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Abstract 1 

In the literature, one can find a lot of methods and techniques employed to estimate single diode solar 2 

photovoltaic (PV) cell parameters. The efficiency of these methods is usually tested by calculating the 3 

Root Mean Square Error (RMSE) between the measured and estimated values of the solar PV cell output 4 

current. In this work, first, the values of RMSE calculated using 69 different methods published in many 5 

journal papers for the well-known RTC France solar PV cell are presented and discussed. Second, a novel 6 

exact analytical solution for RMSE calculation based on the Lambert W function is proposed. The results 7 

obtained show that the RMSE values were not calculated correctly in most of the methods presented in 8 

the literature since the exact expression of the calculated cell output current was not used. Third, the 9 

precision of calculation of the methods used for analytical solving of Lambert W equation is presented 10 

and discussed. Fourth, the applicability of the proposed solution methodology in accordance with current-11 

voltage characteristics measured in the laboratory for solar modules of Clean Energy Trainer Setup is 12 

checked. Identification of its unknown parameters is presented using three optimization techniques. 13 

Further, the proposed solution methodology is proven for Solarex MSX–60 PV module, and the most 14 

promising 5-parameter single diode parameters are estimated based on minimization of the precise 15 

RMSE values calculated. Finally, this work aimed to develop a good base for proper investigation and 16 

implementation of optimization algorithms to solve the parameter estimation problem of 5-parameter 17 

single diode PV equivalent circuits.  18 

 19 

Keywords—Lambert W function; optimization; PV parameter estimation; root mean square error; RTC 20 

France solar cell; 5-parameter single diode model. 21 
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Abbreviations 22 

ABC        Artificial bee colony 23 
ABSO    Artificial bee swarm optimization 24 
ABCDE   Artificial bee colony-differential evolution 25 
A&I   Analytical and iterative based methods 26 
BPFPA   Bee pollinator flower pollination algorithm 27 
BMO    Bird mating optimizer 28 
BBO    Biogeography–based optimization 29 
BBO–M   Biogeography-based optimization algorithm with two mutation strategies 30 
BC   Bézier curves 31 
BHCS   Biogeography-based heterogeneous cuckoo search 32 
CARO    Chaotic asexual reproduction optimization 33 
COA   Chaotic optimization approach 34 
CPMPSO  Classified perturbation mutation-based particle swarm optimization 35 
CWOA   Chaotic whale optimization algorithm 36 
CSO    Cat swarm optimization 37 
DE   Differential evolution 38 
DET    DE technique 39 
EAs   Evolutionary algorithms 40 
EHA–NMS  Eagle-based hybrid adaptive Nelder-Mead simplex algorithm  41 
ER-WCA  Evaporation rate-based water cycle algorithm 42 
FPSO   Flexible particle swarm optimization 43 
FA   Firefly algorithm 44 
FPA   Flower pollination algorithm 45 
GGHS   Grouping-based global harmony search 46 
GA   Genetic algorithm 47 
GAMS   General algebraic modelling system 48 
GOTLBO  Generalized oppositional teaching learning-based optimization 49 
GWO    Grey wolf optimization 50 
HFAPS   Hybrid firefly and pattern search algorithms 51 
HS   Harmony search 52 
HPEPD    High performing extraction procedure for the one-diode model 53 
HISA   Hybridized interior search algorithm 54 
HCLPSO  Chaotic heterogeneous comprehensive learning particle swarm optimizer 55 
IADE    Improved adaptive DE  56 
ICA    Imperialist competitive algorithm 57 
ITLBO   Improved teaching-learning-based optimization 58 
ISCE   Improved shuffled complex evolution 59 
ILCOA   Improved Lozi map-based chaotic optimization algorithm 60 
IGHS   Innovative global HS 61 
IJAYA   Improved JAYA optimization algorithm 62 
JAYA    Sanskrit word meaning victory or triumph 63 
LI    Linear identification 64 
LMSA    Levenberg–Marquardt algorithm combined with simulated annealing 65 
MABC    Modified artificial bee colony algorithm 66 
MADE   Memetic adaptive DE 67 
MBA    Mine blast algorithm 68 
MVO    Multi-verse optimization 69 
MPCOA   Mutative-scale parallel chaos optimization algorithm 70 
MPSO   Modified particle swarm optimization 71 
MSSO   Modified simplified swarm optimization algorithm 72 
NM   Newton method 73 
NM–MPSO  Nelder–mead and modified particle swarm optimization 74 
OBWOA  Opposition-based whale optimization algorithm 75 
Rcr–IJADE  Rate crossover repairing improved adaptive DE  76 
PCE    Population classification evolution  77 
PS   Pattern search 78 
PSO    Particle swarm optimization 79 
PPSO    Parallel PSO 80 
PGJAYA  Performance-guided JAYA algorithm 81 
pSFS   Perturbed stochastic fractal search  82 
PV   Photovoltaic 83 
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SA   Simulated annealing 84 
SSE   Sum of squared error 85 
STFT   Special trans function theory 86 
TLBO    Teaching-learning-based optimization 87 
TLABC   Teaching–learning-based artificial bee colony 88 
TS   Taylor series 89 
TVA-CPSO   Time-varying acceleration coefficients PSO 90 
WCA    Water cycle algorithm 91 
WDO   Wind-driven optimization 92 
 

Nomenclature 93 

G   Irradiance (W/m2) 94 
I–U     Current–voltage characteristics 95 
𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   Measured and estimated solar cell current at point i, respectively 96 
Ipv   Photo-generated current 97 
I0   Reverse saturation current 98 
KB   Boltzmann constant  99 
M   Positive integer  100 
n   Ideality factor of the diode 101 
N   The number of the measured points 102 
Pr   Precision of calculation that reflects accuracy at higher values 103 
P–U   Power–voltage characteristics 104 
PrSTFT and PrTaylor  Precision of calculation using STFT and TS, respectively 105 
q   Electron’s charge 106 
RMSE   Root mean square error 107 
RP   Parallel resistance of the solar cell 108 
RS   Series resistance of the solar cell 109 
T   Actual temperature in Kelvin 110 
Vth   Thermal voltage 111 
W    Solution of the Lambert equation 112 
β   Real number in Lambert W equation 113 
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1. Introduction 114 

Recently, significant scaling up renewable energy sources (RESs) capacity in modern 115 

power systems is experienced in response to several technical, economic, environmental, 116 

social, and political factors. The conventional fossil fuel generation sources are facing severe 117 

environmental problems such as the greenhouse gas emissions contributing to global warming, 118 

and techno-economic problems due to price fluctuations and fuel depletion across the world 119 

[1,2]. In this regard, the solar photovoltaic (PV) capacity is one of the primary drivers towards 120 

realizing emission-free power generation that can accelerate shifting power systems away from 121 

fossil fuel generation sources to renewable sources.  122 

Solar PV modules considerably depend on the operating conditions such as solar 123 

irradiance, temperature, spectrum, and others, particularly for PV modules installed outdoors. 124 

These particular PV modules have different electrical characteristics from the reference 125 

characteristics given in the manufacturer datasheets. What makes the problem more difficult is 126 

the incomplete data and missing parameters in the data sheets provided by the manufacturers 127 

and vendors. This is why it is not simple to model the nonlinear electrical characteristics 128 

precisely with the missing data. Besides, the need for accurate solar PV modules becomes 129 

crucial, particularly with the fast-growing solar PV capacity across the world. The practical 130 

realization of any solar PV system requires an adequate solar PV cell model as well as 131 

accurately determined solar cell parameters to design reliable power systems with solar systems 132 

efficiently. Thus, it becomes essential to estimate such parameters for a complete and precise 133 

solar PV model that can closely match the experimental measures under different operation 134 

conditions [3,4].  135 

The parameter estimation problem of solar PV cells represents a trendy scientific field 136 

for researches working with power and energy systems. In the literature, one can find a lot of 137 

methods and techniques employed to estimate single diode solar PV cell parameters [3–64], in 138 

which three primary classes for estimating the single diode solar PV cell parameters can be 139 

categorized into analytical, numerical (deterministic and metaheuristic), and hybrid methods 140 

[3]. The analytical methods use the I–U (current-voltage) and P–U (power-voltage) data curve 141 

and the other information provided in the datasheet to formulate the mathematical estimation 142 

optimization problem. They are easy to implement and imply less computational effort. 143 

However, these methods require simplifications or approximations of the expressions used, 144 

which has a significant impact on the solution’s accuracy. Besides, the selected initial points 145 

from the I–U curve may influence the accuracy of the solution obtained [3]. On one hand, 146 

numerical methods include iterative techniques such as Newton-Raphson, Levenberg-147 
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Marquardt, and linear identification [3,42,45] to provide accurate solutions; however, they 148 

suffer from locally optimal in non-convex optimization problems, in addition to the time 149 

consumption when obtaining global solutions because their performance is highly dependent 150 

on the initial values provided by the programmer. On the other hand, numerical methods 151 

include evolutionary algorithms (EAs) or metaheuristics. EAs are based on a trajectory or 152 

population of individuals that interact between exploration and exploitation phases to create a 153 

search path that can avoid local optima and achieve global/near-global solutions. EAs are 154 

classified into several categories as bio-inspired based algorithms, swarm intelligence-based 155 

algorithms, physics and chemistry-based algorithms, and others. Despite the fact that EAs have 156 

shown better-estimated parameters of PV equivalent circuits in terms of computational 157 

efficiency and precision of solutions compared to the analytical and deterministic methods, 158 

their performance is highly dependent on proper adjustment of the control parameters. The 159 

most popular EAs used for parameter estimation of PV equivalent circuits are the bio-inspired 160 

algorithms, which mimic ideas, processes, or biological behaviors that take place in nature. The 161 

main representatives of this group are MADE [12], ISCE [20], BPFPA [25], DET [37], FPA 162 

[44], DE [46], IADE [54], Rcr–IJADE [57], and GA [60]. Also, swarming-based EAs are 163 

modeled to mimic swarming behaviors of birds, cats, bees, fish, or others. CPMPSO [4], 164 

HCLPSO [6], FPSO [7], MPSO [18], FA [22], MSSO [24], CSO [31], MABC [35], TVA-165 

CPSO [38], PPSO [39], ABC [48], ABSO [53,55], BMO [52], and PSO [61], are the main 166 

representatives of these swarming-based algorithms. Similarly, physics and chemistry-based 167 

algorithms that mimic physical, chemical ideas or concepts are used for parameter estimation 168 

of PV equivalent circuits. The main representatives of this group are ER-WCA [23], WDO 169 

[27], WCA [38], GGHS [56], HS [56], IGHS [56], and SA [59]. Another set is that inspired by 170 

the teaching and learning process such as GOTLBO [30], STLBO [47], and TLBO [47,51], or 171 

that inspired by chaotic behaviors such as ILCOA [11], COA [13], CWOA [28], CARO [41], 172 

and MPCOA [50]. In the optimization process, the objective function, in most cases, is to 173 

minimize the sum of the squared difference between the experimentally measured solar PV cell 174 

output current and the calculated one of a specified number of data points. The third category, 175 

hybrid methods, combines analytical and numerical optimization methods to achieve global 176 

solutions associated with high computational efficiency and convergence speed towards 177 

finding the global solution. However, hybrid methods such as HISA [5], BHCS [16], HFAPS 178 

[19], TLABC [21], NM–MPSO [32], EHA–NMS [40], and ABCDE [55] are high complexity 179 

level algorithms. 180 
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 In many of the mentioned papers, comparisons of these algorithms were presented in 181 

terms of many criteria such as convergence characteristics, computational efficiency, 182 

complexity, time per iteration, and so forth [14]. Unfortunately, we can find a case in a research 183 

paper claiming that algorithm X gives better results in comparison with results obtained by 184 

using algorithms Y or Z. However, in another research paper, we can find results obtained by 185 

using algorithm Z are better than the results obtained with algorithm X without any comments 186 

on algorithm Y [46–48,55–58] even if the algorithms are compared after many runs (e.g. above 187 

20). Besides, in a few recently published papers, we can also find different authors’ discussion 188 

on the accuracy of the results obtained, and the root mean square error (RMSE) calculated with 189 

the measured and estimated values of the solar PV cell output current for the 5-parameter single 190 

diode model of solar cell [62–64]. It is clear that no method has been evidenced to be the most 191 

appropriate method in identifying the unknown parameters and no guarantee is observed for 192 

realizing global solutions of the different PV modules. This necessitates an assessment of the 193 

solutions provided by the different methods to solve the solar PV cell parameters extraction 194 

problem of the different PV modules.  195 

In response to these discussions, in this work, first, the values of RMSE calculated using 196 

69 different methods published in many journal papers for the well-known RTC France solar 197 

PV cell are presented and discussed. The RTC France solar cell is used in this work as it is one 198 

of the most popular solar cells across the world, and is commonly used in many published 199 

papers to test algorithms. Second, a novel exact analytical solution for RMSE calculation based 200 

on the Lambert W function is proposed. The results obtained show the shortcomings many of 201 

the reported works made with the determination of their RMSE calculations for the equivalent 202 

circuit modeling approach under focus. Third, the precision of two numerical approaches to 203 

numerically solve the Lambert W function is addressed and discussed with: (i) one based on 204 

Taylor series; and (ii) the other based on Special Trans Function Theory. Fourth, the 205 

applicability of the proposed solution methodology in accordance with current-voltage 206 

characteristics measured in the laboratory for solar modules of Clean Energy Trainer Setup is 207 

checked. Identification of its unknown parameters is presented using three optimization 208 

techniques: chaotic optimization algorithm (COA), evaporation rate water cycle algorithm 209 

(ER-WCA), and harmony search (HS). Further, the proposed solution methodology is applied 210 

for Solarex MSX–60 PV module, and the most promising 5 parameters are estimated based on 211 

the minimization of the precise RMSE values calculated. Finally, this work aimed to present a 212 

good base for proper investigation and implementation of optimization algorithms to solve the 213 

5-parameter estimation problem of the single diode equivalent circuits of PVs.  214 
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The rest of the work is organized as follows: In Section 2, a short description of the 5-215 

parameter single diode solar cell model is given. Also, the proposed RMSE expression based 216 

on Lambert W function is presented. Values obtained of the proposed RMSE expression and 217 

comparison of related works in the literature are presented and discussed in Section 3. Also, 218 

the precision of two numerical approaches to numerically solve the Lambert W function is 219 

addressed and discussed. In Section 4, the applicability of the proposed methodology is 220 

presented with the aid of experimental results and optimization methods. Lastly, the concluding 221 

remarks are drawn in Section 5.  222 

 223 

2. Proposed RMSE calculation based on Lambert W function 224 

Single diode solar cell model 225 

The single diode solar cell model is a commonly used model for solar cell representation [4]. 226 

This model consists of one current source, one diode, and two resistances, namely a series 227 

resistance (RS) and a parallel resistance (RP), which represent the solar cell losses. The 228 

equivalent circuit of the single diode PV cell model is shown in Fig. 1.  229 

 230 

Fig. 1. Single diode model of the solar cell 231 
 232 

In the mathematical sense, the I–U relationship of this model can be described, as follows: 233 

0 1
S

th

U IR
n V S

pv
P

U IRI I I e
R

+
×

  +
= − − −  

   
(1) 

where Ipv represents the photo-generated current, I0 is the reverse saturation current, n is the 234 

ideality factor of the diode, and Vth = KBT/q is the thermal voltage (KB is Boltzmann constant, 235 

T is the temperature and q is the electron’s charge). In addition to the single-diode model, two-236 

diode and three-diode solar cell models can be found in the available literature [3]. However, 237 

in regard to two-diode and three-diode solar cell models, no exact analytical solution has been 238 

reached yet because of the high nonlinearity of the current expressions of these models. 239 
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Conventional RMSE calculation 240 

In line with the literature [3-62], the following equation is usually expressed for the calculation 241 

of RMSE between measured and calculated output current of the solar PV cell. 242 

( )2
1

1 N
meas calc
i i

i

RMSE I I
N =

= −∑  (2) 

where N represents the number of the measured points. 𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represent the measured 243 

and estimated solar cell current at point i, respectively. Pseudo-substituting Eq. (1) into Eq. (2); 244 

at Ucalc=Umeas, one can formulate the RMSE expression as follows: 245 

 246 
2

0
1

1 1

meas meas
i i S

th

U I RN meas meas
n Vmeas i i S

i pv
Pi

U I R
RMSE I I I e

N R

+ ×
×

=

     +   = − − − −              

∑
 

(3) 

However, with 𝐼𝐼𝑃𝑃𝑃𝑃 − 𝐼𝐼0 �𝑒𝑒
𝑈𝑈𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑆𝑆
𝑛𝑛×𝑉𝑉𝑡𝑡ℎ − 1� − �𝑈𝑈𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑆𝑆

𝑅𝑅𝑃𝑃
� in the general case, the last 247 

part of this equation does not represent the calculated value of the solar cell output current, and 248 

therefore, Eq. (3) is not a correct expression of the RMSE measure. It should be noted that 249 

many reported works of the literature use this relation to estimate their RMSE. 250 

Lambert W function 251 

In mathematics, the Lambert W function is a set of functions, precisely the branches of 252 

the inverse relation of the function β given below. 253 

( ) xf x xe= =β   (4) 
where ex is the exponential function, and x is any complex number. Many problems in 254 

engineering sciences can be described using this equation. Thus, one can get x as follows: 255 

( ) ( )1 xx f xe W−= = β
  (5) 

where W represents the solution of the Lambert equation [65–73]. A graphical representation 256 

of the function xxe=β  is shown in Fig. 2.  257 
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Fig. 2. Graphical representation of the function xxe=β  258 

 

It can be noticed from Fig. 2 that the illustration consists of two parts; the upper part (branch) 259 

with W ≥ −1 representing the function W0, which is called the principal branch, and the lower 260 

part (branch) with W ≤−1 representing the function W−1.  261 

It should be noted that for solving Lambert W functions, different techniques can be used 262 

such as the iterative methods [65] and program packages with corresponding solvers [66], in 263 

addition to analytical-based methods such Taylor series (TS) [67] and Special Trans Function 264 

Theory (STFT) [68–73].  265 

The TS of W0 around 0 is based on the usage of the Lagrange inversion formula as 266 

follows: 267 

( ) ( ) 1

1 !

n
n

n

n
x W

n

−∞

=

−
= =∑β β   (6) 

In practice, Eq. (6) can be rewritten as follows: 268 

( ) ( ) 1

1 !

nM
n

n

n
x W

n

−

=

−
= =∑β β   (7) 

where M denotes a positive integer.  269 

The Lambert W function can also be solved using STFT as follows: 270 
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( )

( )
0

1

0

!
1
!

nn
M

n

nn
M

n

M n
nx

M n
n

=

+

=

−

=
+ −

∑

∑

β

β
β

  (8) 

However, it should be noted that for the same value of positive integer M, the STFT gives 271 

the much more accurate results. It should be noted that the accuracy of using these methods is 272 

tested in many papers [66,68]. However, the general conclusion is that TS has good accuracy 273 

for small values of β, which is not the case for the higher values of β. However, STFT methods 274 

have a high level of accuracy for any value of β. To sum up, STFT is a more accurate method 275 

for analytical solving of the Lambert W equation. The reader can refer to [66,68,72] to 276 

find additional information and examples. 277 

Proposed RMSE calculation 278 

In order to calculate the estimated value of the solar cell output current, we need to solve 279 

Eq. (1). However, Eq. (1) is a highly nonlinear equation, i.e., transcendental equation. Thus; it 280 

can be rearranged in the following form: 281 

( )0 ( )P pv th

S P S

R I I U nV
I W

R R R

+ −
= − β

+
  (9) 

So that 282 

( )
( )

0exp P S pv S

th S P

R R I R I U
A

nV R R

 + +
 β =
 +
 

  
(10) 

( )
0 P S

th S P

I R R
A

nV R R
=

+
  

(11) 
In Eq. (9), W represents the solution of the Lambert W function. In practice, for one value 283 

of the solar cell voltage, we have a particular value of the solar cell current. Therefore, in the 284 

calculation process, if we take a particular value of the solar cell voltage (equals to the 285 

measured voltage value), we can calculate the solar cell current using Eq. (9). Thus, the 286 

calculation of the proposed RMSE expression between measured and estimated solar cell 287 

current can be realized in the following manner:  288 

( ) ( )
( )

2

00

1

1 exp
measmeasN P S pv S iP pv imeas th

i
S P S th S Pi

R R I R I UR I I U nV
RMSE I W A

N R R R nV R R=

    + ++ −    = − −    + +        

∑
  (12) 

289 
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Equation (12) represents the analytical solution of the RMSE expression calculated 290 

between the measured and estimated solar cell output current. Besides, the analytical solution 291 

of the proposed RMSE expression using TS is expressed in the following form:  292 

( ) ( ) ( )
( )

2

00

1

1

1

1 p
!

ex
measmeasN P S pv S iP pv imeas th

n

i
S P S th S Pi

nM

n

RMSE

R R I R I UR I I U nV
I A

N R R R nV
n
n R R=

−

=

 −  
  


=

   + + + −   − − ⋅   + +        

∑∑
 (13) 

293 

Also, the analytical solution of the proposed RMSE expression using STFT is expressed 294 

as follows: 295 

( ) ( )
( )

( )
( ) ( )

( )
( )

0

0

1

0

0

00

exp

1 ex !p

exp

meas
P S pv S i

th S P
measmeas

P S pv S iP pv ime

n

n

as th
i

measS P S th S

M

P
P S pv S i

tM

n

h S P

n

RMSE

R R I R I U
A

nV R R
R R I R I UR I I U nV

I A
N R R R nV R R R R I R I U

A
nV

M n

n

R R

=

+

=

 

=

 + +
 
 + 
  + ++ −  − − ⋅  + +

  −  
  

 
  
 

  + +  
+



∑

∑
( )

2

1

1

!

N

i
n

nM n

n

=

  
  
  

 


  
  
  
          

 + −
  

 


 




∑ (14) 

296 

As Lambert W function is very popular in science, many programming packages have 297 

implemented a solver for solving Lambert W function. For example, in Matlab, we have a 298 

function called lambertw. In Maple, it is simply called W, while in the Mathematica computer 299 

algebra framework, the function is implemented under the name ProductLog.  300 

3. Numerical results and discussion  301 

In Table 1, for the well-known RTC France solar PV cell, the values of RMSE calculated 302 

using 69 different methods reported in many journal papers are presented, which rely on the 303 

same experimental current-voltage characteristics. In the same table, the estimated values of 304 

the 5 parameters are given. Besides, the RMSE values calculated using Eq. (3) and the corrected 305 

RMSE values calculated using Eq. (12) are presented. It should be noted that the determination 306 

of the 5 parameters is not addressed by the current methodology; however, many optimization 307 

techniques rely on objective functions whose accuracy can be improved by the proposed RMSE 308 

calculation. 309 

All the calculations were carried out into the Matlab program package, while the 310 

computer simulations were carried out on a PC with Intel(R) Core (TM) i3-7020U CPU @ 2.30 311 

GHz and 4 GB RAM. Accuracy of the solution of the Lambert W function was tested by using 312 

the Lambert W equation embedded in Matlab, in which the accuracy was lower than 10-16 for 313 

all the points measured from the I–U characteristics. The central part of the Matlab code for 314 
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RMSE calculation based on the Lambert W function is given in Appendix 1. Also, a 315 

Mathematica code for solving the Lambert W equation is provided. 316 

The procedure for RMSE calculation is summarized as follows:  317 

For any measured point, we consider the voltage value and calculate the corresponding 318 

current using Eq. (9). We then apply Eq. (2) for all the points, thus giving Eq. (12). Eq. (12) is 319 

resolved in practice either by Eq. (13) or Eq. (14) numerical approaches (or both). 320 

It can be seen from Table 1 that the differences between the calculated RMSE values and 321 

the RMSE values presented in the original papers are considerable. A graphical illustration of 322 

these differences, on a logarithmic scale, is shown in Fig. 3. We can find the same values of 323 

RMSE, as suggested in this work in just two papers [5,42] among 58. However, in [5,42], no 324 

comments were given about the exact analytical solution of RMSE calculation or the Lambert 325 

W function. Also, looking at the data given in Table 1, it can be noticed that many authors had 326 

used Eq. (3) for RMSE calculation, which is only a rough approximation.  327 

Besides, some researchers use a very compact number value (0.0264V) or a semi-328 

compact number value as (0.02638V) of Vth instead of the long number formatting value, which 329 

also has a significant impact on the calculated RMSE value. The impact of Vth on the calculated 330 

RMSE value is shown in Fig. 4. 331 

Apart from the wrong approach for RMSE calculation, the reasons for results 332 

mismatching of the minimum RMSE can also be:  333 

• Authors do not use all measured points for RMSE calculation (N=26), 334 

• Complete dependence on heuristic optimization techniques to reach a better solution 335 

than the corresponding values reported in the literature. Each optimization technique 336 

may also have different complexity and/or parameters at different values from one 337 

paper to the other. 338 

• Inaccurate solving of the Lambert W function. 339 

However, with this analysis, we cannot conclude that algorithm X is the best, while 340 

algorithm Y is the worst. The cause lies in the fact that the authors should use the proposed 341 

straightforward RMSE equation during the solar cell parameters estimation process, which has 342 

a significant impact on the algorithm efficiency. 343 
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Table 1. Numerical results of the conventional and proposed RMSE for parameters estimation of the solar RTC France cell (Results with the 344 
minimum RMSE are given in bold) 345 

# Ref. Authors, year Method Ipv (A) I0 (μA) n RS (Ω) RP (Ω) Original 
reported RMSE 

RMSE 
calculated using 
Eq. (3) 

Proposed RMSE 
calculated using 
Eq. (12) 

1 [4] Liang et al., 2020 CPMPSO 0.76077600 0.32302100 1.48118400 0.03637700 53.71852000 0.00098602 0.00098602 0.00077539 
2 [5] Kler et al., 2019 HISA 0.76078797 0.31068459 1.47726778 0.03654695 52.88979426 0.00077301 0.00098911 0.00077301 
3 [6] Dalia et al., 2019 HCLPSO 0.76079000 0.31062000 1.47710000 0.03654800 52.88500000 0.00077300 0.00112018 0.00083374 
4 [7] Ebrahimi et al., 2019 FPSO 0.76077552 0.32302000 1.48110817 0.03637000 53.71852000 0.00098602 0.00102203 0.00079112 
5 [8] Li et al., 2019 ITLBO 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 0.00098602 0.00099161 0.00077779 
6 [9] Chen et al., 2019 pSFS 0.76078000 0.32302000 1.48118000 0.03638000 53.71852000 0.00098602 0.00098608 0.00077542 
7 [10] Chen et al., 2019 ISCA 0.76077562 0.32301700 1.48118220 0.03637716 53.71821748 0.00098602 0.00098602 0.00077539 
8 [11] Pourmousa et al., 2019 ILCOA 0.76077500 0.32302100 1.48110800 0.03637700 53.71867900 0.00098602 0.00102229 0.00079167 
9 [12] Li et al., 2019 MADE 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 0.00098602 0.00099161 0.00077779 
10 [13] Calasan et al., 2019 COA 0.76077450 0.32300180 1.48117740 0.03637750 53.73000000 0.00098602 0.00098602 0.00077538 
11 [14] Yu et al., 2019 PGJAYA 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 0.00098602 0.00099161 0.00077779 
12 [15] Gnetchejo et al., 2019 GAMS 0.76077600 0.32302000 1.48118400 0.03637700 53.71852400 0.00098602 0.00098602 0.00077540 
13 [16] Chen et al., 2019 BHCS 0.76078000 0.32302000 1.48118000 0.03638000 53.71852000 0.00098602 0.00098608 0.00077542 
14 [17] Abd Elaziz et al., 2018 OBWOA 0.76077000 0.32320000 1.52080000 0.03630000 53.68360000 0.00009860 0.11416692 0.07674430 
15 [18] Manel et al., 2018 MPSO 0.76078700 0.31068300 1.47526200 0.03654600 52.88971000 0.00077301 0.00733027 0.00435991 
16 [19] Beigi et al., 2018 HFAPS 0.76077700 0.32262200 1.48106000 0.03638190 53.67840000 0.00098602 0.00098603 0.00077525 
17 [20] Gao et al., 2018 ISCE 0.76077553 0.32302083 1.48118360 0.03637709 53.71852771 0.00098602 0.00098602 0.00077539 
18 [21] Chen et al., 2018 TLABC 0.76078000 0.32302000 1.48118000 0.03638000 53.71636000 0.00098602 0.00098608 0.00077542 
19 [22] Louzazni et al., 2018 FA 0.76069712 0.43244110 1.45245666 0.03341059 53.40180803 0.00051382 0.28514264 0.14234113 
20 [23] Kler et al., 2017 ER-WCA 0.76077600 0.32269900 1.48108000 0.03638100 53.69100000 0.00098602 0.00098609 0.00077529 
21 [24] Lin et al., 2017 MSSO 0.76077700 0.32356400 1.48124400 0.03637000 53.74246500 0.00098607 0.00105990 0.00080916 
22 [25] Ram et al., 2017 BPFPA 0.76000000 0.31060000 1.47740000 0.03660000 57.71510000 0.00072700 0.00125359 0.00095551 
23 [26] Fathy et al., 2017 ICA  0.76030000 0.14650000 1.44210000 0.03890000 41.15770000 NG* 0.11581627 0.07502096 
24 [27] Derick et al., 2017 WDO 0.76080000 0.32230000 1.48080000 0.03676800 57.74614000 0.00008866 0.00115725 0.00089482 
25 [28] Oliva et al., 2017 CWOA 0.76077000 0.32390000 1.48120000 0.03636000 53.79870000 0.00098602 0.00134855 0.00094834 
26 [29] Yu et al., 2017 IJAYA 0.76080000 0.32280000 1.48110000 0.03640000 53.75950000 0.00098603 0.00098714 0.00077606 
27 [30] Chen et al., 2016 GOTLBO 0.76078000 0.33155200 1.48382000 0.03626500 54.11542600 0.00098744 0.00098744 0.00077979 
28 [31] Guo et al., 2016 CSO  0.76078000 0.32300000 1.48118000 0.03638000 53.71850000 0.00098602 0.00098612 0.00077544 
29 [32] Hamid et al., 2016 NM-MPSO 0.76078000 0.32306000 1.48120000 0.03638000 53.72220000 0.00098602 0.00098620 0.00077550 
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# Ref. Authors, year Method Ipv (A) I0 (μA) n RS (Ω) RP (Ω) Original 
reported RMSE 

RMSE 
calculated using 
Eq. (3) 

Proposed RMSE 
calculated using 
Eq. (12) 

30 [33] Zhang et al., 2016 PCE  0.76077600 0.32302100 1.48107400 0.03637700 53.71852500 0.00098602 0.00106059 0.00080924 
31 [34] Tong et al., 2016 TONG  0.76100000 0.36350000 1.49350000 0.03660000 62.57400000 NG 0.00238593 0.00150509 
32 [35] Jamadi et al., 2016 MABC  0.76077900 0.32132300 1.48138500 0.03638900 53.39999000 0.00098601 0.00276101 0.00172770 
33 [36] Ali  et al., 2016 MVO  0.76160000 0.32094000 1.52520000 0.03650000 59.58840000 NG 0.12679796 0.08627778 
34 [37] Chellaswamy et al., 2016 DET  0.75100000 0.31500000 1.48700000 0.03600000 54.53200000 0.00093000 0.02448057 0.01584481 
35 

[38] Jordehi, 2016 

WCA  0.76090800 0.41355400 1.50438100 0.03536300 57.66948800 0.00094655 0.00760691 0.00464720 
36 TLBO  0.76080900 0.31224400 1.47578000 0.03655100 52.84050000 0.00077487 0.00727229 0.00433487 
37 GWO  0.76099600 0.24303880 1.45121900 0.03773200 45.11630900 0.00095145 0.00728451 0.00434963 
38 TVA-CPSO  0.76078800 0.31068270 1.47525800 0.03654700 52.88964400 0.00077301 0.00734381 0.00436800 
39 [39] Ma et al., 2016 PPSO  0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 NG 0.00099161 0.00077779 
40 [40] Chen et al., 2016 EHA-NMS 0.76080000 0.32302100 1.48118400 0.03637700 53.71852100 0.00098602 0.00098635 0.00077570 
41 [41] Yuan et al., 2015 CARO  0.76079000 0.31724000 1.48168000 0.03644000 53.08930000 0.00098665 0.00819692 0.00495024 
42 [42] Lim  et al., 2015 LI  0.76094380 0.34565720 1.48799169 0.03614233 49.48220500 0.00105480 0.00134617 0.00105482 
43 [43] El-Fergany, 2015 MBA  0.76040000 0.23480000 1.48900000 0.03880000 44.61000000 NG 0.11672175 0.07620443 
44 [44] Alam et al., 2015 FPA 0.76079000 0.31067700 1.47707000 0.03654660 52.87710000 0.00077301 0.00121214 0.00087797 
45 [45] Dkhichi et al., 2014 LMSA  0.76078000 0.31849000 1.47976000 0.03643000 53.32644000 0.00098640 0.00098649 0.00077406 
46 

[46] Niu et al., 2014 
DE  0.76068000 0.35515000 1.49080000 0.03598000 56.55330000 0.00100000 0.00100348 0.00080173 

47 BBO  0.76098000 0.86100000 1.58742000 0.03214000 78.85550000 0.00238000 0.00239295 0.00200212 
48 BBO-M  0.76078000 0.31874000 1.47984000 0.03642000 53.36227000 0.00098634 0.00098656 0.00077423 
49 [47] Niu et al., 2014 STLBO  0.76078000 0.32302000 1.48114000 0.03638000 53.71870000 0.00098602 0.00099764 0.00078059 
50 TLBO  0.76074000 0.32378000 1.48136000 0.03641000 54.40290000 0.00098845 0.00100164 0.00078421 
51 [48] Oliva et al., 2014 ABC  0.76080000 0.32510000 1.48170000 0.03640000 53.64330000 0.00098602 0.00109667 0.00083343 
52 [49] Laudani et al., 2014 HPEPD  0.76078840 0.31024820 1.47696410 0.03655304 52.85905600 0.00077301 0.00114867 0.00084728 
53 [50] Yuan et al., 2014 MPCOA  0.76073000 0.32655000 1.48168000 0.03635000 54.63280000 0.00094457 0.00231307 0.00146916 
54 [51] Patel et al., 2014 TLBO  0.76080000 0.32230000 1.48370000 0.03640000 53.76027000 NG 0.00969602 0.00585540 
55 [52] Askarzadeh et al., 2013 BMO  0.76077000 0.32479000 1.48173000 0.03636000 53.87160000 0.00098608 0.00098622 0.00077621 
56 [53] Askarzadeh et al., 2013 ABSO  0.76080000 0.30623000 1.47583000 0.03659000 52.29030000 0.00099124 0.00099125 0.00077368 
57 [54] Jiang et al., 2013 IADE  0.76070000 0.33613000 1.48520000 0.03621000 54.76430000 0.00098900 0.00099076 0.00078442 
58 

[55] Hachana et al., 2013 

ABSO 0.76080000 0.30623000 1.47986000 0.03659000 52.29030000 0.00098602 0.01416898 0.00855244 
59 ABCDE 0.76077000 0.32302000 1.47986000 0.03637000 53.71850000 0.00098602 0.00485483 0.00292463 
60 DE 0.76077000 0.32302000 1.48059000 0.03637000 53.71850000 0.00098602 0.00234235 0.00148100 
61 MPSO 0.76077000 0.32302000 1.47086000 0.03637000 53.71850000 0.00098602 0.03902188 0.02247017 
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# Ref. Authors, year Method Ipv (A) I0 (μA) n RS (Ω) RP (Ω) Original 
reported RMSE 

RMSE 
calculated using 
Eq. (3) 

Proposed RMSE 
calculated using 
Eq. (12) 

62 
[56] Askarzadeh et al., 2012 

GGHS 0.76092000 0.32620000 1.48217000 0.03631000 53.06470000 0.00099097 0.00099089 0.00078146 
63 HS 0.76070000 0.30495000 1.47538000 0.03663000 53.59460000 0.00099510 0.00099515 0.00077625 
64 IGHS 0.76077000 0.34351000 1.48740000 0.03613000 53.28450000 0.00099306 0.00103345 0.00082116 
65 [57] Gong et al., 2013 Rcr-IJADE 0.76077600 0.32302100 1.48118400 0.03637700 53.71852600 0.00098602 0.00098602 0.00077539 
66 [58] AlHajri et al., 2012 PS 0.76170000 0.99800000 1.60000000 0.03130000 64.10256000 0.28630000 0.01493638 0.00981702 
67 [59] El-Naggar et al., 2012 SA 0.76200000 0.47980000 1.51720000 0.03450000 43.10345000 0.00170000 0.01899784 0.01165472 
68 [60] AlRashidi et al., 2011 GA 0.76190000 0.80870000 1.57510000 0.02990000 42.37288000 NG 0.01907803 0.01200884 
69 [61] Ye et al., 2009 PSO  0.76079800 0.32272100 1.48382000 0.03639400 53.79650000 NG 0.00965452 0.00583097 

                *NG: not given 346 
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 347 
Fig. 3. The difference in a logarithmic scale between proposed RMSE values calculated using Eq. (12) and those calculated using different 348 

methods presented in the literature (Method number after Table 1)349 
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 350 
Fig. 4. Impact of Vth value on the RMSE value calculated using Eq. (12) (Method 351 

number after Table 1) 352 
 353 

Based on the results shown in Table 1, we can see that the most accurate method for 354 

parameter estimation of single diode RTC France solar cell is the HISA method (method 355 

number 2) presented by Kler et al. in 2019 [5]. The results of this method are given in bold in 356 

Table 1. The I–U characteristic of the RTC France solar cells obtained for these parameters, as 357 

well as the measured characteristic, are shown in Fig. 5, in which the remarkable agreement 358 

between the measured and simulated characteristics is indicated. 359 
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 360 
Fig. 5. Current-voltage characteristic of the RTC France solar cell 361 

 

In order to show that the proposed method provides the best response, the characteristics 362 

of parameters determined using the HFAPS method (number 16) presented in [19], which also 363 

has good accuracy, is shown in the same figure. It is evident from the figure that a lower value 364 

of RMSE guarantees better matching between measured and estimated characteristics. The 365 

Matlab code for calculating I–U characteristics of the RTC solar cell parameters determined 366 

using the HFAPS method, method number 16 in [19], is presented in Appendix 2. 367 

Furthermore, the relative difference between the current calculated using the proposed 368 

formula expressed in Eq. (9) and the conventional, erroneous, one expressed in Eq. (3), for the 369 

solar cell parameters presented, is shown in Fig. 6. Yet again, it is clear that there is a 370 

considerable difference in solar cell current values between the two formulas. Also, it evidences 371 

the importance of the proposed RMSE expression to develop a good base for proper 372 

investigation and implementation of optimization algorithms to solve the 5-parameter 373 

estimation problem of single diode PV equivalent circuits. 374 
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 375 

Fig. 6. The difference in current values calculated by Eq. (3) and last part of Eq. (9) 376 
 

Precision of calculation of the methods used for analytical solving of the Lambert W equation 377 

As mentioned before, for solving a Lambert W function, two methods, TS and STFT, are 378 

used. An investigation of the impact of β on the accuracy of the solution is presented. Fig. 7 379 

shows a 3D illustration of β, measured points from the I–U characteristics of the RTC solar 380 

cell, and methods presented in Table 1. From the same figure, one can note that the minimal 381 

value of β is 1.46×10–9, while the maximal value of β is 3.52. For that reason, some solutions 382 

to the Lambert W equation are obtained using TS and others are obtained using STFT. In this 383 

section, all calculations are performed in the environment of Mathematica. 384 

The precision of calculation Pr that reflects accuracy, either based on TS or STFT (PrSTFT 385 

and PrTaylor), is given as follows [72]: 386 

( )( )1Pr log x exp x= − − −β   
(12) 
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Namely, for the high values of Pr, the accuracy of the solution is high. Table 2 presents 387 

PrSTFT and PrTaylor for different values of β.  388 

 389 

Fig. 7. 3D graph of β, measured points from the I–U characteristics of the RTC solar cell, and 390 
methods in Table 1 391 

It should be noted that the peak region present in Fig. 7 is due to the parameters obtained 392 

using method 19 reported in Table 1 as the values of I0 and n obtained using method 19 were 393 

quite different from the corresponding values obtained using the other methods. 394 

It can be seen that higher precision can be obtained if we use STFT for solving the 395 

Lambert W equation. Furthermore, for a higher value of β, TS cannot be used. Recalling Eqs. 396 

(7) and (8), it should be noted that for the same value of integer M, the STFT gives much more 397 

accurate results than TS. Also, the higher the value of M, the higher the accuracy is. The 398 

difference between the accuracy of PrSTFT and PrTaylor for different values of β and M is 399 

illustrated in Fig. 8. 400 
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Table 2. PrSTFT and PrTaylor for different values of M and β 401 
β Solution, x M PrSTFT PrTaylor 

2×10–9 1.9999999960000000, 1199994253×10–9 

30 314 260 
50 515 426 

100 1019 840 
200 2025 1667 
300 3033 2493 
400 4039 3320 

1×10–6 9.9999900000149999, 7333338541×10–7 

30 225 177 
50 370 288 

100 732 567 
200 1455 1124 
300 2177 1681 
400 2901 2237 
500 3624 2794 

1×10–3 0.0009990014973385, 3088995782715 

30 125 84 
50 205 135 

100 405 264 
200 804 521 
300 1203 778 
400 1604 1034 
500 2002 1291 

0.1 0.0912765271608622, 6429989572142 

30 57 22 
50 93 33 

100 182 62 
200 361 119 
300 540 176 
400 719 233 
500 897 289 

0.35 0.2677773400403608, 4269261612680 

30 40 5 
50 66 6 

100 129 7 
200 255 10 
300 381 12 
400 508 15 
500 634 17 

2 0.8526055020137254, 9134647241469 

30 23 0 
50 38 0 

100 75 0 
200 148 0 
300 221 0 
400 295 0 
500 368 0 

3.5 1.1302893269741358, 2651855880912 

30 20 0 
50 32 0 

100 63 0 
200 124 0 
300 186 0 
400 247 0 
500 309 0 
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(a) (b) 
 

(c) 
Fig. 8. PrSTFT and PrTaylor for different values of β and M: (a) PrSTFT, (b) PrTaylor, and (c) 402 

PrSTFT –PrTaylor 403 
4. Application of the solution methodology 404 

Experimental setup and parameters estimation of solar modules of clean energy trainer setup 405 

In order to validate the solution methodology, the experimental results of a Clean Energy 406 

Trainer Setup module in the Laboratory of automatics at the University of Montenegro are 407 

presented and discussed, and the single diode parameters of the considered module are 408 

estimated. The experimental setup, shown in Fig. 9, consists of a computer with installed 409 

software for data acquisition and analysis, TES 1333R data logging solar power meter with 410 

high irradiance (G) resolution (0.1 W/m2), lamp for sunlight simulation, USB data monitor for 411 

data acquisition purposes, and two modules of solar cells. 412 
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The I–U characteristic of one solar module at G equals 1330 W/m2, and a temperature 413 

of 39 °C is measured. The 5 parameters to be determined are not directly addressed by the 414 

current methodology; however, the optimization techniques rely on objective functions whose 415 

accuracy can be improved by the proposed RMSE calculation. Then, for the measured I–U 416 

pairs, the 5-parameter single diode solar cell parameters are estimated using three optimization 417 

approaches, namely COA [13], ER-WCA [23], and HS [55,74]. The reader can refer to 418 

[13,23,55] for more details about these algorithms. The results obtained are presented in Table 419 

3, in which all the values obtained using Eq. (12) are within their fitness function.  420 

It can be seen from Table 3 that the results obtained using the optimization techniques 421 

are close to each other, in which all the values obtained using Eq. (12) are within their fitness 422 

function. However, the COA method gives the best accuracy in terms of RMSE. The simulated 423 

and measured I–U characteristics via the parameters obtained using the different optimization 424 

methods at G=1330 W/m2 and T=39 °C are shown in Fig. 10. 425 
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 426 

Fig. 9. Experimental setup: (a) Connection, (b) Series connection of solar modules, and (c) 427 
Parallel connection of solar modules 428 
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Table 3. Experimental results obtained from the tested solar module (Number of runs to 429 
achieve the optimum parameters for ER-WCA is 50, and 100 for COA and HS) 430 

Parameters/Algorithm COA ER-WCA HS 
RS (Ω) 0.114 0.121 0.114 
RP (Ω) 219.75 236.10 222.54 
I0 (A) 10.56×10–8 9.13×10–8 12.13×10–8 
Ipv (A) 0.2987 0.3012 0.3001 
n 0.3441 0.3411 0.3456 
RMSE calculated using Eq. (3) 0.00152416 0.00543925 0.01303987 
Proposed RMSE calculated using Eq. (12) 0.00113727 0.00397174 0.00955046 

 

 431 

Fig. 10. The I–U characteristics of one solar module for parameters obtained using the three 432 

methods (G=1330 W/m2 and T=39 °C) 433 

Besides, the I–U and P–U characteristics of one module at two different irradiance values 434 

at the same temperature (T = 39 °C), are presented in Fig. 11, respectively. In addition, the I–435 

U and P–U characteristics for series and parallel connection of the modules are presented in 436 

Fig. 12. The agreement between both measured and estimated characteristics is remarkable for 437 

all presented figures. It should be noted that all the characteristics are presented for data 438 

obtained using the COA method while taking into consideration the change of parameters with 439 

irradiance and temperature [75].  440 

Proposed RMSE expression and parameters estimation of Solarex MSX–60 PV solar module 441 

In Table 4, for Solarex MSX–60 PV solar module, RMSE values calculated using the erroneous 442 

Eq. (3) as well as the RMSE values calculated using Eq. (12), are presented. Also, in the same 443 

table, the estimated values of the solar cell parameters using COA, ER-WCA, and HS, as well 444 

as estimated values of different methods in the literature are presented.  445 
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 446 
(a) 447 

 448 
(b) 449 

Fig. 11. The characteristics of one module at two different irradiance values at the same 450 

temperature (T = 39 °C): (a) I–U characteristic and (b) P–U characteristic 451 
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 452 

(a) 453 

 454 
(b) 455 

Fig. 12. The characteristics of series and parallel connections of modules: (a) I–U 456 

characteristic and (b) P–U characteristic 457 
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Table 4. Numerical results of the conventional and proposed RMSE for parameters estimation of Solarex MSX–60 PV solar module (Results with the minimum 458 

RMSE using the proposed approach are given in bold) 459 
# Ref. Authors, year Method Ipv (A) I0 (A) n RS (Ω) RP (Ω) RMSE calculated using Eq. (3) Proposed RMSE calculated using Eq. (12) 
1 [76] Villalva et al., 2009 A&I 3.8082 0.0000000012 1.0453 0.3160 146.081 0.03611840076252 0.02839662736179 
2 [77] Silva et al., 2016 A&I 3.7983 0.0000000679 1.2800 0.2510 582.728 0.02502525341693 0.01810661464843 
3 [78] Bana et al., 2018 NM 3.8084 0.0000000005 1.0003 0.3692 169.047 0.09613294311904 0.05563692889594 
4 [79] Szabo et al., 2018 BC 3.8080 0.0000000012 1.0450 0.3160 146.080 0.04202673823244 0.03072250565403 
5 

Proposed 
ER-WCA 3.8121 0.0000001399 1.3325 0.2235 914.689 0.01697330882512 0.01697330882512 

6 HS 3.8115 0.0000002265 1.3707 0.2129 1976.070 0.01775687114902 0.01775687114902 
7 COA 3.8100 0.0000001783 1.3514 0.2184 2004.977 0.01705021261682 0.01705021261682 
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It can be seen from Table 4 that the differences between the proposed and conventional 460 

RMSE values are considerable. The I–U characteristics of the Solarex MSX-60 module are 461 

shown in Fig. 13, in which the agreement between both measured and estimated characteristics 462 

is remarkable for all the presented methods. However, it is noted that the results obtained using 463 

the ER-WCA method are the closest to the measured values. This is also validated by the 464 

proposed RMSE value calculated using Eq. (12) in Table 4, as the minimum RMSE value 465 

(0.011706768459604) is obtained using this method (method 5 given in bold in Table 4). 466 

 467 

Fig. 13. The I–U characteristics of the Solarex MSX-60 module 468 
 

Furthermore, the relative difference of the current in amperes calculated by Eq. (3) and 469 

last part of Eq. (9), for the parameters of Solarex MSX-60 module presented, is shown in Fig. 470 

14. Yet again, it is clear that there is a considerable difference in solar cell current values 471 

between the two formulas, in which the difference in the solar cell current values shows the 472 

error in the conventional calculation methods since the exact expression of the calculated cell 473 

output current is not used. Other promising optimization techniques such as hybrid and 474 

improved algorithms [80–83] can be employed to address the problem using the proposed 475 

RMSE expression to get better solutions. 476 
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 477 

Fig. 14. The difference in current values calculated by Eq. (3) and last part of Eq. (9) 478 
 479 

5. Conclusions 480 

In the available literature, one can find a lot of methods and techniques employed to estimate 481 

single diode solar PV cell parameters. In this work, values of RMSE of RTC France solar PV 482 

cell and Solarex MSX-60 module are presented and discussed. We proposed an exact analytical 483 

solution for RMSE calculation based on the Lambert W function. The results obtained show 484 

that the RMSE values were not calculated correctly in most of the methods presented in the 485 

literature since the exact expression of the calculated cell output current was not used. The 486 

precision of two numerical approaches to numerically solve the Lambert W function is also 487 

addressed with: (i) one based on TS; and (ii) the other based on STFT. In addition, the impact 488 

of the thermal voltage on RMSE calculation is addressed. Further, the applicability of the 489 

proposed solution methodology is explored with the aid of the experimental results. It was 490 

found that the reasons for results mismatching of the minimum RMSE in the published papers 491 

are not using all the measured points for RMSE calculation, complete dependence on 492 

optimization techniques to reach a solution, approximation of the values of the operational 493 

factors and inaccurate solving of the Lambert W function. In regard to double and triple diode 494 
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PV equivalent circuits, no exact analytical solution has been reached yet because of the high 495 

nonlinearity of the current expressions of these models. Finally, this work aimed to develop a 496 

good base for proper investigation and implementation of optimization algorithms to solve the 497 

parameter estimation problem of 5-parameter single diode PV equivalent circuits. 498 

APPENDIX 1 499 

A1.1 Matlab code for solving Lambert W equation 500 

The central part of the Matlab code for RMSE calculation based on the Lambert W function is 501 

given in Appendix 1 as follows [17,27]: 502 

% RTC FRANCE CURRENTS 503 
Iiz=[0.7640 0.7620 0.7605 0.7605 0.7600 0.7590 0.7570 0.7570 0.7555 0.7540 0.7505 0.7465 504 
0.7385 0.7280 0.7065 0.6755 0.6320 0.5730 0.4990 0.4130 0.3165 0.2120 0.1035 -0.0100 -505 
0.1230 -0.2100]; 506 
% RTC FRANCE VOLTAGES    507 
Uiz=[-0.2057 -0.1291 -0.0588 0.0057 0.0646 0.1185 0.1678 0.2132 0.2545 0.2924 0.3269 508 
0.3585 0.3873 0.4137 0.4373 0.4590 0.4784 0.4960 0.5119 0.5265 0.5398 0.5521 0.5633 509 
0.5736 0.5833 0.5900]; 510 
% Number of measured points     511 
N=length(Uiz); 512 
 % define Rp, Rs, Vth, a – Ideality factor, Io, Ipv, … 513 
for t=1:N   514 
        BETA=Io*10^-6*Rs*Rp/(a*Vth*(Rs+Rp))*exp((Rp*(Rs*Ipv+Rs*Io*10^-515 
6+Uiz(t)))/(a*Vth*(Rs+Rp))); 516 
        CHECKING(t)=lambertw(BETA)- BETA *exp(-lambertw(BETA)); 517 
        CURRENTCALCULATED=(Rp*(Ipv+Io*10^-6)-Uiz(t))/(Rs+Rp)-518 
a*Vth*lambertw(BETA)/Rs; 519 
        ERROR(t)=(CURRENTCALCULATED-Iiz(t))^2; 520 
End 521 
RMSE=sqrt(sum(ERROR)/N)  522 
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A1.2 Mathematica code for solving Lambert W equation 523 

digitnumber=1000; 524 
beta=35/10; 525 
 526 
M=30; 527 
Print["M= ", M]; 528 

M

x=0
F1= (beta^x*(((M x)^x) / x!));−∑   529 

M+1

x=0
F2= (beta^x*(((M+1 x)^x) / x!));−∑  530 

SolutionTRANS = SetPrecision[beta*(F1/F2), digitnumber]; 531 
Print["SolutionTRANS= ", SolutionTRANS] 532 
ErrorTRANS=SetPrecision[Abs[SolutionTRANS-beta*E^(-SolutionTRANS)], digitnumber]; 533 
Print["ErrorTRANS= ", ErrorTRANS] 534 

M

x=1
solutionLAMBERT (beta^x*((( x)^(x 1)) / x!));= − −∑  535 

Print["solutionLAMBERT= ", SetPrecision[solutionLAMBERT, digitnumber]]; 536 
ErrorLAMBERT=SetPrecision[Abs[solutionLAMBERT-beta*E^(-solutionLAMBERT)], 537 
digitnumber]; 538 
Print["ErrorLAMBERT= ", ErrorLAMBERT] 539 
lambertMATH=N[ProductLog[beta],M] 540 
Print["SOLUTIONlambertMATH= ",SetPrecision[lambertMATH, digitnumber]] 541 
ErrorPRODUCT=Abs[lambertMATH-beta*E^(-lambertMATH)]; 542 
Print["ErrorPRODUCT= ",SetPrecision[ErrorPRODUCT, digitnumber]] 543 

APPENDIX 2 544 

A2. Matlab code for calculating I–U characteristics of the RTC solar cell 545 

Ipv=0.76077700 546 
Io=0.32262200 547 
a=1.48106000 548 
Rs=0.03638190 549 
Rp=53.67840000 550 
for t=1:N 551 
        BETA=Io*10^-6*Rs*Rp/(a*Vth*(Rs+Rp))*exp((Rp*(Rs*Ipv+Rs*Io*10^-552 
6+Uiz(t)))/(a*Vth*(Rs+Rp))); 553 
        CHECKING(t)=lambertw(BETA)- BETA *exp(-lambertw(BETA)); 554 
        Icalc(t)=(Rp*(Ipv+Io*10^-6)-Uiz(t))/(Rs+Rp)-a*Vth*lambertw(BETA)/Rs; 555 
end 556 
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