On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert *W* function

Martin Ćalasan^a, Shady H. E. Abdel Aleem^b, Ahmed F. Zobaa^{c,*}

^a Faculty of Electrical Engineering, University of Montenegro, Montenegro

^b 15th of May Higher Institute of Engineering, Mathematical and Physical Sciences, Cairo, Egypt

^c College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge United Kingdom

*Corresponding author

E-mail addresses: <u>martinc@ucg.ac.me</u> (M. Ćalasan), <u>engyshady@ieee.org</u> (S. Abdel Aleem), and <u>azobaa@ieee.org</u> (A. Zobaa).

1 Abstract

In the literature, one can find a lot of methods and techniques employed to estimate single diode solar 2 photovoltaic (PV) cell parameters. The efficiency of these methods is usually tested by calculating the 3 Root Mean Square Error (RMSE) between the measured and estimated values of the solar PV cell output 4 current. In this work, first, the values of RMSE calculated using 69 different methods published in many 5 journal papers for the well-known RTC France solar PV cell are presented and discussed. Second, a novel 6 7 exact analytical solution for RMSE calculation based on the Lambert W function is proposed. The results obtained show that the RMSE values were not calculated correctly in most of the methods presented in 8 9 the literature since the exact expression of the calculated cell output current was not used. Third, the precision of calculation of the methods used for analytical solving of Lambert W equation is presented 10 and discussed. Fourth, the applicability of the proposed solution methodology in accordance with current-11 voltage characteristics measured in the laboratory for solar modules of Clean Energy Trainer Setup is 12 13 checked. Identification of its unknown parameters is presented using three optimization techniques. Further, the proposed solution methodology is proven for Solarex MSX-60 PV module, and the most 14 15 promising 5-parameter single diode parameters are estimated based on minimization of the precise RMSE values calculated. Finally, this work aimed to develop a good base for proper investigation and 16 implementation of optimization algorithms to solve the parameter estimation problem of 5-parameter 17 single diode PV equivalent circuits. 18

19

Keywords—Lambert W function; optimization; PV parameter estimation; root mean square error; RTC
 France solar cell; 5-parameter single diode model.

22 Abbreviations

23 ABC Artificial bec swarm optimization 25 ABCDF Artificial bec swarm optimization 26 A&I Analytical and iterative based methods 27 BPFPA Bee pollinator flower pollination algorithm 28 BMO Bird mating optimizer 29 BBO Biogeography-based optimization 21 BFCS Biogeography-based optimization algorithm with two mutation strategies 28 BHCS Biogeography-based optimization 29 BBO Chaotic asexual reproduction optimization 21 BHCS Biogeography-based petropacenus cuckoo search 23 CARO Chaotic asexual reproduction optimization 26 CARO Chaotic asexual reproduction optimization 26 CWOA Chaotic asexual reproduction optimization 27 CSO Cat swarm optimization 28 DF Differential evolution 29 DFT DF terthique 20 EA-NIS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 24 ER-WCA Exportation algorithm 25 FPA Freefy algorithm 26 GA Graencia algorithm 27 FSO Hexible particle swarm optimization 2	22	A D C	
25 ABCDE Artificial bee colony-differential evolution 27 BPFPA Bec pollinator flower pollination algorithm 28 BMO Bird mating optimizer 29 BBO Biogeography-based optimization 30 BBO-M Biogeography-based optimization algorithm with two mutation strategies 31 BC Bezier curves 32 SARO Chaotic captimization algorithm with two mutation strategies 33 CARO Chaotic captimization approach 34 COA Chaotic captimization algorithm 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic while optimization algorithm 37 CSO Cat swarm optimization algorithm 38 DE Differential evolution 39 DET DE technique 40 FAs Evolution rate-based water cycle algorithm 41 EFA Evolution rate-based water cycle algorithm 42 FR FrefN algorithm 43 FRSO Flexible particle swarm optimization 44 FA FirefN algorithm 45 FPA Flower pollination algorithm 46 GAMS General algorithm 47	23	ABC	Artificial bee colony
26 A&EI Analytical and iterative based methods 27 BPTPA Bec pollinator flower pollination algorithm 28 BMO Bid mating optimizer 29 BBO Biogeography-based optimization algorithm with two mutation strategies 31 BC Biogeography-based optimization algorithm with two mutation strategies 32 BHCS Biogeography-based optimization algorithm with two mutation strategies 33 CARO Chaotic acsual reproduction optimization 34 COA Chaotic acsual reproduction optimization 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic whate optimization algorithm 37 CSO Cat swarm optimization 38 DF Differential evolution 39 DET DE trendique 40 EAs Evolutionary algorithm 41 FAA Englebaat daptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm			
27 BPFPA Bec pollinator flower pollination algorithm 28 BMO Bid maing optimizer 29 BBO Biogeography-based optimization 30 BRO-M Biogeography-based optimization algorithm with two mutation strategies 31 BAC Bézier curves 32 BHCS Biogeography-based heterogeneous cuckoo search 33 CARO Chaotic optimization approach 34 COA Chaotic wascual reproduction optimization 35 CFMPSO Classified perturbation mutation-based particle swarm optimization 36 DF Differential evolution 37 CSO Cat swarm optimization 38 DF Differential evolution 39 DET Differential evolution 314 EHA-NMS Eugle-based hybrid adaptive Nelder-Mead simplex algorithm 41 EHA-NMS Eugle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaptorian rate-based water cycle algorithm 43 FSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower p			
28 BMO Bit mating optimization 29 BBO Biogeography-based optimization algorithm with two mutation strategies 31 BC Bézier curves 32 BHCS Biogeography-based optimization algorithm with two mutation strategies 33 CARO Chaotic ascual reproduction optimization 34 COA Chaotic ascual reproduction optimization 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic ascual reproduction algorithm 37 CSO Cat swarm optimization 38 DE Differential evolution 39 DET Differential evolution 34 EAA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 45 FPA FireDy algorithm 46 GGHS Grouping-based lybrid adaptive Nelder-Mead simplex algorithm 47 GA General algorithm 48 GAMS General algorithm 49 GOTLBO Generalized oppositional teaching learning-based optimization 51 HFAPS			
29 BBO Biogeography-based optimization 30 BBO-M Biogeography-based optimization algorithm with two mutation strategies 31 BC Boigeography-based optimization algorithm with two mutation strategies 32 BHCS Biogeography-based heterogeneous cuckoo search 33 CARO Chaotic optimization approach 34 COA Chaotic optimization algorithm 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic whale optimization algorithm 37 CSO Cat swarm optimization 38 DF Differential evolution 39 DF Differential evolution 31 EAs Evolution rate-based water cycle algorithm 34 EHA Erkorp article swarm optimization 36 GATS General algorithm 36 GAMS General algorithm 37 GA General algorithm 38 GAMS General algorithm 39 GOTLBO General algorithm iteaching learning-based optimization <td></td> <td></td> <td></td>			
30 BBO-M Biogeography-based optimization algorithm with two mutation strategies 31 BC Biogeography-based optimization 32 BHCS Biogeography-based optimization 33 CARO Chaotic ascual reproduction optimization 34 COA Chaotic ascual reproduction optimization 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic ascual reproduction optimization 37 CSO Classified perturbation mutation-based particle swarm optimization 38 DF Differential evolution 39 DET Differential evolution 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adphyte Ndder-Mead simplex algorithm 42 FR-WCA Evolutionary algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firstly algorithm 45 FPA Flower pollination algorithm 46 GAMS General algebraic modelling system 47 GA			
HC BeZier Curves 32 BHCS Biogeography-based heterogeneous cuckoo search 33 CARO Chaotic optimization approach 34 CAA Chaotic optimization approach 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CCVOA Chaotic whale optimization algorithm 37 CSO Castwarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithm 41 ERA-WCA Evaporation rate-based water cycle algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPA Flower pollination algorithm 44 FA Fract algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA Gancelic algorithm 48 GAMS General algebraic modelling system 49 GoTLBO General algebraic model algorithm			
32 BHCS Biogeography-based heterogeneous cuckoo search 33 CARO Chaotic assual reproduction optimization 34 COA Chaotic optimization approach 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic whale optimization approach 37 CSO Cat swarm optimization 38 DF Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 FAA Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 FR-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GAMS General algebrair modelling system 47 GA General algebrair modelling system 48 GAMS General algebrair modelling system 49 GOTLBO General algebrair modelling system 51 HFAPS Hybrid firefly and pattern search algorithms <			
33 CARO Chootic asexual reproduction optimization 34 COA Chaotic optimization approach 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CPMPSO Classified perturbation mutation-based particle swarm optimization 37 CSO Cast swarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GdHS Grouping-based global harmony search 47 GA General algorithm algorithms 48 GAMS General algorithm concella digorithms 49 GOTLBO General algorithm algorithms 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search <td></td> <td></td> <td></td>			
34 COA Chaotic optimization approach ¹ 35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic whale optimization algorithm 37 CSO Cat swarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 FHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 48 GAMS General algebraic modelling system 50 GWO Grey wolf optimization 51 HFAPS Hybrid iterfly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 54 HISA Hybridized interior search algorithm			
35 CPMPSO Classified perturbation mutation-based particle swarm optimization 36 CWOA Chaotic whale optimization algorithm 37 CSO Cat swarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firely algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 48 GAMS General algebraic modelling system 49 GOTLBO Gree wolf optimization 51 HFAPS Hybrid firely and pattern search algorithms 52 HS Harmony search 53 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 54 HLSA Hybrotidized interior complex evolution			
36 CWOA Chaotic whale optimization algorithm 37 CSO Cat swarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA Genetic algorithm 48 GAMS Generalized oppositional teaching learning-based optimization 50 GWO Grey wolf optimization 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer <			
37 CSO Cat swarm optimization 38 DE Differential evolution 39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Fively algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 48 GAMS Generalized oppositional teaching learning-based optimization 50 GWO Grew oil optimization 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 56 HACLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 57 ICA <			
38 DE Differential evolution 39 DET DE technique 39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 48 GAMS General algebraic modelling system 49 GOTLBO Generalized oppositional teaching learning-based optimization 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer			
39 DET DE technique 40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA Genetic algorithm 48 GAMS General algebraic modelling system 49 GOTLBO Generalized oppositional teaching learning-based optimization 50 GWO Grey wolf optimization algorithms 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 56 IADE Improved taching-learning-based optimization 57 ICA Imperived Loz map-based chaotic optimization 58 ITLBO Improved JAYA optimization algorithm 51 <			
40 EAs Evolutionary algorithms 41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA Genetic algorithm 48 GAMS Generalized oppositional teaching learning-based optimization 50 GWO Grey wolf optimization 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning paticle swarm optimizer 56 IADE Improved taptive DE 57 ICA Imperialist competitive algorithm 58 ITLBO Improved shuffled complex evolution 60 ILCOA Improved JAY			
41 EHA-NMS Eagle-based hybrid adaptive Nelder-Mead simplex algorithm 42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Firstible particle swarm optimization 44 FA Firstible particle swarm optimization 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 49 GOTLBO Generalized oppositional teaching learning-based optimization 50 GWO Grey wolf optimization 51 HFAPS Hybrid frefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 56 IADE Improved tachy optimization 57 ICA Imperived shuffled complex evolution 58 ISCE Improved Lozi map-based chaotic optimization algorithm 59 ISCE Improved JAYA Optimization algorithm <td></td> <td></td> <td></td>			
42 ER-WCA Evaporation rate-based water cycle algorithm 43 FPSO Flexible particle swarm optimization 44 FA Firefly algorithm 45 FPA Flower pollination algorithm 46 GGHS Grouping-based global harmony search 47 GA General algebraic modelling system 49 GOTLBO Generalized oppositional teaching learning-based optimization 50 GWO Grey wolf optimization 51 HFAPS Hybrid firefly and pattern search algorithms 52 HS Harmony search 53 HPEPD High performing extraction procedure for the one-diode model 54 HISA Hybridized interior search algorithm 55 HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer 54 IADE Improved tadpitve DE 57 ICA Improved tadpitve DE 58 ITLBO Improved tadpitve DE 59 ISCE Improved Lozi map-based chaotic optimization algorithm 61 IGHS Innovative global HS 62 IJAYA Improved Lozi map-based cha			
43FPSOFlexible particle swarm optimization44FAFirefly algorithm45FPAFlower pollination algorithm46GGHSGrouping-based global harmony search47GAGenerial algorithm48GAMSGeneral algorithm49GOTLBOGeneral algorithm50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImperialist completive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved shuffled complex evolution60ILCOAImproved JAYA optimization algorithm61IGHSInnovative global HS62JAYASanskrit word meaning victory or triumph64L1Linear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm61IGHSInnovative global HS62JAYASanskrit word meaning victory or triumph64L1Linear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing <td></td> <td></td> <td></td>			
44FAFirefly algorithm45FPAFlower pollination algorithm46GGHSGrowipig-based global harmony search47GAGenetic algorithm48GAMSGeneralized oppositional teaching learning-based optimization50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved taching-learning-based optimization59ISCEImproved taching-learning-based optimization60ILCOAImproved taching-learning-based optimization51ILGNImproved taching-learning-based optimization52ISCImproved taching-learning-based optimization54HISAHybridized interior search algorithm55HCLPSOImproved taching-learning-based optimization66IADEImproved taching-learning-based optimization67ILSOImproved taching-learning-based optimization68ILI Linear identification69ILAYAImproved taching learning-internot64LILinear identification65ILMSALevenberg-Marquard talgorithm combined with simulated annealing66MABCModified artificial bee colony algorithm71MPSO			1 0
45FPAFlower pollination algorithm46GGHSGrouping-based global harmony search47GAGenetica lgorithm48GAMSGeneral algebraic modelling system49GOTLBOGeneralized oppositional teaching learning-based optimization50GWOGrey wolf optimization on51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved teaching-learning-based optimization59ISCEImproved tozi map-based optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bec colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm79NMNewton method71MPSOModified particle swarm optimization72MSOModified particle swarm optimization73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOA </td <td></td> <td></td> <td></td>			
46GGHSGrouping-based global harmony search47GAGenetic algorithm48GAMSGeneral algebraic modelling system49GOTLBOGeneral algebraic modelling system50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HDEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImproved chaing-learning-based optimization58ITLBOImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS52JAYASanskrit word meaning victory or triumph63JAYASanskrit word meaning victory or triumph64L1Linear identification65MABCModified artificial bee colony algorithm66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm79MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified artificial swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOp			
47GAGenetic algorithm48GAMSGeneralized oppositional teaching learning-based optimization50GWOGreenvalized oppositional teaching learning-based optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved dadptive DE57ICAImproved teaching-learning-based optimization58ITLBOImproved teaching-learning-based optimization algorithm59ISCEImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62JAYASanskrit word meaning victory or triumph64L1Linear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bec colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified article swarm optimization72MSSOModified particle swarm optimization73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75			
48GAMSGeneral algebraic modelling system49GOTLBOGeneralized oppositional teaching learning-based optimization50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved dadptive DE57ICAImperialist competitive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved teaching-learning-based optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64L1Linear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rer-IJADERate cross			
49GOTLBOGeneralized oppositional teaching learning-based optimization50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImproved teaching-learning-based optimization58ITLBOImproved teaching-learning-based optimization59ISCEImproved Uay Hoffed complex evolution60ILCOAImproved JAYA optimization algorithm61IGHSInnovative global HS62IJAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquard algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rer-IJA		-	0
50GWOGrey wolf optimization51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImproved dadptive DE58ITLBOImproved taching-learning-based optimization59ISCEImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAInnovative global HS63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquard algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified particle swarm optimization algorithm73NMNetdor method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rer-UADERate crossover repairing improved adaptive DE <tr< td=""><td></td><td></td><td></td></tr<>			
51HFAPSHybrid firefly and pattern search algorithms52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImprived adaptive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved to shuffled complex evolution60ILCOAImproved JAYA optimization algorithm61IGHSInnovative global HS62IJAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified particle swarm optimization73NMNevton method74NM-MPSONelder-meead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm74NM-MPSONelder-meead and modified particle swarm optimization75OBWOAOpposition-based whale op			
52HSHarmony search53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer61IADEImproved adaptive DE57ICAImproved taching-learning-based optimization59ISCEImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved Lozi map-based chaotic optimization algorithm63JAYAImproved JAYA optimization algorithm64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified artificial swarm optimization72MSOModified samplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PSPattern search78PSPattern search79PSOPattern search79 <td< td=""><td></td><td></td><td></td></td<>			
53HPEPDHigh performing extraction procedure for the one-diode model54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImproved teaching-learning-based optimization58ITLBOImproved teaching-learning-based optimization algorithm60ILCOAImproved tozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization70PPSO			
54HISAHybridized interior search algorithm55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImproved adaptive DE58ITLBOImproved teaching-learning-based optimization59ISCEImproved teaching-learning-based optimization algorithm60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified artificial swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParticle swarm optimization			
55HCLPSOChaotic heterogeneous comprehensive learning particle swarm optimizer56IADEImproved adaptive DE57ICAImperialist competitive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved shuffled complex evolution60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutitive-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76PSOParticle swarm optimization77PCEPopulation classification evolution78PSPattern search79PSOPartile swarm optimization70PSOParallel PSO71PGJAYAPerformance-guid			
56IADEImproved adaptive DE57ICAImperialist competitive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved shuffled complex evolution60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm78PSPattern search79PSOParticle swarm optimization70PSOPartiel swarm optimization78PSPattern search79PSOParallel PSO71PGIAYAPerformance-guided JAYA algorithm72SSSParture stochastic fractal search73PGIAYA			
57ICAImperialist competitive algorithm58ITLBOImproved teaching-learning-based optimization59ISCEImproved Lozi map-based chaotic optimization algorithm60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62JIAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
58ITLBOImproved teaching-learning-based optimization59ISCEImproved shuffled complex evolution60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
59ISCEImproved shuffled complex evolution60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64L1Linear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm78PSPattern search79PSOPattern search79PSOPattern search79PSOPattern search79PSOPattern search79PSOPattern search79PSOPattern search79PSOPattern search71PGJAYAPerformance-guided JAYA algorithm72SSSPerturbed stochastic fractal search			
60ILCOAImproved Lozi map-based chaotic optimization algorithm61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm78PSPattern search79PSOParticle swarm optimization78PSPattern search79PSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
61IGHSInnovative global HS62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
62IJAYAImproved JAYA optimization algorithm63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg–Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
63JAYASanskrit word meaning victory or triumph64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization algorithm72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
64LILinear identification65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization algorithm72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
65LMSALevenberg-Marquardt algorithm combined with simulated annealing66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
66MABCModified artificial bee colony algorithm67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
67MADEMemetic adaptive DE68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
68MBAMine blast algorithm69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
69MVOMulti-verse optimization70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
70MPCOAMutative-scale parallel chaos optimization algorithm71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
71MPSOModified particle swarm optimization72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
72MSSOModified simplified swarm optimization algorithm73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
73NMNewton method74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
74NM-MPSONelder-mead and modified particle swarm optimization75OBWOAOpposition-based whale optimization algorithm76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
75OBWOAOpposition-based whale optimization algorithm76Rcr–IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
76Rcr-IJADERate crossover repairing improved adaptive DE77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
77PCEPopulation classification evolution78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
78PSPattern search79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
79PSOParticle swarm optimization80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
80PPSOParallel PSO81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
81PGJAYAPerformance-guided JAYA algorithm82pSFSPerturbed stochastic fractal search			
82 pSFS Perturbed stochastic fractal search			
1			
os rv Pilotovoltaic		-	
	02	L A	r notovoltate

84	SA	Simulated annealing
85	SSE	Sum of squared error
86	STFT	Special trans function theory
87	TLBO	Teaching-learning-based optimization
88	TLABC	Teaching-learning-based artificial bee colony
89	TS	Taylor series
90	TVA-CPSO	Time-varying acceleration coefficients PSO
91	WCA	Water cycle algorithm
92	WDO	Wind-driven optimization

93 Nomenclature

94	G	Irradiance (W/m ²)
95	$I\!\!-\!\!U$	Current-voltage characteristics
96	I_i^{meas} and I_i^{calc}	Measured and estimated solar cell current at point <i>i</i> , respectively
97	I _{pv}	Photo-generated current
98	$\hat{I_0}$	Reverse saturation current
99	KB	Boltzmann constant
100	Μ	Positive integer
101	n	Ideality factor of the diode
102	Ν	The number of the measured points
103	Pr	Precision of calculation that reflects accuracy at higher values
104	P-U	Power-voltage characteristics
105	Pr _{STFT} and Pr _{Taylor}	Precision of calculation using STFT and TS, respectively
106	q	Electron's charge
107	RMSE	Root mean square error
108	R_P	Parallel resistance of the solar cell
109	R_S	Series resistance of the solar cell
110	Т	Actual temperature in Kelvin
111	V_{th}	Thermal voltage
112	W	Solution of the Lambert equation
113	β	Real number in Lambert W equation

114 **1. Introduction**

Recently, significant scaling up renewable energy sources (RESs) capacity in modern 115 power systems is experienced in response to several technical, economic, environmental, 116 social, and political factors. The conventional fossil fuel generation sources are facing severe 117 environmental problems such as the greenhouse gas emissions contributing to global warming, 118 119 and techno-economic problems due to price fluctuations and fuel depletion across the world [1,2]. In this regard, the solar photovoltaic (PV) capacity is one of the primary drivers towards 120 121 realizing emission-free power generation that can accelerate shifting power systems away from 122 fossil fuel generation sources to renewable sources.

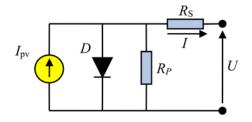
Solar PV modules considerably depend on the operating conditions such as solar 123 irradiance, temperature, spectrum, and others, particularly for PV modules installed outdoors. 124 These particular PV modules have different electrical characteristics from the reference 125 characteristics given in the manufacturer datasheets. What makes the problem more difficult is 126 127 the incomplete data and missing parameters in the data sheets provided by the manufacturers and vendors. This is why it is not simple to model the nonlinear electrical characteristics 128 precisely with the missing data. Besides, the need for accurate solar PV modules becomes 129 crucial, particularly with the fast-growing solar PV capacity across the world. The practical 130 131 realization of any solar PV system requires an adequate solar PV cell model as well as accurately determined solar cell parameters to design reliable power systems with solar systems 132 efficiently. Thus, it becomes essential to estimate such parameters for a complete and precise 133 solar PV model that can closely match the experimental measures under different operation 134 135 conditions [3,4].

The parameter estimation problem of solar PV cells represents a trendy scientific field 136 for researches working with power and energy systems. In the literature, one can find a lot of 137 methods and techniques employed to estimate single diode solar PV cell parameters [3–64], in 138 which three primary classes for estimating the single diode solar PV cell parameters can be 139 categorized into analytical, numerical (deterministic and metaheuristic), and hybrid methods 140 141 [3]. The analytical methods use the I-U (current-voltage) and P-U (power-voltage) data curve and the other information provided in the datasheet to formulate the mathematical estimation 142 optimization problem. They are easy to implement and imply less computational effort. 143 However, these methods require simplifications or approximations of the expressions used, 144 which has a significant impact on the solution's accuracy. Besides, the selected initial points 145 from the *I*-*U* curve may influence the accuracy of the solution obtained [3]. On one hand, 146 numerical methods include iterative techniques such as Newton-Raphson, Levenberg-147

Marquardt, and linear identification [3,42,45] to provide accurate solutions; however, they 148 suffer from locally optimal in non-convex optimization problems, in addition to the time 149 consumption when obtaining global solutions because their performance is highly dependent 150 on the initial values provided by the programmer. On the other hand, numerical methods 151 include evolutionary algorithms (EAs) or metaheuristics. EAs are based on a trajectory or 152 population of individuals that interact between exploration and exploitation phases to create a 153 search path that can avoid local optima and achieve global/near-global solutions. EAs are 154 classified into several categories as bio-inspired based algorithms, swarm intelligence-based 155 156 algorithms, physics and chemistry-based algorithms, and others. Despite the fact that EAs have shown better-estimated parameters of PV equivalent circuits in terms of computational 157 efficiency and precision of solutions compared to the analytical and deterministic methods, 158 their performance is highly dependent on proper adjustment of the control parameters. The 159 most popular EAs used for parameter estimation of PV equivalent circuits are the bio-inspired 160 algorithms, which mimic ideas, processes, or biological behaviors that take place in nature. The 161 main representatives of this group are MADE [12], ISCE [20], BPFPA [25], DET [37], FPA 162 [44], DE [46], IADE [54], Rcr-IJADE [57], and GA [60]. Also, swarming-based EAs are 163 modeled to mimic swarming behaviors of birds, cats, bees, fish, or others. CPMPSO [4], 164 165 HCLPSO [6], FPSO [7], MPSO [18], FA [22], MSSO [24], CSO [31], MABC [35], TVA-CPSO [38], PPSO [39], ABC [48], ABSO [53,55], BMO [52], and PSO [61], are the main 166 representatives of these swarming-based algorithms. Similarly, physics and chemistry-based 167 algorithms that mimic physical, chemical ideas or concepts are used for parameter estimation 168 169 of PV equivalent circuits. The main representatives of this group are ER-WCA [23], WDO [27], WCA [38], GGHS [56], HS [56], IGHS [56], and SA [59]. Another set is that inspired by 170 171 the teaching and learning process such as GOTLBO [30], STLBO [47], and TLBO [47,51], or that inspired by chaotic behaviors such as ILCOA [11], COA [13], CWOA [28], CARO [41], 172 and MPCOA [50]. In the optimization process, the objective function, in most cases, is to 173 minimize the sum of the squared difference between the experimentally measured solar PV cell 174 output current and the calculated one of a specified number of data points. The third category, 175 hybrid methods, combines analytical and numerical optimization methods to achieve global 176 177 solutions associated with high computational efficiency and convergence speed towards finding the global solution. However, hybrid methods such as HISA [5], BHCS [16], HFAPS 178 [19], TLABC [21], NM–MPSO [32], EHA–NMS [40], and ABCDE [55] are high complexity 179 level algorithms. 180

In many of the mentioned papers, comparisons of these algorithms were presented in 181 terms of many criteria such as convergence characteristics, computational efficiency, 182 complexity, time per iteration, and so forth [14]. Unfortunately, we can find a case in a research 183 paper claiming that algorithm X gives better results in comparison with results obtained by 184 using algorithms Y or Z. However, in another research paper, we can find results obtained by 185 186 using algorithm Z are better than the results obtained with algorithm X without any comments on algorithm Y [46–48,55–58] even if the algorithms are compared after many runs (e.g. above 187 20). Besides, in a few recently published papers, we can also find different authors' discussion 188 189 on the accuracy of the results obtained, and the root mean square error (RMSE) calculated with the measured and estimated values of the solar PV cell output current for the 5-parameter single 190 diode model of solar cell [62–64]. It is clear that no method has been evidenced to be the most 191 appropriate method in identifying the unknown parameters and no guarantee is observed for 192 realizing global solutions of the different PV modules. This necessitates an assessment of the 193 194 solutions provided by the different methods to solve the solar PV cell parameters extraction problem of the different PV modules. 195

196 In response to these discussions, in this work, first, the values of RMSE calculated using 69 different methods published in many journal papers for the well-known RTC France solar 197 198 PV cell are presented and discussed. The RTC France solar cell is used in this work as it is one of the most popular solar cells across the world, and is commonly used in many published 199 200 papers to test algorithms. Second, a novel exact analytical solution for RMSE calculation based on the Lambert W function is proposed. The results obtained show the shortcomings many of 201 202 the reported works made with the determination of their RMSE calculations for the equivalent circuit modeling approach under focus. Third, the precision of two numerical approaches to 203 numerically solve the Lambert W function is addressed and discussed with: (i) one based on 204 Taylor series; and (ii) the other based on Special Trans Function Theory. Fourth, the 205 206 applicability of the proposed solution methodology in accordance with current-voltage characteristics measured in the laboratory for solar modules of Clean Energy Trainer Setup is 207 208 checked. Identification of its unknown parameters is presented using three optimization techniques: chaotic optimization algorithm (COA), evaporation rate water cycle algorithm 209 210 (ER-WCA), and harmony search (HS). Further, the proposed solution methodology is applied for Solarex MSX-60 PV module, and the most promising 5 parameters are estimated based on 211 the minimization of the precise RMSE values calculated. Finally, this work aimed to present a 212 good base for proper investigation and implementation of optimization algorithms to solve the 213 5-parameter estimation problem of the single diode equivalent circuits of PVs. 214


The rest of the work is organized as follows: In Section 2, a short description of the 5-215 parameter single diode solar cell model is given. Also, the proposed RMSE expression based 216 on Lambert W function is presented. Values obtained of the proposed RMSE expression and 217 comparison of related works in the literature are presented and discussed in Section 3. Also, 218 the precision of two numerical approaches to numerically solve the Lambert W function is 219 addressed and discussed. In Section 4, the applicability of the proposed methodology is 220 presented with the aid of experimental results and optimization methods. Lastly, the concluding 221 222 remarks are drawn in Section 5.

223

224 2. Proposed RMSE calculation based on Lambert *W* function

225 Single diode solar cell model

The single diode solar cell model is a commonly used model for solar cell representation [4]. This model consists of one current source, one diode, and two resistances, namely a series resistance (R_S) and a parallel resistance (R_P), which represent the solar cell losses. The equivalent circuit of the single diode PV cell model is shown in Fig. 1.

230

231 232

Fig. 1. Single diode model of the solar cell

In the mathematical sense, the *I*–*U* relationship of this model can be described, as follows:

$$I = I_{pv} - I_0 \left(e^{\frac{U + IR_s}{n \times V_{th}}} - 1 \right) - \frac{U + IR_s}{R_p}$$
(1)

where I_{pv} represents the photo-generated current, I_0 is the reverse saturation current, n is the ideality factor of the diode, and $V_{th} = K_B T/q$ is the thermal voltage (K_B is Boltzmann constant, T is the temperature and q is the electron's charge). In addition to the single-diode model, twodiode and three-diode solar cell models can be found in the available literature [3]. However, in regard to two-diode and three-diode solar cell models, no exact analytical solution has been reached yet because of the high nonlinearity of the current expressions of these models.

240 Conventional RMSE calculation

In line with the literature [3-62], the following equation is usually expressed for the calculation
of RMSE between measured and calculated output current of the solar PV cell.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(I_i^{meas} - I_i^{calc} \right)^2}$$
(2)

where *N* represents the number of the measured points. I_i^{meas} and I_i^{calc} represent the measured and estimated solar cell current at point *i*, respectively. Pseudo-substituting Eq. (1) into Eq. (2); at $U^{calc}=U^{meas}$, one can formulate the RMSE expression as follows:

246

$$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N} \left(I_i^{meas} - \left(I_{pv} - I_0 \left(\frac{U_i^{meas} + I_i^{meas} \times R_s}{n \times V_{th}} - 1 \right) - \left(\frac{U_i^{meas} + I_i^{meas} R_s}{R_P} \right) \right) \right)^2$$
(3)

247 However, with $I_{PV} - I_0 \left(e^{\frac{U_i^{meas} + I_i^{meas} R_S}{n \times V_{th}}} - 1 \right) - \left(\frac{U_i^{meas} + I_i^{meas} R_S}{R_P} \right)$ in the general case, the last

part of this equation does not represent the calculated value of the solar cell output current, and
therefore, Eq. (3) is not a correct expression of the RMSE measure. It should be noted that
many reported works of the literature use this relation to estimate their RMSE.

251 Lambert W function

In mathematics, the Lambert *W* function is a set of functions, precisely the branches of the inverse relation of the function β given below.

$$f(x) = \beta = xe^x \tag{4}$$

where e^x is the exponential function, and x is any complex number. Many problems in engineering sciences can be described using this equation. Thus, one can get x as follows:

$$x = f^{-1}\left(xe^{x}\right) = W\left(\beta\right) \tag{5}$$

where *W* represents the solution of the Lambert equation [65–73]. A graphical representation of the function $\beta = xe^x$ is shown in Fig. 2.

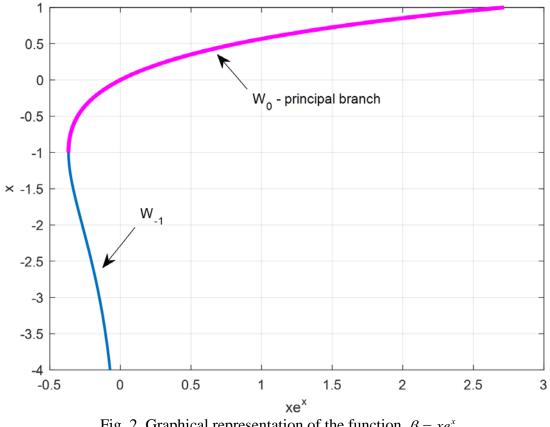


Fig. 2. Graphical representation of the function $\beta = xe^x$

It can be noticed from Fig. 2 that the illustration consists of two parts; the upper part (branch) 259 with $W \ge -1$ representing the function W_0 , which is called the principal branch, and the lower 260 part (branch) with $W \leq -1$ representing the function W_{-1} . 261

It should be noted that for solving Lambert W functions, different techniques can be used 262 such as the iterative methods [65] and program packages with corresponding solvers [66], in 263 addition to analytical-based methods such Taylor series (TS) [67] and Special Trans Function 264 Theory (STFT) [68-73]. 265

The TS of W_0 around 0 is based on the usage of the Lagrange inversion formula as 266 follows: 267

$$x = W\left(\beta\right) = \sum_{n=1}^{\infty} \frac{\left(-n\right)^{n-1}}{n!} \beta^n$$
(6)

In practice, Eq. (6) can be rewritten as follows: 268

$$x = W(\beta) = \sum_{n=1}^{M} \frac{(-n)^{n-1}}{n!} \beta^{n}$$
(7)

where M denotes a positive integer. 269

The Lambert W function can also be solved using STFT as follows: 270

$$x = \beta \frac{\sum_{n=0}^{M} \frac{\beta^{n} (M-n)^{n}}{n!}}{\sum_{n=0}^{M+1} \frac{\beta^{n} (M+1-n)^{n}}{n!}}$$
(8)

However, it should be noted that for the same value of positive integer *M*, the STFT gives the much more accurate results. It should be noted that the accuracy of using these methods is tested in many papers [66,68]. However, the general conclusion is that TS has good accuracy for small values of β , which is not the case for the higher values of β . However, STFT methods have a high level of accuracy for any value of β . To sum up, STFT is a more accurate method for analytical solving of the Lambert *W* equation. The reader can refer to [66,68,72] to find additional information and examples.

278 Proposed RMSE calculation

In order to calculate the estimated value of the solar cell output current, we need to solve Eq. (1). However, Eq. (1) is a highly nonlinear equation, *i.e.*, transcendental equation. Thus; it can be rearranged in the following form:

$$I = \frac{R_P (I_{PV} + I_0) - U}{R_S + R_P} - \frac{nV_{th}}{R_S} W(\beta)$$
(9)

282 So that

$$\beta = A \exp\left(\frac{R_P \left(R_S I_{pv} + R_S I_0 + U\right)}{n V_{th} \left(R_S + R_P\right)}\right)$$
(10)

$$A = \frac{I_0 R_P R_S}{n V_{th} \left(R_S + R_P \right)} \tag{11}$$

In Eq. (9), *W* represents the solution of the Lambert *W* function. In practice, for one value of the solar cell voltage, we have a particular value of the solar cell current. Therefore, in the calculation process, if we take a particular value of the solar cell voltage (equals to the measured voltage value), we can calculate the solar cell current using Eq. (9). Thus, the calculation of the proposed RMSE expression between measured and estimated solar cell current can be realized in the following manner:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(I_{i}^{meas} - \left(\frac{R_{P} \left(I_{pv} + I_{0} \right) - U_{i}^{meas}}{R_{S} + R_{P}} - \frac{nV_{th}}{R_{S}} W \left(A \exp \left(\frac{R_{P} \left(R_{S} I_{pv} + R_{S} I_{0} + U_{i}^{meas} \right)}{nV_{th} \left(R_{S} + R_{P} \right)} \right) \right) \right)^{2}$$
(12)

Equation (12) represents the analytical solution of the RMSE expression calculated between the measured and estimated solar cell output current. Besides, the analytical solution of the proposed RMSE expression using TS is expressed in the following form:

RMSE =

RMSE =

293
$$\sqrt{\frac{1}{N}\sum_{i=1}^{N} \left(I_{i}^{meas} - \left(\frac{R_{P}\left(I_{pv} + I_{0}\right) - U_{i}^{meas}}{R_{S} + R_{P}} - \frac{nV_{th}}{R_{S}} \cdot \sum_{n=1}^{M} \frac{(-n)^{n-1}}{n!} \left(A \exp\left(\frac{R_{P}\left(R_{S}I_{pv} + R_{S}I_{0} + U_{i}^{meas}\right)}{nV_{th}\left(R_{S} + R_{P}\right)} \right) \right)^{n} \right) \right)^{2}$$
(13)

Also, the analytical solution of the proposed RMSE expression using STFT is expressedas follows:

$$296 \sqrt{\frac{1}{N}\sum_{i=1}^{N} \left[I_{i}^{meas} - \left(\frac{R_{P}\left(I_{pv}+I_{0}\right)-U_{i}^{meas}}{R_{S}+R_{P}} - \frac{nV_{th}}{R_{S}} \cdot \left(A\exp\left(\frac{R_{P}\left(R_{S}I_{pv}+R_{S}I_{0}+U_{i}^{meas}\right)}{nV_{th}\left(R_{S}+R_{P}\right)}\right)\right) \frac{\sum_{n=0}^{M} \left(\frac{A\exp\left(\frac{R_{P}\left(R_{S}I_{pv}+R_{S}I_{0}+U_{i}^{meas}\right)}{nV_{th}\left(R_{S}+R_{P}\right)}\right)}{\frac{1}{N}\left(M-n\right)^{n}}{\frac{1}{N}\left(\frac{A\exp\left(\frac{R_{P}\left(R_{S}I_{pv}+R_{S}I_{0}+U_{i}^{meas}\right)}{nV_{th}\left(R_{S}+R_{P}\right)}\right)\right)}{\frac{1}{N}\left(M+1-n\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{\frac{1}{N}\left(\frac{1}{N}\left(\frac{1}{N}\right)^{n}}{$$

As Lambert *W* function is very popular in science, many programming packages have implemented a solver for solving Lambert *W* function. For example, in Matlab, we have a function called *lambertw*. In Maple, it is simply called *W*, while in the *Mathematica* computer algebra framework, the function is implemented under the name *ProductLog*.

301 3. Numerical results and discussion

In Table 1, for the well-known RTC France solar PV cell, the values of RMSE calculated 302 using 69 different methods reported in many journal papers are presented, which rely on the 303 same experimental current-voltage characteristics. In the same table, the estimated values of 304 the 5 parameters are given. Besides, the RMSE values calculated using Eq. (3) and the corrected 305 RMSE values calculated using Eq. (12) are presented. It should be noted that the determination 306 of the 5 parameters is not addressed by the current methodology; however, many optimization 307 techniques rely on objective functions whose accuracy can be improved by the proposed RMSE 308 309 calculation.

All the calculations were carried out into the Matlab program package, while the computer simulations were carried out on a PC with Intel(R) Core (TM) i3-7020U CPU @ 2.30 GHz and 4 GB RAM. Accuracy of the solution of the Lambert *W* function was tested by using the Lambert *W* equation embedded in Matlab, in which the accuracy was lower than 10^{-16} for all the points measured from the *I*–*U* characteristics. The central part of the Matlab code for RMSE calculation based on the Lambert *W* function is given in Appendix 1. Also, a
Mathematica code for solving the Lambert W equation is provided.

317 The procedure for RMSE calculation is summarized as follows:

For any measured point, we consider the voltage value and calculate the corresponding current using Eq. (9). We then apply Eq. (2) for all the points, thus giving Eq. (12). Eq. (12) is resolved in practice either by Eq. (13) or Eq. (14) numerical approaches (or both).

It can be seen from Table 1 that the differences between the calculated RMSE values and the RMSE values presented in the original papers are considerable. A graphical illustration of these differences, on a logarithmic scale, is shown in Fig. 3. We can find the same values of RMSE, as suggested in this work in just two papers [5,42] among 58. However, in [5,42], no comments were given about the exact analytical solution of RMSE calculation or the Lambert *W* function. Also, looking at the data given in Table 1, it can be noticed that many authors had used Eq. (3) for RMSE calculation, which is only a rough approximation.

Besides, some researchers use a very compact number value (0.0264V) or a semicompact number value as (0.02638V) of V_{th} instead of the long number formatting value, which also has a significant impact on the calculated RMSE value. The impact of V_{th} on the calculated RMSE value is shown in Fig. 4.

Apart from the wrong approach for RMSE calculation, the reasons for resultsmismatching of the minimum RMSE can also be:

- Authors do not use all measured points for RMSE calculation (*N*=26),
- Complete dependence on heuristic optimization techniques to reach a better solution
 than the corresponding values reported in the literature. Each optimization technique
 may also have different complexity and/or parameters at different values from one
 paper to the other.
- 339
- Inaccurate solving of the Lambert *W* function.

However, with this analysis, we cannot conclude that algorithm X is the best, while algorithm Y is the worst. The cause lies in the fact that the authors should use the proposed straightforward RMSE equation during the solar cell parameters estimation process, which has a significant impact on the algorithm efficiency.

	345				mmmum	RMSE are giv	en m bola)		•		
#	Ref.	Authors, year	Method	$I_{pv}(\mathbf{A})$	$I_0(\mu A)$	n	$R_{S}\left(\Omega ight)$	$R_{P}\left(\Omega ight)$	Original reported RMSE	RMSE calculated using	Proposed RMSE calculated using
										Eq. (3)	Eq. (12)
1	[4]	Liang et al., 2020	CPMPSO	0.76077600	0.32302100	1.48118400	0.03637700	53.71852000	0.00098602	0.00098602	0.00077539
2	[5]	Kler et al., 2019	HISA	0.76078797	0.31068459	1.47726778	0.03654695	52.88979426	0.00077301	0.00098911	0.00077301
3	[6]	Dalia et al., 2019	HCLPSO	0.76079000	0.31062000	1.47710000	0.03654800	52.88500000	0.00077300	0.00112018	0.00083374
4	[7]	Ebrahimi et al., 2019	FPSO	0.76077552	0.32302000	1.48110817	0.03637000	53.71852000	0.00098602	0.00102203	0.00079112
5	[8]	Li et al., 2019	ITLBO	0.76080000	0.32300000	1.48120000	0.03640000	53.71850000	0.00098602	0.00099161	0.00077779
6	[9]	Chen et al., 2019	pSFS	0.76078000	0.32302000	1.48118000	0.03638000	53.71852000	0.00098602	0.00098608	0.00077542
7	[10]	Chen et al., 2019	ISCA	0.76077562	0.32301700	1.48118220	0.03637716	53.71821748	0.00098602	0.00098602	0.00077539
8	[11]	Pourmousa et al., 2019	ILCOA	0.76077500	0.32302100	1.48110800	0.03637700	53.71867900	0.00098602	0.00102229	0.00079167
9	[12]	Li et al., 2019	MADE	0.76080000	0.32300000	1.48120000	0.03640000	53.71850000	0.00098602	0.00099161	0.00077779
10	[13]	Calasan et al., 2019	COA	0.76077450	0.32300180	1.48117740	0.03637750	53.73000000	0.00098602	0.00098602	0.00077538
11	[14]	Yu et al., 2019	PGJAYA	0.76080000	0.32300000	1.48120000	0.03640000	53.71850000	0.00098602	0.00099161	0.00077779
12	[15]	Gnetchejo et al., 2019	GAMS	0.76077600	0.32302000	1.48118400	0.03637700	53.71852400	0.00098602	0.00098602	0.00077540
13	[16]	Chen et al., 2019	BHCS	0.76078000	0.32302000	1.48118000	0.03638000	53.71852000	0.00098602	0.00098608	0.00077542
14	[17]	Abd Elaziz et al., 2018	OBWOA	0.76077000	0.32320000	1.52080000	0.03630000	53.68360000	0.00009860	0.11416692	0.07674430
15	[18]	Manel et al., 2018	MPSO	0.76078700	0.31068300	1.47526200	0.03654600	52.88971000	0.00077301	0.00733027	0.00435991
16	[19]	Beigi et al., 2018	HFAPS	0.76077700	0.32262200	1.48106000	0.03638190	53.67840000	0.00098602	0.00098603	0.00077525
17	[20]	Gao et al., 2018	ISCE	0.76077553	0.32302083	1.48118360	0.03637709	53.71852771	0.00098602	0.00098602	0.00077539
18	[21]	Chen et al., 2018	TLABC	0.76078000	0.32302000	1.48118000	0.03638000	53.71636000	0.00098602	0.00098608	0.00077542
19	[22]	Louzazni et al., 2018	FA	0.76069712	0.43244110	1.45245666	0.03341059	53.40180803	0.00051382	0.28514264	0.14234113
20	[23]	Kler et al., 2017	ER-WCA	0.76077600	0.32269900	1.48108000	0.03638100	53.69100000	0.00098602	0.00098609	0.00077529
21	[24]	Lin et al., 2017	MSSO	0.76077700	0.32356400	1.48124400	0.03637000	53.74246500	0.00098607	0.00105990	0.00080916
22	[25]	Ram et al., 2017	BPFPA	0.76000000	0.31060000	1.47740000	0.03660000	57.71510000	0.00072700	0.00125359	0.00095551
23	[26]	Fathy et al., 2017	ICA	0.76030000	0.14650000	1.44210000	0.03890000	41.15770000	NG [*]	0.11581627	0.07502096
24	[27]	Derick et al., 2017	WDO	0.76080000	0.32230000	1.48080000	0.03676800	57.74614000	0.00008866	0.00115725	0.00089482
25	[28]	Oliva et al., 2017	CWOA	0.76077000	0.32390000	1.48120000	0.03636000	53.79870000	0.00098602	0.00134855	0.00094834
26	[29]	Yu et al., 2017	IJAYA	0.76080000	0.32280000	1.48110000	0.03640000	53.75950000	0.00098603	0.00098714	0.00077606
27	[30]	Chen et al., 2016	GOTLBO	0.76078000	0.33155200	1.48382000	0.03626500	54.11542600	0.00098744	0.00098744	0.00077979
28	[31]	Guo et al., 2016	CSO	0.76078000	0.32300000	1.48118000	0.03638000	53.71850000	0.00098602	0.00098612	0.00077544
29	[32]	Hamid et al., 2016	NM-MPSO	0.76078000	0.32306000	1.48120000	0.03638000	53.72220000	0.00098602	0.00098620	0.00077550

Table 1. Numerical results of the conventional and proposed RMSE for parameters estimation of the solar RTC France cell (Results with the minimum RMSE are given in bold)

#	Ref.	Authors, year	Method	$I_{pv}(\mathbf{A})$	$I_0(\mu A)$	n	$R_{S}\left(\Omega ight)$	$R_{P}\left(\Omega ight)$	Original	RMSE	Proposed RMSE
									reported RMSE	calculated using	calculated using
										Eq. (3)	Eq. (12)
30	[33]	Zhang et al., 2016	PCE	0.76077600	0.32302100	1.48107400	0.03637700	53.71852500	0.00098602	0.00106059	0.00080924
31	[34]	Tong et al., 2016	TONG	0.76100000	0.36350000	1.49350000	0.03660000	62.57400000	NG	0.00238593	0.00150509
32	[35]	Jamadi et al., 2016	MABC	0.76077900	0.32132300	1.48138500	0.03638900	53.39999000	0.00098601	0.00276101	0.00172770
33	[36]	Ali et al., 2016	MVO	0.76160000	0.32094000	1.52520000	0.03650000	59.58840000	NG	0.12679796	0.08627778
34	[37]	Chellaswamy et al., 2016	DET	0.75100000	0.31500000	1.48700000	0.03600000	54.53200000	0.00093000	0.02448057	0.01584481
35			WCA	0.76090800	0.41355400	1.50438100	0.03536300	57.66948800	0.00094655	0.00760691	0.00464720
36 37	[38]	Jordahi 2016	TLBO	0.76080900	0.31224400	1.47578000	0.03655100	52.84050000	0.00077487	0.00727229	0.00433487
37	[30]	Jordehi, 2016	GWO	0.76099600	0.24303880	1.45121900	0.03773200	45.11630900	0.00095145	0.00728451	0.00434963
38			TVA-CPSO	0.76078800	0.31068270	1.47525800	0.03654700	52.88964400	0.00077301	0.00734381	0.00436800
39	[39]	Ma et al., 2016	PPSO	0.76080000	0.32300000	1.48120000	0.03640000	53.71850000	NG	0.00099161	0.00077779
40	[40]	Chen et al., 2016	EHA-NMS	0.76080000	0.32302100	1.48118400	0.03637700	53.71852100	0.00098602	0.00098635	0.00077570
41	[41]	Yuan et al., 2015	CARO	0.76079000	0.31724000	1.48168000	0.03644000	53.08930000	0.00098665	0.00819692	0.00495024
42	[42]	Lim et al., 2015	LI	0.76094380	0.34565720	1.48799169	0.03614233	49.48220500	0.00105480	0.00134617	0.00105482
43	[43]	El-Fergany, 2015	MBA	0.76040000	0.23480000	1.48900000	0.03880000	44.61000000	NG	0.11672175	0.07620443
44	[44]	Alam et al., 2015	FPA	0.76079000	0.31067700	1.47707000	0.03654660	52.87710000	0.00077301	0.00121214	0.00087797
45	[45]	Dkhichi et al., 2014	LMSA	0.76078000	0.31849000	1.47976000	0.03643000	53.32644000	0.00098640	0.00098649	0.00077406
46			DE	0.76068000	0.35515000	1.49080000	0.03598000	56.55330000	0.00100000	0.00100348	0.00080173
47	[46]	Niu et al., 2014	BBO	0.76098000	0.86100000	1.58742000	0.03214000	78.85550000	0.00238000	0.00239295	0.00200212
48			BBO-M	0.76078000	0.31874000	1.47984000	0.03642000	53.36227000	0.00098634	0.00098656	0.00077423
49	[477]		STLBO	0.76078000	0.32302000	1.48114000	0.03638000	53.71870000	0.00098602	0.00099764	0.00078059
50	[47]	Niu et al., 2014	TLBO	0.76074000	0.32378000	1.48136000	0.03641000	54.40290000	0.00098845	0.00100164	0.00078421
51	[48]	Oliva et al., 2014	ABC	0.76080000	0.32510000	1.48170000	0.03640000	53.64330000	0.00098602	0.00109667	0.00083343
52	[49]	Laudani et al., 2014	HPEPD	0.76078840	0.31024820	1.47696410	0.03655304	52.85905600	0.00077301	0.00114867	0.00084728
53	[50]	Yuan et al., 2014	MPCOA	0.76073000	0.32655000	1.48168000	0.03635000	54.63280000	0.00094457	0.00231307	0.00146916
54	[51]	Patel et al., 2014	TLBO	0.76080000	0.32230000	1.48370000	0.03640000	53.76027000	NG	0.00969602	0.00585540
55	[52]	Askarzadeh et al., 2013	BMO	0.76077000	0.32479000	1.48173000	0.03636000	53.87160000	0.00098608	0.00098622	0.00077621
56	[53]	Askarzadeh et al., 2013	ABSO	0.76080000	0.30623000	1.47583000	0.03659000	52.29030000	0.00099124	0.00099125	0.00077368
57	[54]	Jiang et al., 2013	IADE	0.76070000	0.33613000	1.48520000	0.03621000	54.76430000	0.00098900	0.00099076	0.00078442
58			ABSO	0.76080000	0.30623000	1.47986000	0.03659000	52.29030000	0.00098602	0.01416898	0.00855244
59		** 1	ABCDE	0.76077000	0.32302000	1.47986000	0.03637000	53.71850000	0.00098602	0.00485483	0.00292463
60	[55]	Hachana et al., 2013	DE	0.76077000	0.32302000	1.48059000	0.03637000	53.71850000	0.00098602	0.00234235	0.00148100
61			MPSO	0.76077000	0.32302000	1.47086000	0.03637000	53.71850000	0.00098602	0.03902188	0.02247017

#	Ref.	Authors, year	Method	$I_{pv}(\mathbf{A})$	$I_0(\mu A)$	n	$R_{S}\left(\Omega ight)$	$R_{P}\left(\Omega ight)$	Original	RMSE	Proposed RMSE
									reported RMSE	calculated using	calculated using
										Eq. (3)	Eq. (12)
62			GGHS	0.76092000	0.32620000	1.48217000	0.03631000	53.06470000	0.00099097	0.00099089	0.00078146
63	[56]	Askarzadeh et al., 2012	HS	0.76070000	0.30495000	1.47538000	0.03663000	53.59460000	0.00099510	0.00099515	0.00077625
64			IGHS	0.76077000	0.34351000	1.48740000	0.03613000	53.28450000	0.00099306	0.00103345	0.00082116
65	[57]	Gong et al., 2013	Rcr-IJADE	0.76077600	0.32302100	1.48118400	0.03637700	53.71852600	0.00098602	0.00098602	0.00077539
66	[58]	AlHajri et al., 2012	PS	0.76170000	0.99800000	1.6000000	0.03130000	64.10256000	0.28630000	0.01493638	0.00981702
67	[59]	El-Naggar et al., 2012	SA	0.76200000	0.47980000	1.51720000	0.03450000	43.10345000	0.00170000	0.01899784	0.01165472
68	[60]	AlRashidi et al., 2011	GA	0.76190000	0.80870000	1.57510000	0.02990000	42.37288000	NG	0.01907803	0.01200884
69	[61]	Ye et al., 2009	PSO	0.76079800	0.32272100	1.48382000	0.03639400	53.79650000	NG	0.00965452	0.00583097

346 *NG: not given

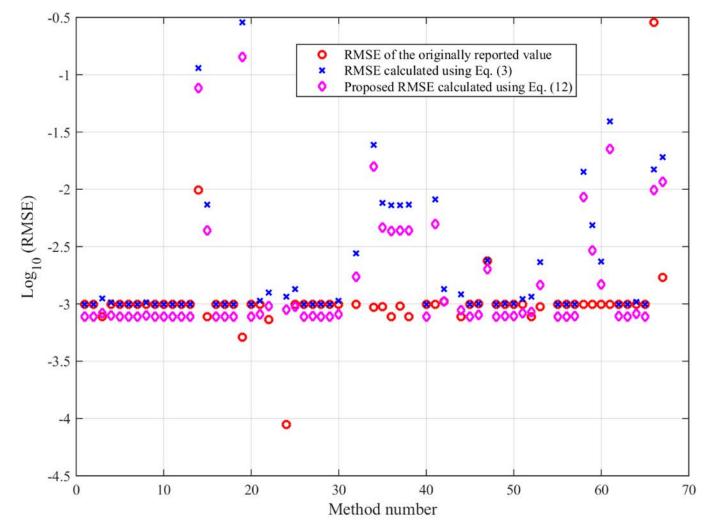
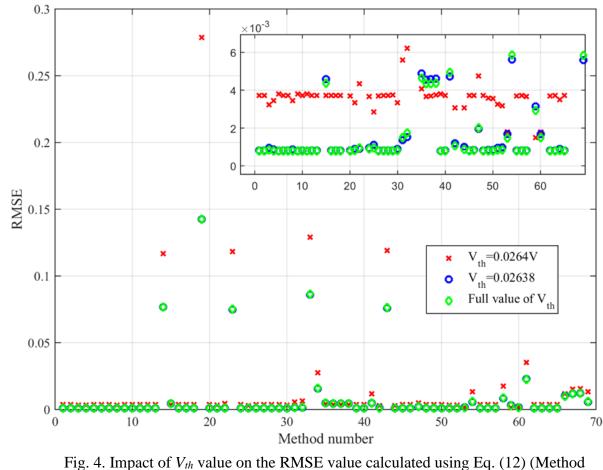



Fig. 3. The difference in a logarithmic scale between proposed RMSE values calculated using Eq. (12) and those calculated using different
 methods presented in the literature (Method number after Table 1)

g. 4. Impact of V_{th} value on the RMSE value cannumber after Table 1)

352 353

350 351

Based on the results shown in Table 1, we can see that the most accurate method for parameter estimation of single diode RTC France solar cell is the HISA method (method number 2) presented by *Kler* et al. in 2019 [5]. The results of this method are given in bold in Table 1. The *I*–*U* characteristic of the RTC France solar cells obtained for these parameters, as well as the measured characteristic, are shown in Fig. 5, in which the remarkable agreement between the measured and simulated characteristics is indicated.

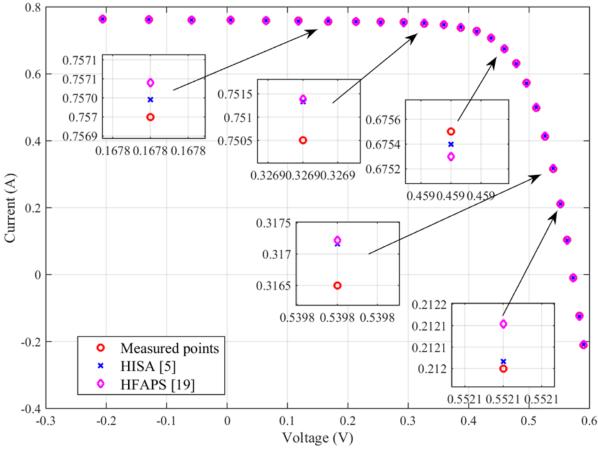
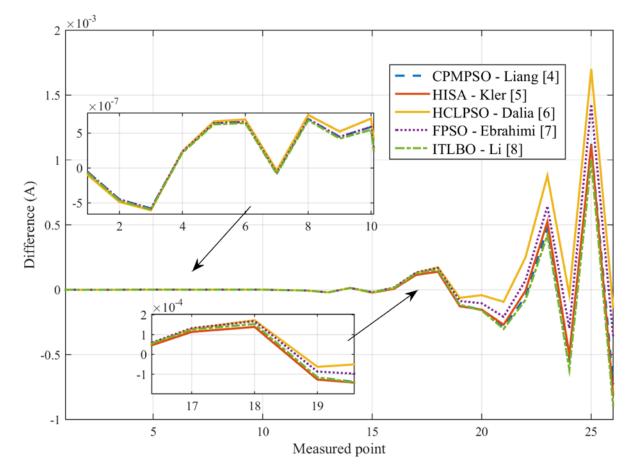



Fig. 5. Current-voltage characteristic of the RTC France solar cell

In order to show that the proposed method provides the best response, the characteristics of parameters determined using the HFAPS method (number 16) presented in [19], which also has good accuracy, is shown in the same figure. It is evident from the figure that a lower value of RMSE guarantees better matching between measured and estimated characteristics. The Matlab code for calculating I-U characteristics of the RTC solar cell parameters determined using the HFAPS method, method number 16 in [19], is presented in Appendix 2.

Furthermore, the relative difference between the current calculated using the proposed formula expressed in Eq. (9) and the conventional, erroneous, one expressed in Eq. (3), for the solar cell parameters presented, is shown in Fig. 6. Yet again, it is clear that there is a considerable difference in solar cell current values between the two formulas. Also, it evidences the importance of the proposed RMSE expression to develop a good base for proper investigation and implementation of optimization algorithms to solve the 5-parameter estimation problem of single diode PV equivalent circuits.

375 376

Fig. 6. The difference in current values calculated by Eq. (3) and last part of Eq. (9)

377 Precision of calculation of the methods used for analytical solving of the Lambert W equation

As mentioned before, for solving a Lambert *W* function, two methods, TS and STFT, are used. An investigation of the impact of β on the accuracy of the solution is presented. Fig. 7 shows a 3D illustration of β , measured points from the *I*–*U* characteristics of the RTC solar cell, and methods presented in Table 1. From the same figure, one can note that the minimal value of β is 1.46×10^{-9} , while the maximal value of β is 3.52. For that reason, some solutions to the Lambert *W* equation are obtained using TS and others are obtained using STFT. In this section, all calculations are performed in the environment of *Mathematica*.

The precision of calculation Pr that reflects accuracy, either based on TS or STFT (Pr_{STFT} and Pr_{Taylor}), is given as follows [72]:

$$Pr = \left|1 - \log\left(\left|x - \beta \exp\left(-x\right)\right|\right)\right| \tag{12}$$

387 Namely, for the high values of Pr, the accuracy of the solution is high. Table 2 presents 388 Pr_{STFT} and Pr_{Taylor} for different values of β .

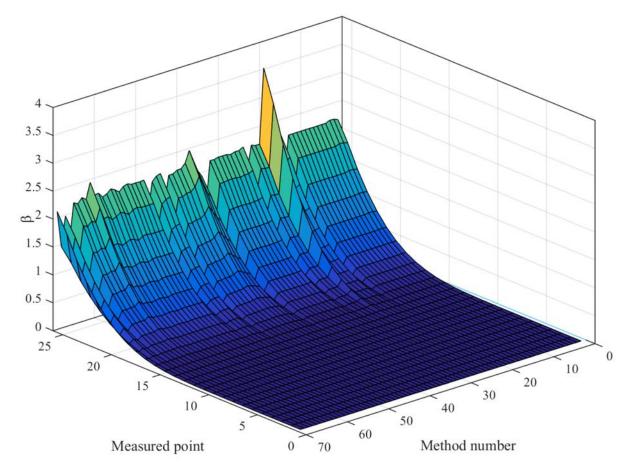
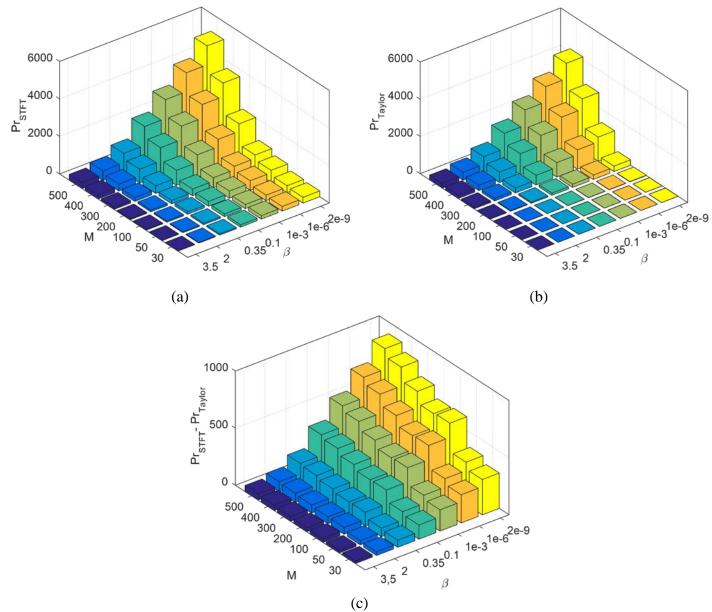


Fig. 7. 3D graph of β , measured points from the *I*–*U* characteristics of the RTC solar cell, and methods in Table 1

389

392 It should be noted that the peak region present in Fig. 7 is due to the parameters obtained 393 using method 19 reported in Table 1 as the values of I_0 and n obtained using method 19 were 394 quite different from the corresponding values obtained using the other methods.


It can be seen that higher precision can be obtained if we use STFT for solving the Lambert *W* equation. Furthermore, for a higher value of β , TS cannot be used. Recalling Eqs. (7) and (8), it should be noted that for the same value of integer M, the STFT gives much more accurate results than TS. Also, the higher the value of M, the higher the accuracy is. The difference between the accuracy of *PrstFT* and *Prtaylor* for different values of β and M is illustrated in Fig. 8.

21

401			Т
-----	--	--	---

Table 2. *PrstFT* and *Prtaylor* for different values of *M* and β

β	Solution, x	M	Pr _{STFT}	Pr_{Taylor}
r	~	30	314	260
		50	515	426
		100	1019	840
2×10 ⁻⁹	1.999999996000000, 1199994253×10 ⁻⁹	200	2025	1667
		300	3033	2493
		400	4039	3320
		30	225	177
		50	370	288
		100	732	567
1×10 ⁻⁶	9.9999900000149999, 7333338541×10 ⁻⁷	200	1455	1124
1/(10	<i>y.y.y.y.</i> 0000011 <i>yyyy</i> , 7555556511×10	300	2177	1681
		400	2901	2237
		500	3624	2794
		30	125	84
		50	205	135
		100	405	264
1×10 ⁻³	0.0009990014973385, 3088995782715	200	804	521
1×10 ⁻³	0.0007770017775505, 5000775762715	300	1203	778
		400	1604	1034
		500	2002	1034
		30	57	22
		50		33
	0.0912765271608622, 6429989572142		93	
0.1		100	182	62
0.1		200	361	119
		300	540	176
		400	719	233
		500	897	289
		30	40	5
	0.2677773400403608, 4269261612680	50	66	6
		100	129	7
0.35		200	255	10
		300	381	12
		400	508	15
		500	634	17
		30	23	0
		50	38	0
_		100	75	0
2	0.8526055020137254, 9134647241469	200	148	0
		300	221	0
		400	295	0
		500	368	0
		30	20	0
		50	32	0
		100	63	0
3.5	1.1302893269741358, 2651855880912	200	124	0
		300	186	0
		400	247	0
		500	309	0

402 Fig. 8. Pr_{STFT} and Pr_{Taylor} for different values of β and M: (a) Pr_{STFT} , (b) Pr_{Taylor} , and (c) 403 $Pr_{STFT} - Pr_{Taylor}$

404 **4.** Application of the solution methodology

405 *Experimental setup and parameters estimation of solar modules of clean energy trainer setup*

In order to validate the solution methodology, the experimental results of a Clean Energy Trainer Setup module in the Laboratory of automatics at the University of Montenegro are presented and discussed, and the single diode parameters of the considered module are estimated. The experimental setup, shown in Fig. 9, consists of a computer with installed software for data acquisition and analysis, TES 1333R data logging solar power meter with high irradiance (*G*) resolution (0.1 W/m^2), lamp for sunlight simulation, USB data monitor for data acquisition purposes, and two modules of solar cells.

The I-U characteristic of one solar module at G equals 1330 W/m², and a temperature 413 of 39 °C is measured. The 5 parameters to be determined are not directly addressed by the 414 current methodology; however, the optimization techniques rely on objective functions whose 415 accuracy can be improved by the proposed RMSE calculation. Then, for the measured I-U416 pairs, the 5-parameter single diode solar cell parameters are estimated using three optimization 417 approaches, namely COA [13], ER-WCA [23], and HS [55,74]. The reader can refer to 418 [13,23,55] for more details about these algorithms. The results obtained are presented in Table 419 3, in which all the values obtained using Eq. (12) are within their fitness function. 420

It can be seen from Table 3 that the results obtained using the optimization techniques are close to each other, in which all the values obtained using Eq. (12) are within their fitness function. However, the COA method gives the best accuracy in terms of RMSE. The simulated and measured *I*–*U* characteristics via the parameters obtained using the different optimization methods at G=1330 W/m² and T=39 °C are shown in Fig. 10.

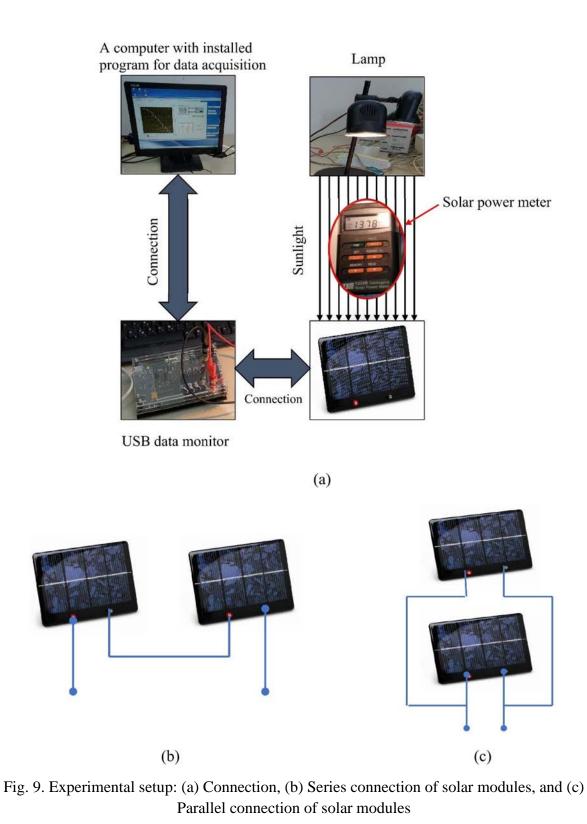
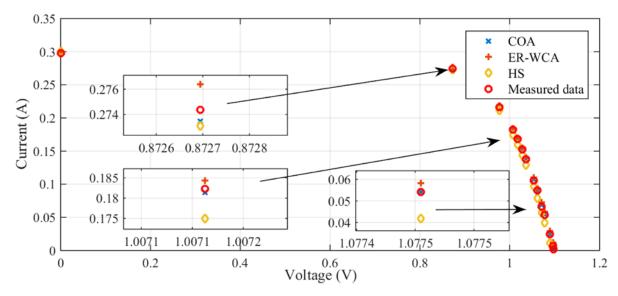



Table 3. Experimental results obtained from the tested solar module (Number of runs to achieve the optimum parameters for ER-WCA is 50, and 100 for COA and HS)

achieve the optimum parameters for ER-werk is 50, and 100 for COrr and 115)							
Parameters/Algorithm	COA	ER-WCA	HS				
$R_{S}\left(\Omega ight)$	0.114	0.121	0.114				
$R_{P}\left(\Omega ight)$	219.75	236.10	222.54				
<i>I</i> ₀ (A)	10.56×10 ⁻⁸	9.13×10 ⁻⁸	12.13×10 ⁻⁸				
I _{pv} (A)	0.2987	0.3012	0.3001				
n	0.3441	0.3411	0.3456				
RMSE calculated using Eq. (3)	0.00152416	0.00543925	0.01303987				
Proposed RMSE calculated using Eq. (12)	0.00113727	0.00397174	0.00955046				

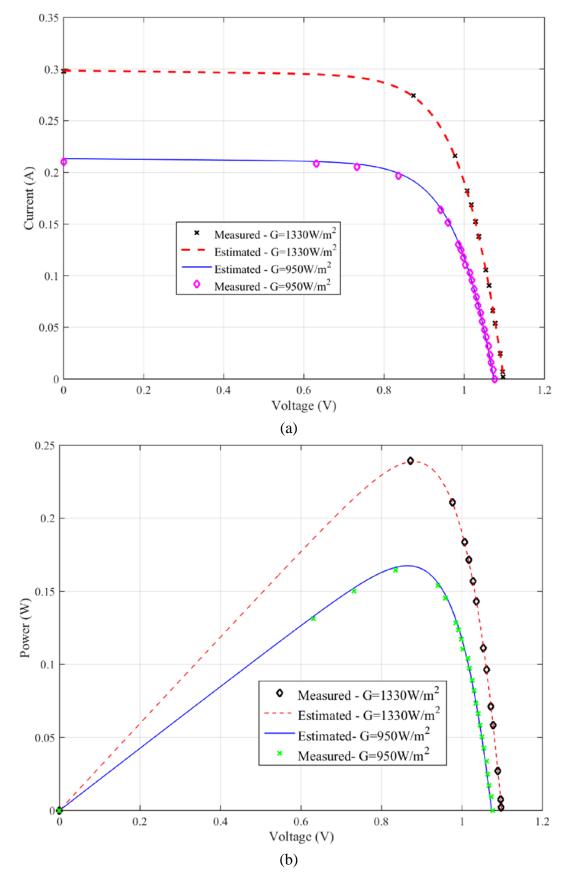
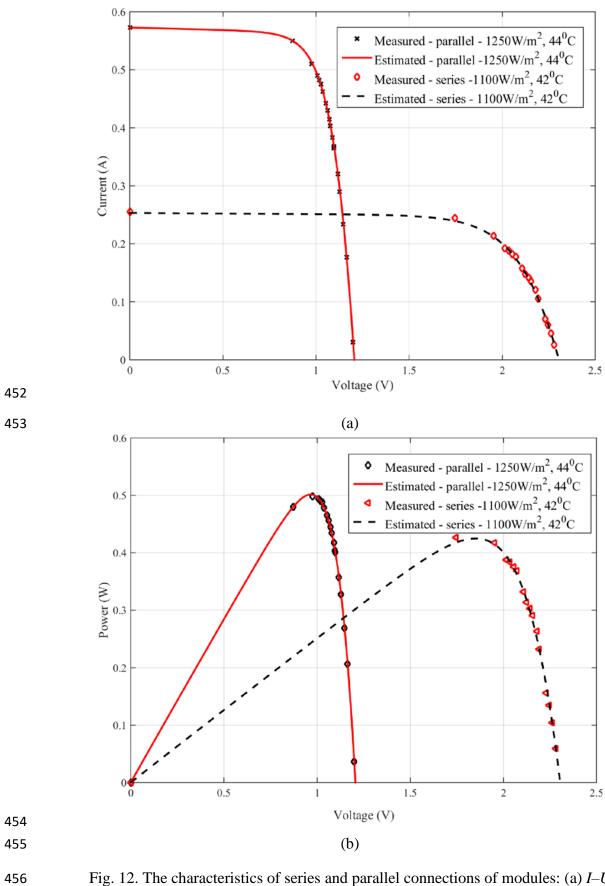

431

Fig. 10. The *I*–*U* characteristics of one solar module for parameters obtained using the three methods ($G=1330 \text{ W/m}^2$ and T=39 °C)

Besides, the *I*–*U* and *P*–*U* characteristics of one module at two different irradiance values at the same temperature (T = 39 °C), are presented in Fig. 11, respectively. In addition, the *I*– *U* and *P*–*U* characteristics for series and parallel connection of the modules are presented in Fig. 12. The agreement between both measured and estimated characteristics is remarkable for all presented figures. It should be noted that all the characteristics are presented for data obtained using the COA method while taking into consideration the change of parameters with irradiance and temperature [75].

441 Proposed RMSE expression and parameters estimation of Solarex MSX–60 PV solar module


In Table 4, for Solarex MSX–60 PV solar module, RMSE values calculated using the erroneous
Eq. (3) as well as the RMSE values calculated using Eq. (12), are presented. Also, in the same
table, the estimated values of the solar cell parameters using COA, ER-WCA, and HS, as well
as estimated values of different methods in the literature are presented.

446 447

450 Fig. 11. The characteristics of one module at two different irradiance values at the same 451 temperature (T = 39 °C): (a) *I*–*U* characteristic and (b) *P*–*U* characteristic

456 Fig. 12. The characteristics of series and parallel connections of modules: (a) *I–U*457 characteristic and (b) *P–U* characteristic

Proposed RMSE calculated using Eq. (12) # Ref. Authors, year Method $I_{pv}(\mathbf{A})$ $I_0(\mathbf{A})$ п $R_{S}\left(\Omega\right)$ $R_{P}\left(\Omega
ight)$ RMSE calculated using Eq. (3) [76] Villalva et al., 2009 3.8082 0.000000012 1.0453 0.3160 146.081 0.03611840076252 0.02839662736179 A&I 1 3.7983 0.000000679 0.02502525341693 0.01810661464843 2 [77] Silva et al., 2016 A&I 1.2800 0.2510 582.728 Bana et al., 2018 NM 0.000000005 0.3692 169.047 0.05563692889594 3 [78] 3.8084 1.0003 0.09613294311904 4 [79] Szabo et al., 2018 BC 3.8080 0.000000012 1.0450 0.3160 146.080 0.04202673823244 0.03072250565403 5 ER-WCA 0.000001399 0.2235 914.689 0.01697330882512 0.01697330882512 3.8121 1.3325 6 Proposed HS 3.8115 0.000002265 1.3707 0.2129 1976.070 0.01775687114902 0.01775687114902 7 0.000001783 1.3514 0.2184 2004.977 0.01705021261682 0.01705021261682 COA 3.8100

Table 4. Numerical results of the conventional and proposed RMSE for parameters estimation of Solarex MSX–60 PV solar module (Results with the minimum RMSE using the proposed approach are given in bold)

It can be seen from Table 4 that the differences between the proposed and conventional RMSE values are considerable. The I-U characteristics of the Solarex MSX-60 module are shown in Fig. 13, in which the agreement between both measured and estimated characteristics is remarkable for all the presented methods. However, it is noted that the results obtained using the ER-WCA method are the closest to the measured values. This is also validated by the proposed RMSE value calculated using Eq. (12) in Table 4, as the minimum RMSE value (0.011706768459604) is obtained using this method (method 5 given in bold in Table 4).

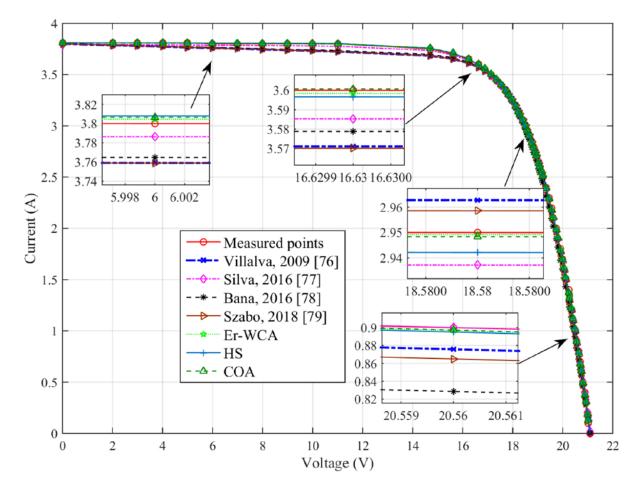


Fig. 13. The *I*–*U* characteristics of the Solarex MSX-60 module

Furthermore, the relative difference of the current in amperes calculated by Eq. (3) and 469 last part of Eq. (9), for the parameters of Solarex MSX-60 module presented, is shown in Fig. 470 471 14. Yet again, it is clear that there is a considerable difference in solar cell current values between the two formulas, in which the difference in the solar cell current values shows the 472 473 error in the conventional calculation methods since the exact expression of the calculated cell 474 output current is not used. Other promising optimization techniques such as hybrid and 475 improved algorithms [80-83] can be employed to address the problem using the proposed RMSE expression to get better solutions. 476

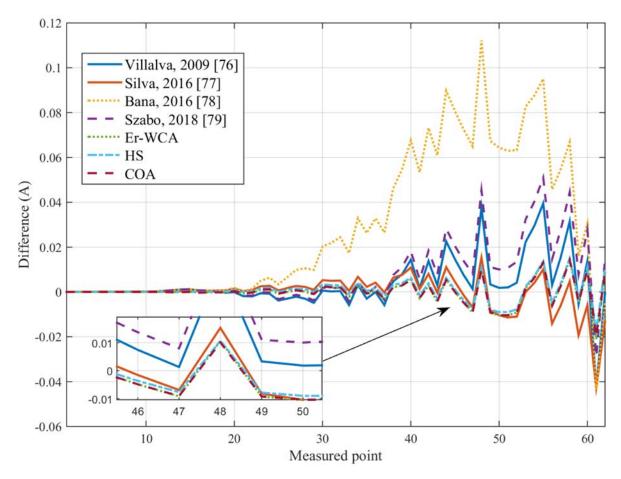


Fig. 14. The difference in current values calculated by Eq. (3) and last part of Eq. (9)

478 479

480 5. Conclusions

In the available literature, one can find a lot of methods and techniques employed to estimate 481 single diode solar PV cell parameters. In this work, values of RMSE of RTC France solar PV 482 cell and Solarex MSX-60 module are presented and discussed. We proposed an exact analytical 483 solution for RMSE calculation based on the Lambert W function. The results obtained show 484 that the RMSE values were not calculated correctly in most of the methods presented in the 485 literature since the exact expression of the calculated cell output current was not used. The 486 487 precision of two numerical approaches to numerically solve the Lambert W function is also addressed with: (i) one based on TS; and (ii) the other based on STFT. In addition, the impact 488 of the thermal voltage on RMSE calculation is addressed. Further, the applicability of the 489 490 proposed solution methodology is explored with the aid of the experimental results. It was 491 found that the reasons for results mismatching of the minimum RMSE in the published papers are not using all the measured points for RMSE calculation, complete dependence on 492 optimization techniques to reach a solution, approximation of the values of the operational 493 factors and inaccurate solving of the Lambert W function. In regard to double and triple diode 494

- 495 PV equivalent circuits, no exact analytical solution has been reached yet because of the high
- 496 nonlinearity of the current expressions of these models. Finally, this work aimed to develop a
- 497 good base for proper investigation and implementation of optimization algorithms to solve the
- 498 parameter estimation problem of 5-parameter single diode PV equivalent circuits.

499 APPENDIX 1

500 A1.1 Matlab code for solving Lambert W equation

- 501 The central part of the Matlab code for RMSE calculation based on the Lambert W function is
- 502 given in Appendix 1 as follows [17,27]:
- 503 % RTC FRANCE CURRENTS
- 504 Iiz=[0.7640 0.7620 0.7605 0.7605 0.7600 0.7590 0.7570 0.7570 0.7555 0.7540 0.7505 0.7465
- 505 0.7385 0.7280 0.7065 0.6755 0.6320 0.5730 0.4990 0.4130 0.3165 0.2120 0.1035 -0.0100 -
- 506 0.1230 -0.2100];
- 507 % RTC FRANCE VOLTAGES
- 508 Uiz=[-0.2057 -0.1291 -0.0588 0.0057 0.0646 0.1185 0.1678 0.2132 0.2545 0.2924 0.3269
- 509
 0.3585
 0.3873
 0.4137
 0.4373
 0.4590
 0.4784
 0.4960
 0.5119
 0.5265
 0.5398
 0.5521
 0.5633
- 510 0.5736 0.5833 0.5900];
- 511 % Number of measured points
- 512 N=length(Uiz);
- 513 % define Rp, Rs, Vth, a Ideality factor, Io, Ipv, ...
- 514 for t=1:N
- 516 6+Uiz(t))/(a*Vth*(Rs+Rp)));
- 517 CHECKING(t)=lambertw(BETA)- BETA *exp(-lambertw(BETA));
- 518 CURRENTCALCULATED=(Rp*(Ipv+Io*10^-6)-Uiz(t))/(Rs+Rp)-
- 519 a*Vth*lambertw(BETA)/Rs;
- 520 ERROR(t)=(CURRENTCALCULATED-Iiz(t))^2;
- 521 End
- 522 RMSE=sqrt(sum(ERROR)/N)

523 A1.2 Mathematica code for solving Lambert W equation

digitnumber=1000; 524 525 beta=35/10; 526 M=30; 527 Print["M= ", M]; 528 $F1 = \sum_{x=0}^{M} (beta^{x} (((M-x)^{x}) / x!));$ $F2 = \sum_{x=0}^{M+1} (beta^{x} (((M+1-x)^{x}) / x!));$ 529 530 531 SolutionTRANS = SetPrecision[beta*(F1/F2), digitnumber]; Print["SolutionTRANS= ", SolutionTRANS] 532 ErrorTRANS=SetPrecision[Abs[SolutionTRANS-beta*E^(-SolutionTRANS)], digitnumber]; 533 534 Print["ErrorTRANS= ", ErrorTRANS] solutionLAMBERT = $\sum_{x=1}^{M} (beta^{x}(((-x)^{(x-1)}) / x!));$ 535 Print["solutionLAMBERT= ", SetPrecision[solutionLAMBERT, digitnumber]]; 536 ErrorLAMBERT=SetPrecision[Abs[solutionLAMBERT-beta*E^(-solutionLAMBERT)], 537 538 digitnumber]; Print["ErrorLAMBERT= ", ErrorLAMBERT] 539 lambertMATH=N[ProductLog[beta],M] 540 Print["SOLUTIONlambertMATH= ",SetPrecision[lambertMATH, digitnumber]] 541 ErrorPRODUCT=Abs[lambertMATH-beta*E^(-lambertMATH)]; 542 Print["ErrorPRODUCT= ",SetPrecision[ErrorPRODUCT, digitnumber]] 543 **APPENDIX 2** 544 A2. Matlab code for calculating *I*–*U* characteristics of the RTC solar cell 545

- 546 Ipv=0.76077700
- 547 Io=0.32262200
- 548 a=1.48106000
- 549 Rs=0.03638190
- 550 Rp=53.67840000
- 551 for t=1:N
- $BETA = Io*10^{-}6*Rs*Rp/(a*Vth*(Rs+Rp))*exp((Rp*(Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+Rs*Io*10^{-}Rs*Ipv+$
- 553 6+Uiz(t)))/(a*Vth*(Rs+Rp)));
- 554 CHECKING(t)=lambertw(BETA)- BETA *exp(-lambertw(BETA));
- 555 $Icalc(t) = (Rp*(Ipv+Io*10^{-6})-Uiz(t))/(Rs+Rp)-a*Vth*lambertw(BETA)/Rs;$
- 556 end
- 557 Funding sources
- 558 This research did not receive any specific grant from funding agencies in the public,
- 559 commercial, or not-for-profit sectors.

560 **References**

- [1] A.G.E. Mousa, S.H.E. Abdel Aleem, A.M. Ibrahim, Mathematical Analysis of
 Maximum Power Points and Currents Based Maximum Power Point Tracking in Solar
 Photovoltaic System: A Solar Powered Water Pump Application, Int. Rev. Electr. Eng.
 11 (2016) 97. doi:10.15866/iree.v11i1.8137.
- 565 [2] S.M. Ismael, S.H.E. Abdel Aleem, A.Y. Abdelaziz, A.F. Zobaa, State-of-the-art of
 566 hosting capacity in modern power systems with distributed generation, Renew. Energy.
 567 130 (2019) 1002–1020. doi:10.1016/j.renene.2018.07.008.
- [3] H.G.G. Nunes, J.A.N. Pombo, P.M.R. Bento, S.J.P.S. Mariano, M.R.A. Calado,
 Collaborative swarm intelligence to estimate PV parameters, Energy Convers. Manag.
 185 (2019) 866–890. doi:10.1016/j.enconman.2019.02.003.
- [4] J. Liang, S. Ge, B. Qu, K. Yu, F. Liu, H. Yang, P. Wei, Z. Li, Classified perturbation
 mutation based particle swarm optimization algorithm for parameters extraction of
 photovoltaic models, Energy Convers. Manag. 203 (2020) 112138.
 doi:10.1016/j.enconman.2019.112138.
- 575 [5] D. Kler, Y. Goswami, K.P.S. Rana, V. Kumar, A novel approach to parameter
 576 estimation of photovoltaic systems using hybridized optimizer, Energy Convers.
 577 Manag. 187 (2019) 486–511. doi:10.1016/j.enconman.2019.01.102.
- [6] D. Yousri, D. Allam, M.B. Eteiba, P.N. Suganthan, Static and dynamic photovoltaic
 models' parameters identification using Chaotic Heterogeneous Comprehensive
 Learning Particle Swarm Optimizer variants, Energy Convers. Manag. 182 (2019) 546–
 563. doi:10.1016/j.enconman.2018.12.022.
- [7] S.M. Ebrahimi, E. Salahshour, M. Malekzadeh, Francisco Gordillo, Parameters
 identification of PV solar cells and modules using flexible particle swarm optimization
 algorithm, Energy. 179 (2019) 358–372. doi:10.1016/j.energy.2019.04.218.
- [8] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, L. Gao, Parameter extraction of
 photovoltaic models using an improved teaching-learning-based optimization, Energy
 Convers. Manag. 186 (2019) 293–305. doi:10.1016/j.enconman.2019.02.048.
- 588 [9] X. Chen, H. Yue, K. Yu, Perturbed stochastic fractal search for solar PV parameter
 589 estimation, Energy. 189 (2019) 116247. doi:10.1016/j.energy.2019.116247.
- [10] H. Chen, S. Jiao, A.A. Heidari, M. Wang, X. Chen, X. Zhao, An opposition-based sine
 cosine approach with local search for parameter estimation of photovoltaic models,
 Energy Convers. Manag. (2019). doi:10.1016/j.enconman.2019.05.057.

- [11] N. Pourmousa, S.M. Ebrahimi, M. Malekzadeh, M. Alizadeh, Parameter estimation of
 photovoltaic cells using improved Lozi map based chaotic optimization Algorithm, Sol.
 Energy. 180 (2019) 180–191. doi:10.1016/j.solener.2019.01.026.
- [12] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, Parameter estimation of photovoltaic
 models with memetic adaptive differential evolution, Sol. Energy. (2019).
 doi:10.1016/j.solener.2019.08.022.
- [13] M. Ćalasan, D. Jovanović, V. Rubežić, S. Mujović, S. Đukanović, Estimation of
 Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization
 Approach, Energies. 12 (2019). doi:10.3390/en12214209.
- [14] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA
 algorithm for parameters identification of photovoltaic cell and module, Appl. Energy.
 237 (2019) 241–257. doi:10.1016/j.apenergy.2019.01.008.
- [15] P.J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, S.
 Perabi Ngoffe, Important notes on parameter estimation of solar photovoltaic cell,
 Energy Convers. Manag. 197 (2019) 111870. doi:10.1016/j.enconman.2019.111870.
- [16] X. Chen, K. Yu, Hybridizing cuckoo search algorithm with biogeography-based
 optimization for estimating photovoltaic model parameters, Sol. Energy. 180 (2019)
 192–206. doi:10.1016/j.solener.2019.01.025.
- [17] M. Abd Elaziz, D. Oliva, Parameter estimation of solar cells diode models by an
 improved opposition-based whale optimization algorithm, Energy Convers. Manag.
 171 (2018) 1843–1859. doi:10.1016/j.enconman.2018.05.062.
- [18] M. Merchaoui, A. Sakly, M.F. Mimouni, Particle swarm optimisation with adaptive
 mutation strategy for photovoltaic solar cell/module parameter extraction, Energy
 Convers. Manag. 175 (2018) 151–163. doi:10.1016/j.enconman.2018.08.081.
- [19] A.M. Beigi, A. Maroosi, Parameter identification for solar cells and module using a
 Hybrid Firefly and Pattern Search Algorithms, Sol. Energy. 171 (2018) 435–446.
 doi:10.1016/j.solener.2018.06.092.
- [20] X. Gao, Y. Cui, J. Hu, G. Xu, Z. Wang, J. Qu, H. Wang, Parameter extraction of solar
 cell models using improved shuffled complex evolution algorithm, Energy Convers.
 Manag. 157 (2018) 460–479. doi:10.1016/j.enconman.2017.12.033.
- [21] X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching–learning–based artificial bee colony
 for solar photovoltaic parameter estimation, Appl. Energy. 212 (2018) 1578–1588.
 doi:10.1016/j.apenergy.2017.12.115.

- [22] M. Louzazni, A. Khouya, K. Amechnoue, A. Gandelli, M. Mussetta, A. Craciunescu,
 Metaheuristic algorithm for photovoltaic parameters: Comparative study and prediction
 with a Firefly algorithm, Appl. Sci. (2018). doi:10.3390/app8030339.
- [23] D. Kler, P. Sharma, A. Banerjee, K.P.S. Rana, V. Kumar, PV cell and module efficient
 parameters estimation using Evaporation Rate based Water Cycle Algorithm, Swarm
 Evol. Comput. (2017). doi:10.1016/j.swevo.2017.02.005.
- [24] P. Lin, S. Cheng, W. Yeh, Z. Chen, L. Wu, Parameters extraction of solar cell models
 using a modified simplified swarm optimization algorithm, Sol. Energy. 144 (2017)
 594–603. doi:10.1016/j.solener.2017.01.064.
- [25] J.P. Ram, T.S. Babu, T. Dragicevic, N. Rajasekar, A new hybrid bee pollinator flower
 pollination algorithm for solar PV parameter estimation, Energy Convers. Manag. 135
 (2017) 463–476. doi:10.1016/j.enconman.2016.12.082.
- [26] A. Fathy, H. Rezk, Parameter estimation of photovoltaic system using imperialist
 competitive algorithm, Renew. Energy. 111 (2017) 307–320.
 doi:10.1016/j.renene.2017.04.014.
- [27] M. Derick, C. Rani, M. Rajesh, M.E. Farrag, Y. Wang, K. Busawon, An improved
 optimization technique for estimation of solar photovoltaic parameters, Sol. Energy.
 157 (2017) 116–124. doi:10.1016/j.solener.2017.08.006.
- [28] D. Oliva, M. Abd El Aziz, A. Ella Hassanien, Parameter estimation of photovoltaic
 cells using an improved chaotic whale optimization algorithm, Appl. Energy. (2017).
 doi:10.1016/j.apenergy.2017.05.029.
- [29] K. Yu, J.J. Liang, B.Y. Qu, X. Chen, H. Wang, Parameters identification of
 photovoltaic models using an improved JAYA optimization algorithm, Energy
 Convers. Manag. 150 (2017) 742–753. doi:10.1016/j.enconman.2017.08.063.
- [30] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell
 models using generalized oppositional teaching learning based optimization, Energy.
 99 (2016) 170–180. doi:10.1016/j.energy.2016.01.052.
- [31] L. Guo, Z. Meng, Y. Sun, L. Wang, Parameter identification and sensitivity analysis
 of solar cell models with cat swarm optimization algorithm, Energy Convers. Manag.
 (2016). doi:10.1016/j.enconman.2015.11.041.
- [32] N.F.A. Hamid, N.A. Rahim, J. Selvaraj, Solar cell parameters identification using
 hybrid Nelder-Mead and modified particle swarm optimization, J. Renew. Sustain.
 Energy. 8 (2016) 015502. doi:10.1063/1.4941791.

- [33] Y. Zhang, P. Lin, Z. Chen, S. Cheng, A Population Classification Evolution Algorithm
 for the Parameter Extraction of Solar Cell Models, Int. J. Photoenergy. (2016).
 doi:10.1155/2016/2174573.
- [34] N.T. Tong, W. Pora, A parameter extraction technique exploiting intrinsic properties
 of solar cells, Appl. Energy. (2016). doi:10.1016/j.apenergy.2016.05.064.
- [35] M. Jamadi, F. Merrikh-Bayat, M. Bigdeli, Very accurate parameter estimation of
 single- and double-diode solar cell models using a modified artificial bee colony
 algorithm, Int. J. Energy Environ. Eng. (2016). doi:10.1007/s40095-015-0198-5.
- [36] E.E. Ali, M.A. El-Hameed, A.A. El-Fergany, M.M. El-Arini, Parameter extraction of
 photovoltaic generating units using multi-verse optimizer, Sustain. Energy Technol.
 Assessments. (2016). doi:10.1016/j.seta.2016.08.004.
- [37] C. Chellaswamy, R. Ramesh, Parameter extraction of solar cell models based on
 adaptive differential evolution algorithm, Renew. Energy. (2016).
 doi:10.1016/j.renene.2016.06.024.
- [38] A.R. Jordehi, Time varying acceleration coefficients particle swarm optimisation
 (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and
 modules, Energy Convers. Manag. (2016). doi:10.1016/j.enconman.2016.09.085.
- [39] J. Ma, K.L. Man, S.-U. Guan, T.O. Ting, P.W.H. Wong, Parameter estimation of
 photovoltaic model via parallel particle swarm optimization algorithm, Int. J. Energy
 Res. 40 (2016) 343–352. doi:10.1002/er.3359.
- [40] Z. Chen, L. Wu, P. Lin, Y. Wu, S. Cheng, Parameters identification of photovoltaic
 models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy,
 Appl. Energy. 182 (2016) 47–57. doi:10.1016/j.apenergy.2016.08.083.
- [41] X. Yuan, Y. He, L. Liu, Parameter extraction of solar cell models using chaotic asexual
 reproduction optimization, Neural Comput. Appl. 26 (2015) 1227–1239.
 doi:10.1007/s00521-014-1795-6.
- [42] L.H.I. Lim, Z. Ye, J. Ye, D. Yang, H. Du, A linear identification of diode models from
 single I-V characteristics of PV panels, IEEE Trans. Ind. Electron. 62 (2015) 4181–
 4193. doi:10.1109/TIE.2015.2390193.
- [43] A. El-Fergany, Efficient Tool to Characterize Photovoltaic Generating Systems Using
 Mine Blast Algorithm, Electr. Power Components Syst. 43 (2015) 890–901.
 doi:10.1080/15325008.2015.1014579.

- [44] D.F. Alam, D.A. Yousri, M.B. Eteiba, Flower Pollination Algorithm based solar PV
 parameter estimation, Energy Convers. Manag. 101 (2015) 410–422.
 doi:10.1016/j.enconman.2015.05.074.
- [45] F. Dkhichi, B. Oukarfi, A. Fakkar, N. Belbounaguia, Parameter identification of solar
 cell model using Levenberg–Marquardt algorithm combined with simulated annealing,
 Sol. Energy, 110 (2014) 781–788. doi:10.1016/j.solener.2014.09.033.
- [46] Q. Niu, L. Zhang, K. Li, A biogeography-based optimization algorithm with mutation
 strategies for model parameter estimation of solar and fuel cells, Energy Convers.
 Manag. (2014). doi:10.1016/j.enconman.2014.06.026.
- [47] Q. Niu, H. Zhang, K. Li, An improved TLBO with elite strategy for parameters
 identification of PEM fuel cell and solar cell models, Int. J. Hydrogen Energy. (2014).
 doi:10.1016/j.ijhydene.2013.12.110.
- [48] D. Oliva, E. Cuevas, G. Pajares, Parameter identification of solar cells using artificial
 bee colony optimization, Energy. (2014). doi:10.1016/j.energy.2014.05.011.
- [49] A. Laudani, F. Riganti Fulginei, A. Salvini, High performing extraction procedure for
 the one-diode model of a photovoltaic panel from experimental I–V curves by using
 reduced forms, Sol. Energy. 103 (2014) 316–326. doi:10.1016/j.solener.2014.02.014.
- [50] X. Yuan, Y. Xiang, Y. He, Parameter extraction of solar cell models using mutativescale parallel chaos optimization algorithm, Sol. Energy. 108 (2014) 238–251.
 doi:10.1016/j.solener.2014.07.013.
- [51] S.J. Patel, A.K. Panchal, V. Kheraj, Extraction of solar cell parameters from a single
 current–voltage characteristic using teaching learning based optimization algorithm,
 Appl. Energy. 119 (2014) 384–393. doi:10.1016/j.apenergy.2014.01.027.
- [52] A. Askarzadeh, A. Rezazadeh, Extraction of maximum power point in solar cells using
 bird mating optimizer-based parameters identification approach, Sol. Energy. (2013).
 doi:10.1016/j.solener.2013.01.010.
- [53] A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for
 parameters identification of solar cell models, Appl. Energy. (2013).
 doi:10.1016/j.apenergy.2012.09.052.
- [54] L.L. Jiang, D.L. Maskell, J.C. Patra, Parameter estimation of solar cells and modules
 using an improved adaptive differential evolution algorithm, Appl. Energy. 112 (2013)
 185–193. doi:10.1016/j.apenergy.2013.06.004.

- [55] O. Hachana, K.E. Hemsas, G.M. Tina, C. Ventura, Comparison of different
 metaheuristic algorithms for parameter identification of photovoltaic cell/module, J.
 Renew. Sustain. Energy. (2013). doi:10.1063/1.4822054.
- [56] A. Askarzadeh, A. Rezazadeh, Parameter identification for solar cell models using
 harmony search-based algorithms, Sol. Energy. (2012).
 doi:10.1016/j.solener.2012.08.018.
- [57] W. Gong, Z. Cai, Parameter extraction of solar cell models using repaired adaptive
 differential evolution, Sol. Energy. 94 (2013) 209–220.
 doi:10.1016/j.solener.2013.05.007.
- [58] M.F. AlHajri, K.M. El-Naggar, M.R. AlRashidi, A.K. Al-Othman, Optimal extraction
 of solar cell parameters using pattern search, Renew. Energy. (2012).
 doi:10.1016/j.renene.2012.01.082.
- [59] K.M. El-Naggar, M.R. AlRashidi, M.F. AlHajri, A.K. Al-Othman, Simulated
 Annealing algorithm for photovoltaic parameters identification, Sol. Energy. 86 (2012)
 266–274. doi:10.1016/j.solener.2011.09.032.
- [60] M.R. AlRashidi, M.F. AlHajri, K.M. El-Naggar, A.K. Al-Othman, A new estimation
 approach for determining the I–V characteristics of solar cells, Sol. Energy. 85 (2011)
 1543–1550. doi:10.1016/j.solener.2011.04.013.
- [61] M. Ye, X. Wang, Y. Xu, Parameter extraction of solar cells using particle swarm
 optimization, J. Appl. Phys. (2009). doi:10.1063/1.3122082.
- [62] D. Yousri, M.A. Elaziz, A. Razaee, M. Merchaoui, K.P.S. Rana, T.S. Babu, D. Oliva, 743 744 P. Ram, N. Rajasekar, D.F. Alam, M.B. Eteiba, D. Kler, Y. Goswami, V. Kumar, Comment on "Important notes on parameter estimation of solar photovoltaic cell", by 745 Gnetchejo et al. [Energy Conversion and Management, 746 https://doi.org/10.1016/j.enconman.2019.111870], Energy Convers. Manag. 201 747 (2019) 112131. doi:10.1016/j.enconman.2019.112131. 748
- [63] P.J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, S.
 Perabi Ngoffe, Reply to comment on "Important notes on parameter estimation of solar
 photovoltaic cell", by Gnetchejo et al. [Energy Conversion and Management,
 https://doi.org/10.1016/j.enconman.2019.111870.], Energy Convers. Manag. (2019).
 doi:10.1016/j.enconman.2019.112132.
- [64] D. Yousri, M.A. Elaziz, M. Merchaoui, K.P.S. Rana, T.S. Babu, D. Oliva, P. Ram, N.
 Rajasekar, D.F. Alama, M.B. Eteiba, D. Kler, Y. Goswami, V. Kumar, Reply on "Reply
 to comment on Important notes on parameter estimation of solar photovoltaic cell", by

- Gnetchejo et al. [Energy Conversion and Management, https://doi.org/10.1016/
 j.enconman.2019.111870], Energy Convers. Manag. (2019).
 doi:10.1016/j.enconman.2019.112234.
- [65] D. Veberič, Lambert W function for applications in physics, Comput. Phys. Commun.
 183 (2012) 2622–2628. doi:10.1016/j.cpc.2012.07.008.
- [66] M.P. Ćalasan, Analytical solution for no-load induction machine speed calculation
 during direct start-up, Int. Trans. Electr. Energy Syst. 29 (2019) e2777.
 doi:10.1002/etep.2777.
- [67] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the LambertW
 function, Adv. Comput. Math. 5 (1996) 329–359. doi:10.1007/BF02124750.
- [68] M. Calasan, A. Nedic, Experimental Testing and Analytical Solution by Means of
 Lambert W-Function of Inductor Air Gap Length, Electr. Power Components Syst.
 (2018). doi:10.1080/15325008.2018.1488012.
- [69] S.M. Perovich, M. Orlandic, M. Calasan, Concerning exact analytical STFT solutions
 to some families of inverse problems in engineering material theory, Appl. Math.
 Model. (2013). doi:10.1016/j.apm.2012.10.052.
- [70] S.M. Perovich, M.P. Calasan, R. Toskovic, On the exact analytical solution of some
 families of equilibrium critical thickness transcendental equations, AIP Adv. 4 (2014)
 117124. doi:10.1063/1.4902161.
- [71] S.M. Perovich, M.D. Djukanovic, T. Dlabac, D. Nikolic, M.P. Calasan, Concerning a
 novel mathematical approach to the solar cell junction ideality factor estimation, Appl.
 Math. Model. 39 (2015) 3248–3264. doi:10.1016/j.apm.2014.11.026.
- [72] S.M. Perovich, M. Calasan, D. Kovac, I. Tosic, Concerning an analytical solution of
 some families of Kepler's transcendental equation, AIP Adv. (2016).
 doi:10.1063/1.4944836.
- [73] M.P. Ćalasan, An invertible dependence of the speed and time of the induction
 machine during no-load direct start-up, Automatika. 61 (2020) 141–149.
 doi:10.1080/00051144.2019.1689725.
- [74] A.F. Zobaa, S.H.E.A. Aleem, A.Y. Abdelaziz, Classical and Recent Aspects of Power
 System Optimization, Academic Press, 2018. doi:10.1016/C2016-0-03379-X.
- [75] M. Kumar, A. Kumar, An efficient parameters extraction technique of photovoltaic
 models for performance assessment, Sol. Energy. 158 (2017) 192–206.
 doi:10.1016/j.solener.2017.09.046.

- [76] M.G. Villalva, J.R. Gazoli, E.R. Filho, Comprehensive Approach to Modeling and
 Simulation of Photovoltaic Arrays, IEEE Trans. Power Electron. 24 (2009) 1198–1208.
 doi:10.1109/TPEL.2009.2013862.
- [77] E.A. Silva, F. Bradaschia, M.C. Cavalcanti, A.J. Nascimento, Parameter Estimation
 Method to Improve the Accuracy of Photovoltaic Electrical Model, IEEE J.
 Photovoltaics. 6 (2016) 278–285. doi:10.1109/JPHOTOV.2015.2483369.
- [78] S. Bana, R.P. Saini, A mathematical modeling framework to evaluate the performance
 of single diode and double diode based SPV systems, Energy Reports. 2 (2016) 171–
 187. doi:10.1016/j.egyr.2016.06.004.
- [79] R. Szabo, A. Gontean, Photovoltaic Cell and Module I-V Characteristic
 Approximation Using Bézier Curves, Appl. Sci. 8 (2018) 655.
 doi:10.3390/app8050655.
- [80] E. Salahshour, M. Malekzadeh, R. Gholipour, S. Khorashadizadeh, Designing multilayer quantum neural network controller for chaos control of rod-type plasma torch
 system using improved particle swarm optimization, Evol. Syst. 10 (2019) 317–331.
 doi:10.1007/s12530-018-9222-3.
- [81] E. Salahshour, M. Malekzadeh, F. Gordillo, J. Ghasemi, Quantum neural networkbased intelligent controller design for CSTR using modified particle swarm
 optimization algorithm, Trans. Inst. Meas. Control. 41 (2019) 392–404.
 doi:10.1177/0142331218764566.
- [82] M. B. M. Rozlan, A. F. Zobaa, S. H. E. Abdel Aleem, The optimisation of stand-alone
 hybrid renewable energy systems using HOMER, Int. Rev. Electr. Eng. 6 (2011) 1802–
 1810.
- [83] M. Malekzadeh, A. Khosravi, M. Tavan, An immersion and invariance based input
 voltage and resistive load observer for DC–DC boost converter, SN Appl. Sci. 2 (2020)
 78. doi:10.1007/s42452-019-1880-7.