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18.1 Introduction

We develop tools, which can be useful for elliptic boundary value problems on
domains with a periodic structure with holes involving some linear or non-linear
Robin-type conditions on the oscillating interface ([GrPeSh12], [KKG17], [GaNRK16]),
or contact problems (see [GaMe18], [GrOr18]).
This paper considers rescaling of functions from the Bessel potential, Riesz poten-
tial, and Sobolev-Slobodetskii spaces on the boundary or in the domain and also
rescaling of the boundary trace operator.

Denote by Ω a bounded domain in Rn with Lipschitz boundary. Let Y := (0,1)n

be the reference cell. We denote by T a hole, that is an open set, which closure is
strictly included in Y and let Y ∗ := Y \T (see Figure 1). Let ∂T be the Lipschitz
boundary of T and ν be the outward to Y ∗ unit normal vector on the boundary
∂T . Recall, e.g., from [CDDGZ12] that in the periodic setting, every point z ∈ Rn

can be written as z =
[
z
]
+
{

z
}
, [z] ∈ Zn, {z} ∈ Y. Here the integer function[

·
]

for a vector means the floor function b·c for each of its components. Denote

Ξε =
{

ξ ∈ Zn | εξ + εY ⊂ Ω
}
, Ω̂ε = interior

{⋃
ξ∈Ξε

(
εξ + εY

)}
, Λε = Ω \ Ω̂ε ,

i.e., the set Λε contains the parts of the cells intersecting the boundary ∂Ω .
Let us introduce the notations for the unions of all holes in the interior cells, Tε :={

x ∈ Ω̂ε

∣∣∣ { x
ε

}
∈ T
}

, for the hole boundaries, ∂Tε :=
{

x ∈ Ω̂ε

∣∣∣ { x
ε

}
∈ ∂T

}
, in

Ω̂ε and for the remaining part, Ω̂ ∗ε = Ω̂ε \Tε . Let also Ω ∗ε = Ω \Tε .
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Fig. 18.1 Bounded domain with periodically distributed holes.

18.2 Function spaces

For an arbitrary non-empty open subspace Ω ′ of Rm, let W s
2 (Ω

′), s ≥ 0 denote the
Sobolev-Slobodetskii space, cf. e.g., [McL00]. If s is an integer, the space coincides
with the Sobolev space and

‖u‖2
W s

2 (Ω
′) := ∑

|α|≤s

∫
Ω ′
|∂ α u(x)|2dx.

If s is not an integer,

‖u‖2
W s

2 (Ω
′) := ‖u‖2

W [s]
2 (Ω ′)

+‖u‖′2W s
2 (Ω

′),

and the Slobodetskii seminorm is defined as

‖u‖′2W s
2 (Ω

′) := ∑
|α|=[s]

∫
Ω ′

∫
Ω ′

|∂ α u(x)−∂ α u(y)|2

|x− y|m+2µ
dxdy, µ := s− [s]. (18.1)

Let S(Rm) be the Schwartz space of all complex-valued, rapidly decreasing, in-
finitely differentiable functions on Rm. Let S∗(Rm) denote the space of sequentially-
continuous linear functionals on S(Rm) (temperate distributions). Let us denote by

û(η)≡Fu(η) :=
∫
Rm

u(x)e−i2πη ·x dx, u(x)≡F−1û(x) :=
∫
Rm

û(η)ei2πη ·x dη ,

the direct and inverse Fourier transforms, respectively. These definitions, applicable
to functions from L1(Rm), are easily extended to S∗(Rm), see e.g. [McL00, p. 72].

Let us denote ρ(η) := (1+ |η |2)1/2. For s ∈ R, we define the Bessel potential
operator of order s, Js : S(Rm)→ S(Rm),

Jsu(x) := F−1(ρsFu)(x) =
∫
Rm

(1+ |η |2)s/2û(η)ei2πη ·xdη for x ∈ Rm,

which is extended, in the distribution sense, to the operator Js : S∗(Rm)→ S∗(Rm).
Let s ∈ R, Hs(Rm) = {u ∈ S∗(Rm) : Jsu(x) ∈ L2(Rm)} denote the Bessel poten-

tial space equipped with the norm ‖u‖Hs(Rm) = ‖Jsu‖L2(Rm) = ‖ρsû‖L2(Rm), cf., e.g,
[McL00, p. 75-76].
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Similarly, let us define the Riesz potential operator

J su(x) := F−1(|η |sFu)(x) :=
∫
Rm
|η |sû(η)ei2πη ·xdη for x ∈ Rm.

Let hs(Rm) denotes the Riesz potential space, i.e., the completion in the norm
‖u‖hs(Rm) = ‖J su‖L2(Rm) = ‖|η |sû‖L2(Rm) of the space of infinitely smooth func-
tions having compact supports in Rm.

If s > 0, then Hs(Rm) ⊂ hs(Rm) and ‖u‖hs(Rm) is equivalent to the Sobolev-
Slobodetskii semi-norm ‖u‖′W s

2 (Rm), see, e.g., Theorem 4 in [Ma11, Section 10.1.2].
Particularly, if 0 < s < 1, then

‖u‖′2W s
2 (Rm) = as,m‖u‖2

hs(Rm), (18.2)

where as,m is a number depending only on s and m, which is finite and positive for
any s ∈ (0,1), see e.g. [McL00, Lemma 3.15], hence

‖u‖2
W s

2 (Rm) = ‖u‖
2
L2(Rm)+‖u‖

′2
W s

2 (Rm) = ‖u‖
2
L2(Rm)+as,m‖u‖2

hs(Rm). (18.3)

On the other hand, from the inequality

2s−1(1+ψ
s)≤ (1+ψ)s ≤ 1+ψ

s, ∀ ψ ∈ (0,∞), s ∈ [0,1]

we obtain the following norm equivalence inequalities for any s ∈ [0,1],

2s−1[‖u‖2
L2(Rm)+‖u‖

2
hs(Rm)]≤ ‖u‖

2
Hs(Rm) ≤ ‖u‖

2
L2(Rm)+‖u‖

2
hs(Rm). (18.4)

For any non-empty open set Ω ⊂Rm, Hs(Ω) := {u =U |Ω for some U ∈Hs(Rm)}.
This space is equipped with the norm ‖u‖Hs(Ω) = infU |Ω=u, U∈Hs(Rm)‖U‖Hs(Rm).
Also for the space hs(Ω) we define the norm in the similar way, ‖u‖hs(Ω) =
infU |Ω=u, U∈hs(Rm)‖U‖hs(Rm). Moreover, one can prove that hs(Ω) = Hs(Ω) if the
domain Ω is bounded and −m/2 < s < m/2, cf. [Du77, Section 1.3].

We further follow the notations of [McL00, p. 98] for the definition of Bessel
potential spaces on Lipschitz manifolds. Let ∂T be a Lipschitz boundary, and for a
partition of unity {φ j}, ∂T is locally a Lipschitz hypograph of some function ζ j up
to some rigid motion κ j ≡ω j(·−a j) : Rn→Rn, where a j ∈Rn and ω j is a rotation.
Let u j := uφ j. Then u = ∑ j u j and for s ∈ [−1,1] we have the following definition
of the Bessel potential norm on the boundary,

‖u‖2
Hs(∂T ) ≡∑

j
‖u j(κ

(−1)
j (·,ζ j(·)))

√
1+ |∇ζ j(·)|2 ‖2

Hs(Rn−1) , (18.5)

We recall that Hs coincide with the Sobolev–Slobodetskii spaces W s
2 for any non-

negative s. Replacing Hs with hs or W s
2 in (18.5), we arrive at definitions of the

norms in hs(∂T ) and W s
2 (∂T ), respectively, in terms of their counterparts on Rn−1.

The same argument is valid, of course, if we replace ∂T with ∂Tε . This implies an
extension of the equality (18.2) to T and Tε ,
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‖u‖′2W s
2 (T )

= as,n−1‖u‖2
hs(T ), ‖u‖′2W s

2 (Tε )
= as,n−1‖u‖2

hs(Tε )
, (18.6)

where as,n−1 is a number still depending only on s and n− 1, which is finite and
positive for any s ∈ (0,1).

Let v̂(ε−1·)(η) :=
∫
Rm

v(ε−1x)e−i2πη ·x dx, v̂(εη) :=
∫
Rm

v(y)e−i2πεη ·y dy. Then,

changing the variables, we evidently have,

v̂(ε−1·)(η) = ε
mv̂(εη), v̂(ε·)(η) = ε

−mv̂(ε−1
η), ∀η ∈ Rm . (18.7)

We will employ these relations for m = n and m = n−1.
Let ε ∈ (0,∞). If α ∈ R, and v ∈ hα(Rm), then the substitution η̄ = εη gives

‖v(ε−1·)‖2
hα (Rm) =

∫
Rm
|v̂(ε−1·)(η)|2|η |2α dη = ε

2m
∫
Rm
|v̂(εη)|2|η |2α dη

= ε
m−2α

∫
Rm
|v̂(η̄)|2|η̄ |2α dη̄ = ε

m−2α‖v‖2
hα (Rm). (18.8)

Replacing ε with 1/ε we obtain ‖v(ε·)‖2
hα (Rm) = ε−m+2α‖v‖2

hα (Rm).

Definition 1. For s ∈ R, let us introduce the following ε-dependent norm in the
Bessel potential space Hs(Rm),

‖φ‖2
Hs

ε (Rm) :=
∫
Rm

[ρ(εη)]2s|φ̂(η)|2 dη ,

where ρ(εη) = (1+ |εη |2)1/2, ε 6= 0.
For a domain Ω ⊂Rm, this norm generates the corresponding ε-dependent norm

in the space Hs(Ω), ‖φ‖2
Hs

ε (Ω) := infΦ∈Hs(Rm):rΩ Φ=φ ‖Φ‖2
Hs

ε (Rm), s ∈ R.

It is easy to verify that due to the first relation in (18.7),

‖φ(ε−1·)‖2
Hs

ε (Rm) = ε
m‖φ‖2

Hs(Rm). (18.9)

Recall that the volume of the unite cell Y is |Y |= 1. Let us provide the following
two definitions and two propositions from [CDDGZ12].

Definition 2. Let p ∈ [1,+∞] and φ be Lebesgue-measurable on Ω̂ ∗ε and extended
by zero in Ω ∗ε \ Ω̂ ∗ε . The unfolding operator Tε from Lp(Ω̂

∗
ε ) into Lp(Ω ×Y ∗) is

defined by {
Tε(φ)(x,y) = φ(ε[x/ε]+ εy) for a.e. (x,y) ∈ Ω̂ε ×Y ∗,

Tε(φ)(x,y) = 0 for a.e. (x,y) ∈Λε ×Y ∗.

Proposition 1. Let p ∈ [1,+∞].
(i) If φ ∈ Lp(Ω

∗
ε ) then ‖Tε(φ)‖Lp(Ω×Y ∗) = ‖1Ω̂∗ε

φ‖Lp(Ω∗ε ) ≤ ‖φ‖Lp(Ω∗ε ).

(ii) If φ ∈W 1
p (Ω

∗
ε ) then ∇yTε(φ)(x,y) = εTε(∇φ)(x,y) for a.e. (x,y) ∈ Ω ×Y ∗
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and ‖∇yTε(φ)‖Lp(Ω×Y ∗) = ε‖1
Ω̂∗ε

∇φ‖Lp(Ω∗ε ).

Here 1
Ω̂∗ε

is the characteristic function of the set Ω̂ ∗ε .

Definition 3. Let p ∈ [1,+∞]. The operator T b
ε from Lp(∂Tε) into Lp(Ω × ∂T ) is

defined by{
T b

ε (φ)(x,y) = φ(ε[x/ε]+ εy) for a.e. (x,y) ∈ Ω̂ε ×∂T,

T b
ε (φ)(x,y) = 0 for a.e. (x,y) ∈Λε ×∂T.

, ∀φ ∈ Lp(∂Tε).

Proposition 2. Let p ∈ [1,+∞] and φ ∈ Lp(∂Tε). Then∫
Ω×∂T

T b
ε (φ)(x,y)dxdσy = ε

∫
∂Tε

φ(x)dσx, ‖T b
ε (φ)‖Lp(Ω×∂T ) = ε

1/p‖φ‖Lp(∂Tε ).

18.3 Rescaling norms on oscillating Lipschitz manifold

Definition 4. Similar to (18.5), we will employ the following norms on ∂Tε =
∪ξ∈Ξε

(εξ + ε∂T ),

‖u‖2
hα (∂Tε )

:= ∑
ξ∈Ξε

∑
j
‖uε,ξ , j(κ

(−1)
ε,ξ , j(·,ζε,ξ , j(·)))

√
1+ |∇ζε,ξ , j(·)|2 ‖2

hα (Rn−1),

‖u‖2
Hα

ε (∂Tε )
:= ∑

ξ∈Ξε

∑
j
‖uε,ξ , j(κ

(−1)
ε,ξ , j(·,ζε,ξ , j(·)))

√
1+ |∇ζε,ξ , j(·)|2 ‖2

Hα
ε (Rn−1).

(18.10)

Is is evident that the norms ‖ · ‖Hs
ε (∂T ) and ‖ · ‖Hs(∂T ) are equivalent if ε 6= 0,

although with the equivalence inequality constants depending on ε .
In Definition 4, uε, j(x) := u(x)φε, j(x), while φε, j, κε, j, ζε, j are some periodic

families of partitions of unity, local rigid rotations and local Lipschitz hypographs.
To this end, we can exploit the families φ j, κ j, ζ j, associated with ∂T , and set

φε, j(x) := φ j ({x/ε}) , ζε, j(x) := εζ j ({x/ε}) .

where, as before, {·} denotes the fractional part of the vector (components). More-
over, if κ j(x) = ω j(x−a j), we also set κε, j(x) := εω j ({x/ε}−a j) . Note that

x = κ
(−1)
ε,ξ , j(x̄) = ε

[
ω

(−1)
j (x̄/ε)+a j

]
+ εξ = εκ

(−1)
j (x̄/ε)+ εξ .

As a consequence,

κ
(−1)
ε,ξ , j

(
x′,ζε, j(x′)

)
= ε

[
κ
(−1)
j

(
x′/ε,

1
ε

εζ j(x′/ε)
)
+ξ

]
= εξ + εκ

(−1)
j

(
x′/ε,ζ j(x′/ε)

)
.
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Moreover,

φε, j

(
κ
(−1)
ε,ξ , j

(
x′,ζε, j(x′)

))
= φε, j

(
εξ + εκ

(−1)
j

(
x′/ε,ζ j(x′/ε)

))
= φ j

(
κ
(−1)
j

(
x′/ε,ζ j(x′/ε)

))
.

Finally,
√

1+ |∇ζε, j(x′)|2 =
√

1+ ε2 1
ε2 |∇ȳ′ζ j(x′/ε)|2 =

√
1+ |∇ȳ′ζ j(x′/ε)|2 .

Let us return to the geometric setting from Sec. 18.1 and prove the following
proposition.

Theorem 1. Let u ∈ Hα(∂Tε), −1≤ α ≤ 1. Then

‖u‖2
hα (∂Tε )

= ε
−1−2α‖T b

ε (u)‖2
L2(Ω ,hα (∂T )) := ε

−1−2α

∫
Ω

‖T b
ε (u)(x, ·)‖2

hα (∂T ) dx .

(18.11)

Proof. By (18.8) and taking into account that |εY |= εn, we obtain

∑
j
‖uε, j(κ

(−1)
ε,ξ , j(·,ζε, j(·)))

√
1+ |∇ζε, j(·)|2 ‖2

hα (Rn−1)

=∑
j
‖u
(

εξ + εκ
(−1)
j (·/ε,ζ j(·/ε))

)
φ j

(
κ
(−1)
j (·/ε,ζ j(·/ε))

)
×
√

1+ |∇ζ j(·/ε)|2 ‖2
hα (Rn−1)

=∑
j

ε
n−1−2α‖u

(
εξ + εκ

(−1)
j (·,ζ j(·))

)
φ j

(
κ
(−1)
j (·,ζ j(·))

)√
1+ |∇ζ j(·)|2 ‖2

hα (Rn−1)

=ε
n−1−2α‖u(εξ + ε·)‖2

hα (∂T ) =
εn−1−2α

|εY |

∫
ε(ξ+Y )

‖u(εbx/εc+ ε·)‖2
hα (∂T ) dx

=ε
−1−2α

∫
ε(ξ+Y )

‖T b
ε (u)(x, ·)‖2

hα (∂T ) dx.

Finally, summing up in ξ ∈ Ξε , and taking into account that T b
ε (u)(x,y) = 0 at

x ∈Λε = Ω \ Ω̂ε , we obtain (18.11). ut

Theorem 2. Let u ∈ Hα(∂Tε), −1≤ α ≤ 1. Then

‖u‖2
Hα

ε (∂Tε )
= ε

−1‖T b
ε (u)‖2

L2(Ω ,Hα (∂T )) . (18.12)

Proof. We will follow the same pattern as in the proof of Theorem 1. By (18.9),
(18.10) and taking into account that |εY |= εn, we obtain

∑
j
‖uε, j(κ

(−1)
ε,ξ , j(·,ζε, j(·)))

√
1+ |∇ζε, j(·)|2 ‖2

Hα
ε (Rn−1)

=∑
j
‖u
(

εξ + εκ
(−1)
j (·/ε,ζ j(·/ε))

)
φ j

(
κ
(−1)
j (·/ε,ζ j(·/ε))

)
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×
√

1+ |∇ζ j(·/ε)|2 ‖2
Hα

ε (Rn−1)

=∑
j

ε
n−1‖u

(
εξ + εκ

(−1)
j (·,ζ j(·))

)
φ j

(
κ
(−1)
j (·,ζ j(·))

)√
1+ |∇ζ j(·)|2 ‖2

Hα (Rn−1)

=ε
n−1‖u(εξ + ε·)‖2

Hα (∂T ) =
εn−1

|εY |

∫
ε(ξ+Y )

‖u(εbx/εc+ ε·)‖2
Hα (∂T ) dx

=ε
−1
∫

ε(ξ+Y )
‖T b

ε (u)(x, ·)‖2
Hα (∂T ) dx.

Finally, summing up in ξ ∈ Ξε , and again taking into account that T b
ε (u)(x,y) = 0

at x ∈Λε = Ω \ Ω̂ε , we obtain (18.12). ut

Remark 1. Rescaling (18.12) coincides with (18.9), i.e., passing from the hyperplane
to the Lipschitz boundaries and rescaling the parametrization and its Jacobian does
not influence the order of the norm rescaling.

Let us now obtain some inequalities for standard norms.

Theorem 3. Let u ∈Hα(∂Tε). For α ∈ [0,1], the following norm equivalence holds

2α−1
ε
−1
[
‖T b

ε (u)‖2
L2(Ω×∂T )+ ε

−2α‖T b
ε (u)(x, ·)‖2

L2(Ω ,hα (∂T ))

]
≤

‖u‖2
Hα (∂Tε )

≤ ε
−1
[
‖T b

ε (u)‖2
L2(Ω×∂T )+ ε

−2α‖T b
ε (u)(x, ·)‖2

L2(Ω ,hα (∂T ))

]
.

Proof. Owing to (18.4), for α ∈ [0,1],

2α−1[‖u‖2
L2(∂Tε )

+‖u‖2
hα (∂Tε )

] ≤ ‖u‖2
Hα (∂Tε )

≤ ‖u‖2
L2(∂Tε )

+‖u‖2
hα (∂Tε )

.

This gives the equivalence of the norms. It suffices to note that by Proposition 2,

‖u‖2
L2(∂Tε )

= ε
−1
∫

Ω

‖T b
ε (u)(x, ·)‖2

L2(∂T ) dx = ε
−1‖T b

ε (u)‖2
L2(Ω×∂T ) ,

and by Theorem 1,

‖u‖2
hα (∂Tε )

= ε
−1−2α

∫
Ω

‖T b
ε (u)(x, ·)‖2

hα (∂T ) dx = ε
−1−2α‖T b

ε (u)‖2
L2(Ω ,hα (∂T )) .

ut

Definition 5. On pair with Definition 1, we also define the following ε-dependent
norms equivalent to the standard ones for the Sobolev-Slobodetskii spaces W s

2 (Ω̂
∗
ε ),

s≥ 0. If s is integer, then let

‖v‖2
W s

2,ε (Ω̂
∗
ε )

:= ∑
|α|≤s

ε
2|α|‖∂ α v‖2

L2(Ω̂
∗
ε )
.

If s is not integer, then let
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‖v‖2
W s

2,ε (Ω̂
∗
ε )

:= ∑
|α|≤[s]

ε
2|α|‖∂ α v‖2

L2(Ω̂
∗
ε )
+ ε

2s‖v‖′2
W s

2 (Ω̂
∗
ε )

Similarly, we define the equivalent ε-dependent norm in the space W s
2 (∂Tε), s ∈

(0,1), cf. [GrOr18],

‖v‖2
W s

2,ε (∂Tε )
:= ‖v‖2

L2(∂Tε )
+ ε

2s‖v‖′2W s
2 (∂Tε )

. (18.13)

Note that the semi-norm in (18.13) can be expressed as ‖v‖′2W α
2 (∂Tε )

:= aα‖v‖2
hα (∂Tε )

with the constant aα depending on α but not on ε , cf. (18.3).
The following assertion is an immediate consequence of Theorem 1, Proposi-

tion 2 and relations (18.6).

Corollary 1. Let u ∈ Hα(∂Tε), α ∈ (0,1). Then

‖u‖2
W α

2 (∂Tε )
= ε

−1
[∫

Ω

‖T b
ε (u)(x, ·)‖2

L2(∂T ) dx+ ε
−2α

∫
Ω

‖T b
ε (u)(x, ·)‖′2W α

2 (∂T ) dx
]
,

and in terms of the ε-dependent norm,

||u||2W α
2,ε (∂Tε )

= ε
−1‖T b

ε u‖2
L2(Ω ,W α

2 (∂T )). (18.14)

Remark 2. By [GrOr18, Lem. 4.1], equality (18.14) is also valid for negative α in
the sense of the dual to the Sobolev-Slobodetskii spaces.

18.4 Unfolding in Sobolev-Slobodetskii spaces in perforated
domains

Theorem 4.
(i) If φ ∈W s

2 (Ω̂
∗
ε ), 0 < s < 1, then

‖Tε(φ)‖′2L2(Ω ,W s
2 (Y
∗)) ≤ ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )
, (18.15)

‖Tε(φ)‖2
L2(Ω ,W s

2 (Y
∗)) ≤ ‖φ‖

2
L2(Ω̂

∗
ε )
+ ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )
= ‖φ‖2

W s
2,ε (Ω̂

∗
ε )
, (18.16)

where ‖Tε(φ)‖′2L2(Ω ,W s
2 (Y
∗)) :=

∫
Ω
‖Tε(φ)(x, ·)‖′2W s

2 (Y
∗) dx.

(ii) If φ ∈W 1
2 (Ω̂

∗
ε ), i.e., s = 1, then

‖∇Tε(φ)‖2
L2(Ω ,L2(Y ∗))

= ε
2‖∇φ‖2

Ls
2(Ω̂

∗
ε )
, (18.17)

‖Tε(φ)‖2
L2(Ω ,W 1

2 (Y
∗)) = ‖φ‖

2
L2(Ω̂

∗
ε )
+ ε

2‖∇φ‖2
L2(Ω̂

∗
ε )
= ‖φ‖2

W 1
2,ε (Ω̂

∗
ε )
. (18.18)

(iii) If φ ∈W s
2 (Ω̂

∗
ε ), 1 < s < 2, then (18.15) still holds and
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‖Tε(φ)‖2
L2(Ω ,W s

2 (Y
∗)) ≤ ‖φ‖

2
L2(Ω̂

∗
ε )
+ ε

2‖∇φ‖2
L2(Ω̂

∗
ε )
+ ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )

= ‖φ‖2
W s

2,ε (Ω̂
∗
ε )
. (18.19)

(iv) If φ ∈W s
2 (Ω̂

∗
ε ), 0 < s < 1/2, then

ε
2s‖φ‖′2

W s
2 (Ω̂

∗
ε )
≤C1‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)), (18.20)

‖φ‖2
L2(Ω̂

∗
ε )
+ ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )
= ‖φ‖2

W s
2,ε (Ω̂

∗
ε )
≤C2‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)), (18.21)

where C1 and C2 are independent on ε and φ .
(v) If φ ∈W s

2 (Ω̂
∗
ε ), 1 < s < 3/2, then (18.20) still holds and

‖φ‖2
L2(Ω̂

∗
ε )
+ ε

2‖∇φ‖2
L2(Ω̂

∗
ε )
+ ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )

= ‖φ‖2
W s

2,ε (Ω̂
∗
ε )
≤C3‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)), (18.22)

where C3 is independent on ε and φ .

Proof. (i) Let s ∈ (0,1). Then

‖φ‖′2
W s

2 (Ω̂
∗
ε )
=
∫

Ω̂∗ε

∫
Ω̂∗ε

|φ(x)−φ(y)|2

|x− y|n+2s dxdy

= ∑
ξ1∈Ξε

∑
ξ2∈Ξε

∫
ε(ξ1+Y ∗)

∫
ε(ξ2+Y ∗)

|φ(x)−φ(y)|2

|x− y|n+2s dxdy

≥ ∑
ξ∈Ξε

∫
ε(ξ+Y ∗)

∫
ε(ξ+Y ∗)

|φ(x)−φ(y)|2

|x− y|n+2s dxdy = ∑
ξ∈Ξε

‖φ‖′2W s
2 (εξ+εY ∗)

= ∑
ξ∈Ξε

ε
n−2s‖φ(εξ + ε·)‖′2W s

2 (Y
∗) = ∑

ξ∈Ξε

1
|Y |

ε
−2s‖φ(εξ + ε·)‖′2W s

2 (Y
∗)

∫
εξ+εY

dx

= ∑
ξ∈Ξε

1
|Y |

ε
−2s
∫

εξ+εY
‖φ(ε[x/ε]+ ε·)‖′2W s

2 (Y
∗) dx

=
1
|Y |

ε
−2s
∫

Ω

‖Tε(φ)(x, ·)‖′2W s
2 (Y
∗) dx .

Since |Y|= 1, we obtain (18.15).
Taking into account that ‖φ‖2

L2(Ω̂
∗
ε )

= ‖Tε(φ)‖2
L2(Ω×Y ∗) by item (i) of Proposi-

tion 1, the definition ‖u‖2
W s

2 (Ω
′) := ‖u‖2

L2(Ω ′)
+ ‖u‖′2W s

2 (Ω
′), employed with Ω ′ = Ω̂ ∗ε

and Ω ′ = Y ∗, implies (18.16).
(ii) Equalities (18.17) and (18.18) for the case s = 1 immediately follow from

Proposition 1.
(iii) Let now s ∈ (1,2) and µ = s− 1. Then by (18.1), item (i) of Proposition 1

and inequality (18.15) with φ replaced by ∇φ and s by µ , we obtain
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‖Tε(φ)‖
′2
L2(Ω ,W s

2 (Y
∗)) = ‖∇Tε(φ)‖

′2
L2(Ω ,W µ

2 (Y ∗))

= ‖εTε(∇φ)‖′2L2(Ω ,W µ

2 (Y ∗)) ≤ ε
2µ

ε
2‖∇φ‖′2

W µ

2 (Ω̂∗ε )
= ε

2s‖φ‖′2
W s

2 (Ω̂
∗
ε )
,

which implies inequality (18.15) also for s ∈ (1,2).
Definition of the Sobolev-Slobodetskii space ‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)) for 1 < s < 2

together with relations (18.18) and (18.15) imply (18.19).
(iv) Let s ∈ (0,1/2). Then

‖φ‖′2
W s

2 (Ω̂
∗
ε )
=
∫

Ω̂∗ε

∫
Ω̂∗ε

|φ(x)−φ(y)|2

|x− y|n+2s dxdy

= ∑
ξ1∈Ξε

∑
ξ2∈Ξε

∫
ε(ξ1+Y ∗)

∫
ε(ξ2+Y ∗)

|φ(x)−φ(y)|2

|x− y|n+2s dxdy

= ∑
ξ1∈Ξε

∑
ξ2∈Ξε

∫
Y ∗

∫
Y ∗

|φ(εξ1 + εq)−φ(εξ2 + εt)|2

εn+2s|ξ1 +q−ξ2− t|n+2s ε
2ndqdt

≤ ε
n−2s

∑
ξ∈Ξε

∫
Y ∗

∫
Y ∗

|φ(εξ + εq)−φ(εξ + εt)|2

|ξ +q−ξ − t|n+2s dqdt

+2ε
n−2s

∑
ξ1∈Ξε

∫
Y ∗
|φ(εξ1 + εq)|2 ∑

ξ2∈Ξε

ξ2 6=ξ1

∫
Y ∗

1
|ξ1 +q−ξ2− t|n+2s dt dq

+2ε
n−2s

∑
ξ2∈Ξε

∫
Y ∗
|φ(εξ2 + εt)|2 ∑

ξ1∈Ξε

ξ1 6=ξ2

∫
Y ∗

1
|ξ1 +q−ξ2− t|n+2s dqdt

= ε
n−2s

∑
ξ∈Ξε

‖φ(εξ + ε·)‖′2W s
2 (Y
∗)

+4ε
n−2s

∑
ξ1∈Ξε

∫
Y ∗
|φ(εξ1 + εq)|2

 ∑
ξ2∈Ξε

ξ2 6=ξ1

∫
Y ∗

dt
|ξ1 +q−ξ2− t|n+2s

dq

≤ ε
n−2s 1
|εY |

(
‖Tε(φ)‖

′

L2(Ω ,W s
2 (Y
∗))

)2

+4Csε
n−2s

∑
ξ1∈Ξε

∫
Y ∗
|φ(εξ1 + εq)|2dist(ξ1 +q,∂Yξ1

)−2sdq.

Here, similar to the proof of Theorem 3.33 in [McL00], we used the estimate

∑
ξ2∈Ξε

ξ2 6=ξ1

∫
Y ∗

dt
|ξ1 +q−ξ2− t|n+2s ≤

∫
Rn\Yξ1

dτ

|ξ1 +q− τ|n+2s ≤Csdist(ξ1 +q,∂Yξ1
)−2s,
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where Cs is a constant and Yξ1
:= ξ1+Y . Applying now Lemma 3.32 from [McL00],

we obtain

‖φ‖′2
W s

2 (Ω̂
∗
ε )
≤ ε

−2s 1
|Y |
‖Tε(φ)‖

′2
L2(Ω ,W s

2 (Y
∗))

+4Csε
n−2s

∑
ξ1∈Ξε

CY ∗‖φ(εξ1 + ε·)‖2
W s

2 (Y
∗)

= ε
−2s 1
|Y |
‖Tε(φ)‖

′2
L2(Ω ,W s

2 (Y
∗))+4CsCY ∗ε

−2s 1
|Y |
‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗))

≤C1ε
−2s 1
|Y |
‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)),

where CY ∗ and hence C1 do not depend on ε . Since |Y|= 1, we obtain (18.20).
Taking into account that ‖φ‖2

L2(Ω̂
∗
ε )

= ‖Tε(φ)‖2
L2(Ω×Y ∗) by item (i) of Proposi-

tion 1, the definition ‖u‖2
W s

2 (Ω
′) := ‖u‖2

L2(Ω ′)
+ ‖u‖′2W s

2 (Ω
′), employed with Ω ′ = Ω̂ ∗ε

and Ω ′ = Y ∗, implies (18.21).
(v) Let now s ∈ (1,3/2) and, similar to the proof of item (iii), µ = s−1. Then by

(18.1), item (i) of Proposition 1 and inequality (18.20) with φ replaced by ∇φ and s
by µ , we obtain

ε
2s‖φ‖′2

W s
2 (Ω̂

∗
ε )
= ε

2µ+2‖∇φ‖′2
W µ

2 (Ω̂∗ε )
≤C1ε

2‖Tε(∇φ)‖2
L2(Ω ,W µ

2 (Y ∗))

=C1‖∇Tε(φ)‖2
L2(Ω ,W µ

2 (Y ∗)) ≤C1‖Tε(φ)‖2
L2(Ω ,W s

2 (Y
∗))

which implies inequality (18.20) also for s ∈ (1,3/2).
Definition of the Sobolev-Slobodetskii space ‖Tε(φ)‖2

L2(Ω ,W s
2 (Y
∗)) for 1 < s <

3/2 together with relations (18.18) and (18.20) imply (18.22). ut

18.5 Rescaling of the Trace Theorem in W s
2

For u ∈ W s
2 (Ω

∗
ε ), s ∈ (1/2,3/2), the trace operator (in the Gagliardo sense) γ :

W s
2 (Ω

∗
ε )→W s−1/2

2 (∂Ω ∗ε ), is continuous, see e.g. [McL00].
Now, we can rewrite the trace theorem using the scaling estimates from Theorems

3 and 4.

Theorem 5. Let u ∈W s
2 (Ω̂

∗
ε ), s ∈ (1/2,3/2), ε > 0.

(i) If s ∈ (1/2,1), then

ε

(
‖γ

∂Tε
u‖2

L2(∂Tε )
+ ε

2s−1‖γ
∂Tε

u‖′2
W s−1/2

2 (∂Tε )

)
≤C

(
‖u‖2

L2(Ω̂
∗
ε )
+ ε

2s‖u‖′2
W s

2 (Ω̂
∗
ε )

)
. (18.23)
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(ii) If s = 1, then

ε

(
‖γ

∂Tε
u‖2

L2(∂Tε )
+ ε‖γ

∂Tε
u‖′2

W 1/2
2 (∂Tε )

)
≤C

(
‖u‖2

L2(Ω̂
∗
ε )
+ ε

2‖∇u‖2
L2(Ω̂

∗
ε )

)
.

(18.24)
(iii) If s ∈ (1,3/2), then

ε

(
‖γ

∂Tε
u‖2

L2(∂Tε )
+ ε

2s−1‖γ
∂Tε

u‖′2
W s−1/2

2 (∂Tε )

)
≤C

(
‖u‖2

L2(Ω̂
∗
ε )
+ ε

2‖∇u‖2
L2(Ω̂

∗
ε )
+ ε

2s‖u‖′2
W s

2 (Ω̂
∗
ε )

)
. (18.25)

In all three cases the constant C is independent of u and ε and, using the ε-
dependent norms, they can be written in the same form,

ε‖γ
∂Tε

u‖2
W s−1/2

2,ε (∂Tε )
≤C‖u‖2

W s
2,ε (Ω̂

∗
ε )
, 1/2 < s < 3/2.

Proof. If 1/2 < s < 3/2, then by the trace theorem in Y ∗, there exists a constant C
independent of u and ε , such that

‖γ
∂T Tε(u)(x, ·)‖2

L2(∂T )+‖γ∂T Tε(u)(x, ·)‖′2W s−1/2
2 (∂T )

≤C
(
‖Tε(u)(x, ·)‖2

L2(Y ∗)
+‖Tε(u)(x, ·)‖′2W s

2 (Y
∗)

)
.

Integrating in x, we have

‖γ
∂T Tε(u)‖2

L2(Ω ,W s−1/2
2 (∂T ))

≤C‖Tε(u)‖2
L2(Ω ,W s

2 (Y
∗)). (18.26)

Let first 1/2 < s < 1. Employing inequality (18.16) in the right hand hand side of
(18.26) and, cf. (18.14), the relation

‖γ
∂T Tε(u)‖2

L2(Ω ,W s−1/2
2 (∂T ))

= ‖T b
ε (γ

∂Tε
u)‖2

L2(Ω ,W s−1/2
2 (∂T ))

= ε

(
‖γ

∂Tε
u‖2

L2(∂Tε )
+ ε

2s−1‖γ
∂Tε

u‖′2
W s−1/2

2 (∂Tε )

)
in the left hand side, we arrive at (18.23).

Similar reasoning with relations (18.18) and (18.19) instead of (18.16) lead to
(18.24) and (18.25), respectively. ut

Note that the inequality similar to (18.24), for s= 1, was first given in [GaKNR14,
Lem.3.1(iv)], and appears as an auxiliary result in [GrOr18].
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