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Abstract: We present a new method for learning Soft Random Geometric
Graphs (SRGGs), drawn in probabilistic metric spaces, with the connection
function of the graph defined as the marginal posterior probability of an
edge random variable, given the correlation between the nodes connected by
that edge. In fact, this inter-node correlation matrix is itself a random vari-
able in our learning strategy, and we learn this by identifying each node as a
random variable, measurements of which comprise a column of a given mul-
tivariate dataset. We undertake inference with Metropolis with a 2-block
update scheme. The SRGG is shown to be generated by a non-homogeneous
Poisson point process, the intensity of which is location-dependent. Given
the multivariate dataset, likelihood of the inter-column correlation matrix
is attained following achievement of a closed-form marginalisation over all
inter-row correlation matrices. Distance between a pair of graphical models
learnt given the respective datasets, offers the absolute correlation between
the given datasets; such inter-graph distance computation is our ultimate
objective, and is achieved using a newly introduced metric that resembles
an uncertainty-normalised Hellinger distance between posterior probabil-
ities of the two learnt SRGGs, given the respective datasets. Two sets of
empirical illustrations on real data are undertaken, and application to simu-
lated data is included to exemplify the effect of incorporating measurement
noise in the learning of a graphical model.

AMS 2000 subject classifications: Graphical methods, 62xx; Random
graphs, 05C80; Measures of association (correlation, canonical corelation,
etc), 62H20; Distance in graphs, 05C12.
Keywords and phrases: Soft random geometric graphs, Probabilistic
metric spaces, Inter-graph distance, Hellinger distance, Metropolis by block
update, Human disease-symptom network.

1. Introduction

Graphical models of complex multivariate datasets, manifest intuitive illustra-
tions of the correlation structures of the data, and are of interest in different
disciplines (Airoldi, 2007; Bandyopadhyay and Canale, 2016; Benner et al., 2014;
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Carvalho and West, 2007; Whittaker, 2008). Much work is present in the Statis-
tics literature on the intrinsic correlation structure of a multivariate dataset
that comprises multiple measurements of a vector-valued observable, where it
is common practice to model the joint probability distribution of a set of such
observable values, as matrix-Normal (Gruber and West, 2016; Ni et al., 2017;
Wang and West, 2009).

In this paper, we present a method for learning the correlation structure of a
multivariate dataset, and its graphical model. The general method is advanced
for iterative Bayesian learning of the correlation matrix, at each update of which,
a soft random geometric graph (SRGG) (Giles et al., 2016; Penrose, 2003, 2016)
of the data is updated, where any such SRGG is drawn in probabilistic metric
space, (Menger, 1942; Schweizer and Sklar, 1983), such that its connection func-
tion is the location-dependent marginal posterior probability of an edge, given
the correlation between the nodes that straddle this edge, and the chosen cutoff
radius is a probability in the probabilistic metric space that the SRGG is drawn
in. In fact, such an SRGG is shown to be underlined by a non-homogeneous
Poisson process with a an intensity that is dependent on the location, or more
precisely, the nodes, and thereby on the inter-nodal correlation. Thus, the point
process that generates this SRGG is compounded with the process that gen-
erates the matrix-valued correlation variable. The full graphical model of the
data is then defined using the sequence of SRGGs generated across iterations
of this learning scheme. In this method, inference on uncertainties of both the
correlation matrix and graphical model is undertaken, and we can acknowledge
measurement errors in learning both random structures as well.

The learning of the graph and correlation structure are undertaken Bayesianly,
using Bayesian inference that is implemented via Markov Chain Monte Carlo
(MCMC) inference techniques; to be precise, a Metropolis-with-2-block-update-
based algorithm is implemented (Robert and Casella, 2004), to make inference
on the correlation matrix given the data, and on the SRGG given the updated
correlation. However, for learning large networks, for which such iterative infer-
ence is not practical, we modulate the method to accommodate this concern.
Then we undertake the network learning as a single SRGG.

The ultimate aim behind our learning of the graphical model of a given data,
is to compute the distance between the graphical models learnt for a pair of given
datasets, in order to thereby compute the strength of the inter-data correlation.
We compute the distance between the graphical models learnt for the respective
dataset, using a new metric δ that we introduce (in Theorem 4.1), where this
metric is akin to the Hellinger distance between the posterior probabilities of the
graphical models given the respective correlation structure of the given datasets,
normalised by the uncertainties in each of the learnt graphical models. Such
distance informs on the absolute correlation between the pair of multivariate
datasets, for which the graphical models are learnt.

Objective and comprehensive uncertainties on the Bayesianly learnt graphical
model of given multivariate data, are sparsely available in the literature. Such
uncertainties can potentially be very useful in informing on the range of models
that describe the partial correlation structure of the data at hand. Madigan and
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Raftery (1994) discuss a method for computing model uncertainties by averaging
over a set of identified models, and they advance ways for the computation of the
posterior model probabilities, by taking advantage of the graphical structure, for
two classes of considered models, namely, the recursive causal models (Kiiveri
et al., 1984) and the decomposable log-linear models (Goodman, 1970). This
method allows them to select the “best models”, while accounting for model
uncertainty. Our method on the other hand, provides a direct and well-defined
way of learning uncertainties of the graphical model of a given multivariate data.

However, we wish to extend such learning to higher-dimensional data, for ex-
ample, to a dataset that is cuboidally-shaped, given that it comprises multiple
measurements of a matrix-valued observable. Hoff (2011); Xu et al. (2012);Wang
& Chakrabarty (https://arxiv.org/abs/1803.04582), advance methods to
learn the correlation in high-dimensional data in general. For a rectangularly-
shaped multivariate dataset, the pioneering work by Wang and West (2009)
allows for the learning of both the inter-row and inter-column covariance matri-
ces, and therefore, of two graphical models. Ni et al. (2017) extend this approach
to high-dimensional data. However, a high-dimensional graph showing the corre-
lation structure amongst the multiple components of a general hypercuboidally-
shaped dataset, is not easy to visualise or interpret. Instead, in this paper, we
treat the high-dimensional data as built of correlated rectangularly-shaped data
slices, given each of which, the inter-column (partial) correlation structure and
graphical model are Bayesianly learnt, along with uncertainties, subsequent to
our closed-form marginalisation over all inter-row correlation matrices (in Sec-
tion 2.5, unlike in the work of Wang and West (2009)). By invoking the uncer-
tainties learnt in the graphical models, we advance a new inter-graph distance
metric (Section 4), based on the Hellinger distance (Banerjee et al., 2015; Ma-
tusita, 1953) between the posterior probability densities of the pair of graphical
models that are learnt given the respective pair of such rectangularly-shaped
data slices. We use a corresponding affinity measure to then infer on the cor-
relation between the pair of datasets (Section 4.1), permitting the correlation
structure of the high-dimensional dataset thereby. Thus, by computing the pair-
wise inter-graph distance between each learnt pair of graphs, we can avoid the
inadequacy of trying to capture spatial correlations amongst sets of multivari-
ate observations, by “computing partial correlation coefficients and by speci-
fying and fitting more complex graphical models”, as was noted by Guinness
et al. (2014). An additional advantage is that our method offers the inter-graph
distance for two differently sized datasets.

That we do not learn the graphical model as an Erdos-Renyi graph is because
we wish to utilise the fully Bayesian nature of the inference that we implement
here, without resorting to any unrealistic assumptions – such as decomposabil-
ity. Effectively, we wish to learn the uncertainty-included graphical model of
noisy data, as distinguished from making inference on the graph (i.e. writing its
posterior) clique-by-clique. Also, we do not need to be reliant on the closed-form
nature of the posteriors to sample from, i.e. we do not need to invoke conju-
gacy to affect our learning. Indeed, to contextualise to a common practice in
Bayesian learning of undirected graphs, a Hyper-Inverse-Wishart prior is typ-
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ically imposed on the covariance matrix of the data, as this then allows for a
Hyper-Inverse-Wishart posterior of the covariance, which in turn implies that
the marginal posterior of of any clique is Inverse-Wishart – a known, closed-form
density (Dawid and Lauritzen, 1993; Lauritzen, 1996). Inference is then rendered
easier, than when generating posterior samples from a non-closed form poste-
rior, (using techniques such as MCMC). Now, if the graph is not decomposable,
and a Hyper-Inverse-Wishart prior is placed on the covariance matrix, the re-
sulting Hyper-Inverse-Wishart joint posterior density that can be factorised into
a set of Inverse-Wishart densities, cannot be identified as the clique marginals.
Expressed differently, the clique marginals are not closed-form when the graph
is not decomposable. However, this is not a worry in our learning as we can
undertake our learning irrespective of the validity of decomposability. Our pur-
sued graphical model is a soft RGG that is drawn in a (normed) probabilistic
space, where the location-dependent affinity measure between a pair of vertices
of the graph is conditional on the correlation learnt between the pair of random
variables at these two vertices.

This paper is organised as follows. The following section deliberates upon the
methodology development that we advance towards the learning of the SRGG
and the inter-column correlation matrix of a given dataset. In the subsequent
section, issues relevant to the inference on the unknowns is discussed, along
with definition of uncertainties in the learnt graphical model. The metric used
for computing the inter-graph distance, is then discussed in Section 4, while Sec-
tion 5 presents our modulated learning methodology to accommodate challenges
of learning large networks as SRGGs. Section 6 presents the empirical illustra-
tion on 2 real datasets and comparison against existing results, while distance
computation between the learnt graphical models of these 2 data, is discussed
in Section 7. In Section 8, we learn the large disease-phenotype network, and
compare our results with those reported earlier (Hoehndorf et al., 2015). The
paper is rounded up with a section that summarises the main findings and the
conclusions.

The attached Supplementary Material elaborates on certain aspects of our
work. This includes quantitative comparison of the results that we obtain using
the real datasets that we illustrate our methodology upon (Sections 7 and 9 of
the Supplementary Material, along with outputs of such a comparative exercise
included in Figures 12, 13, 14 of the Supplement), with results that are available
in the literature, or obtained independently by us. Importantly, detailed model
checking is discussed in Section 5 of the Supplementary Material, in the context
of an empirical illustration made to a simulated dataset (presented in Section 4
of the Supplement). Convergence signatures of our MCMC chains are borne by
the extra results that are included in Figures 9, 10, and 11 of the Supplement,
in addition to discussions below in Section 6.
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2. Background

Let points X1, . . . , Xp be independent, with the random variable Xi ∈ X ⊆ R
d

be s.t. Xi ∼ f(θ
(i)
1 , . . . , θ

(i)
q ), with the parameters of the pdf of Xi given as

θ
(i)
1 , . . . , θ

(i)
q ∈ R.

The d-dimensional, soft random geometric graph (SRGG) Gφ(V ) on the ver-
tex set V := {X1, . . . , Xp}, with each of the p points X1, . . . , Xp ∈ X ⊆ R

d

assigned a random coordinate in the box [0,1]d, is s.t. probability of edge Gij

between the i-th and j-th nodes (i 6= j; i, j ∈ {1, . . . , p}), is given by a function
φ(·) of the distance between point Xi and point Xj . Here φ : X −→ [0, 1] is
referred to as the connection function, following Penrose (2016).

2.1. Probabilistic metric space: background

We draw our SRGG in a probabilistic metric space X (Menger, 1942), s.t.
to any X1, X2 ∈ X , a probability distribution FX1,X2(X) is assigned, where
FX1,X2(0) = 0 (similar to the assignment of a non-negative number to any two
points in a metric space). Let all distributions that abide by the constraint
F·,·(0) = 0, live in space F+ ⊂ F , where probability distributions live in F . We
note that forX1 = X2, the distribution FX1,X2(·) = ℓ0(·), where the distribution
ℓa(·) ∈ F+ is s.t. ℓa(x) = 0 if x ≤ 0 and ℓa(x) = 1 if x > 0, for a ∈ R≥0.

Definition 2.1. A probabilistic metric space is the triple

{X , F,∆},

where the probabilistic distance is FX1,X2 : X × X −→ F+, ∀X1, X2 ∈ X , with

FX1,X2(·) = ℓ0(·) ⇐⇒ X1 = X2;

FX1,X2(·) = FX2,X1(·), ∀X1, X2 ∈ X ; and

triangle function ∆ is s.t. FX1,X3(·) ≥ ∆(FX1,X2 , FX2,X3)(·), ∀X1, X2, X3 ∈ X ,

with the triangle function ∆ defined as a binary operation on F+, with respect

to the triangle norm D s.t.

∆D(FX1,X2 , FX3,X4)(x) = sup[D(FX1,X2(u), FX3,X4(v));u + v = x],

where the triangle norm D (Fodor, 2004) is defined as the binary operation on

interval [0,1], s.t.D(y1, y2) = D(y2, y1)∀y1, y2 ∈ [0, 1];D(y1, y2) ≥ D(y3, y4)∀y1 ≥
y3; y2 ≥ y4; y1, y2, y3, y4 ∈ [0, 1]; D(y1, D(y2, y3)) = D(D(y1, y2), y3)

∀y1, y2, y3 ∈ [0, 1]; and D(y, 1) = y, ∀y ∈ [0, 1],
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2.2. Marginal posterior of edge parameter as connection function

We draw our SRGG in a probabilistic metric space X .

Definition 2.2. Points X1, . . . , Xp are assigned random coordinates in a 2-

dimensional square, to construct a 2-dimensional SRGG on the vertex set V =

{X1, . . . , Xp}, with the probability of the edge between Xi and Xj (where Xi 6=
Xj;Xi, Xj ∈ V ) given by the marginal posterior probability of the random edge

variable Gij, conditional on the (partial) correlation ρij between the random

variables Xi and Xi, i.e.the connection function in our SRGG is the marginal

posterior of Gij , given ρij:

m(Gij |ρij).

Remark 2.1. In our SRGG, the connection function is the affinity measure

between a pair of points, defined by the marginal posterior of the edge variable

connecting them in a (normed) probabilistic metric space (Menger, 1942). This

affinity measure is complementary to the distance between this pair of points in

this space.

An immediate definition of the posterior probability density of our SRGG
would be the joint posterior probability of the edge parameters ({Gij}pi6=j;i,j=1)
given the partial correlation structure, as:

π(G11, G12, . . .Gp p−1|R) ∝ ℓ(G11, G12, . . .Gp p−1|R) π0(G11, G12, . . . Gp p−1),

where π0(G11, G12, . . .Gp p−1) is the prior probability density on the edge pa-
rameters {Gij}pi6=j;i,j=1, and ℓ(G12, . . . , G1p, G23, . . . , G2p, G34, . . . , Gp p−1|R) is
the likelihood of the edge parameters, given the partial correlation matrix R =
[ρij ].

We choose a prior on Gij that is Bernoulli(0.5) ∀i, j, i.e.

π0(G11, G12, . . . Gp p−1) =

p
∏

i,j=1;i6=j

0.5Gij0.51−Gij ;

thus, the prior is independent of the edge parameters. In applications marked
by more information, we can resort to stronger priors. However, as we will soon
see, this posterior definition needs updating.

We choose to define this likelihood as a function of the (squared) Euclidean
distance between the “observation”, (i.e. the absolute value of ρij), and the
unknown parameter Gij , with the squared distance normalised by a squared
scale length, i.e. the variance parameter υij , for all relevant ij-pairs. Thus, the
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unknown parameters in the model are the edge parameters {Gij}pi6=j;i,j=1 and

variance parameters {υij}pi6=j;i,j=1. In light of these newly introduced variance
parameters, we rewrite our likelihood (of the unknown edge and variance pa-
rameters, given the partial correlation matrix),as:

ℓ (G12, . . . , G1p, G23, . . . , G2p, . . . , Gp p−1, υ12, . . . , υ1p, υ23, . . . , υ2p, . . . , υp p−1|R|) .
Now, we choose a parametric form of the likelihood, given its anticipated proper-
ties. Likelihood increases (decreases) as distance between |ρij | and Gij decreases
(increases). Also the likelihood is invariant to change of sign of |ρij |−Gij . Given
this, we model our likelihood of the edge and variance parameters, given R as

ℓ (G12, . . . , G1p, G23, . . . , G2p, . . . , Gp p−1, υ12, . . . , υ1p, υ23, . . . , υ2p, . . . , υp p−1|R)

=

p
∏

i6=j;i,j=1

1
√

2πυij
exp

[

− (Gij − |ρij |)2
2υij

]

, (2.1)

where the variance parameters {υij}pi6=j;i,j=1 are indeed hyper-parameters that
are also learnt from the data. The variance parameters are assigned uniform
prior probability in the interval [0, 1].

Thus, the joint posterior probability of the edge and variance parameters is

π({Gij}pi6=j;i,j=1, {υij}
p
i6=j;i,j=1|R) = K

p
∏

i6=j;i,j=1

1
√

2πυij
exp

[

− (Gij − |ρij |)2
2υij

]

,

(2.2)
where K > 0 is a constant that incorporates information on the ij-independent
Bernoulli(0.5) prior, Uniform[0,1] prior, and probability of R that defines the
denominator of Bayes rule.

Then the marginal posterior probability of the ij-th edge parameter Gij ,
given the partial correlation ρij between Xi and Xj , is:

m(Gij |ρij) = K

1
∫

0

1√
2πυ

exp

[

− (Gij − |ρij |)2
2υ

]

dυ

= K

[

√

2

π
exp

(

− (Gij − |ρij |)2
2

)

− (|Gij − |ρij ||) erfc
( |Gij − |ρij ||√

2

)

]

,

(2.3)

where erfc(·) is the complimentary error function.

Theorem 2.1. Setting the global constant K = 1, separation Dij between points

Xi ∈ X and Xj ∈ X is a norm in the probabilistic metric space X , where

Dij := m(Gij |ρij) + |Gij − |ρij ||, (2.4)

=

[

√

2

π
exp

(

− (Gij − |ρij |)2
2

)

+ (|Gij − |ρij ||) erf
( |Gij − |ρij ||√

2

)

]

,
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where we have recalled that the error function erf(·) = 1−erfc(·), and m(Gij |ρij)
is defined in Equation 2.3.

The proof of this theorem is in Section 1 of the attached Supplementary
Materials.

The global scaleK is chosen to ensure that Dij is a metric in the probabilistic
metric space X .

Figure 1 shows the variation with |Gij − |ρij ||, in the unscaled distance Dij

between the i-th and j-th nodes; the unscaled affinity measure m(Gij |ρij) be-
tween points Xi and Xj ; and the difference between the unscaled distance and
the affinity measure, for Gij set to 1 (trends displayed in the left panel), and
Gij set to 0 (results shown on the right). In our SRGG, the ij-th edge exists
with the probability that is given by the probability that affinity m(Gij |ρij)
between Xi and Xj exceeds cutoff probability τ . Now, probability for the ij-th
edge to exist, increases with increase in |ρij)|; so we expect m(Gij = 1|ρij) to
increase with |ρij)|. This trend is borne in the results displayed in Figure 1.
From this figure, we also see that the affinity measure defined in terms of the
marginal posterior of the edge, given the partial correlation, is complementary
to the distance Dij , in the sense that as affinity increases, distance decreases,
for a given value of Gij , ∀i, j ∈ {1, 2, . . . , p}; i 6= j.

2.3. Edge set of our SRGG

Definition 2.3. Then edge Gij exists in the graph, independently of any other

edge, if and only if, affinity between Xi and Xj exceeds a threshold probability

τ , i.e.

m(Gij |ρij) ≥ τ.

Thus, the value of the ij-th edge parameter Gij is

gij = 1 if m(Gij |ρij) ≥ τ ; i 6= j; i, j ∈ {1, . . . , p} (2.5)

gij = 0 otherwise

Here the ij-th edge exists in the graph if gij = 1, and does not exist if gij = 0.

Thus, the edge set of our graph is

Ep = {Gij : m(Gij |ρij) ≥ τ ;Xi 6= Xj;Xi, Xj ∈ V }.

Remark 2.2. As ρij is dependent on the i-th an j-th vertices, marginal m(Gij |ρij)
that is a function of ρij, is i and j-dependent too, implying that the connection
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Fig 1. Figure displaying variation with the input |Gij−|ρij ||, of unscaled distance Dij between
the i-th and j-th nodes (in dotted lines); the unscaled affinity measure m(Gij |ρij) between
points Xi and Xj (in solid line); and the difference between the unscaled distance and the
affinity measure (in dashed lines), for Gij = 1 (left panel) and Gij = 0 (right panel). Here
the input variable is the absolute of the difference between value (0 or 1) of the edge variable
Gij between i-th and j-th nodes, and the absolute partial correlation |ρij | between points Xi

and Xj . As |ρij | increases, probability for the edge connecting Xi and Xj to exist – given by
the affinity measure mij(Gij = 1|ρij) between points Xi and Xj in our SRGG to exceed a
chosen cutoff probability – increases, while the probability for this edge to not exist (i.e. for
Gij to be 0) decreases, as shown on the right. Distance between points Xi and Xj is defined
to be complimentary to the affinity.

function is location-dependent in this graph. Then following Penrose (2016), our

notation for this location-dependent SRGG defined at threshold parameter τ is

Gm,R(V , τ), where the partial correlation matrix is

R(p×p) = [ρij ],

where cardinality of V is p.

2.4. Point process background for our SRGG

In this sub-section, we present the underlining Point Process (PP) that can
generate our Soft RGG Gm,R(V , τ). To undertake this, we now model the points
Xi, Xj ∈ X , as random variables Xi and Xj that are Normally distributed with
means µi and µj , and the variance σ2.

Theorem 2.2. Distance between random variables Xi, Xj ∈ X – where X is
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the host probabilistic metric space – is given as:

D(Xi, Xj) =
2σ√
π
exp

(−|µi − µj |2
4σ2

)

+ |µi − µj |erf
( |µi − µj |

2σ

)

,

with Xi ∼ N (µi, σ
2), Xj ∼ N (µj , σ

2).

Proof. From definition of distance in probabilistic metric spaces, it follows that

distance between Xi and Xj in X is

D(Xi, Xj) :=

∞
∫

−∞

∞
∫

−∞

|xi − xj |fXi(xi)fXj (xj)dxidxj .

Then for Xi ∼ N (µi, σ
2), Xj ∼ N (µj , σ

2), distance between these Normally

distributed variables is

DNN (Xi, Xj)

:=
1

2πσ2

∞
∫

−∞

∞
∫

−∞

|xi − xj | exp
(

− (xi − µi)
2

2σ2

)

exp

(

− (xj − µj)
2

2σ2

)

dxidxj

=
2σ√
π
exp

(

− (µi − µj)
2

4σ2

)

+ |µi − µj |erf
( |µi − µj |

2σ

)

, (2.6)

where the subscript “NN” in the LHS qualifies the distance as between 2 Nor-

mally distributed r.v.s.

Proposition 2.1. SRGG Gm,R(V , τ) drawn with affinity cut-off τ , in the prob-

abilistic metric space X , with affinity measure m(Gij |ρij) defined as in Equa-

tion 2.3, results from randomly placing Normally distributed random variables

with respective means, and a global variance σ2, in X , as long as we set:

σ ≡ 1√
2
; |µi − µj | ≡ |Gij − |ρij ||.

Here matrix R = [ρij ].

Proof. We see in Equation 2.6 that setting 2σ =
√
2, and |µi − µj | ≡ |Gij −

|ρij ||, implies distance between Normally distributed r.v.s Xi ∼ N (µi, σ), Xj ∼
N (µj , σ), with Xi, Xj ∈ X is

DNN(Xi, Xj) =

√
2√
π
exp

(

− (Gij − ρij)
2

2

)

+ |Gij − ρij |erf
( |Gij − |ρij ||√

2

)

= Dij ,
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where Dij is defined in Equation 2.5 in terms of the complimentary connec-

tion function, (i.e. complimentary affinity measure) of our SRGG, as Dij :=

m(Gijρij) + |Gij − |ρij ||.

Theorem 2.3. SRGG Gm,R(V , τ), drawn with affinity cut-off τ , in the prob-

abilistic metric space X , with affinity measure m(Gij |ρij) defined as in Equa-

tion 2.3, is generated by a non-homogeneous Poisson point process.

Proof. Vertex set of SRGG Gm,R(V , τ) is V = {X1, . . . , Xp}.
For any i ∈ {1, . . . , p}, let ball B(Xi, a) be drawn in X , centred at Xi, with

radius a, where a ∈ [0, 1], given that radius of a ball in X is a probability.

Let r.v. N(a) := number of elements of V inside B(Xi, a).

Then ∀B(Xi, a) ⊂ X , recalling that Gij = 0 if m(Gij |ρij) < τ , the expectation

of N(a) is:

E[N(a)] =

p
∑

j=1

fXi(µi, σ)πa
2H(m(Gij |ρij)− τ), (2.7)

= fXi(µi, σ)πa
2

p
∑

j=1

H(m(Gij |ρij)− τ),

≡ fXi(µi, σ)πa
2QR,τ

where the Heaviside function H(·) is defined as

H(x) = 1 if x ≥ 0 (2.8)

= 0 if x < 0

and we introduce the notation:

QR,τ :=

p
∑

j=1

H(m(Gij |ρij)− τ)

We further define

λi := fXi(µi, σ)QR,τ ,

where we recall that

fXi(µi, σ) =
1√
2πσ2

exp

(

− (xi − µi)
2

2σ2

)

.
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Then PP {X1, . . . , Xi−1, Xi+1, . . . , Xp} approximates a non-homogeneous Pois-

son Process with intensity λi.

Remark 2.3. Thus, our SRGG is underlined by a non-homogeneous Poisson

point process that has a location-dependent rate. Hence our SRGG is location-

dependent.

2.5. Dependence of graph on partial correlation matrix R

SRGG Gm,R(V , τ) is learnt given the partial correlation matrix R that is itself
learnt given the data. In fact, it is the correlation matrix that is learnt given
the data, and R is computed at every update of the correlation matrix. In this
section we discuss the learning of the correlation matrix given a multivariate
dataset.

Definition 2.4. Let X ∈ Ξ ⊆ R
p be a p-dimensional observed vector, with

X = (X1, . . . , Xp)
T .

Let there be n measurements of Xj, j = 1, . . . , p, so that the n× p-dimensional

matrix D = [xij ]
n;p
i=1;j=1 is the data that comprises n measurements of the p-

dimensional observable X.

Let the i-th realisation of X be xi, i = 1, . . . , n.

We model X, so that the set of n realisations of this variable that comprises

the data D, is jointly matrix-Normal, i.e. where this matrix-Normal density is

parametrised by

—a mean matrix µ(n×p);

—a covariance matrix Σ
(n×p)
R , an element of which is the covariance between a

pair of rows in D;

—a covariance matrix Σ
(p×p)
C that informs on inter-column covariance in data

D.

We standardise the variable Xj (j = 1, . . . , p) by its empirical mean and stan-
dard deviation, into Zj , s.t. the standardised version DS of data D comprises
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n measurements of the p-dimensional vector Z = (Z1, . . . , Zp)
T . Thus,

zij =
xij − x̄j

Υj
, where x̄j :=

n
∑

i=1

xij

n
; Υ2

j :=

n
∑

i=1

x2ij

n
−









n
∑

i=1

xij

n









2

.

The n× p-dimensional matrix DS = [zij ].
Then we model the joint probability of a set of n measurements of Z, that

comprises the standardised data DS , to be matrix-Normal with zero-mean, i.e.

{z1, . . . , zn} ∼ MN (0,Σ
(S)
R ,Σ

(S)
C ),

i.e. the likelihood of the covariance matrices Σ
(S)
R and Σ

(S)
C , given data DS , is

matrix-Normal:
ℓ(Σ

(S)
R ,Σ

(S)
C |DS) =

1

(2π)
np
2 |Σ(S)

C | p2 |Σ(S)
R |n2

× exp

[

−1

2
tr
{

(Σ
(S)
R )−1DS(Σ

(S)
C )−1(DS)

T
}

]

. (2.9)

Here Σ
(S)
R generates the covariance between the standardised variables Zi and

Zi/ , i, i
/ = 1, . . . , n, (while ΣR generates the covariance between Xi and Xi/).

Similarly, Σ
(S)
C generates the correlation between columns of DS .

Theorem 2.4. When the prior on Σ
(S)
C is uniform, the joint posterior proba-

bility density of the correlation matrices Σ
(S)
C ,Σ

(S)
R , given the standardised data

DS can be marginalised over the n× n-dimensional inter-row correlation Σ
(S)
R ,

to yield

π(Σ
(S)
C |DS) ∝

1

c
(

Σ
(S)
C

) ∣

∣

∣Σ
(S)
C

∣

∣

∣

p/2∣
∣

∣DS(Σ
(S)
C )−1(DS)T

∣

∣

∣

n+1
2

,

where prior on Σ
(S)
R is the non-informative π0(Σ

(S)
R ) =

∣

∣

∣Σ
(S)
R

∣

∣

∣

α

; α = −n
2
− 1;

and Σ
(S)
C is assumed invertible. Here, c

(

Σ
(S)
C

)

is a function of Σ
(S)
C that nor-

malises the likelihood.

As posterior π(Σ
(S)
C |DS) above is obtained for Uniform prior on Σ

(S)
C , the

likelihood of Σ
(S)
C given data DS, i.e. pdf of DS given Σ

(S)
C is:

ℓ(Σ
(S)
C |DS) ≡ f(DS |Σ(S)

C ) ∝ π(Σ
(S)
C |DS).

The proof of this theorem is provided in Section 2 of the attached Supple-
mentary Materials.

imsart-generic ver. 2011/05/20 file: kwdc_srgg_arxiv.tex date: February 5, 2020



Wang & Chakrabarty/SRGGs in Probabilistic Spaces & Inter-graph Distance 14

Proposition 2.2. An estimator of the normalisation c
(

Σ
(S)
C

)

of the posterior
[

Σ
(S)
C |DS

]

, given by Theorem 2.4

ĉ
(

Σ
(S)
C

)

= E
Z

/

n/p









. . .









E
Z

/
11









1
∣

∣

∣

(

D/(Σ
(S)
C )−1(D/)T

) ∣

∣

∣

n/+1
2

















. . .









.

Proof. We substitute the sequential computing of expectations with respect

to (w.r.t.) distribution of each element of dataset D/ – as suggested in the

statement of this Proposition – with computation of the expectation w.r.t. the

block D/ of these elements, where D/ abides by the inter-column correlation of

Σ
(S)
C . Thus, we approximate the normalisation c/

(

Σ
(S)
C

)

as:

ĉ/
(

Σ
(S)
C

)

= E
D

/
S









1
∣

∣

∣

(

D/(Σ
(S)
C )−1(D/)T

) ∣

∣

∣

n/+1
2









.

We consider the sample of k number of n/×p-dimensional data sets {D/
1, . . . ,D

/
k},

where D
/
q abides by inter-column correlation Σ

(S)
C ∀q = 1, . . . , k,

s.t. D
/
q(Σ

(S)
C )−1(D

/
q)T is positive definite ∀q = 1, . . . , k, at each t.

Then an estimator of ĉ/
(

Σ
(S)
C

)

is

ĉ
(S)
C :=

1

K

K
∑

k=1

1
∣

∣

∣

(

D
/
k(Σ

(S)
C )−1(D

/
k)

T
) ∣

∣

∣

n/+1
2

. (2.10)

Generation of a randomly sampled n/ × p-sized data set D
/
k, with column

correlation Σ
(S)
C , is undertaken.

3. Bayesian Inference on SRGG and Correlation Matrix using

MCMC, and the Compounding of Processes Underlying the

SRGG

We perform Bayesian inference on the matrix R = [ρij ] of partial correlations
between each distinct pair of the observed variables in data DS , and simulta-
neously, on the R-dependent SRGG Gm,R(V , τ) drawn in probabilistic metric
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space X with affinity measure m(Gij |ρij), on vertex set V , with cutoff proba-
bility τ . The inference that we undertake is Markov Chain Monte Carlo-based,
i.e. MCMC-based. In particular it is an implementation of the Metropolis-with-
2-block-update.

Remark 3.1. In the implementation of the Metropolis-with-2-block-update, the

inter-column correlation matrix Σ
(C)
C of the data is first updated – at which the

updated partial correlation matrix R is computed – for the SRGG to be then

updated, at this updated R.

Remark 3.2. Posterior probability π
(

Σ
(S)
C |DS

)

of inter-column correlation

matrix Σ
(S)
C , given data DS, as given in Theorem 2.4, implies that the sequence

of realisations of Σ
(S)
C , at successive iterations of the MCMC chain:

{Σ(S)0
C ,Σ

(S)1
C ,Σ

(S)2
C , . . .},

is a continuous-valued, discrete time stochastic process, with underlying proba-

bility density π
(

Σ
(S)
C |DS

)

.

Definition 3.1. Given a learnt value of the inter-column correlation matrix

Σ
(S)
C , to compute the value ρij of the partial correlation Rij between r.v.s Xi

and Xj, we first invert the p× p-dimensional matrix Σ
(S)
C to yield the precision

matrix:

Ψ :=
(

Σ
(S)
C

)−1

; Ψ = [ψij ],

s.t. the partial correlation matrix R = [ρij ], where ρij is

ρij = − ψij
√

ψiiψjj

, i 6= j, (3.1)

and ρii = 1 for i = j.

Proposition 3.1. Following Proposition 2.1, the non-homogeneous Poisson

point process with R-dependent intensities, that generates the SRGG Gm,R(V , τ),

is compounded with the continuous-valued stochastic process {Σ(S)t
C }t∈{0,1,2,...}

(discussed in remark 3.2), with underlying density π
(

Σ
(S)
C |DS

)

that is defined

in Theorem 2.4.

imsart-generic ver. 2011/05/20 file: kwdc_srgg_arxiv.tex date: February 5, 2020



Wang & Chakrabarty/SRGGs in Probabilistic Spaces & Inter-graph Distance 16

3.1. MCMC-driven definition of the 95% HPD credible regions on

the learnt SRGG

To acknowledge uncertainties in the Bayesian learning of the sought SRGG,
where the uncertainties can be identified with a Bayesian 95% HPD credible
region, we can suggest that the learnt SRGG only contains those edges, the
affinity measures of which exceed a global probability of 0.05. Then we are
basically defining τ = 0.05 to define the edge set of the sought SRGG (see
Definition 2.3).

Within our MCMC-based inference, the random graph Gm,R(t)(V , τ), is sam-
pled in the t-th iteration of the inference scheme, given the inter-column cor-

relation matrix Σ
(S)t
C updated in this iteration, using which partial correlation

matrix R(t) = [ρ
(t)
ij ] is updated in the t-th iteration; t = 0, 1, . . . , Niter.

In the t-th iteration, let affinity between r.v.s Xi and Xj (Xi 6= Xj ;Xi, Xj ∈
V ) be given by the marginal m(Gij = g

(t)
ij |ρ(t)ij ).

Then the graphical model of data DS is defined as the graph on vertex set
V , that includes edge between Xi and Xj, (Xi 6= Xj ;Xi, Xj ∈ V ), if sample

estimate of E[m(Gij |ρ(t)ij )] exceeds τ = 0.05.We delineate this definition formally
in Definition 3.2.

A sample estimate of E[m(Gij |ρ(t)ij )] is

m̂(Gij |ρ(t)ij ) := Nij ,

where Nij is the the fraction of the post-burnin (Npost) number of iterations
(where Npost < Niter +1), in which the ij-th edge exists, i.e. in which Gij takes
the value 1, ∀ i, j = 1, 2, . . . , p, i 6= j. Thus, variable Nij takes the value

nij :=

N
∑

t=N−Npost+1

g
(t)
ij

Npost
, i < j; i, j = 1, . . . , p. (3.2)

Remark 3.3. Nij is the (post-burnin) sample mean of the affinity measure

between Xi and Xj (Xi, Xj ∈ V ), i.e. of the marginal of edge Gij , conditional

on the learnt inter-column (partial) correlation matrix of the given dataset.

We define the p× p “edge-parameter matrix” as

N := [nij ].

Indeed, the Nij parameter is a function of the partial correlation ρij , that is
itself learnt given this data, but for the sake of notational brevity, we do not
include this explicit R dependence in our notation.

Definition 3.2. The set of SRGGs:

{Gm,R(t)(V , τ)}Nt=N−Npost+1
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sampled during the post-burnin part of any MCMC chain, on the vertex set

V = {X1, . . . , Xp}, for τ = 0.05, defines the graphical model ĜN ,DS
(V , 0.05) of

the data DS, learnt within 95% HPD credible region, as the graph on vertex set

V , with the edge set:

Êp = {Gij : nij ≥ 0.05;Xi 6= Xj ;X,Xj ∈ V }.

Here, the (post-burnin) sample mean of the affinity measure between Xi and Xj

is nij s.t. edge-parameter matrix is N = [nij ].

3.2. Computational Details of Metropolis-with-2-block-update

Theorem 2.4 gives the posterior probability density of correlation matrix Σ
(S)
C ,

given data DS . In our Metropolis-with-2-block-update based inference, we up-

date Σ
(S)
C –at which the partial correlation matrix R is computed. Given this

updated R, we then update the graph.
In our learning of the p × p-dimensional inter-column correlation matrix

Σ
(S)
C = [sij ] – where sij is the value of r.v. Sij – the

p2 − p

2
non-diagonal ele-

ments of the upper (or lower) triangle are learnt, i.e. the parameters S12, S13, . . . ,
S1p, S23, . . . , Sp−1 p are learnt.

In the t-th iteration, Sij is proposed from a Truncated Normal density that
is left truncated at -1 and right truncated at 1, as

Sij = s
(t∗)
ij ∼ TN (s

(t∗)
ij ; s

(t−1)
ij , σ2

ij ,−1, 1), , ∀ i, j = 1, . . . , p; i 6= j,

where σij = σ2
0 ∀ i, j, is the experimentally chosen variance, and the proposal

mean is the current value s
(t−1)
ij of Sij at the end of the t− 1-th iteration.

At the 2nd block of the t-th iteration, the SRGG is updated, given the recently

updated partial correlation matrix R(t) = [ρ
(t)
ij ], s.t. the proposed edge variable

connecting the i-th to the j-th vertex is

Gij = g
(t⋆)
ij ∼ Bernoulli(g

(t⋆)
ij ; ρ

(t)
ij ).

This update also involves the likelihood of the edge parameters Gij and vari-
ance parameters υij , ∀i 6= j; i, j ∈ {1, . . . , p}, given the updated partial correla-
tion matrix. We recall from Equation 2.1 that this likelihood is

ℓ (G12, . . . , G1p, G23, . . . , G2p, . . . , Gp p−1, υ12, . . . , υ1p, υ23, . . . , υ2p, . . . , υp p−1|R)

=

p
∏

i6=j;i,j=1

1
√

2πυij
exp

[

− (Gij − |ρij |)2
2υij

]

.
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The ij-th variance parameter is assigned a proposed value of

υ
(t⋆)
ij ∼ N (υ

(t⋆)
ij ; υ

(t−1)
ij , w2

ij),

where w2
ij is the experimentally chosen variance, and the mean is the current

value of the υij variable.
As suggested in Theorem 2.4, the correlation learning involves computing

(

Σ
(S)
C

)−1

, |Σ(S)
C | and |DS

(

Σ
(S)
C

)−1

(DS)
T |, in every iteration. This calls for

Cholesky decomposition of Σ
(S)
C as L

(S)
C (L

(S)
C )T , and of DS

(

Σ
(S)
C

)−1

(DS)
T
,

into the (lower) triangular matrix L and LT , while implementing ridge ad-

justment (Wothke, 1993). The latter computation follows the inversion of Σ
(S)
C

into (Σ
(S)
C )−1, which is undertaken using a forward substitution algorithm. (see

Section 10 of the Supplementary Materials).
Once the set of SRGGs sampled during the post-burnin part of the MCMC

chain are identified ({Gm,R(t)(V , τ)}Nt=N−Npost+1), graphical model ĜN ,DS
(V , 0.05)

of the data DS is then constructed, using this set of SRGGs.

4. Inter-graph distance metric

We compute the Hellinger distance between the posterior probability of the
graphical model ĜN1,D1

(V , 0.05) of the data D1, learnt within 95% HPD credi-
ble region, and the posterior probability of the similarly learnt graphical model
ĜN2,D2

(V , 0.05) of the data D2, Distance between the pair of uncertainty-
included graphical models is computed using the Hellinger metric, normalised
by the uncertainty in the learning of each graphical model, where such uncer-
tainty is defined below (Definition 4.3). Here data D1 comprises n1 rows and p
columns, while data D2 comprises n2 rows and p columns. (As we soon explain,
we compute the Hellinger distance between the marginal posterior probability
of the edges in each of the considered pair of graphical models).

The inter-graph distance is computed, to inform on the absolute of the cor-
relation between the multivariate, disparately-sized datasets D1 and D2; in ef-
fect, the exercise can address the possible independence of the pdfs that the two
datasets are sampled from. This is of course a hard question to address when the
data comprise measurements of a high-dimensional vector-valued observable.

Definition 4.1. Square of Hellinger distance between two probability density

functions g(·) and h(·) over a common domain X ∈ R
m, with respect to a
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chosen measure, is

D2
H(g, f) =

∫

(

√

g(x)−
√

h(x)
)2

dx

=

∫

g(x)dx+

∫

h(x)dx− 2

∫

√

g(x)
√

h(x)dx

= 2

(

1−
∫

√

g(x)
√

h(x)dx

)

. (4.1)

The Hellinger distance is closely related to the Bhattacharyya distance (Bhat-

tacharyya, 1943) between two densities:DB(g, f) = −log
[∫

(

√

g(x)
√

h(x)
)2

dx

]

.

Definition 4.2. Consider the marginal posterior probability density of all the

graph edge parameters {Gij}pi6=j;i,j=1 given the partial correlation matrix Rq

(that is itself updated given the data D
(q)
S ); q = 1, 2.

In the t-th iteration, value of the marginal posterior of all the edges

{G(qt)
ij }pi6=j;i,j=1, in the q-th SRGG, given Rqt, is:

m(G
(qt)
11 , G

(qt)
12 , . . . , G

(qt)
p p−1|Rqt), t = 0, . . . , Niter.

Given the availability of the value of this marginal posterior density, only at

discretely sampled points in its support, (sampled at discrete times t), the in-

tegral in the definition of the Hellinger distance is replaced by a sum in our

computation of the distance.

Then for the q-th dataset, the marginal posterior of all graph edge parameters

in the t-th iteration is:

u(t)q := m(G
(qt)
11 , G

(qt)
12 , . . . , G

(qt)
p p−1|Rqt),

which is employed to compute square of the (discretised version of the) Hellinger

distance between the two datasets as

D2
H(u1, u2) =

Niter
∑

t=Nburnin+1

(
√

u
(t)
1 −

√

u
(t)
2

)2

Niter −Nburnin
, (4.2)

The Bhattacharyya distance can be similarly discretised.
However, MCMC does not provide normalised posterior probability densities

– we may employ Uniform (over identified finite intervals) priors on the variance
parameters, the marginalised posterior probability of the edge parameters is
known only up to an unknown scale.
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Remark 4.1. In the t-th iteration, MCMC provides value of logarithm ln(u
(t)
q )

of the un-normalised posterior of the edges of the graph given the q-th data

(q = 1, 2). Hence the Hellinger distance between the 2 datasets that we compute

is only known upto a constant normalisation S that we use to scale both u
(t)
1

and u
(t)
2 , ∀ t = 0, . . . , Niter.

Proposition 4.1. Unknown normalisation S that normalises u
(t)
1 and u

(t)
2 , is

chosen to ensure that the scaled, log marginal of all graph edges in the t-th

iteration, is ≤ 0, s.t. exp
(

ln(u(t)
m )
s

)

∈ (0, 1]. Therefore we choose the global scale

S as:

s := max{(ln(u(0)1 ), ln(u
(1)
1 ), . . . , ln(u

(Niter)
1 ), ln(u

(0)
2 ), . . . , ln(u

(Niter)
2 )}. (4.3)

Remark 4.2. Squared Hellinger distance D2
H(u1, u2) between discretised poste-

rior probability densities of 2 graphical models, computed using exp(ln(u
(t)
q )/s)

in Equation 4.2, is affected by scaling parameter S. This scale dependence is

mitigated in our definition of the distance between 2 graphical models as the dif-

ference between the ratio of this computed DH(u1, u2), to the scaled uncertainty

inherent in one graphical model, and the ratio of DH(u1, u2), to the scaled un-

certainty in the other learnt graphical model. Such scaled uncertainty in a learnt

graphical model is defined in Definition 4.3.

Definition 4.3. The scaled (by a scale parameter S = s) uncertainty in learnt

graphical model ĜNq,Dq
(V , 0.05) of data set Dq, with edge-parameter matrix Nq,

is defined as

Dmax,s(q) := max{exp(ln(u(0)q )/s), exp(ln(u(1)q )/s), . . . , exp(ln(u(Niter)
q )/s)} −

min{exp(ln(u(0)q )/s), exp(ln(u(1)q )/s), . . . , exp(ln(u(Niter)
q )/s)},

(4.4)

Thus, Dmax,s(q) provides separation between the maximal and minimal (scaled

values of) posteriors of graphs, generated in the MCMC chain run using the q-th

dataset. Therefore Dmax,s(q) defines uncertainty of the graphical model learnt

for this dataset.
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Definition 4.4. For edge-parameter matrix Nq, for dataset Dq, q = 1, 2, sep-

aration between the two corresponding graphical models on vertex set V , learnt

with uncertainty defined as in Definition 4.3 is

δ(ĜN1,D1
(V , 0.05), ĜN2,D2

(V , 0.05))

:=
∣

∣

∣

√

D2
H(u1, u2)/Dmax,s(1)−

√

D2
H(u1, u2)/Dmax,s(2)

∣

∣

∣

= DH(u1, u2)
∣

∣

∣

1

Dmax,s(1)
− 1

Dmax,s(2)

∣

∣

∣, (4.5)

where the Hellinger distance DH(u1, u2), between the 2 graphical models, is de-

fined in Equation 4.2 and Dmax,s(q) is the uncertainty in the the graphical model

for data Dq, as defined in Equation 4.4, computed at the chosen value s of scale

S (defined in Equation 4.3).

Alternatively, we could define a (discretised version of the) odds ratio of un-
scaled logarithm of the unnormalised posterior densities of the graphical models

learnt using MCMC, given the two datasets, as

∫

(log(g(x))− log(h(x))) dx;

such is then a divergence measure that we define as

Oπ(u1, u2) :=

Niter
∑

t=Nburnin+1

[

log(u
(t)
1 )− log(u

(t)
2 )
]

. (4.6)

4.1. Suggested inter-graph separation δ(·, ·), is an inter-graph

distance

Theorem 4.1. Let δ(ĜN1,D1
(V , 0.05), ĜN2,D2

(V , 0.05)) be the separation de-

fined as in Equation 4.5, between 2 uncertainty-included graphical models, de-

fined over vertex set V , learnt for datasets D1 and D2. Here the graphical model

ĜNq,Dq
(V , 0.05) is an element of space Ω, q = 1, 2.

Then our definition of this inter-graph separation δ : Ω × Ω −→ R≥0, is a

distance function, or a metric.

The proof of this theorem is provided in Section 3 of the attached Supple-
mentary Materials.
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4.2. Absolute correlation between 2 multivariate datasets, from

distance between their graphical models

In this section, we introduce a model for the absolute correlation between 2
multivariate datasets, for which the uncertainty-included graphical models are
learnt, allowing for the inter-graph distance δ(·, ·) to be computed.

Proposition 4.2. For a given value of the inter-graph distance δ(Gu,1,Gu,2) ∈
[0,∞), between 2 learnt graphical models Gu,2Gu,1 ∈ Ω, defined over vertex set

{1, . . . , p}, where the graphical model Gu,· is learnt given data D·, a model for

the absolute value of the correlation |corr(Z1,Z2)| between the p-dimensional

vector-valued observable Z1, (n1 measurements of which comprise dataset in-

dexed by 1), and the p-dimensional observable Z2, (n2 measurements of which

comprise dataset indexed by 2), is

δ(Gu,1,Gu,2) = − log (|corr(Z1,Z2)|) ,

s.t. |corr(Z1,Z2)| = exp[−δ(Gu,1,Gu,2)] ∈ (0, 1].

5. Changes undertaken to facilitate the learning of large networks

When our interest is in learning a graphical model on a vertex set of cardinal-
ity p &20, it implies that such learning, if it is to be undertaken according to
the methodology described in the previous section, will demand MCMC-based
inference on the &200 distinct off-diagonal elements of the correlation matrix

Σ
(S)
C = [sij ] (where Sij represents correlation between the Xi and Xj variables

in the dataset); MCMC-based learning of more than about 200 parameters is
difficult. Again, for p & 500, Cholesky decomposition of the p × p-dimensional

inter-column correlation matrix Σ
(S)
C , (leading to its inversion for example) is

not easy (i.e. it is a challenge to achieve numerical robustness as the matrix
dimensionality exceeds about 500× 500). This renders computation of the like-
lihood in Theorem 2.4 difficult, and the numerical computation of the precision

matrix (Σ
(S)
C )−1 = Ψ = [ψij ] is also difficult for p & 500, where ψij is employed

to compute the partial correlation matrix R according to Equation 3.1.

Remark 5.1. When learning a network with & 500 vertices as an SRGG drawn

in a probabilistic metric space, on vertex set V with cardinality p, with a cut-

off on the affinity measure (≡ edge marginals) of τ , we learn the SRGG given

the correlation matrix Σ
(S)
C than the partial correlation matrix R (of the given
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data DS that hosts n standardised measurements of each of the p & 500 r.v.s),

since it is hard to compute inverse (Σ
(S)
C )−1 of the large (Σ

(S)
C )(p×p), to thereby

compute R.

Thus, the network is learnt as the SRGG G
m,Σ

(S)
C

(V , τ).

Remark 5.2. When learning a network with & 500 vertices given data DS that

hosts n standardised measurements of each of p & 500 r.v.s X1, . . . , Xp, we —

eschew MCMC-based inference on the large (Σ
(S)
C )(p×p) inter-column correlation

matrix, and

—employ empirical estimate of sij instead, where Σ
(S)
C ) = [sij ] with sij :=

n
∑

k=1

xikxjk

n
−

n
∑

k=1

xik

n

n
∑

k=1

xjk

n
. Here, k-th measured value of Xi is xik, i = 1, . . . , p; k =

1, . . . , n.

Hence in the notation of the network learnt as SRGG G
m,Σ

(S)
C

(V , τ), corre-

lation matrix has no dependence on any iteration index.

Remark 5.3. When learning the graphical model of a given dataset DS that

hosts n standardised measurements of each of p & 500 r.v.s X1, . . . , Xp, we es-

chew MCMC-based inference on an SRGG in every iteration. The sought graph-

ical model is learnt as the network G
m,Σ

(S)
C

(V , τ) which is itself an SRGG with

connection function, or the affinity measure between the i-th and j-th nodes,

given by the marginal posterior of Gij , given correlation Sij = sij between Xi

and Xj, i.e. by:

m(Gij |Sij).

Indeed, as the MCMC-based inference in not relevant any more, there is
only a single value of the marginal posterior m(Gij |Sij) of the edge parameter
Gij , between the i-th and j-th nodes, (given the correlation Sij). So we do not
require to define the connection function in terms of (a sample estimate of) the
expected value of the marginal.

Remark 5.4. Graphical model of dataset with inter-column correlation ma-

trix ΣC, on vertex set V , with cutoff probability τ , is learnt as the network

Gm,ΣC (V , τ) with one single identified connection function or affinity function

m(·|·).
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Thus, we learn a network as an SRGG without uncertainties.

5.1. Inter-network distance

However, in Definition 4.4, distance between graphical models learnt of a pair of
datasets, is defined as the Hellinger distance normalised by the uncertainty in the
learning of each graphical model. So in the absence of uncertainty in learning the
network as an SRGG, how can we define an inter-network distance? In fact, the
very discretised representation of the Hellinger distance between the marginal
posteriors of the two graphs, over the MCMC iterations, (see Equation 4.2),
stands challenged, when only one marginal value of the SRGG is computed for
each given dataset.

Proposition 5.1. For vertex set V = {X1, . . . , Xp}, distance ∆(·, ·) between

network G
m,Σ

(1)
C

(V , τ). given a dataset with inter-column correlation matrix

Σ
(1)
C , and the network G

m,Σ
(2)
C

(V , τ) learnt given dataset with inter-column cor-

relation matrix Σ
(2)
C , is defined as the (discretised) Hellinger distance between

the edge marginals of each network, given the respective inter-node correlation

structure, i.e. as

∆(G
m,Σ

(1)
C

(V , τ),G
m,Σ

(2)
C

(V , τ)) := DH(u1, u2),

where for the q-th dataset, (q = 1, 2), the marginal posterior of the ij-th edge

parameter G
(q)
ij given the ij-th correlation parameter S

(q)
ij is m(G

(q)
ij |S(q)

ij ), for

i > j; i, j ∈ {1, 2, . . . , p}, s.t.

u(ij)q := m(G
(q)
ij |S(q)

ij ),

which is employed to compute square of the (discretised version of the) Hellinger

distance between the two datasets as

D2
H(u1, u2) =

p−1
∑

i=1

p
∑

j=i+1

(
√

u
(ij)
1 −

√

u
(ij)
2

)2

p(p− 1)/2
, (5.1)

The cut-off probability on this marginal posterior is τ in the network learnt
as SRGG G

m,Σ
(S)
C

(V , τ). Depending on the network at hand, we may decide on

the value of τ ; for example, in the human disease-disease network that we learn
in Section 8, we produce the network using τ = 0.1.
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6. Implementation on real data

In this section we discuss applications of our method to datasets on
12 vino-chemical attributes of two samples of 1599 red and 4898 white
wines, grown in the Minho region of Portugal (referred to a “vinho
verde”); these data have been considered by Cortez et al. (1998) and
discussed in https://onlinecourses.science.psu.edu/stat857/node/223

(hereon PSU). Each dataset consists of 12 columns that bear information on
attributes that are assigned the following names: “fixed acidity” (X1), “volatile
acidity” (X2), “citric acid” (X3), “residual sugar” (X4), “chlorides” (X5), “free
sulphur dioxide” (X6), “total sulphur dioxide” (X7), “density” (X8), “pH” (X9),
“sulphates” (X10), “alcohol” (X11) and “quality” (X12). Then the n-th row
and i-th column of the data matrix carries measured/assigned value of the
i-th property of the n-th wine in the sample, where i = 1, . . . , 12 and n =

1, . . . , norig = 1599 for the red wine data D
(red)
orig , while n = 1, . . . , norig = 4898

for the white wine data D
(white)
orig . We refer to the i-th vinous property to be Xi.

Then Xi ∈ R≥0 ∀i = 1, . . . , 11, while X12 that denotes the perceived “quality”
of the wine is a categorical variable. Each wine in these samples was assessed
by at least three experts who graded the wine on a categorical scale of 0 to
10, in increasing order of excellence. The resulting “sensory score” or value of
the “quality” parameter was a median of the expert assessments (Cortez et al.,
1998). We seek the graphical model given each of the wine data sets, in which
the relationship between any Xi and Xj is embodied, i 6= j; i, j = 1, . . . , 12.
Thus, we seek to find out how the different vino-chemical attributes affect each
other, as well as the quality of the wine, in the data at hand. Here, X1, . . . , X11

are real-valued, while X12 is a categorical variable, and our methodology allows
for the learning of the graphical model of a data set that in its raw state bears
measurements of variables of different types. In fact, we standardise our data,
s.t. Xi is standardised to Zi, i = 1, . . . , p, p = 12. We work with only a subset

data set, (comprising only n < norig rows of the available D
(·)
orig; n = 300 typi-

cally). Thus, the data sets with n rows, containing Zi values, (i = 1, . . . , p = 12),
are n × p-dimensional matrices each; we refer to these data sets that we work

with, as D
(white)
S and D

(red)
S , respectively for the white and red wines. Our

aim is to learn the between-column correlation matrix Σ
(m)
S given data D

(m)
S ,

and simultaneously learn the graphical model of this data using MCMC-based
inference within the methodology that we discuss above, to then compute the
inter-graph distance, and the inter-data correlation thereafter; m = white, red.

The motivation behind choosing these data sets are basically three-fold.
Firstly, we sought multivariate, rectangularly-shaped, real-life data, that would
admit graphical modelling of the correlations between the different variables in
the data. Also, we wanted to work with data, results from – at least a part of –
which exists in the literature. Comparison of these published results, with our
independent results then illustrates strengths of our method. Thirdly, treating
the red and white wine data as data realised at different experimental conditions,
we would want to address the question of the distance between these data, and
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Fig 2. Figure to demonstrate convergence of the MCMC chain that we run with the white
wine data. Top left panel: trace of the joint posterior probability density of the elements of
the upper triangle of the between-columns correlation matrix of the standardised version of

the real data D
(white)
S

on Portuguese white wine samples (Cortez et al., 1998); this data has
n = 300 rows nd p = 12 columns, and is constructed as a randomly sampled subset of the
original data, the sample size of which is 4898. All other panels: histogram representations of
marginal posterior probability densities of some of the partial correlation parameters computed

using the correlation matrix learnt given data D
(white)
S

.

we propose to do this by computing the distance between the graphical models
of the two data sets. Hence our choice of the popular Portuguese red and white
wine data sets, as the data that we implement to illustrate our method on. It
is to be noted that a rigorous vinaceous implications of the results, is outside
the scope and intent of this paper. However, we will make a comparison of our
results with the results of the analysis of white wine data that is reported in
PSU, though literature precludes analysis of the red wine data.

6.1. Results given data D
(white)
S

Figure 2 presents results that demonstrate convergence of the MCMC chain
run to learn the correlation structure and graphical model given the white wine

data D
(white)
S . Its top left-hand panel displays trace of the joint posterior proba-

bility density of all learnt inter-column correlation (Sij) parameters of this data
while marginal marginal posterior probabilities of some of the partial correlation
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Fig 3. Figure showing graphical model of D
(white)
S

, of the real data on Portuguese white wine
samples (Cortez et al., 1998). The nodes have been placed randomly inside a box. Each of the
first 11 columns of this data gives the measured value of each of 11 different vino-chemical
properties of the wines in the sample – marked as nodes in the graph above, by filled red (or
grey in the printed version) circles, with the name of the property included in the vicinity of
the respective node. The 12-th column in the data includes values of the assessed quality of
a wine in the sample, (a node that we mark with a green circle in the electronic version; the
bigger grey circle in a monochromatic version of the paper). The estimate of the probability for
an edge to exist in the post-burnin sample of graphs generated in our MCMC-based inferential
scheme, is marked against an existing edge, where edges with such probabilities that are < 0.05
are omitted from this graphical model, (see Section 3.1).

parameters, are presented as histograms in the other panels. Having learnt the
correlation structure, the SRGG given the partial correlation matrix updated in
an iteration, is then learnt. Figure 9 in Supplementary Materials presents traces
of the of some of the edge (Gij) and variance (υij) parameters of this SRGG
learning. Then at the end of the chain, using the learnt SRGGs, graphical model
of this data is constructed; this is presented in Figure 3.

6.1.1. Comparing against earlier work done with white wine data

The graphical model of the white wine data presented in Fig 3, is strongly
corroborated by the simple empirical correlations between pairs of different
vino-chemical properties that is noticed in the “scatterplot of the predictors”
included as part of the results of the “Exploratory Data Analysis” reported in
https://onlinecourses.science.psu.edu/stat857/node/224 on the white

wine data. These reported results use the full white wine data set D
(white)
orig , to
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construct a matrix of scatterplots of Xi against Xj; i 6= j; i, j = 1, . . . , 11. These
empirical scatterplots visually suggest stronger correlations between fixed acid-
ity and pH; residual sugar and density; free sulphur dioxide and total sulphur
dioxide; density and total sulphur dioxide; density and alcohol–than amongst
other pairs of variables. These are the very node pairs that we identify to have
edges (at probability in excess of 0.05) between them.

When we compare our learnt graphical model with the results of this re-
ported “Exploratory Data Analysis”, we remind ourselves that partial correla-
tion (that drives the probability of the edge between the i-th and j-th nodes),
is often smaller than the correlation between the i-th and j-th variables, com-
puted before the effect of a third variable has been removed (Sheskin, 2004).
If this is the case, then an edge between nodes i and j in the learnt graphical
model, is indicative of a high correlation between the i-th and j-th variables in
the data. However, in the presence of a suppressor variable (that may share a
high correlation with the i-th variable, but low correlation with the j-th), the
absolute value of the partial correlation parameter can be enhanced to exceed
that of the correlation parameter. In such a situation, the edge between the
nodes i and j in our learnt graphical model may show up (within our defined
95% HPD credible region on edge probabilities, i.e. at probability higher than
0.05), though the empirical correlation between these variables is computed as
low (Sheskin, 2004). So, to summarise, if the empirical correlation between two
variables reported for a data set is high, our learnt graphical model should in-
clude an edge between the two nodes. But the presence of an edge between pair
of nodes is not necessarily an indication of high empirical correlation between a
pair of variables–as in cases where suppressor variables are involved. Guessing
the effect of such suppressor variables via an examination of the scatterplots is
difficult in this multivariate situation. Lastly, it is appreciated that empirical
trends are only indicators as to the matrix-Normal density-based model of the
learnt correlation structure (and the graphical model learnt thereby) given the
data at hand.

Effect on the “quality” variable in the “Exploratory Data Analysis” reported
in PSU site, using the white wine data, is examined via a linear regression
analysis of the predictors X1, . . . , X11 on the response variable “quality”, which
suggests the variables alcohol and volatile acidity to have maximal effect on
quality. Indeed, this is corroborated in our learning of the graphical model that
manifests edges between the nodes corresponding to variables: alcohol-quality,
and volatile acidity-quality.

6.2. Results given data D
(red)
S

The D
(red)
S data is the standardised version of a subset of the original red wine

data set D
(red)
orig . D

(red)
S comprises n = 300 rows and p = 12. The marginal

posterior of some of the partial correlation parameters ρij computed using the

elements of the correlation matrix Σ
(red)
S (of data D

(red)
S ) that is updated in
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Fig 4. Graphical model of standardised version D
(red)
S

of the real data on Portuguese red wine
samples (Cortez et al., 1998). Figure is similar to Figure 3, even in the random placement
of the nodes, except that this is the graphical model learnt for the red wine data.

the first block of Metropolis-with-2-block-update, are presented in Figure 10 of
the Supplementary Material. Figure 11 of the Supplementary Material presents
the trace of the joint posterior probability of the edge (Gij) parameters and

the variance (υij) parameters learnt given data D
(red)
S . The inferred graphical

model of the red wine data is included in Figure 4.

6.2.1. Comparing against empirical work done with red wine data

To the best of our knowledge, analysis of the red wine data has not been reported
in the literature. In lieu of that, we undertake construction of a matrix of scat-
terplots of Xj against Xi from the red wine data. This is shown in Figure 12
of the Supplementary Material, for i = 1, . . . , 11. These scatterplots visually
indicate moderate correlations between the following pairs of variables: fixed
acidity-citric acid, fixed acidity-density, fixed acidity-pH, volatile acidity-citric
acid, free sulphur dioxide-total sulphur dioxide, density-alcohol. All these vari-
ables share an edge at probability ≥ 0.05 in our learnt graphical model of data

D
(red)
S (see Figure 4). We note that all moderately correlated variable pairs,

as represented in these scatterplots, are joined by edges in our learnt graphical
model of the red wine data – as is to be expected if the learning of the graphical
model is correct. Such pairs include fixed acidity-citric acid, fixed acidity-density,
fixed acidity-pH, volatile acidity-citric acid, free sulphur dioxide-total sulphur
dioxide, density-alcohol. However, an edge may exist between a pair of variables

imsart-generic ver. 2011/05/20 file: kwdc_srgg_arxiv.tex date: February 5, 2020



Wang & Chakrabarty/SRGGs in Probabilistic Spaces & Inter-graph Distance 30

even when the apparent empirical correlation between these variables is low,
owing to the effect of other variables (discussed in Section 6.1.1).

Noticing such edges from the residual-sugar variable, we undertake a regres-
sion analysis (ordinary least squares) with residual-sugar regressed against the
other remaining 10 vino-chemical variables. The MATLAB output of that anal-
ysis carried out using the red wine data, is included in Figure 13 of the Sup-
plementary Material. The analysis indicates that the covariates with maximal
(near-equal) effect on residual-sugar, are density and alcohol; indeed, in our
learnt graphical model of the red wine data (Figure 4), residual-sugar is noted
to enjoy an edge with both density (Z7) and alcohol (Z10)

We also undertook a separate ordinary least squares analysis with the re-
sponse variable quality, regressed against the vino-chemical variables as the
covariates. The MATLAB output of this regression analysis in in Figure 14 of
the Supplementary Section. We notice that the strongest (and nearly-equal) ef-
fect on quality is from the variables volatile-acidity and alcohol–the very two
variables that share an edge at probability ≥ 0.05 with quality, in our learnt
graphical model of the red wine data.

7. Metric measuring distance between posterior probability

densities of graphs given white and red wine datasets

We seek the distance δ(·, ·) that we defined in Definition 4.4, between the learnt
red and white wine graphs, using the method delineated in Section 4. For this,
we first compute the normalisation

S := max{(ln(p(0)red), ln(p
(1)
red), . . . , ln(p

(Niter)
red ), ln(p

(0)
white), . . . , ln(p

(Niter)
red )}, which

for the red and white wine datasets yields s = ln(p
(1474)
red ) ≈ 142.7687. We

then use exp(ln(u
(t)
m )/s) in Equation 4.2; m = white, red. Then scaling the log

posterior given either data set, at any iteration, by the global scale value of
s=142.7687 approximately, we get DH(uwhite, ured) ≈ 0.1153, so that the loga-
rithm of this value of the Hellinger distance between the 2 learnt graphical mod-
els is ln(0.1153) ≈ −2.1602. Similarly, using the same scale, the Bhattacharyya
distance is DB(pwhite, pred) ≈ −1.7623, where we recall that this measure is a
logarithm of the distance.

For this s and the red wine data, we compute the uncertainty inherent
in graphical model of the red-wine data as Dmax,s(red), between the graph
that occurs at maximal posterior and that at the minimal posterior (Equa-
tion 4.4). Similarly, we compute Dmax,s(white). We then compute ratio of
the Hellinger distance between the graphical models learnt given the red and
white-wine data, to the uncertainty inherent in each learnt model, and com-
pare DH(pwhite, pred)/Dmax,s(red), with DH(pwhite, pred)/Dmax,s(white). This
comparison is depicted in the left panel of Figure 5 that shows that the differ-
ence Dmax,s(white) between the scaled posterior of graphs given the white wine
data is about 0.0694 while Dmax,s(red) given the red wine data is about 0.05521,
These values are compared to the Hellinger distance (between scaled posteri-
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Fig 5. Left: minimum and maximum values of the scaled posterior probability density of
the SRGG sampled in an iteration in the MCMC chain run with the red wine data, plotted
in dotted lines against the number of the iteration. The difference between these values is
depicted within the band delineated by these lines. The broken lines show the same for the
results obtained from the MCMC chain run using the white wine data. The value of the
Hellinger distance computed using the scaled posterior probabilities of the graphical models
given the two wine data sets, is also marked, as about 0.1153. All log posterior values are
scaled by a chosen global scale (of about 143), and exponentiated (as discussed in the text).
Right: similar to the left panel, except that here, the ratio of the logarithm of the unscaled
posteriors is used; the value of the log odds between the posteriors of the red and white wine
data sets is marked to be about 18.927.

ors) of about 0.1153, between graphs given the red and white wine data. Thus,
DH(ured, uwhite) is about 1.66Dmax,s(white) and about 2.1Dmax,s(red). Thus,
our inter-graph distance metric, between the graphical models learnt given the
two data sets is

δ(white, red) ≈ 0.44

. Then intuitively speaking, this inter-graph distance between the graphical
models given the red and white wine datasets, may suggest independence of the
data sets.

Again, using the correlation model suggested in Proposition 4.2, the absolute
value of the correlation between the 12-dimensional vino-chemical vector-valued
measurable for the red wine data and that for the white wine data, is

|corr(white, red)| := exp[−δ(white, red)] ≈ 0.1030,

which is a low correlation, indicating that the two graphical models learnt given
the real red and white wine Portuguese datasets, are not sampled from the same
pdf.

Compared to these, the sample mean of the log odds of the posterior of the
graphs generated in the post-burnin iterations, given the two data is 18.9273,
which is about 1.9 times the maximal difference between the log posterior values
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of graphs achieved in the MCMC run with the white wine data, and about 2.4
times that for the red wine data (see Figure 5). Again, this suggests that the
log odds as a measure of divergence between the graphical models given these
two wine data sets, is significantly higher than the uncertainty internal to the
results for each data.

This clarifies how our pursuit of uncertainties in learnt graphical models, and
inter-graph distance, share an integrated umbrage of purpose, where the former
leads to the latter.

8. Learning the human disease-symptom network

Our methodology for learning the graphical model, can be implemented even for
a highly multivariate data that generates a graph with a very large number of
nodes. In this section, we discuss such a graph (with &8000 nodes) that describes
the correlation structure of the human disease-symptom network.

Hoehndorf et al. (2015) (HSG hereon) learn this network by considering the
similarity parameter for each pair of diseases that are elements of an identified
set of diseases in the Human Disease Ontology (DO), that contains information
about rare and common diseases, and spans heritable, developmental, infectious
and environmental diseases. Here, the “similarity parameter” between one dis-
ease and another, is computed using the ranked vectors of “normalised pointwise
mutual information” (NMPI) parameters for the two diseases, where the NMPI
parameter describes the relevance of a symptom (or rather, a phenotype), to
the disease in question. HSG define the NMPI parameter semantically, as the
normalised number of co-occurrences of a given phenotype and a disease in the
titles and abstracts of 5 million articles in Medline. To do this, they make use
of the Aber-OWL: Pubmed infrastructure that performs such semantical min-
ing of the Medline abstracts and titles. The disease-disease pairwise semantic
similarity parameters – computed using the degree of overlap in the relevance
ranks of phenotypes associated with each disease – result in a similarity ma-
trix, which HSG turn into a diseasedisease network based on phenotypes. To
do this, they only choose from the top-ranking 0.5% of diseasedisease simi-
larity values. Phenotypes associated with diseases, and corresponding scoring
functions (such as the NPMI), exist in the file “doid2hpo-fulltext.txt.gz” at
http://aber-owl.net/aber-owl/diseasephenotypes. In fact, this file con-
tains information about Ndis diseases, and the semantic relevance of each of
the Npheno phenotypes to each disease, as quantified by NPMI parameter val-
ues, in addition to other scores such as t-scores and z-scores. In this file, Ndis

is 8676 and Npheno is 19323. In the phenotypic similarity network between
diseases that HSG report, diseases are the nodes, and the edge between two
nodes exists in this undirected graph, if the similarity between the nodes (dis-
eases) is in the highest-ranking 0.5% of the 38,688,400 similarity values. They
remove all self-loops and nodes with a degree of 0. Their network is presented
in http://aber-owl.net/aber-owl/diseasephenotypes/network/. The net-
work analysis was performed using standard softwares and they identify multi-
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Fig 6. SRGG Gm,DDPh
(V , 0.1), representing the human disease-phenotype network that we

learn using the disease-disease partial correlation obtained using the computed Spearman rank
correlation between the rank vectors of a list of phenotypes, where the phenotype ranking
reflects semantic relevance of a phenotype to the disease in question (quantified by HSG as
the NPMI parameter in the DDPh dataset). In our learnt SRGG, τ = 0.1, i.e. only edges

(between the i-th and jth diseases bearing a Spearman rank correlation of s
(rank)
ij ), with

marginal posterior m(Gij |S
(rank)
ij ) ≥ 0.9 are included in this graph. Here cardinality of vertex

set V is 8676, but all nodes with no edges are discarded from this visualised graph, resulting
in 6052 diseases (nodes) and 145210 edges remaining that are shown this figure. Diseases
identified by HSG, to belong to one of the 19 given disease class, are presented above in the
same colour; the colour key identifying these classes, is attached. To draw the graph, we used
a Python-based code that implements the Fruchterman-Reingold force-directed algorithm.

ple clusters in their network, with agglomerates of some clusters (of diseases),
found to correspond to known disease-classes. The “Group Selector” function
on their visualisation kit, allows for the identification of 19 such clusters in their
disease-disease network, with each cluster corresponding to a disease-class. To-
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tal number of nodes over their identified 19 clusters, is 5059. The number of
edges in their network is reported to be 65,795; average node degree≈26.2.

We discuss detailed comparison of our results to HSG’s in the following sub-
section, including comparison of HSG’s and our recovery of the relative number
of nodes i.e. diseases, in each of the 19 disease classes that HSG classify their
reported network into, and our computed ratios of the averaged intra-class to
inter-class variance for each of the 19 classes, compared to the ROC Area Under
Curve values reported by HSG for each class.

Fig 7. Left: comparison of the relative number of nodes (diseases) that we recover in each
of the 19 disease classes that HSG classify their reported network to be classified into, with
the relative class-membership reported by HSG. Our results are shown as filled circles joined
by solid lines. In open circles threaded by broken lines, we overplot the relative number of
diseases in each of the 19 classes, as reported by HSG. Similarity of the relative populations
in the different disease classes, indicate that our learnt clustering distribution is similar to that
obtained by HSG. Right: our computed ratios of the averaged intra-class to inter-class variance
for each of the 19 classes, shown in filled circles; the ROC Area Under Curve values reported
by HSG for each class, is overplotted as open circles joined by broken lines. The disease class
indices, from assigned values of 1 to 19, are the following respectively: cellular proliferation
diseases, integumentary diseases, diseases of the nervous system, genetic diseases, diseases
of metabolism, diseases by infectious agents, diseases of mental health, physical disorders,
diseases of the reproductive system, of the immune system, of the respiratory system, of the
muscleoskeletal system, syndromes, gastrointestinal diseases, cardiovascular diseases, urinary
diseases, viral infections, thoracic diseases, diseases of the endocrine system.

HSG’s network then manifests a similarity-structure that is computed using
available NPMI parameter values. Our interest is in learning the disease-disease
network as an SRGG, with each edge of such a graphical model learnt to exist
at a learnt probability τ . We perform such learning using the NPMI semantic-
relevance data that is made available for each of the Ndis number of diseases,
by HSG; so Ndis is the cardinality of the vertex set V of our sought SRGG.
We refer to this human disease-phenotype data as DDPh. Using DDPh, we
first compute the correlation Sij between the i-th and j-th diseases in V , for
each of which, information on the ranked (semantic) relevance of each of the
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Npheno phenotypes exist, in this given dataset. Upon computation of pairwise
correlations, the SRGG for the data DDPh is learnt.

We compute the correlation between the i-th and j-th diseases in the DDPh

data, (i, j = 1, . . . , Ndis, i 6= j), in the following way. We rank the NPMI
parameter values for the i-th disease and each of theNpheno phenotypes, with the
phenotype of the highest semantic relevance to the i-th disease assigned a rank
1. Let the rank vector of phenotypes, by semantic relevance to the i-th disease
take the value ri and similarly, the rank vector of phenotypes relevant to the j-th

disease is rj. We compute the Spearman rank correlation s
(rank)
ij , of vectors ri

and rj. Then we compute this rank correlation s
(rank)
ij ∀ i, j = 1, . . . , Ndis; i 6= j,

between the i-th and j-th nodes. The Spearman rank correlation is preferred to
the correlation between the vectors of normalised NPMI values, since we intend
to correlate the i-th disease with the j-th disease, depending on how relevant a
given list of phenotypes is, to each disease, i.e. depending on the ranked relevance
of the phenotypes. We learn the network given this correlation structure, that
is itself computed using data DDPh (see Section 5 on learning large networks).

Definition 8.1. Our visualised SRGG in Figure 6 is a sub-graph of the full

graph Gm,DDPh
(V , 0.1) where V has cardinality Ndis, and the inter-column cor-

relation matrix of data DDPh is Σ
(S)
C = [s

(rank)
ij ], i 6= j, i, j = 1, . . . , Ndis, such

that this visualised graph is defined to consist only of nodes with non-zero degree.

This visualised graph has 6052 number of nodes (diseases) and 145210 edges, so

that the average node degree is about 24. This undirected SRGG represents our

learning of the human disease phenotype graph (displayed in Figure 6).

8.1. Comparing our results to the earlier work done on the human

disease-symptom network

The “Group Selector” function on the visualisation kit that HSG use, allows
for the identification of 19 such clusters in their disease-disease network, with
each cluster corresponding to a disease-class. This function also allows iden-
tification of the number of diseases (i.e. nodes) in each disease-class (see left
panel of Figure 7). The right panel of Figure 7 displays the ratio of intra-class
variance to the inter-class variance of each disease-class; the value of the area
under the Receiver Operating Characteristic curve (ROCAUC) for each cluster
is overplotted, where the ROCAUC value for the i-th cluster can be interpreted
as probability that a randomly chosen node is ranked as more likely to be in the
i-th class than in the j-th class; i 6= j; i, j = 1, . . . , 19 (Hajian-Tilaki, 2013).
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9. Conclusion

In this work, we present a methodology for Bayesianly learning a Soft Random
Geometric Graph that is drawn in a probabilistic metric space, allowing for the
connection function of this SRGG to be equated to the marginal posterior of the
graph edge parameter, given the correlation between the points that this edge
connects, with the threshold radius on this SRGG to be rendered a probability,
s.t. only edges with marginals that exceed such a threshold (probability τ ∈
[0, 1]) are included in the graph. We demonstrate the SRGG as generated from
a point process that we identify as a non-homogenous Poisson process, with
intensity that varies with the node.

In fact, correlation between each pair of nodes is learnt as well, and the
SRGG updated at each update of the correlation matrix, within each iteration
of the iterative inference scheme that we employ; (to be precise, the MCMC-
based inference). Here, each of the p nodes of the graph is a variable Xi – n
measurements of each of which – comprises the dataset, the standardised ver-
sion of which we learn the graphical model and the correlation matrix of. To
be precise, the i-th column of the dataset contains the n measurements of the
r.v. Xi, standardised by its sample mean and standard deviation; i = 1, . . . , p.
The vertex set of the sought SRGG is then V = {X1, . . . , Xp}. The continuous-
valued generative process of the inter-column correlation matrix, is identified
after we achieve closed-form marginalisation of the joint likelihood of the inter-
column and inter-row correlation matrices given the dataset, over all possible
inter-row correlations. The resulting process underlying the inter-column core-
lation, is then compounded with the non-homogeneous Poisson point process,
to generate the SRGG. The graphical model of the data is identified with 95%
HPDs, on vertex set V , to be the graph with edges, the expected marginals of
which exceed 5%, where a sample estimate of the expected marginal of an edge
is provided by its relative frequency from across the sample of SRGGs that are
realised across the iterations of the undertaken inference. When learning a large
network, such an iterative inferential scheme is prohibitively expensive though.
So then we learn the inter-column correlation of the given dataset empirically,
and employ it to learn the SRGG that represents this network.

Our Bayesian learning approach allows for acknowledgement of measurement
errors of any observable. The effect of ignoring such existent measurement er-
rors, on the graphical model, is demonstrated using a simple, low-dimensional
simulated dataset (see Section 4.2 of the Supplementary Material; compare Fig-
ures 4 and 6 of the Supplementary Materials). Even in such a low-dimensional
example, the difference made to the inferred graph of the given data, by the
inclusion of measurement errors, is clear.

Ultimately we aim at computing the distance between a pair of such learnt
graphical models, of respective datasets. To compute this inter-graph distance,
we advance a new metric that is given by the difference between the Hellinger
distance between the posterior probabilities of the graphs, normalised by the
uncertainty in one of the learnt graphs, and the Hellinger distance normalised
by the uncertainty in the other learnt graph.
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This novel, eventual computation of the inter-graph distance is important
in the sense that it informs on the correlation structure of a dataset that
is higher-dimensional than being rectangularly-shaped, such as a cuboidally-
shaped dataset that comprises slices of rectangularly-shaped data slices. Then,
the distance between the graphical models of a pair of such slices of data, will
inform on the correlation between such slices of data. Such information is eas-
ily calculated under the approach discussed herein, even when the datasets are
differently sized, and highly multivariate. An example could be a large network
observed on a sample of size n1 before an intervention/treatment, and after im-
plementation of such intervention, when a smaller sample (of size n2; n2 6= n1)
is investigated. We illustrate this on computing distance between the learnt
vino-chemical graphical models of Portuguese red and white wine samples.

Our learning of large networks is illustrated by the human disease-phenotype
network (with ≥8,000 nodes). In this application, learning the inter-node corre-
lation was cast into a semantic exercise in which we learnt the Spearman rank
correlation between vectors of associated phenotypes, where any phenotype vec-
tor is ranked in order of relevance to the disease in question. Other situations
also admit such possibilities, for example, the product-to-product, or service-
to-service correlation in terms of associated emotion, (or some other response
parameter), can be semantically gleaned from the corpus of customer reviews
uploaded to a chosen internet facility, and the same used to learn the network
of products/services. Importantly, this method of probabilistic learning of small
to large networks, is useful for the construction of networks that evolve with
time, i.e. of dynamic networks.
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