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1. Introduction 

A key purpose of volatility models is to produce forecasts of volatility, which are useful for 

the pricing of financial assets that depend heavily on the evolution of volatility, such as 

derivatives, and also for input into economic policy analysis and forecasting.1 Because 'true' 

volatility is unobservable, volatility estimators are required when one wishes to undertake a 

comparison of forecasted values. However, the early studies of volatility forecast evaluation,2 

found that the forecasts performed poorly when compared to the standard volatility estimator, 

squared daily returns. Andersen and Bollerslev (1998) demonstrated that more sophisticated 

estimators would increase the explanatory power offered by the volatility models, and 

recommended the use of volatility measured from high-frequency (intra-day) returns, which 

has become known as realized variance. 

A key consideration in the evaluation of forecasts, more generally, is the selection of 

the loss function. Hansen and Lunde (2005) examined 330 ARCH related models to an 

exchange rate and a stock return series and found that different loss functions selected 

different models as providing the best volatility forecasts.3 Combining the two issues, Hansen 

and Lunde (2006) and Patton (2011) explore the theoretical and practical interactions 

between the selected loss function and the quality of the volatility estimator. Both papers 

identify those loss functions that are less sensitive to the noise in volatility proxies and show 

that more sophisticated measures of volatility are better able to distinguish between forecasts.  

In this paper we also focus on the interaction between the choice of volatility 

estimator and the selection of loss functions in the evaluation of volatility forecasts, but seek 

to answer the following specific question. Does the use of more sophisticated volatility 

proxies generate greater convergence amongst the forecast rankings across different loss 

functions?  

We contribute and innovate in number of important ways. Both Hansen and Lunde 

(2006) and Patton (2011) examine the volatility of IBM stock returns, over similar time 

frames, ending in 2003. We examine an exchange rate, specifically the Australian Dollar / US 

Dollar (AUD/USD) rate, and over recent years. Although, Hansen and Lunde (2005) did 

                                                           
1. McKenzie (1998), Anderton and Skudelny (2001) and Choudhry and Hassan (2015), for example, demonstrate the significant impact of 
exchange rate volatility on international trade flows. 
2. Examples, using exchange rate data, include Cumby et al (1993), Jorion (1995) and Figlewski (1997). 
3. A further example of the sensitivity of forecast rankings to loss functions is Brailsford and Faff (1996) who show that asymmetric loss 
functions are more likely to favour forecasts from asymmetric volatility models. 
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examine an exchange rate in their comparison of forecasts, they use only high-frequency 

measures of volatility and, like many volatility forecasting studies, used the German Mark (or 

Euro) / US Dollar rate. The AUD/USD is the fourth highest traded currency pair (BIS, 2013) 

and has approximately double the trading activity of the next two highest currency pairs.4 

The AUD itself is the fifth highest traded currency, after the US Dollar, Euro, British Pound 

and Japanese Yen. Using this currency pair, which is still highly traded, avoids the pitfalls 

from over-working a dataset and has greater potential to provide new empirical findings.  

While Patton examined forecasts from past squared returns, using either a rolling 

window average or a partial adjustment mechanism, and Hansen and Lunde (2006) examine 

forecasts from a small number of GARCH models, we consider a model of stochastic 

volatility (Harvey et al, 1994) as well as a selection of GARCH models, also relaxing the 

distributional assumptions in Hansen and Lunde (2006). Harvey et al (1994) showed that the 

stochastic volatility model fitted well to four US Dollar exchange rates, and comparisons to 

GARCH models for exchange rate data have been conducted by Heynen and Kat (1994), 

Dunis et al (2003) and Lopez (2001). However all of these studies focus on the cross rates of 

the US Dollar with the German Mark (or Euro), the Japanese Yen, the British Pound, the 

Canadian Dollar and the Swiss Franc, and none use high frequency data. By contrast, 

Chortareas et al (2011) do use high frequency data, but only high frequency data, in their 

comparison of stochastic volatility to (symmetric) GARCH models for exchange rate data, 

and also for a subset of the aforementioned currencies. Moreover, the balance of evidence 

from these studies is unable to clearly distinguish between the forecasts from these two 

classes of model. So, our study will compare the stochastic volatility model to a selection of 

GARCH models using a fresh data set, of comparable trading activity levels, that includes 

both low and high frequency data. 

We use the set of loss functions examined in Hansen and Lunde (2005), which is 

broader than, but encompasses, those used by Patton (2011) and Hansen and Lunde (2006). 

Our selection of volatility estimators is similar to Patton (2011). As well as examining 

squared returns and realized variance from high frequency returns, he also considers the 

range based variance estimator of Parkinson (1980). While he calibrates the efficiency losses 

of this volatility measure relative to those of squared returns and realized variance measures, 

like Hansen and Lunde (2006), he only uses realized variance and squared returns in his 

                                                           
4. The US Dollar against the Canadian Dollar and the Swiss Franc. 
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empirical application. We believe our study to be the first to include all three measures in the 

empirical application. Moreover, we consider a different asset class and a much more recent 

period of time. 

The question of whether there is increased convergence across loss functions of 

relative forecasting performance when higher quality volatility estimators are used is 

examined only indirectly by Hansen and Lunde (2006) and Patton (2011). Hansen and Lunde 

(2006) provide comparative performance tables for the forecasts from different models across 

different loss functions using either squared returns or realized variance, while Patton (2011) 

formally tests differences between such forecasts using the tests proposed by Diebold and 

Mariano (1995) and West (1996). In this study, we address the question directly, by 

conducting paired t-tests of the mean (across forecasts/models) of the standard deviation of 

the loss function rankings (across loss functions). A smaller value of this mean indicates a 

greater convergence of the rankings across loss functions, since converged rankings would 

generate a zero standard deviation across the loss functions for each model. We supplement 

this, with a related procedure, similarly constructed, that tests whether the ability of loss 

functions to distinguish between the first and second best models is enhanced by using more 

sophisticated variance estimators.   

Our key findings are as follows. Using our test for ranking convergence, we find that 

using either a range based estimator (Parkinson, 1980) or a realized variance estimator rather 

than squared returns as the measure of ex-post volatility results in a significant increase in the 

convergence of loss function rankings. With better quality measures of volatility, loss 

functions converge more strongly on the preferred forecast. This is the case both for loss 

functions classified as robust by Patton (2011) and those not regarded as robust. Moreover, 

we also find a significant increase in the ability of loss functions to distinguish between the 

best and second best models when either the range measure or the realized variance are used. 

Thus, the margin by which the best model is chosen is significantly increased by using the 

higher quality volatility measures. 

While there are no significant differential gains in terms of loss function ranking 

convergence between the range measure and the realized variance measure, we find that the 

latter is more often able to facilitate the rejection of one or more competing forecasts against 

a benchmark forecast. If squared returns are used as the measure of ex-post volatility, the 

forecasts comparison tests are unable to distinguish between any of the competing forecasts. 
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Taken together, these results also suggest that while the range measure may provide a 

significant improvement upon the use of squared returns, and so be a valuable substitute for 

realized variance when high frequency data is unavailable or too costly to collect, it is still 

not going to be as reliable as using realized variance. 

We find that the regression based tests are not enhanced by the use of realized 

variance, which is in contrast to early studies, such as Andersen and Bollerslev (1998) but is 

in line with more recent studies, such as McMillan and Speight (2012) and Chortareas et al 

(2011). This is the case both in regards to the regression R2 and tests of forecast unbiasedness, 

although the only model that generates unbiased forecasts across all measures of ex-post 

volatility turns out to be the best model according to the loss function based tests. 

Regarding the specific characteristics of the Australian Dollar / US Dollar exchange 

rate, we find that the stochastic volatility model is ranked highest by the loss functions, and is 

significantly better than the next best model when realized variance is used as the ex-post 

volatility measure. The best performing GARCH model out of sample is the base-line 

GARCH(1,1) model, despite there being significant asymmetries in the volatility in sample. 

These asymmetries imply that an unanticipated depreciation of the Australian Dollar will 

have a greater impact of the volatility of the exchange rate than an unanticipated appreciation, 

relative to the US Dollar. In contrast to earlier studies, we find no evidence that power ARCH 

models add value to the modelling or forecasting of the exchange rate. This perhaps indicates 

a shift in the properties of exchange rate volatility in recent years. We also find no differences 

between forecasts generated assuming normally distributed errors as opposed to those from t-

distributed errors, although the latter provides a significantly better fit in sample. 

The remainder of the paper proceeds as follows. Section 2 reviews related literature to 

provide some context for our work and enable comparisons to our findings to be drawn. 

Section 3 describes the stochastic volatility model and the GARCH models that will be used 

to forecast the exchange rate, describes the computation of the ex-post volatility measures, 

and explains the forecast evaluation testing procedures. In Section 4, we describe the data and 

report the results of the model estimation in sample and the out of sample forecast 

evaluations. Section 5 summarizes and concludes. 
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2. Related literature 

The literature on volatility forecasting and the evaluation of these forecasts is extensive, and 

has grown alongside the development of models of volatility.5 However, the literature on 

evaluating forecasts of exchange rate volatility is relatively small, and so presents further 

opportunities for discovery.6 Our work contributes to a number of literatures including, but 

not limited to, the literature on forecasting exchange rates, both with low and high frequency 

data, forecast comparisons using high frequency data, and to studies of specific financial 

markets, in this case the AUD/USD exchange rate. 

Evaluating forecasts of the volatility of exchange rates was first undertaken by Taylor 

(1986) who compared forecasts from his AMARCH model with the exponentially-weighted 

moving average (EWMA) model in Taylor and Kingsman (1979), using daily data for the £/$ 

between 1974 and 1982, and marginally favouring the EWMA model. Forecast comparison 

has thereafter broadened out to evaluate forecasts from a variety of models in the GARCH 

class, stochastic volatility models, autoregressive models of squared and absolute returns and 

models including implied volatility from options. Bera and Higgins (1997), who examined 

the weekly $/£ rate between 1985 and 1991, favoured a GARCH model over a bilinear 

model, while Cumby et al (1993), who examine the weekly Yen/$ between 1977 and 1990 

favoured an EGARCH model over historical measures of volatility. By contrast, Figlewski 

(1997), who examine the daily DM/$ rate over the period 1971 to 1995, favoured an 

historical measure over a GARCH model. Jorion (1995) who examined both the DM/$ and 

the Yen/$ using daily data between 1985 and 1992, also found that GARCH models added 

little incremental explanation of volatility compared to historical and implied measures. 

Comparing models within the GARCH class and a nonparametric estimator, and for 5 weekly 

observed cross rates with the US $ over the period 1973 to 1989, Lee (1991) found little 

difference between the forecasting performance of the alternative GARCH specifications, but 

better performance for the nonparametric specification. By contrast, West and Cho (1995) 

using an almost identical data set, found that the GARCH models outperformed a 
                                                           

5. Early studies of the volatility of financial asset returns by, for example, Mandelbrot (1963), Fama (1965), Praetz (1969), Clark (1973), 
and Taylor and Kingsman (1979), found that the variances of financial asset prices vary across time. The development of the ARCH models 
of conditional variances of time series, Engle (1982), whose properties also matched closely the empirical distributions of many asset return 
classes, led to a huge growth in the development of variance modelling. Early examples the application of these models to exchange rate 
data include Taylor (1980), Diebold (1988), Hsieh (1989), Baillie and Bollerslev (1989) and Bera and Higgins (1992). Surveys include 
Bollerslev et al (1992) and Bollerslev et al (1994). 
6. In the survey paper by Poon and Granger (2003) of 93 papers available up to that time, fewer than 20 papers focussed on the volatility of 
spot exchange rates, with all focussing on some subset of the cross rates between the US Dollar, Canadian Dollar, Japanese Yen, German 
Mark, French Franc, Swiss Franc and Italian Lira. 
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nonparametric estimator, but was inferior to a constant variance assumption, but that the 

differences were not statistically significant. Studies that have introduced forecasts from 

stochastic volatility models into the comparisons include Heynan and Kat (1994) and Dunis 

et al (2003). They use daily data for the most active cross rates against the USD (1980-1992) 

and the USD and DM (1990-1998), respectively, and find that GARCH based models 

forecast volatility better than stochastic volatility models. By contrast, Lopez (2001) using 

daily data for four cross rates against the US Dollar between 1980 and 1995 could not 

distinguish between the forecasts of GARCH based models and a stochastic volatility model. 

Not only are these studies inconclusive in aggregate as to a preferred volatility forecasting 

model for exchange rates, the performance of any of the models in these studies is low. The 

typical value of the coefficient of variation (R2) in their regression tests of forecast 

unbiasedness was less than 5 percent. 7 

Andersen and Bollerslev (1998) proved that regression methods would anyway give 

low values of R2 because they are noisy estimates of volatility. This also explained why 

models that seemed to fit well in sample were being found to fail out of sample. Specifically, 

they show that the value of R2 in a volatility unbiasedness regression is bounded above by the 

inverse of the kurtosis of the underlying returns series. They show that intra-day returns can 

be used to construct a realized variance (RV) measure (from the daily sum of squared intra-

day returns) that eliminates the noise in measurements of daily volatility. Using 5 minute and 

1 hour returns on the German Mark / US Dollar, they find that the R2 for forecasts from a 

GARCH(1,1) model increased to 0.48 and 0.33, respectively. In a series of papers, Anderson 

et al (2001, 2003) and Barndorf-Nielsen and Shephard (2002a,b, 2004a,b) develop further the 

theoretical basis for using realized variance as a measure of the daily conditional variance and 

provide further empirical validation. Specifically, these papers show that the ex-post value of 

realized variance is an unbiased estimate of the conditional return variance of returns for log 

price processes that are special semi-martingales – in which class fit most financial models.  

Forecasts of exchange rate volatility measured as intra-day realized variance have also 

been examined by, for example, Taylor and Xu (1997), Martens (2001), Li (2002), Pong et al 

(2004), Chortareas et al (2011) and McMillan and Speight (2012). Taylor and Xu (1997) find 

that realized variance from 5 minute returns on the DM/$ during 1992-93 contains 

                                                           
7. This result is not specific to exchange rates, see for example, Akgiray (1989), Pagan and Schwert (1990), and Day and Lewis (1992) for 
US stock indexes and Brailsford and Faff (1996) for individual Australian stocks. Somewhat higher values are reported by Blair et al (2002) 
for a US stock index but, for non-combined forecasts, are under 23 percent for GARCH and historical models. 
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incremental information for forecasting beyond that contained in implied volatility. Martens 

(2001) compares forecasts constructed using different intra-day intervals and finds that the 

higher the frequency the better the out of sample performance. Li (2002) finds that implied 

volatility has no incremental information relative to high frequency data, for forecasts of the 

volatility of the US Dollar against each of the British Pound, Japanese Yen and the German 

Mark, between 1994 and 1999. Pong et al (2004) find that high frequency data applied to 

relatively simple models can generate more accurate forecasts than those from more complex 

models that use lower frequency data. Chortareas et al (2011) examine four Euro exchange 

rates (US Dollar, Japanese Yen, British Pound and the Swiss Franc) between 2000 and 2004 

and find better forecasting performance from those models that use intra-day (15 minute) 

returns than those that use daily returns. McMillan and Speight (2012) also examine three 

Euro exchange rates (against the US Dollar, British Pound and Japanese Yen) for the period 

2002 to 2006. They find that forecasts from GARCH models that use intra-day data 

outperform those that use daily data.  The contribution and focus of all these studies is, 

however, in showing that intra-day returns contain valuable information for exchange rate 

volatility forecasting, specifically that intra-day returns are a valuable input (to improving the 

volatility forecast) rather than (also) being a valuable output (as an improved measure of  ex-

post volatility). All of these studies take the use of realized variance as the ex-post measure of 

volatility as a given. By contrast, our focus is on showing that high frequency data can help 

exchange rate forecast evaluation by generating convergence among the rankings from 

different loss functions. 

By contrast to the US Dollar, the British Pound, the Euro (or the German Mark prior 

to 1999) and the Japanese Yen, the Australian Dollar has received much less attention. 

McKenzie (1997) documents the presence of ARCH effects in 21 bilateral Australian Dollar 

exchange rates, finding greater effects in daily data than lower frequency data. McKenzie and 

Mitchell (2002) feature the Australian Dollar / US Dollar rate among a study of 17 heavily 

traded exchange rates between 1986 and 1997, using GARCH models. They find an 

asymmetry in the impact of shocks to the volatility process such that an unanticipated 

depreciation of the Australian Dollar has a bigger impact on future volatility than an 

unanticipated depreciation of the US Dollar. A similar asymmetry is reported in Villar (2010) 

who examines this same bilateral exchange rate, including more recent data, for the period 

1994 and 2007. Comparative volatility forecasting performance, but for the Australian Dollar 

versus the Malaysian Ringit for the period 2010 to 2011, is considered by Ramasamy and 
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Munisgamy (2012). They find no asymmetry and report extremely large forecasting errors. 

McMillan and Speight (2004) include the Australian Dollar / US Dollar exchange rate among 

their data for 1990 to 1996 for forecast comparisons between three GARCH and two 

historical volatility measures and find that the preferred forecast is highly sensitive to the loss 

function, even with the use of a high frequency measure of ex-post volatility. Our paper adds 

to this evidence by considering alternative measures of ex-post volatility, including stochastic 

volatility as well as GARCH based models, calculating a wide range of loss functions and 

focussing on the convergence in loss function rankings when using high-frequency ex-post 

measures of volatility. 

 

3. Methods 

3.1 GARCH models 

Forecasts for the volatility of the USD/AUD exchange rate will be generated from a set of 

GARCH models and a model of stochastic volatility. The models employed are listed in 

Table 1. GARCH based models, introduced by Engle (1982) and Bollerslev (1986), are 

autoregressive models of the conditional variance of a time series that depend on the squared 

residuals from an underlying model of the conditional mean of the time series. It is typical to 

parameterize the conditional mean of a time series of log changes in an exchange rate by 

either a low order ARMA process or a constant mean white noise process, as these series 

display little if any autocorrelation, see, for example, Taylor (2005). 

So, the general structure of the models that we consider is 

 𝑦𝑡 = 𝜇 +  �𝜙𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ �𝜃𝑖𝑢𝑡−𝑖

𝑞

𝑖=1

+ 𝑢𝑡           𝑢𝑡~𝐼𝐼𝐼(0,𝜎𝑡2) (1) 



11 
 

where 𝒚𝒕 is the log change in the daily closing value of the exchange rate, 𝝁 is the constant 

mean, and the residual 𝒖𝒕has mean zero and conditional variance 𝝈𝒕𝟐, given by one of the 

GARCH or stochastic volatility models in the Table 1. We assume that the residuals are 

independently and identically normally distributed for all models, and additionally consider 

the possibility that the residuals may be t-distributed for three of the models.8  

Our base line volatility model, is the GARCH(1,1) specification, denoted “GARCH”, 

in Table 1. In this model the conditional variance depends on the size of its past lagged 

squared residuals, through the parameter 𝜶, and on its own past values, through the parameter 

𝜷. While most applications of the GARCH model consider the first lagged squared residuals 

and lagged own values, Hansen and Lunde (2005) did consider second lags in their forecast 

comparisons. However, they found that the higher order ARCH-type models rarely 

performed better out-of-sample than lower order lag alternatives, so we confine our study to 

the GARCH(1,1) specification.  

In an early application of GARCH models to exchange rates, Bera and Higgins 

(1992), explored a non-linear version of the GARCH model, now known as the Power 

GARCH (or PGARCH) model. This permits the lagged residuals and the conditional standard 

deviation to take any positive power, including the special case of 2, which is the GARCH 

model, and where the power is a free parameter to be estimated. In their study of 6 US Dollar 

exchange rates (against the Canadian Dollar, French Franc, Swiss Franc, German Mark, 

British Pound and Japanese Yen) over the period 1973 to 1985, they found that the non-linear 

model fitted the data better than the linear (GARCH) model for some of the exchange rates.  

A key consideration in the estimation of GARCH models is ensuring that the 

parameter estimates are constrained to prevent negative estimates of the conditional variance. 

Nelson (1991) proposed an exponential form of the GARCH model, now known as the 

EGARCH model, which models the natural log of the conditional variance rather than the 

conditional variance directly. The model also introduced the possibility of asymmetry in the 

volatility process, whereby negative shocks could have a different effect on future volatility 

than positive shocks. The EGARCH model captures effect of the sign of the past residual 

through the parameter 𝛾 and the effect of the size of the shock through the parameter 𝛼. If 

                                                           
8. Baillie and Bollerslev (1989) first recommended the use of the t-distribution for modelling exchange rates with GARCH processes and 
this recommendation is repeated in the study by Hansen and Lunde (2005). 
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𝛾 < 0, then  negative shocks will cause the conditional variance to rise more than it does in 

response to positive shocks. 

The so-called “leverage effect”, whereby an increase in corporate leverage can 

increase both the required return (which induces a decrease in the stock price) and the risk of 

equity, provides a theoretical basis for a negative relationship between stock returns and 

subsequent stock return variances, see Black (1976) and Christie (1982).9 By contrast, for 

exchange rates, the possibility of an asymmetric relationship between the sign of 

unanticipated returns and variance is largely an empirical matter.10 However, evidence of 

such an asymmetry can be interpreted as a differential volatility impact of domestic versus 

foreign unanticipated currency depreciations. What is striking among those studies that 

identify an asymmetry is that they all find that the impact of the local currency depreciating  

against a more major currency has a bigger impact on the exchange rate volatility than a 

depreciation of the major currency. Hu et al (1997) attribute this to the greater likelihood of 

there being a policy intervention in this situation. 

We test for the presence of asymmetric effects of shocks to the conditional variances 

using the sign and size bias tests of Engle and Ng (1993), together with a preliminary 

examination of the correlation between returns and squared returns. The sign bias test 

indicates whether asymmetric effects may be present in the variance, while the size bias tests 

indicate whether the size of the shock influences the asymmetric effect of the shock. The 

coefficients in the following equations are estimated 

Sign Bias Test:  𝑢�𝑡2 = 𝜙0 + 𝜙1𝑆𝑡−1− + 𝜓𝑡 (2a) 

Negative Size Bias Test:  𝑢�𝑡2 = 𝜙0 + 𝜙2𝑆𝑡−1− 𝑢𝑡−1 + 𝜓𝑡 (2b) 

Positive Size Bias Test: 𝑢�𝑡2 = 𝜙0 + 𝜙3𝑆𝑡−1+ 𝑢𝑡−1 + 𝜓𝑡 (2c) 

 

where  𝑢�𝑡2 is the residual from the Gaussian symmetric GARCH(1,1), 𝑆𝑡−1−  is an indicator 

variable that takes the value 1 if 𝑢𝑡−1 < 0 and is zero otherwise, 𝑆𝑡−1+ = 1 − 𝑆𝑡−1− , and 𝜓𝑡 is 

                                                           
9. There is an alternative explanation. If volatility is priced, it can feedback into returns requiring a decrease in price, see, for example 
French et al (1987) and Campbell and Hentschel (1992). Moreover, Duffee (1995) shows that the “leverage” effect is due to a 
contemporaneous positive relationship between returns and volatility that is strongest in firms with little actual leverage, and Figlewski and 
Wang (2001) suggests that it is a “down-market” effect that has little connection to leverage. Bollerslev et al (2006) show that high 
frequency data facilitates the distinction between alternative explanations of asymmetry. 
10. Asymmetric effects are modelled in exchange rate volatility by, for example, Tse and Tsui (1997), Hu, Jiang and Tsoukalas (1997), 
McKenzie and Mitchell (2002), McMillan and Speight (2004), Hansen and Lunde (2005), Huang et al (2009), Villar (2010), Abdalla (2012) 
and Ramasamy and Munisamy (2012) although the relative forecasting performance of models that accommodate asymmetry is mixed. 
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an i.i.d error term.11 The presence of significant 𝜙𝑖 , 𝑖 = 1,2,3, coefficients would indicate 

that there are asymmetries present that are not accommodated by the symmetric GARCH 

model. 

The asymmetric GJR-GARCH model, Glosten et al (1993), proposes adding an 

interaction variable to the standard GARCH(1,1) model. This variable comprises the lagged 

squared residual multiplied by an indicator variable that takes the value unity when the 

lagged residual is positive, and takes the value zero when the lagged residual is not positive. 

The asymmetry works through the parameter 𝛾.  Similarly to the EGARCH model, if 𝛾 < 0, 

then  negative shocks will cause the conditional variance to rise more than it does in response 

to positive shocks.12  

The threshold GARCH (TGARCH) model of Zakoïan (1994) also captures the sign of 

shocks with an interaction term, but adds this to the AMARCH model of Taylor (1986), 

which models the conditional standard deviation (as a function of the absolute value of the 

residuals) rather than the conditional variance. Again, if the coefficient on this interaction 

term is negative, then negative shocks will cause the conditional variance to respond more 

than it does in response to positive shocks. 

Building upon the work of Taylor (1986), Schwert (1989) and the PARCH model of 

Bera and Higgins (1992), Ding, Engle and Granger (1993) proposed an asymmetric power 

ARCH (APARCH) model. In their study of the S&P 500 daily closing prices from 1928 to 

1991, they estimated the value for the power function to be 1.43 which means that the process 

lies between two models, namely the GARCH(1,1) d=2 and the TGARCH model, d=1. 

Validation of this model for exchange rate volatility is provided in studies by Tse and Tsui 

(1997) and McKenzie and Mitchell (2002). Both this model and the PARCH model have 

been shown to be able to capture well the long lag autocorrelation of some volatility series.13 

This is the final GARCH based specification that we examine and, once again, a negative 

sign on the term capturing asymmetry indicates a greater response to negative shocks. 

                                                           
11. The repeated notation for the coefficients and the error term across the four different equations, (2a) to (2d), is for notational simplicity 
and does not imply that the coefficients nor error term values would be expected to be the same across the four equations. 
12. In the original formulation of the GJR GARCH model, the indicator variable takes the value of one when the shock is negative, and is 
zero otherwise. The reversed formulation here (indicating positive shocks) enables the interpretation of the sign of 𝛾 to remain the same 
across all the models incorporating asymmetry. 
13. Long memory in volatility, which gives rise to such autocorrelations, can also be modelled using the Component GARCH model of 
Engle and Lee (1999) and the Fractionally Integrated GARCH model of Baillie et al (1996). Applications to exchange rate volatility include 
Vilasuso (2002), Chortareas et al (2011) and McMillan and Speight (2012). Since Lamoureux and Lastrapes (1990) have shown that 
structural shifts can generate spurious persistence in volatility, and extensive simulations in Ding el al (1993) show that simple GARCH 
models are capable of capturing the autocorrelation structure in financial data, we examine only the PARCH and APARCH models. 
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3.2 Stochastic Volatility 

This paper will consider the simple SV model from Ruiz (1994) and Harvey, Ruiz and 

Sheppard (1994), in which the log of the conditional variance, 𝜎𝑡2, is assumed to follow a first 

order autoregressive process, 

ln𝜎𝑡2 = 𝜔 + 𝜙 ln𝜎𝑡−12 + 𝜂𝑡 (3) 

 

where the residual in equation (1) is now 𝑢𝑡 = 𝜎𝑡𝑧𝑡, where 𝑧𝑡 ~𝑁𝑁𝑁(0,1) and where 

𝜂𝑡   ~𝑁𝑁𝑁�0,𝜎𝜂2�. Taking the log of the squared residuals, a state space form of the model can 

be generated, where the measurement equation is 

ln(𝑢𝑡2) =  𝐸(ln(𝑧𝑡2)) + ln𝜎𝑡2 + 𝜉𝑡 (4) 

 

and the transition equation is given by equation (3). In the measurement equation, 𝜉𝑡 =

ln(𝑧𝑡2) − 𝐸(ln(𝑧𝑡2)) and is a non-Gaussian, zero-mean white noise. It is assumed that 𝜉𝑡 and 

𝜂𝑡 are uncorrelated (see Harvey, Ruiz and Shephard 1994, p.261), and the autoregressive 

parameter in the volatility equation satisfies, |𝜙| < 1.14 Since we assume that 𝑧𝑡 ~𝑁𝑁𝑁(0,1), 

we know that the mean and variance of ln(𝑧𝑡2) are −1.27 and 𝜋2/2 , respectively 

(Abramowitz and Stegun 1970), and so 𝜉𝑡 also has variance of 𝜋2/2 . This model is therefore 

time invariant for the variances of 𝜉𝑡 and 𝜂𝑡. Estimation of the state space form of the SV 

model is undertaken using the Kalman Filter, which is quasi-maximum likelihood.  

3.3 Ex-post Volatility 

We will use and compare three measures of ex-post volatility, squared daily returns, realized 

volatility calculated from intra-day returns, and the range-based estimator of Parkinson 

(1980). 

For a trading day with daily returns, 𝑦𝑡, that are the sum of 𝑁𝑡 intraday returns, the realized 

volatility for day 𝑡, 𝑅𝑅𝑡, is defined as, 

                                                           
14. As we find that empirically we cannot reject the null hypothesis that all of the ARMA coefficients and the constant term in equation (1) 
are zero, the residual from equation (1) is 𝑢𝑡 = 𝑦𝑡, and so the state space form uses log squared returns in the measurement equation (3). 
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 𝑅𝑅𝑡 = �𝑦𝑡,𝑗
2

𝑁𝑡

𝑗=1

 (5) 

where 𝑦𝑡,𝑗
2  are the squared intraday returns, 𝑗 = 1,2, … ,𝑁𝑡. In selecting the frequency for the 

intra-day observations, there is a trade-off between the increase in accuracy from increased 

frequency and the increase in microstructure frictions as the frequency increases. While 

Andersen et al (2003) in their study of two major exchange rates recommend 30 minute 

observations, more recent studies, such as Liu et al (2015) have suggested that 5 minute 

intervals are the best choice. Bandi and Russell (2006) suggest that the optimal sampling 

frequency for the UK is between 0.4 and 13.8 minutes. We select 15 minutes, as being close 

to the upper bound, and note that this interval has precedent for exchange rate forecast 

comparisons in Chortareas et al (2011), who use it in their forecasting models.15  

The range-based estimator proposed by Parkinson (1980), which we denote by 𝐻𝐻𝑡, 

uses the daily high and low prices and is defined as 

 𝐻𝐻𝑡 =
(log(ℎ𝑡) − log(𝑙𝑡))2

4 log(2)  (6) 

where ℎ𝑡 and 𝑙𝑡 are the daily high and low prices respectively.16 

3.4 Forecasting volatility and Forecast Evaluation 

The dynamics of the volatility processes in Table 1 provide for the estimation of one-step 

ahead forecasts of volatility in the (out-of-sample) evaluation period, using the estimated 

parameter values for the estimation period. We use four procedures for forecast evaluation: 

Mincer-Zarnowitz (MZ) regressions, loss function scores, forecast comparison tests and new 

tests of loss function ranking convergence. 

In the regression test method of Mincer and Zarnowitz (1969), a measure of (ex-post) 

variance, 𝜎𝑡2, is regressed on a constant and the predicted variance from a postulated 

model, 𝜎�𝑡2, equation (7), where the residual is assumed to be mean zero and serially 

uncorrelated.  

                                                           
15. Although Liu, Patton and Sheppard (2015) do not examine spot exchange rate volatility, they also find that 5 minute and 15 minute 
return intervals produce the best forecasts among over 400 models applied to data between 2000 and 2010 for individual stocks, stock 
indexes and futures contracts on indexes, interest rates and currencies. 
16. The scaling of the squared log range depends on the underlying assumed data generating process. The value here, 4ln(2),  is consistent 
with a diffusion having zero mean and constant conditional daily volatility, see Parkinson (1980) and Patton (2011). 
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 𝜎𝑡2 = 𝛼 + 𝛽𝜎�𝑡2 + 𝜀𝑡 (7) 

An unbiased forecast will have 𝛼 = 0 and 𝛽 = 1, while the 𝑅2 value from the regression 

provides a simple measure of the level of predictability in the volatility process. We estimate 

this model for each of the GARCH and SV models in turn with each of the three different ex-

post estimators, squared returns, the range measure and realized variance. Since returns are 

heteroscedastic, squared returns will be even more heteroscedastic and so robust standard 

errors are calculated, although this may not be adequate since both sides of the regression are 

affected.  

Since estimation error in 𝜎�𝑡2 can cause downward bias in the estimates of 𝛽, and the 

𝑅2 values do not penalize biased forecasts, these regressions are usually accompanied by loss 

function calculations. Loss functions measure the distance between the observation and 

forecast, and have been further adapted to penalize more extreme distances more heavily, by 

using quadratic functions, and to include asymmetry whereby downside and upside losses 

have different weightings. Patton (2011) has shown that the loss function rankings of 

forecasts produced by competing models are dependent on the quality of the estimator of ex-

post volatility. Poor proxies for ex-post volatility can lead to the selection of not the best 

forecasting model. Our use of three different measures of ex-post volatility is designed to see 

whether the results (the rankings of models) from loss function evaluations show more 

convergence with more sophisticated volatility measures. We use the following set of loss 

functions, from Hansen and Lunde (2005): 

𝑀𝑀𝑀1 ≡ 𝑛−1�|𝜎𝑡 − ℎ𝑡|
𝑛

𝑡=1

 
(8) 

𝑀𝑀𝑀2 ≡ 𝑛−1�|𝜎𝑡2 − ℎ𝑡2|
𝑛

𝑡=1

 
(9) 

𝑀𝑀𝑀1 ≡ 𝑛−1�(𝜎𝑡 − ℎ𝑡)2
𝑛

𝑡=1

 
(10) 

𝑀𝑀𝑀2 ≡ 𝑛−1�(𝜎𝑡2 − ℎ𝑡2)2
𝑛

𝑡=1

 
(11) 
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𝑄𝑄𝑄𝑄𝑄 ≡ 𝑛−1�(log(ℎ𝑡2) + 𝜎𝑡2ℎ𝑡−2)
𝑛

𝑡=1

 
(12) 

𝑅2𝐿𝐿𝐿 ≡ 𝑛−1�[log(𝜎𝑡2ℎ𝑡−2)]2
𝑛

𝑡=1

 
(13) 

where 𝑛 is the number of forecasts in the evaluation period. The MAE criteria (8) and (9) are 

likely to be more robust to outliers than the MSE criteria (10) and (11). The MSE criterion 

(11) is equivalent (only if the constant term, 𝛼 = 0) to using the 𝑅2 from the MZ regression, 

equation (7). An MZ regression using logs (rather than levels) of variances is similarly 

equivalent to using 𝑅2𝐿𝐿𝐿. 𝑄𝑄𝑄𝑄𝑄, criterion (12), corresponds to the loss function implied 

by a Gaussian likelihood. We are motivated to use a wide range of loss functions from the 

observation of Poon and Granger (2003) that when loss-functions use variances, it becomes 

increasingly difficult to find a significant difference between competing forecasts, and that 

this is compounded when they are squared (as for 𝑀𝑀𝑀2). 

While loss functions provide a ranking and these may show convergence across loss 

functions and variance estimators, they do not determine whether, say, the first best and 

second best models produce forecasts that are statistically significantly different. To 

determine whether this is the case, we apply the modified Diebold-Mariano (DM) test of 

Harvey, Leybourne and Newbold (1998) (HLN-DM) to the three highest ranked forecasts 

from the MZ regressions and the loss function tests. The test can itself use a variety of 

functional forms to measure the distance between two sets of forecasts and we report results 

of both a quadratic and an absolute distance function. The objective is to see whether this test 

is more often able to distinguish between competing forecasts when the accuracy of the 

volatility estimator increases. 

To further address the question of improved convergence of forecast rankings by loss 

functions when better quality volatility proxies are used, we examine the mean (across 

forecasts/models) of the standard deviation of the loss function rankings (across loss 

functions). A smaller value of this mean indicates a greater convergence of the rankings 

across loss functions, since converged rankings would generate a zero standard deviation 

across the loss functions for each model. Our test is constructed as follows. Let the rank of 

loss function 𝑘 for model  𝑚 using volatility estimator 𝑝 be denoted by 𝑟𝑘,𝑚,𝑝, 𝑘 = 1,2, …𝐾, 

and 𝑚 = 1,2, … ,𝑀 and similarly for volatility estimator 𝑞 be denoted by 𝑟𝑘,𝑚,𝑞. The null 
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hypothesis is that volatility estimator 𝑞 provides the same amount of convergence among the 

loss functions as volatility estimator 𝑝, and the alternative hypothesis is the volatility 

estimator 𝑞  provides for greater convergence than volatility estimator 𝑝. Our null hypothesis 

is formally that  𝑠𝑝� = 𝑠𝑞� , where 

𝑠𝑝� = 𝑀−1� �(𝐾 − 1)−1� �𝑟𝑘,𝑚,𝑝 − 𝑟𝑚,𝑝������2
𝐾

𝑘=1
�

𝑀

𝑚=1
 (14) 

where 𝑟𝑚,𝑝����� = 𝐾−1 ∑ 𝑟𝑘,𝑚,𝑝
𝐾
𝑘=1 , and 𝑠𝑞�  is similarly defined. The null hypothesis can be tested 

using a one-side paired sample t-test. By applying this test across the different volatility 

proxies, we provide direct evidence on the improvements in convergence from using higher 

quality data.  

We supplement this evidence, with further tests that determine whether the ability of 

loss functions to distinguish between the first and second best models is also enhanced by 

using more sophisticated variance estimators. We regard a volatility estimator as more able to 

facilitate loss functions to distinguish between two forecasts if the percentage difference 

between the loss function values is greater. Specifically, let ∆𝑟𝑘,𝑝 be the percentage difference 

between the loss function rank for the first and second best models for loss function 𝑘 using 

volatility estimator 𝑝, and ∆𝑟𝑘,𝑞 be similarly defined for volatility estimator 𝑞. Then, a test of 

the null hypothesis that two volatility estimators provide equal facility for loss functions to 

distinguish between two forecasts, is a test of ∆𝑟𝑝���� = ∆𝑟𝑞����, against the alternative that ∆𝑟𝑝���� <

∆𝑟𝑞����, where ∆𝑟𝑝���� = 𝐾−1 ∑ ∆𝑟𝑘,𝑝
𝐾
𝑘=1  , and ∆𝑟𝑘,𝑝 = �𝑟𝑘,1,𝑝 − 𝑟𝑘,2,𝑝�/𝑟𝑘,2,𝑝. The mean for 

volatility estimator 𝑞 is defined similarly. The null hypothesis is tested using a paired sample 

t-test. 

 

4. Data and Results 

4.1 Data 

Daily data for the AUD/USD exchange rate (Australian Dollars per one US Dollar) was 

collected from the Bloomberg Professional service on 19/07/2016 and covers the period 

06/04/2010 to 15/07/2016. To enable out-of-sample forecast evaluation, the sample is split 

into an estimation period and evaluation period of 1540 observations (until 29/02/16) and 99 
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observations (from 01/03/16) respectively. These data are used to estimate the models and 

generate their forecasts for the evaluation period, as well as construct two of the variance 

estimators for the evaluation period; the squared returns and the high-low range measure. 

For the realized variance estimator of volatility, we collected 9,493 15-minute intra-

day observations for the 99 days of the evaluation period, again from Bloomberg 

Professional. The intra-day period runs from 17:00 hours the prior day to 16.45 hours on the 

day, UK time (GMT+1 during this period), the latter time point coinciding with the daily 

closing observation. We do not include observations between 17:00 hours on Friday to 16.45 

hours on Sunday, to reduce any noise from weekend trading, and adjustments for the start and 

end of daylight savings times.17 

4.2 Summary Statistics 

Summary statistics for daily returns, log differences in the exchange rate, are shown in Table 

2. Positive returns reflect a strengthening of the US Dollar (weakening of the Australian 

Dollar), while negative returns reflect a strengthening of the Australian Dollar (weakening of 

the US Dollar). The daily mean return is not significantly different from zero (p=0.369), 

while the daily variance corresponds to an annualized standard deviation of 11.20 percent. 

The Jarque-Bera test (JB Test) indicates that the returns series are not normally distributed 

(p<0.001), displaying excess kurtosis and a small positive skew. An augmented Dickey-

Fuller test (ADF Test) strongly rejects the null hypothesis of non-stationarity in the returns 

series (p<0.001). A test for ARCH effects in the returns series also rejects the null hypothesis 

of no ARCH effects (p=0.003). 

There is no significant autocorrelation in the daily returns at lags 1 to 40, which can 

be seen in Table 3. By contrast, the autocorrelations of squared returns, also reported in Table 

3, are statistically significant. The non-normality in returns, the significant autocorrelation in 

squared returns and the results of the ARCH test all point to the returns series being 

characterised by changing volatility. The correlation between returns and squared returns is 

0.064 and is significantly different from zero (p=0.011). 

The results of the sign bias and size bias tests are reported in Table 4 and confirm the 

characteristic that positive shocks are associated with a bigger impact on volatility, than 

negative shocks. This means that an unanticipated depreciation in the Australian Dollar has a 
                                                           
17. A similar approach to removing slower weekend trading periods was used by McMillan and Speight (2012) following the direction in 
Bollerslev and Domowitz (1993). 
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bigger effect on volatility than an unanticipated depreciation in the US Dollar. Specifically, 

we find that the coefficient, 𝜙1, in the sign bias test is negative and significant (p<0.001), 

indicating a negative relationship between the sign of lagged shocks and current squared 

residuals. This result is supported by the positive size bias test, coefficient 𝜙3, that indicates 

that the size of the positive shocks (unanticipated depreciation of the Australian Dollar) also 

influences current exchange rate volatility. By contrast, there is no evidence that the size of 

any unanticipated depreciation in the US Dollar influences the exchange rate volatility. This 

result is consistent with earlier findings for the AUD/USD rate by McKenzie and Mitchell 

(2002) for the period1986 to 1997 and Villar (2010) for the period 1994 to 2007.18  

4.3 Volatility Model Estimation 

The coefficients of the competing forecasting models are given in Table 4, estimated using 

data for the “estimation” period of the sample. Although the simplest model reported is the 

GARCH(1,1), we also examined ARCH models with up to 15 lags. Both the AIC and BIC 

selected the GARCH(1,1) as the preferred model against any of the ARCH alternatives. The 

GARCH likelihoods are maximized using the BHHH and BFGS algorithms in turn. For the 

Stochastic Volatility model, the estimation is done using a Kalman filter, with the quasi-

likelihood maximized using the BHHH and Newton Raphson algorithms.  

The estimated coefficients from all the models meet their respective conditions for 

stationarity of the variance processes, and are indicative of a high level of persistence in 

volatility across all specifications.  The coefficients are stable across the alternative 

distributional assumptions, showing very little numerical differences and similar statistical 

significance.  However, likelihood ratio tests indicate that the t-distributed versions provide a 

significantly better fit to the data (p<0.01).  

The power models estimate the power term to be around 2.2 which is close to the 

GARCH baseline of 2. Likelihood ratio tests comparing the power models to their closest 

GARCH counterpart are unable to reject the null hypothesis that the models provide an equal 

fit to the data (p>0.65). This finding is similar to that of Tse and Tsui (1997), who were 

examining the Malasian Ringit and Singapore Dollar against the US Dollar with data from 

1978 to 1994. However, this finding contrasts with those of Bera and Higgins (1992) who 

found that, with the exception of the GBP/USD rate, the values of the power function were all 

                                                           
18. Evidence of a greater impact on volatility of local currency depreciations (against a major currency) can also be found in Hu et al (1997) 
and Tse and Tsui (1997). 
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less than 1, significantly so in three out of the five US Dollar exchange rates considered. The 

GBP/USD rate was not significantly different from either 1 or 2, while the Swiss France / US 

Dollar rate was not significantly different from either 1 or 0. For data between 1986 and 

1997, McKenzie and Mitchell (2002) report a power function value of 1.295 for the 

AUD/USD, while Villar (2010) for data between 1994 and 2007 estimates the power to be 

1.279. Our results suggest that in recent years the applicability of power ARCH models for 

the AUD/USD exchange rate may be much reduced. 

The asymmetric models all have positive coefficient values on the term that captures 

asymmetry, which is consistent with the findings from the sign and size bias tests and 

suggests that an unanticipated depreciation of the Australian Dollar has a bigger impact on 

exchange rate volatility than an unanticipated appreciation, against the US Dollar. The 

coefficients are all statistically significant, except for the APGARCH model, which again 

suggests that this non-linear specification is currently less well suited to the AUD/USD 

exchange rate.  

We explore the differences between the asymmetric specifications by calculating the 

news impact curves for each of the specifications. Pagan and Schwert (1990) first suggested 

news impact curves which graphically demonstrate how different models react to positive and 

negative shocks. The process involves substituting positive and negative values of the 

standardized residuals into an estimated model and then plotting the predicted variance 

against the lagged standardized residuals, where the lagged conditional variance is set equal 

to the unconditional variance. The news impact curves are shown in Figure 1, where it can be 

seen that the APGARCH and GJR-GARCH models generate much more asymmetry than the 

EGARCH and TGARCH models. Moreover, log likelihood tests cannot distinguish between 

the in sample fit of the APGARCH and GJR-GARCH models (p=0.53), or between the 

EGARCH and TGARCH models (p=0.32). However, each of the EGARCH and TGARCH 

models provide a significantly better in sample fits against either of the APGARCH or GJR-

GARCH models (p<0.01, for all four possible pairwise comparisons). 

4.4 Volatility Forecast Evaluation 

The evolution of the three ex-post volatility estimators during the evaluation period is shown 

in Figure 2. Summary statistics are shown in Table 6, and show that the three measures of ex-
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post volatility display the skewness and excess kurtosis characteristics that are well- 

established features of high frequency exchange rate data. 

4.4.1 Mincer-Zarnowitz Regression Tests 

The results of the MZ regressions are shown in Table 7. Although there is some variation in 

the rankings of the models (by 𝑅2 value, in parentheses below the 𝑅2 value), all three variance 

estimators indicate that the two best models are the EGARCH and TGARCH specifications. 

This means that based on this test, the more sophisticated variance estimators do not appear 

to generate an advantage over the use of squared returns for measuring ex-post variance. 

However, all of the coefficients on the predictors take the wrong sign, with many 

significantly negative, and the goodness of fit is poor across all models and estimators. While 

the 𝑅2 values for the GARCH models do improve when the ex-post volatility measure is 

changed from squared returns to the range measure, they do not improve with the use of 

realized volatility. This is in sharp contrast to earlier studies, such as Andersen and Bollerslev 

(1998), who use the observed increase in 𝑅2 for their data to, in part, empirically validate the 

use of realized volatility in place of squared returns. However, studies using more recent 

exchange rate data, such as McMillan and Speight (2012) – who specifically note this result – 

and Chortareas et al (2011), document similarly small values of 𝑅2 for GARCH models using 

realized volatility as the ex-post measure.19 

The unbiasedness of the forecasts can be tested with a Wald test of the joint null 

hypothesis of a zero intercept and a unit slope. This hypothesis is strongly rejected (p<0.05) 

for all of the models, except the stochastic volatility model, for both the squared returns and 

high-low variance estimator. The stochastic volatility model also provides unbiased forecasts 

for the realized variance estimator, where too the GARCH and PGARCH models also do not 

reject the joint null hypothesis (p>0.10). However, these results are mostly driven by the 

large standard errors on the slope coefficients, and the cases of unbiased forecasts are those 

with the least good fit. 

4.4.2 Loss Function Scores 

The values of the loss functions for each of the estimators and for each of the predictor 

models are shown in Table 8 and should provide more robust results than the MZ 

                                                           
19. McMillan and Speight (2012) question the robustness of earlier results, but we conjecture that it is more likely that this weak testing 
framework is highly susceptible to the specifics of a given sample. By contrast to McMillan and Speight (2012), Chortareas et al (2011) 
document this finding for some but not all of the exchange rate series analysed. 
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regressions.20 The loss functions rank the stochastic volatility model as the best model, for all 

loss functions for squared returns and the high-low estimator, and for four of the six loss 

functions for the realized variance estimator. The stochastic volatility model places second 

and third for the MSE2 and QLIKE loss functions, respectively, when realized variance is the 

estimator. While these results are in sharp contrast to the rankings implied by the R-squared 

values obtained from MZ regressions, it was only the stochastic volatility model that 

provided unbiased forecasts for all three ex-post volatility estimators. Among the GARCH 

based estimators, the base-line GARCH(1,1) model appears to perform the best, with the 

PGARCH model, which anyway was parametrically close to the GARCH model, appearing 

to the be the next best model. However, there also appears to be some clear interaction 

between the choice of variance estimator and the loss function rankings for the GARCH 

models. For the realized variance estimator, the symmetric GARCH and PGARCH 

specifications produce smaller losses than the asymmetric EGARCH and TGARCH 

specifications across all loss functions. However, for the squared returns and the high-low 

estimators, the MAE loss functions produce smaller losses for the asymmetric models. 

However, since the realized variance estimator has the highest kurtosis (Table 6), consistent 

with a greater presence of outliers, the MAE loss function, which is more robust to outliers 

than the other loss functions, should be the most reliable in that instance. This suggests that 

the symmetric models are preferred for out-of-sample forecasting, even though the 

asymmetric models seemed to provide the better fit in-sample. This finding is echoed even 

within the asymmetric models themselves, when those models that permit a more pronounced 

asymmetry (see Figure 1) perform relatively less well out-of-sample. 

4.4.3 Modified Diebold-Mariano Tests 

We supplement the above tests with the forecast comparison test of Harvey, Leybourne and 

Newbold (1998), hereafter HLN, which is a small sample version of the test developed by 

Diebold and Mariano (1995). This test permits direct comparisons between pairs of forecasts, 

using a given loss function. The model rankings reported above suggest that the stochastic 

volatility is the most preferred model and so this is the model against which all other models 

are tested. To provide for the most conservative test, and following the observation of Poon 

and Granger (2003) that forecasts comparisons are most difficult for metrics that are 

quadratic in the variance, we focus on the MSE2 loss function. But, to provide for a 
                                                           
20. As the loss function scores for the predictor models with t-distributed errors are mostly indistinguishable from the same model applied 
assuming normally distributed errors, we report in Table 8 only the latter, to make the comparison across different model specifications 
more apparent. The former results are available on request to the authors. 
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comparison and because the rankings were most different for this function, we also examine 

the MAE2 loss function. 

By increasing the accuracy of the volatility estimator, the HLN tests, reported in 

Table 9, are able to reject more models in favour of SV. This is in contrast to Patton (2011) 

who did not find significant differences between these models, using more accurate volatility 

estimators for these loss functions. Using the squared returns, the HLN tests are unable to 

distinguish statistically between forecast accuracy of the stochastic volatility model and the 

competing GARCH specifications. The high-low estimator allows the test to indicate that the 

stochastic volatility model is preferred to the asymmetric GARCH specifications, which is 

consistent with earlier rankings based upon the loss function statistics themselves. For at least 

one of the two loss functions, the use of realized variance as an estimator of volatility enables 

the HLN test to reject each of the competing GARCH specifications against the stochastic 

volatility model. While the study by Hansen and Lunde (2005) found that nothing (within a 

wide class of GARCH models) could beat the base-line GARCH(1,1) model for exchange 

rate forecasting (of the DM/$), our study complements more recent evidence, such as 

Chortareas (2011) who find that the stochastic volatility model may outperform the 

GARCH(1,1) model for some exchange rates series. 

4.4.4 Loss Function Convergence Tests 

The loss function rankings, also reported in Table 8, appear to show that the more 

sophisticated variance estimators generate more convergence among the loss functions 

rankings. We test this formally by conducting paired t-tests of the mean (across models) of 

the standard deviation of the loss function rankings (across loss functions), equation (14) 

above. A smaller value of this mean indicates a greater convergence of the rankings across 

loss functions, since (in the limit) converged rankings would generate a zero standard 

deviation across the loss functions for each model. We find that the high-low estimator and 

realized variance estimators do not display different average levels of ranking convergence 

(p=0.30), but that the rankings using squared returns are significantly less converged than 

those for either the high-low estimator (p<0.01) or the realized variance estimator (p=0.08). 

This result, which is consistent with the study by Patton (2011), indicates that employing 

superior variance estimators can reduce the impact a loss function's characteristics have on 

forecast evaluation, thus reducing the importance of loss function selection. 
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We conduct a further test of the benefit from using a more sophisticated variance 

estimator, by examining the ability of the loss functions to distinguish between the best and 

second best models. Loss function values across models, for a given loss function, are often 

very similar in magnitude, a characteristic noted by, for example, Brailsford and Faff (1996) 

for the Australian stock market. We calculate the average (across loss functions) of the 

percentage difference between the loss function scores for the best and second best models, 

for each of the three variance estimators. Our results echo those relating to the convergence 

of the rankings. We find no significant difference between the average differences for the 

range (high-low) and realized variance estimators (p=0.28), but significant differences 

between the smaller average differences for the squared returns estimators, and the larger 

average differences for both the  high-low estimator (p=0.01) and the realized variance 

estimator (p=0.03). These results indicate that loss functions are much better able to 

distinguish between the first and second best models when either the high-low or realized 

variance estimators are used, than when the squared returns estimators is used. 

 

5. Summary and conclusions 

By forecasting the volatility of the Australian Dollar / US Dollar exchange rate using 

different proxies for ex-post volatility, we show how to measure and test the significance of 

the improvement in the convergence of loss function scores towards selecting the best 

forecast. Using our test for loss function ranking convergence, we find that using either a 

range based estimator or a realized variance estimator rather than squared returns as the 

measure of ex-post volatility results in a significant increase in the convergence of loss 

function rankings. With better quality measures of volatility, loss functions converge more 

strongly on the preferred forecast. Moreover, we also find a significant increase in the ability 

of loss functions to distinguish between the best and second best models when either the 

range measure or the realized variance are used. Thus, the margin by which the best model is 

chosen is significantly increased by using the higher quality volatility measures. 

While we find that there are no significant differential gains in terms of loss function 

ranking convergence between the range measure and the realized variance measure, we do 

find that the latter is more often able to facilitate the rejection of one or more competing 

forecasts against a benchmark forecast. However, the forecasts comparison tests are unable to 
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distinguish between any of the competing forecasts when squared returns are used as the 

measure of ex-post volatility. So while the range measure does provide a significant 

improvement upon the use of squared returns, and so be a valuable substitute for realized 

variance when high frequency data is unavailable or too costly to collect, high frequency data 

should still be used when it is available. 

By contrast to early studies that advocated the use of realized variance, we do not find 

that the regression based tests are enhanced by the use of realized variance. However, other 

recent studies, such as McMillan and Speight (2012) and Chortareas et al (2011), have also 

noted that these regression based tests still perform poorly even with high frequency data, 

both in regards to the regression R2 and tests of forecast unbiasedness. This suggests that for 

evaluating volatility forecasts, comparisons based upon loss functions are more likely to give 

reliable results. Our work supports studies that show that the use of loss functions is enhanced 

by the use of high frequency data for measuring ex-post volatility, and provides a simple test 

(using the standard deviation of the loss function rankings) of how much better the loss 

functions are at distinguishing between forecasts as the quality of the volatility estimator 

improves. 

We choose the Australian Dollar / US Dollar exchange rate as this has had little 

empirical study yet is the fifth highest traded exchange rate; the four higher all having had 

their volatility extensively modelled and forecast. We find that a model of stochastic 

volatility provides superior forecasts of daily volatility compared to a range of GARCH 

models, and that the more simple GARCH formulations generate superior forecasts to those 

generated by more complex models featuring asymmetries and power functions. As prior 

studies of this exchange rate have found that asymmetric components and power functions 

can add to the modelling and forecasting of volatility, our results indicate a shift in the 

characteristics of this exchange rate in recent years. In particular, our study is the only study 

to consider the period post the 2008/09 financial crisis period. 
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Table 1: Volatility Model Specifications 

Model Variance Specification 

GARCH 
𝜎𝑡2 = 𝜔 + 𝛼𝑢𝑡−12 + 𝛽𝜎𝑡−12  

t-GARCH 

GJR 𝜎𝑡2 = 𝜔 + 𝛼1𝑢𝑡−12 + 𝛽𝜎𝑡−12 + 𝛾𝑢𝑡−12 𝑆𝑡−1+  

 t-GJR 

EGARCH 
ln(𝜎𝑡2) = 𝜔 + 𝛾(𝑧𝑡−1) + 𝛼[|𝑧𝑡−1| − 𝐸(|𝑧𝑡−1|)]

+ 𝛽 ln(𝜎𝑡−12 ) 

 

where 𝑧𝑡 = 𝑢𝑡 𝜎𝑡�  

𝐸(|𝑧𝑡−1|) = �2
𝜋

 

t-EGARCH 

𝐸(|𝑧𝑡−1|)

=
2√𝑣 − 2Γ �(𝑣 + 1)

2 �

(𝑣 − 1)Γ �𝑣2�√𝜋
 

 

PGARCH 𝜎𝑡𝑑 = 𝜔 + 𝛼|𝑢𝑡−1|𝑑 + 𝛽𝜎𝑡−1𝑑  

APGARCH 𝜎𝑡𝑑 = 𝜔 + 𝛼(|𝑢𝑡−1| + 𝛾𝑢𝑡−1)𝑑 + 𝛽𝜎𝑡−1𝑑  

TGARCH 𝜎𝑡 = 𝜔 + 𝛼|𝑢𝑡−1|+𝛽𝜎𝑡−1 + 𝛾|𝑢𝑡−1|𝑆𝑡−1+  

SV 
ln(𝑦𝑡2) = −1.27 + ln(𝜎𝑡2) + 𝜉𝑡               var(𝜉𝑡) =

𝜋2

2
 

ln(𝜎𝑡2) = 𝜔 + 𝜙ln(𝜎𝑡−12 ) + 𝜂𝑡                    𝜂𝑡   ~𝑁𝑁𝑁�0,𝜎𝜂2� 

Notes: The variable 𝑣 is the degrees of freedom, which is the parameter governing the density function of the t distribution. 
The function 𝛤 is the gamma function, which is defined by an integral, 𝛤(𝑢) = ∫ 𝑥𝑢−1𝑒−𝑥𝑑𝑑∞

0 , 𝑢 > 0. All other variables 
and parameters are as defined in the text. 
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Table 2: Summary Statistics of the Daily Returns 

Summary statistics for daily returns on the AUD/USD exchange rates between 06/04/2010 to 29/02/2016. Mean is 
the mean daily return. Std. Dev. Is the standard deviation of the returns. Skew is the Skewness and Kurt is the 
Kurtosis of the daily returns. JB is the Jarque-Bera (1987) test for normality. ADF is the Augmented Dickey Fuller 
(1979) test (no trend) using the SIC criterion to select lag length. ARCH is the Engle (1982) test for ARCH effects 
in the variance of the returns. P-values are in brackets. 

Mean × (10−3) Std. Dev. Skew. Kurt. JB ADF ARCH 
0.1655 0.0072 0.0813 4.916 237.3 -40.00 8.86 
[0.369]    [0.000] [0.000] [0.003] 

 
Min Q1 Median Q3 Max 

-0.0356 -0.0040 0.0001 0.0042 0.0360 
 

Table 3: Autocorrelations of Returns and Squared Returns 

Autocorrelations for daily returns, 𝑦𝑡  and squared daily returns 𝑦𝑡2 on the AUD/USD exchange rates between 06/04/2010 to 29/02/2016. Q 
stats are the Ljung Box (1978) statistics. P-values for the autocorrelations and Q statistics are given underneath in brackets. 
 Autocorrelations at lag Q stats at lag 
 1 2 3 4 5 6 7 8 9 10 20 40 
𝑦𝑡  -0.0204 0.0321 -0.0429 0.0147 -0.0073 0.0069 -0.0089 0.0163 -0.0349 -0.0049 17.53 48.08 

 [0.422] [0.327] [0.166] [0.247] [0.358] [0.473] [0.575] [0.635] [0.534] [0.625] [0.619] [0.178] 
𝑦𝑡2 0.0778 0.1797 0.0794 0.1005 0.1388 0.1304 0.0898 0.1304 0.0841 0.1453 380.10 574.31 

 [0.002] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
 

Table 4: Coefficient Estimates from the Sign and Size Bias Tests 
 
Coefficient estimates from the following regressions  

𝑢�𝑡2 = 𝜙0 + 𝜙1𝑆𝑡−1− + 𝜓𝑡 

𝑢�𝑡2 = 𝜙0 + 𝜙2𝑆𝑡−1− 𝑢𝑡−1 + 𝜓𝑡 

𝑢�𝑡2 = 𝜙0 + 𝜙3𝑆𝑡−1+ 𝑢𝑡−1 + 𝜓𝑡 

where where  𝑢�𝑡2 is the residual from a GARCH(1,1) model applied to the daily returns on the AUD/USD exchange rates 
between 06/04/2010 to 29/02/2016, 𝑆𝑡−1−  is an indicator variable that takes the value 1 if 𝑢𝑡−1 < 0 and is zero otherwise, 
𝑆𝑡−1+ = 1 − 𝑆𝑡−1− , and 𝜓𝑡 is an i.i.d error term. 
Bias Test 𝝓𝟎 �× 𝟏𝟎−𝟓� 𝝓𝟏 𝝓𝟐 𝝓𝟑 

Sign 5.95 
(0.000) 

−1.45 × 10−5 
(0.006) − − 

Negative Size 5.50 
(0.000)  1.07 × 10−3 

(0.085) − 

Positive Size 4.56 
(0.000)  − 2.44 × 10−3 

(0.000) 
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Table 5 - Coefficient Estimates from the GARCH and Stochastic Volatility Models 

Coefficient estimates for the models given in Table 1 above applied to the daily returns on the AUD/USD exchange rates between 06/04/2010 to 29/02/2016. P-values are given in 
parentheses. Log L is the maximized value of the likelihood function. Kurt is the kurtosis of the standardized residusals. Q(40) is p-value of the Ljung-Box statistic (with 40 lags). 
 𝜇(× 10−3) 𝜔 𝛼 𝛽 𝜐 𝛾 𝑑 Log L Kurt Q(40) 

GARCH 0.143 0.483 0.056 0.936    5507.8 3.658 0.875 

 (0.382) (0.051) (<0.001) (<0.001)       

GARCH(t) 0.093 0.461 0.054 0.938 10.095   5518.6 3.660 0.873 

 (0.554) (0.055) (<0.001) (<0.001)       

GJR 0.262 0.344 0.004 0.958  0.064  5516.9 3.677 0.863 

 (0.105) (0.074) (0.737) (<0.001)  (<0.001)     

GJR(t) 0.182 0.297 <0.001 0.960 10.79 0.067  5527.0 3.695 0.858 

 (0.581) (0.075) (0.981) (<0.001)  (<0.001)     

EGARCH 0.263 -0.093 0.091 0.991  0.050  5513.4 3.686 0.861 

 (0.002) (0.033) (<0.001) (<0.001)  (<0.001)     

EGARCH(t) 0.185 -0.089 0.090 0.991 10.56 0.052  5523.8 3.693 0.860 

 (0.178) (0.036) (<0.001) (<0.001)  (<0.001)     

PGARCH 0.144 0.175 0.052 0.935   2.200 5507.9 3.656 0.876 

 (0.379) (0.750) (0.001) (<0.001)   (<0.001)    

APGARCH 0.257 0.865 0.021 0.957  0.626 2.270 5517.1 3.672 0.866 

 (0.110) (0.791) (0.365) (<0.001)  (0.326) (0.002)    

TGARCH 0.261 0.600 0.021 0.956  0.051  5512.9 3.709 0.849 

 (0.098) (0.040) (0.039) (0.001)  (<0.001)     

  𝛾 𝜙 𝜎𝜂2       

Stochastic Volatility -0.116 0.989 0.007    -3378.60 6.002 0.002 

  (0.030) (<0.001) (0.015)       
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Table 6: Summary Statistics for Ex-post Volatility 
Summary statistics for three ex-post measures of volatility for the AUD/USD exchange rates between 01/03/2016 to 15/07/2016. Mean is the 
mean value. Std. Dev. is the standard deviation. of the returns. Skew is the Skewness and Kurt is the Kurtosis. ADF is the Augmented Dickey 
Fuller (1979) test (no trend) using the SIC criterion to select lag length. Q(40) is the Ljung-Box statistic (with 40 lags). P-values are in brackets. 
 Mean × (10−3) Std. Dev. × (10−3) Skew. Kurt. ADF Test Q(40) 
Squared returns 0.0688 0.0996 2.695 11.26 -9.474 35.16 
 [0.000]    [0.000] [0.688] 
Range (High-Low) 0.0644 0.0836 5.729 43.67 -9.427 20.49 
 [0.000]    [0.000] [0.996] 
Realized variance 0.0700 0.0777 6.544 52.87 -9.119 23.09 
 [0.000]    [0.000] [0.985] 

Table 7: Coefficient Estimates, R2 and unbiasedness test statistics from Mincer-Zarnowitz Regressions 
Coefficient estimates (p-values in parentheses below) from the regression equations 𝝈𝒕𝟐 = 𝜶 + 𝜷𝝈�𝒕𝟐 + 𝜺𝒕, where 𝝈𝒕𝟐 is one of the three measures of ex-post volatility and 𝝈�𝒕𝟐 is the forecast of this 
volatility provided by one of the models in Table 1 (and using coefficients estimates from Table 5). 𝑹𝟐is the coefficient of determination of the regression, and “rank” is the rank of the model’s 
forecast ordered by 𝑹𝟐. Wald p-value is the p-value of the joint hypothesis that 𝜶 = 𝟎,𝜷 = 𝟏, that is, that the forecast is unbiased. SV is the stochastic volatility model. 
 Squared Returns High-low Realized Variance 

Model 𝛼 × 10−4 
(p-value) 

𝛽 
(p-value) 

𝑅2 
(rank) 

Wald p-value 
𝛼 = 0,𝛽 = 1 

𝛼 × 10−4 
(p-value) 

𝛽 
(p-value) 

𝑅2 
(rank) 

Wald p-value 
𝛼 = 0,𝛽 = 1 

𝛼 × 10−4 
(p-value) 

𝛽 
(p-value) 

𝑅2 
(rank) 

Wald p-value 
𝛼 = 0,𝛽 = 1 

GARCH 1.592 
(0.013) 

-1.376 
(0.147) 

0.0215 
(5) 0.0438 1.407 

(0.009) 
-1.162 
(0.144) 

0.0218 
(8) 0.0268 1.027 

(0.040) 
-0.499 
(0.503) 

0.0046 
(9) 0.1165 

t-GARCH 1.666 
(0.011) 

-1.485 
(0.128) 

0.0237 
(4) 0.0393 1.455 

(0.008) 
-1.232 
(0.132) 

0.0232 
(7) 0.0258 1.058 

(0.040) 
-0.544 

(0.47i97) 
0.0052 

(7) 0.1165 

GJR 1.222 
(0.003) 

-0.853 
(0.174) 

0.0190 
(7) 0.0121 1.309 

(0.000) 
-1.062 
(0.042) 

0.0419 
(4) 0.0006 1.117 

(0.001) 
-0.666 
(0.173) 

0.0190 
(4) 0.0026 

t-GJR 1.183 
(0.003) 

-0.787 
(0.189) 

0.0177 
(8) 0.0114 1.267 

(0.000) 
-0.992 
(0.047) 

0.0400 
(5) 0.0005 1.097 

(0.000) 
-0.633 
(0.176) 

0.0188 
(5) 0.0020 

EGARCH 1.648 
(0.002) 

-1.564 
(0.062) 

0.0354 
(3) 0.0081 1.615 

(0.000) 
-1.581 
(0.024) 

0.0515 
(3) 0.0014 1.282 

(0.002) 
-0.948 
(0.149) 

0.0214 
(3) 0.0079 

t-EGARCH 1.640 
(0.002) 

-1.552 
(0.056) 

0.0371 
(2) 0.0063 1.614 

(0.000) 
-1.582 
(0.020) 

0.0548 
(1) 0.0009 1.289 

(0.001) 
-0.960 
(0.131) 

0.0234 
(1) 0.0057 

PGARCH 1.546 
(0.014) 

-1.308 
(0.161) 

0.0201 
(6) 0.0469 1.388 

(0.008) 
-1.136 
(0.147) 

0.0216 
(9) 0.0260 1.030 

(0.036) 
-0.504 
(0.491) 

0.0049 
(8) 0.1063 

APGARCH 1.146 
(0.004) 

-0.7188 
(0.222) 

0.0153 
(9) 0.0142 1.241 

(0.000) 
-0.938 
(0.056) 

0.0370 
(6) 0.0006 1.070 

(0.001) 
-0.581 
(0.206) 

0.0165 
(6) 0.0026 

TGARCH 1.731 
(0.002) 

-1.716 
(0.050) 

0.0390 
(1) 0.0067 1.661 

(0.000) 
-1.674 
(0.022) 

0.0527 
(2) 0.0015 1.307 

(0.002) 
-0.999 
(0.145) 

0.0217 
(2) 0.0084 

SV 1.182 
(0.037) 

-0.820 
(0.372) 

0.0082 
(10) 0.0997 0.971 

(0.041) 
-0.544 
(0.480) 

0.0051 
(10) 0.1221 0.747 

(0.091) 
-0.078 
(0.913) 

0.0001 
(10) 0.1514 
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Table 8: Loss Function Values and Ranks 

The estimated values of the loss functions given in equations (8) to (13) for forecasts of daily volatility of the AUD/USD exchange rate between 01/03/2016 to 15/07/2016, usingeach of the 
models in Table 1 (normally distributed errors) against each of the three measures of ex-post volatility given in Table 5. SV is the stochastic volatility model. The rank of the loss function value, 
ordered across the models, are given in parentheses below the loss function value. 
 Squared Returns High-low Realized variance 
 MSE1 

× 10−5 
MSE2 
× 10−9 QLIKE R2LOG MAE1 

× 10−3 
MAE2 
× 10−5 

MSE1 
× 10−5 

MSE2 
× 10−9 QLIKE R2LOG MAE1 

× 10−3 
MAE2 
× 10−5 

MSE1 
× 10−5 

MSE2 
× 10−9 QLIKE R2LOG MAE1 

× 10−3 
MAE2 
× 10−5 

GARCH 2.678 
(3) 

10.28 
(3) 

−8.525 
(1) 

5.779 
(4) 

4.197 
(5) 

6.543 
(5) 

1.261 
(2) 

7.281 
(2) 

−8.608 
(2) 

0.748 
(2) 

2.576 
(4) 

4.369 
(4) 

0.853 
(2) 

6.129 
(1) 

−8.538 
(1) 

0.358 
(2) 

1.815 
(2) 

3.326 
(2) 

GJR 2.758 
(6) 

10.57 
(6) 

−8.491 
(7) 

5.839 
(6) 

4.212 
(6) 

6.590 
(6) 

1.375 
(6) 

7.703 
(6) 

−8.548 
(6) 

0.797 
(6) 

2.657 
(6) 

4.517 
(6) 

0.969 
(6) 

6.630 
(6) 

−8.475 
(7) 

0.414 
(6) 

1.955 
(6) 

3.550 
(6) 

EGARCH 2.706 
(5) 

10.49 
(5) 

−8.496 
(4) 

5.773 
(3) 

4.159 
(3) 

6.482 
(3) 

1.307 
(5) 

7.513 
(5) 

−8.569 
(5) 

0.760 
(5) 

2.570 
(3) 

4.356 
(3) 

0.907 
(5) 

6.463 
(5) 

−8.497 
(5) 

0.377 
(5) 

1.844 
(5) 

3.364 
(5) 

PGARCH 2.678 
(2) 

10.28 
(2) 

−8.525 
(2) 

5.782 
(5) 

4.196 
(4) 

6.541 
(4) 

1.263 
(3) 

7.290 
(3) 

−8.606 
(3) 

0.748 
(3) 

2.577 
(5) 

4.371 
(5) 

0.866 
(3) 

6.229 
(3) 

−8.537 
(2) 

0.360 
(3) 

1.823 
(3) 

3.339 
(4) 

APGARCH 2.781 
(7) 

10.59 
(7) 

−8.492 
(6) 

5.875 
(7) 

4.242 
(7) 

6.645 
(7) 

1.396 
(7) 

7.749 
(7) 

−8.547 
(7) 

0.812 
(7) 

2.693 
(7) 

4.583 
(7) 

0.978 
(7) 

6.647 
(7) 

−8.477 
(6) 

0.420 
(7) 

1.977 
(7) 

3.593 
(7) 

TGARCH 2.694 
(4) 

10.48 
(4) 

−8.494 
(5) 

5.753 
(2) 

4.141 
(2) 

6.451 
(2) 

1.297 
(4) 

7.492 
(4) 

−8.570 
(4) 

0.753 
(4) 

2.553 
(2) 

4.325 
(2) 

0.902 
(4) 

6.453 
(4) 

−8.498 
(4) 

0.373 
(4) 

1.82 
(4) 

3.337 
(3) 

SV 2.595 
(1) 

10.23 
(1) 

−8.525 
(3) 

5.583 
(1) 

4.053 
(1) 

6.310 
(1) 

1.194 
(1) 

7.179 
(1) 

−8.610 
(1) 

0.690 
(1) 

2.427 
(1) 

4.122 
(1) 

0.827 
(1) 

6.214 
(2) 

−8.530 
(3) 

0.331 
(1) 

1.672 
(1) 

3.088 
(1) 

 

Table 9: HLN Forecast Comparison Tests 

P-values of the HLN (1998) forecast comparison test applied to forecasts from models drawn from Table 1 for 
each of the three ex-post volatility measures. The test is conducted using both an MSE and an MAE criterion. 
SV is the stochastic volatility model. 
 Squared returns High-low Realized variance 

Model comparison MSE MAE MSE MAE MSE MAE 

SV Vs. GARCH 0.814 0.260 0.457 0.131 0.970 0.052 

SV Vs. EGARCH 0.267 0.578 0.073 0.384 0.011 0.121 

SV Vs. PGARCH 0.822 0.297 0.477 0.148 0.917 0.035 

SV Vs. TGARCH 0.242 0.633 0.066 0.427 0.00 0.130 
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Figure 1: News Impact Curves estimated from the model parameters 

 

Figure 2: Evolution of the alternative estimators of ex-post volatility 
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