at 

weak regions as the locally concentrated stress can exceed the material strength easily. 

However, quite few studies have considered the spatial heterogeneity of rock properties, though 

it is common in reality (e.g. Qin and Chian8). In numerical analysis, the rock properties can be 

modelled as multi-dimensional and multi-variate random fields. The concept of random field 45 

can thus be used to characterize the non-uniformity of material properties in a consistent 

manner (e.g. Fenton and Griffiths9, Liu et al. 10, Liu et al. 11, Casagrande et al. 12 ).  

On the other hand, the discontinuity of rock mass can be conveniently investigated by the 

discrete element method (DEM). It has been employed widely to analyze the brittle failure of 

solid materials, e.g. rock fragmentation 13, 14, particle crushing 15, 16 and damage of cemented 50 

geomaterials 7, 17, due to its capability of modeling the complex brittle responses of solid mass 

under external loadings, such as crack initiation and propagation 18, 19. At failure, the internal 

fractures propagate and nucleate rapidly within the solid mass due to the breakage of inter-

particle cementations (i.e. bonds). It can be induced by excessive compressive, tensile or shear 

loading, together with the transmission and reflection of stress waves at impact 2, 20. The 55 

characteristics and energy dissipation mechanisms of solid fragmentation (e.g. fracturing stress, 
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size and number of fragments) depend primarily on the material shear strength and loading 

strain rate 21.  

In this research, in order to investigate the non-uniformity of granular properties, the 

random field theory has been integrated into DEM, such that the fragmentation of a 60 

heterogeneous rock mass can be readily investigated. The integrated model of random field and 

DEM is hereafter termed random discrete element analysis (RDEA). The RDEA has been 

employed to analyse the mechanical responses of rock mass during the fundamental uniaxial 

compression tests, including the stress-strain relationship and the brittle failure pattern. The 

Monte-Carlo simulation scheme is used in RDEA to run 500 simulations with spatially 65 

randomly distributed material properties (e.g. Young’s modulus, bonding strength and friction 

coefficient). By doing so, the overall performance of the rock sample can be examined in a 

statistical manner.  

2 Methodology and Model Configuration 

2.1 DEM model 70 

The integrated RDEA model has been developed by programming the random field 

generator in the open source DEM code ESyS-Particle 22. In the DEM model, the interactions 

between bonded particles are calculated using the parallel bond model (PBM)23, as: 

 bn b nnF K u=   (1) 

 
bs b ssF K u=   (2) 75 

       b b t ttbM K M K =  =  (3) 

where Fbn, Fbs are the normal and shear bonding forces; Mb and Mt are the bending and twisting 

moments, respectively; Kbn, Kbs, Kb and Kt are the corresponding bonding stiffness, nu , su , 

b  and t  are the relative displacements between the bonded particles in the normal, shear, 

bending and twisting directions, respectively. The values of relative displacements are 80 
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computed by unit quaternions for spatial rotations of the two 3D rigid spheres 24, 25. Note that 

nu  is the difference between the current and initial (prior to the motion onset) distances of 

the two particles.  

The criterion of bond breakage is given as the combined loads exceeding the bonding 

strength capacity 22, 23, 26, 85 

 1bn bs b t

bnMax bsMax bMax tMax

F F M M

F F M M
+ + +   (4) 

where bnMaxF  , bsMaxF  , bMaxM   and 
tMaxM   are the bond strengths in the normal, shear, 

bending and twisting directions, respectively. The parallel bond model has been calibrated 

comprehensively in our recent publication, Zhao et al. 27.  

Once the bond breaks, the particles become dispersed and they interact with each other 90 

via the linear-elastic spring contact model, as  

 n n nF K u=   (5) 
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i

sF= M r   (7) 

where Fn, Kn and un are the normal contact force, stiffness and overlapping distance between 95 

two particles in contact; 
i

sF  and 
1i

sF −
 are shear forces calculated at the current and previous 

simulation time steps, respectively; us is the corresponding incremental shear displacement; 

Ks is the shear stiffness; μ is the friction coefficient. M is the shear induced moment; r is the 

vector linking the center and contact point between the two particles. 

Figure 1(a) shows the configuration of uniaxial compression test on a rock sample in DEM. In 100 

the test, an assembly of 31,400 densely packed spherical particles are generated within a 

rectangular parallelepiped domain. The particle radius distributes uniformly in a narrow range 
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of [0.75 mm, 1.5 mm], instead of a constant size, which imposes a necessary size randomness 

as it contains a variety of microscopic particle properties. These particles are cemented together 

by the parallel bond model to represent an intact solid rock mass. The bulk density (ρ) of the 105 

rock mass is 1379 kg/m3, as determined by the individual particle density (ρs = 2650 kg/m3) 

and packing porosity (n = 0.48). The particle Young’s modulus (Ep), bonding strength (c) and 

friction coefficient (μ) are set as random values based on the random field theory (see Section 

2.2). In the DEM simulations, a small damping coefficient of 0.01 is applied at particle contacts 

to account for the energy dissipation by shearing off particle asperities and plastic deformations. 110 

The damping coefficient is determined by trial and error to ensure it has negligible influence 

on the overall dynamics of the rock sample. The choice is in line with the DEM model 

configurations in Zhao et al.27 and Zhao et al. 28. The numerical iteration time step (∆t) is set 

as small as 210-7 s to guarantee numerical stability. The vertical loading was applied by 

controlling the axial deformation of the rock sample at a constant strain rate of 1 s-1. 115 

 

Figure 1. (a) DEM model configuration of uniaxial compression test; (b) a sample of random field 

generated for the rock sample; (c) the frequency distribution of the material coefficient for (b). The 

red curve represents the target Beta distribution, with the parameters a = 1.86, b = 3.78, mean = 1 and 

coefficient of variation = 0.3. 120 

2.2 Random field theory 

This study employs the discrete random field, in which the material properties are 

evaluated as random variables at discrete points. In the random field, all points are mutually 

correlated by a specified correlation length (i.e. scale of fluctuation). The Young’s modulus, 
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bonding strength and friction coefficient are herein considered as spatially non-uniform. A 125 

standard Gaussian random field is first generated by the modified linear estimation method 10, 

which provides an efficient approach to simulate a 3D Gaussian random field with a squared 

exponential auto-correlation function. The standard Gaussian random field is then transformed 

into Beta random fields for these three variables with the statistical parameters prescribed in 

Table 1. The probability density function (PDF) for the standard Beta distribution 130 

( ( ),X Beta a b ) is given as, 

 ( ) ( )
( )

111
1       if 0 1

,

0                                    otherwise

bax x x
B a bf x

−−
−  

= 



 (8) 

where ( ) ( )
1 11

0
, 1

baB a b x x dx
−−= − , a and b are shape parameters. For a Beta variable whose 

bounds are not 0 and 1, two additional statistics are needed to determine the bounds. For 

instance, the statistical mean value and coefficient of variation (COV) are adopted in this study. 135 

Here, COV is defined as the ratio between the standard deviation and the mean.  

Table 1. Prescribed statistical parameters for variables with spatial non-uniformity. Note: the shape 

parameters for the Beta distribution are selected following the field data reported in Liu et al. 29. Without 

loss of generality, a set of typical values for coefficient of variation and scale of fluctuation are adopted. 

Variable Distribution Mean 
Coefficient of 

variation 

Scale of 

fluctuation 

Young’s 

modulus 
( )1.86,  3.78X Beta  3.1 GPa  0.3 0.01 m 

Bonding 

strength 
( )1.86,  3.78X Beta  13 MPa 0.3 0.01 m 

Friction 

coefficient 
( )1.86,  3.78X Beta  0.577 0.3 0.01 m 

In the analysis, a mapping is established between the coordinates of discretized particles 140 

and the generated random fields, as such, the value of random field at the individual particle 

centre is set as the material coefficient (α) of that particle. The exact material properties are 

obtained by multiplying the material coefficient by the mean material properties (i.e. Ep0, c0, 

μ0). These mean values are calibrated based on trial and error, such that the DEM results of 

uniaxial compression test on a uniform sample can roughly match the experimental data. The 145 
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random field generated on the rock sample is illustrated in Figure 1(b), with the material 

coefficient following the Beta distribution (see the distribution in Figure 1(c)). In this approach, 

the mean Young’s modulus, bonding strength and friction coefficient are prescribed values, 

while other statistical parameters (e.g. COV, and scale of fluctuation) remain unchanged for a 

series of tests. Following the Monte-Carlo simulation scheme, the uniaxial compression test on 150 

the same granular assembly, but with spatially randomly distributed material properties, can be 

repeated for a number of times, as the random field of the rock sample is different from one 

simulation to another. In this study, 500 simulations have been performed to statistically 

analyse the performance of the rock sample. 

This proposed RDEA approach has the apparent advantage in modelling the mechanical 155 

behaviour of a specific type of rock when compared with the traditional DEM simulations using 

only one set of constant microscopic material properties. The RDEA considers the spatial 

variation of material properties through a series of different random fields, while the mean 

material properties remain constant for different simulations. Through statistical analysis, the 

simulations can reproduce the overall mechanical behaviour of rock mass with similar internal 160 

structures, e.g. rock samples collected at the same site. Thus, this research can effectively 

capture the uncertainty and complex interactions of a specific type of granular material in a 

more realistic and reliable way. 

3 Results 

Figure 2 illustrates the spread of stress-strain curves of uniaxial compression tests by 165 

RDEA for 500 repeated simulations on rock samples with different random fields. The 

experimental data on coal rock samples with parallel and normal stratigraphic beddings by Liu 

et al. 30 are also presented for comparison purpose. The experiments employed a much smaller 

loading strain rate (0.01 s-1) than the DEM tests (1 s-1). However, under the quasi-static loading 

condition, the difference in stress-strain relationship is quite small 31. Thus, the comparison can 170 

be regarded as reliable. In the figure, the minimum (0th percentile), 5th percentile, median (50th 

percentile) and maximum (100th percentile) of the uniaxial compressive strength (UCS, the 



 

8 

peak stress on the stress-strain curve) of these tests are also highlighted by various colors. 

According to the figure, the numerical results exhibit a wide distribution which match well the 

general trend of the experimental data. Thus, the general mechanical behavior of the type of 175 

coal rock shown in Figure 2 can be well captured by the set of random discrete element analyses. 

After failure, the numerical samples show apparent brittle behavior with sudden drops of 

stresses, while the experimental data exhibits a more ductile responses with gradual decrease 

of normal stresses. The traditional DEM simulation with a set of constant material properties 

(i.e. the uniform sample in Figure 2) has the upper bound of stress for all possible testing results. 180 

It has the UCS of 11.9 MPa which is higher than the one (10.2 MPa) obtained in Zhao et al.27. 

The difference is due mainly to the much narrower particle grading used in the current study. 

 
Figure 2. The stress-strain relationship of uniaxial compression test on rock samples with a constant 

vertical loading strain rate of 1 s-1. “Exp.(P)” and “Exp.(N)” stand for experimental data of uniaxial 185 

compression tests on coal rock with parallel and normal beddings to the loading direction, 

respectively (the strain rate used in experiments is 0.01 s-1). 

According to Figure 2, and the Young’s modulus of rock (E) is calculated as the gradient 

of the initial linear portion (with strain up to 0.3%) of the stress-strain curve. The histograms 

of UCS and E in 190 



 

9 

 

Figure 3 (a) and (b) show that for the 500 independent DEM tests, the UCS and Young’s 

modulus of the rock sample generally follow the normal distributions. The UCS has the average 

value of 10.18 MPa and the COV of 0.038. The bulk Young’s modulus has the average value 

of 1.73 GPa and the COV of 0.017. The average UCS and bulk Young’s modulus of rock 195 

samples are much lower than that of the uniform sample, indicating the uniform material 

property assumption, as traditional DEM simulation does, can significantly overestimate the 

rock strength and bulk Young’s modulus. The COVs in UCS and Young’s modulus are 

significantly lower than the corresponding values of the random fields (0.3) due to the 

averaging effect on the variability of microscopic properties. 200 

 

Figure 3. Histograms of the UCS and Young’s modulus of the rock sample. The red curves show normal 

distributions of the data. The results of DEM tests on the uniform sample are labeled on the figure. 
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Figure 4. The UCS and the corresponding axial strain (εUCS) of the 500 simulations. The red fitting 205 
line shows the general trend of the distribution. 

Figure 2 also shows that despite the variance, the corresponding axial strain of each test 

when the UCS is reached increases with UCS. This is summarized as the relationship between 

the UCS and the critical axial strain (εUCS) in Figure 4. The general trend shows that the UCS 

increases with the critical axial strain, with the dominant frequency of εUCS in the range of 0.6% 210 

to 0.7%. This indicates that the extremely weak and strong rock mass were rarely generated by 

the proposed randomly field theory. Rock mass of UCS as low as 9.0 MPa can fail easily at 

very small critical axial strain (≈ 0.55%), while rock mass of UCS as high as 11.5 MPa can 

resist much larger deformation (εUCS ≈ 0.74%). 

Figure 5(a) illustrates the evolution of rock damage ratio for the 500 simulations during 215 

the uniaxial compression tests. Here, the rock damage ratio is defined as the ratio of the number 

of bonds broken during the compression to the total number of bonds in the initial sample. 

According to the figure, the internal rock damage occurs when the axial strain exceeds 0.3%. 

Then, the bond damage accumulates gradually as the axial strain increases (see the inset plot 

of Figure 5(a)). A complete analysis of all 500 simulations on the stress level during the 220 

fracturing process indicates that the fracture initiation starts at about 0.4-0.68 times of the UCS 

in each test. This result can match well the experimental data in Cai et al. 32 that the fracturing 
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stress level is around 0.3-0.5 times of the UCS. The rock damage ratio increases rapidly once 

the axial strain exceeds a threshold value (see the axial strains marked by dashed lines on Figure 

5(a)). This threshold value corresponds to the critical axial strain discussed in Figure 4. The 225 

rapid increase of rock damage is attributed to the sudden release of strain energy as the rock 

structure can no longer resist the normal loading, which facilitates the propagation and 

nucleation of internal rock damage zones. For different tests, rock samples of high UCS is 

fractured at much higher axial strain than those of low UCS, indicating that the strong rock 

mass can better resist the normal compressions. The final damage ratio of each test is not 230 

directly correlated with each other as it is affected by many factors such as the heterogeneity 

of rock, the orientation of failure plane and the amount of released energy.  
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Figure 5. (a) The relationship between the internal rock damage ratio and sample deformation. The 

damage ratio is defined as the number of bonds broken during the compression over the total number 235 

of bonds in the initial rock sample. The dashed line marks the axial strain when the UCS is reached. 

(b) The percentage of weak and strong particles in the damage zone. The solid curves represent the 

percentage of weak particles (α<1), while the dashed curves represent the percentage of strong 

particles (α>1). Here, the 0th and 100th percentiles represent the tests of the minimum and maximum 

UCS values among the 500 tests. 240 

Figure 5(b) reports a detailed analysis of the evolution of the percentage of “weak” and 

“strong” particles in the damage zone for four representative rock samples with the UCS values 

of the 0th, 5th, 50th and 100th percentiles of distribution in 
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Figure 3(a). Here, the “weak” particle refers to the solid particle of material coefficient 245 

smaller than or equal to 1 (α ≤ 1), while the “strong” particle refers to the solid particle of 

material coefficient larger than 1 (α > 1). In the analysis, only particles with broken bonds 

(hereafter termed “dispersed particle”) are considered as rock fragments located in the damage 

zone. Figure 5(b) illustrates that the rock damage was initiated by the breakage of weak 

particles within the rock mass. After initiation, the percentage of dispersed weak particles 250 

increases much faster than that of strong particles. Similar to Figure 5(a), after the rock sample 

reaches the UCS, the percentage of dispersed particles increases rapidly with very small axial 

deformations. It should be noted that since part of the strong particles are attached to the weak 

ones, the exact percentage of strong particles in the damage zone should be lower than the 

results shown on Figure 5(b).  255 

 

Figure 6. Evolution of internal damage zone (dispersed particles) of the rock sample with the 5th 

percentile of UCS. In the figure, the color is set to scale with the value of material coefficient (α). The 

material coefficient of 1 represents the average value of material properties. 

An example of the evolution of internal rock damage zone for the test of 5th percentile of 260 
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UCS is shown in Figure 6. According to the plot, the internal rock damage starts at the weak 

areas (dark blue particles in Figure 6(a)) in the middle of the sample. As the axial strain 

increases, weak particles break within the initial intact sample and gradually nucleate to form 

a localized damage zone. In this process, a few strong particles (colored grey) also break (see 

the percentage in Figure 5(b)). The portion of strong particles in the damage zone increases 265 

dramatically at large axial deformations when the rock sample is close to fail (see Figure 6(d, 

e)). After failure (Figure 6(f), εa = 0.7%), an inclined failure plane consisting of a mixture of 

weak and strong particles can be clearly observed within the sample. This failure plane splits 

the rock sample into two major wedge-shaped rock fragments.  

 270 

Figure 7. Series (a): the random field of the initial rock sample for tests of (a1) the 0th percentile of 

UCS; (a2) the 5th percentile of UCS; (a3) the 50th percentile of UCS; (a4) the 100th percentile of UCS. 

Series (b): the final damage zone within the rock sample after the compression for tests of (b1) the 0th 

percentile of UCS; (b2) the 5th percentile of UCS; (b3) the 50th percentile of UCS; (b4) the 100th 

percentile of UCS. 275 

Figure 7 illustrates the initial random field and the final damage zone of rock samples with 
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different final UCS. As the UCS increases, the internal damage zone becomes gradually flat 

and locates closer to the upper region of the sample. For the rock sample shown in Figure 7(a1), 

the strong particle regions are relatively small and disconnected, which are interbedded by the 

large weak zones. The weak particle regions are particularly dominant in the middle of the 280 

sample with inclined orientations. This distribution pattern is favored by the shear failure along 

an inclined plane during the uniaxial compression test on the rock sample, resulting in very low 

overall rock strength. On the other hand, for the rock sample shown in Figure 7(a4), the strong 

and weak particle regions are interbedded with connected pillar-like distributions along the 

vertical direction. This distribution pattern can effectively resist the normal compression as the 285 

strong particle pillars can resist very high normal stresses. The final failure occurs when these 

particle pillars are crushed under high normal loading stresses, resulting in a relatively flat final 

damage zone.  

 

Figure 8. Statistics of material coefficients for particles located in the final damage zone. The 290 

frequency is represented by the relative percentage of dispersed particles with different material 
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coefficient in the model. (a) test of the 0th percentile of UCS; (b) test of the 5th percentile of UCS; (c) 

test of the 50th percentile of UCS; (d) test of the 100th percentile of UCS. The red curves represent the 

best Beta fitting lines. The inset plots are the frequency distribution of material property of the 

corresponding initial sample. 295 

The distribution of material coefficients for dispersed particles in the damage zone is 

shown in Figure 8. Here, the relative frequency is expressed as the percentage of particles in 

each material coefficient range (bin size) out of the total number of particles in the DEM model. 

According to the plots, the frequency of material coefficients of dispersed particles all follows 

the Beta distribution pattern, with similar shape to the corresponding distribution of the initial 300 

random field (see the inset plots). The accumulative percentage of dispersed particles increases 

with the rock strength, indicating that the failure of strong rock will break more particles than 

that of weaker ones. For each test, the percentage of dispersed weak particles (α < 1) is much 

higher than the strong particles (α > 1), and the mean value of material coefficient in the 

distribution is around 0.7. This distribution pattern indicates that the final damage zone resides 305 

dominantly in the weak region of the sample.  

4 Conclusions 

The fragmentation of rock mass has been investigated by a novel probabilistic approach 

of random discrete element analysis. The proposed numerical model has integrated the random 

field theory with the discrete element method, enabling it to analyze the detailed fracturing 310 

mechanism of rock mass. The DEM parallel bonded-particle model employs the unit 

quaternions to evaluate the complex spatial finite rotations and interactions of bonded particles 

concisely and reliably. The random fields consider the spatial variation of material properties 

as Beta distribution, while the mean material properties remain constant for different 

simulations.  315 

The uniaxial compression tests on 500 rock samples investigated in this research can 

reproduce the general mechanical behaviors of a specific type of rock materials (with 

distribution ( )1.86,  3.78X Beta  ) with the mean UCS of 10.18 MPa and the mean bulk 

Young’s modulus (E) of 1.73 GPa. The coefficient of variation (COV) for the rock samples 
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(0.038 for UCS and 0.017 for E) is much lower than that of the initial random fields (0.3) for 320 

the granular particles due to the averaging effect of microscopic material property in obtaining 

the bulk values. The overall performance of a rock sample with spatially heterogeneous 

properties is dominated by the weak particle regions, and thus the traditional DEM simulation 

using constant material properties can significantly overestimate the strength and bulk Young’s 

modulus of the rock sample. The rock damage is initiated by the breakage of inter-particle 325 

bonds in weak particle regions within the rock mass and it starts to increase rapidly as the 

vertical loading stress approaches the UCS. The final damage zone resides dominantly in the 

weak particle zone of the sample and the distribution of their material coefficients follows a 

similar Beta distribution as the initial random field. For the weak samples, the weak particle 

regions are dominantly distributed in the middle of the sample, which facilitate the formation 330 

of shear zone along an inclined plane under even low loading stress. For the strong samples, 

the strong particle regions are connected to form vertical solid “pillars”, which can effectively 

resist the normal compression.  

The proposed random discrete element analysis can generate a series of rock samples with 

the same granular structures, but spatially varied microscopic material properties, e.g. rock 335 

samples collected at the same site. Thus, this study can capture the uncertainty and complex 

interactions of rock fragmentation in a more realistic and reliable way than the traditional DEM 

modelling approach using only one set of constant material properties. With proper calibrations, 

the proposed numerical model can significantly extend the applicability of DEM in modelling 

the granular mechanics. 340 
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