Chapter 18

Rescaling and Trace Operators in Fractional Sobolev Spaces on Bounded Lipschitz Domains with Periodic Structure

S. E. Mikhailov, P. Musolino and J. Orlik

18.1 Introduction

We develop tools, which can be useful for elliptic boundary value problems on domains with a periodic structure with holes involving some linear or non-linear Robin-type conditions on the oscillating interface ([GrPeSh12], [KKG17], [GaNRK16]), or contact problems (see [GaMe18], [GrOr18]).
This paper considers rescaling of functions from the Bessel potential, Riesz potential, and Sobolev-Slobodetskii spaces on the boundary or in the domain and also rescaling of the boundary trace operator.

Denote by Ω a bounded domain in \mathbb{R}^{n} with Lipschitz boundary. Let $Y:=(0,1)^{n}$ be the reference cell. We denote by T a hole, that is an open set, which closure is strictly included in Y and let $Y^{*}:=Y \backslash \bar{T}$ (see Figure 1). Let ∂T be the Lipschitz boundary of T and v be the outward to Y^{*} unit normal vector on the boundary ∂T. Recall, e.g., from [CDDGZ12] that in the periodic setting, every point $z \in \mathbb{R}^{n}$ can be written as $z=[z]+\{z\}, \quad[z] \in \mathbb{Z}^{n}, \quad\{z\} \in Y$. Here the integer function [.] for a vector means the floor function $\lfloor\cdot\rfloor$ for each of its components. Denote $\Xi_{\varepsilon}=\left\{\xi \in \mathbb{Z}^{n} \mid \varepsilon \xi+\varepsilon Y \subset \Omega\right\}, \widehat{\Omega}_{\varepsilon}=$ interior $\left\{\bigcup_{\xi \in \Xi_{\varepsilon}}(\varepsilon \xi+\varepsilon \bar{Y})\right\}, \Lambda_{\varepsilon}=\Omega \backslash \widehat{\Omega}_{\varepsilon}$, i.e., the set Λ_{ε} contains the parts of the cells intersecting the boundary $\partial \Omega$.

Let us introduce the notations for the unions of all holes in the interior cells, $T_{\varepsilon}:=$ $\left\{x \in \widehat{\Omega}_{\varepsilon} \left\lvert\,\left\{\frac{x}{\varepsilon}\right\} \in T\right.\right\}$, for the hole boundaries, $\partial T_{\varepsilon}:=\left\{x \in \widehat{\Omega}_{\varepsilon} \left\lvert\,\left\{\frac{x}{\varepsilon}\right\} \in \partial T\right.\right\}$, in $\widehat{\Omega}_{\varepsilon}$ and for the remaining part, $\widehat{\Omega}_{\varepsilon}^{*}=\widehat{\Omega}_{\varepsilon} \backslash \overline{T_{\varepsilon}}$. Let also $\Omega_{\varepsilon}^{*}=\Omega \backslash \overline{T_{\varepsilon}}$.

[^0]

Fig. 18.1 Bounded domain with periodically distributed holes.

18.2 Function spaces

For an arbitrary non-empty open subspace Ω^{\prime} of \mathbb{R}^{m}, let $W_{2}^{s}\left(\Omega^{\prime}\right), s \geq 0$ denote the Sobolev-Slobodetskii space, cf. e.g., [McL00]. If s is an integer, the space coincides with the Sobolev space and

$$
\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}:=\sum_{|\alpha| \leq s} \int_{\Omega^{\prime}}\left|\partial^{\alpha} u(x)\right|^{2} d x .
$$

If s is not an integer,

$$
\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}:=\|u\|_{W_{2}^{[s]}\left(\Omega^{\prime}\right)}^{2}+\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2},
$$

and the Slobodetskii seminorm is defined as

$$
\begin{equation*}
\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}:=\sum_{|\alpha|=[s]} \int_{\Omega^{\prime}} \int_{\Omega^{\prime}} \frac{\left|\partial^{\alpha} u(x)-\partial^{\alpha} u(y)\right|^{2}}{|x-y|^{m+2 \mu}} d x d y, \quad \mu:=s-[s] . \tag{18.1}
\end{equation*}
$$

Let $S\left(\mathbb{R}^{m}\right)$ be the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable functions on \mathbb{R}^{m}. Let $S^{*}\left(\mathbb{R}^{m}\right)$ denote the space of sequentiallycontinuous linear functionals on $S\left(\mathbb{R}^{m}\right)$ (temperate distributions). Let us denote by

$$
\hat{u}(\eta) \equiv \mathscr{F} u(\eta):=\int_{\mathbb{R}^{m}} u(x) e^{-i 2 \pi \eta \cdot x} d x, \quad u(x) \equiv \mathscr{F}^{-1} \hat{u}(x):=\int_{\mathbb{R}^{m}} \hat{u}(\eta) e^{i 2 \pi \eta \cdot x} d \eta
$$

the direct and inverse Fourier transforms, respectively. These definitions, applicable to functions from $L_{1}\left(\mathbb{R}^{m}\right)$, are easily extended to $S^{*}\left(\mathbb{R}^{m}\right)$, see e.g. [McL00, p. 72].

Let us denote $\rho(\eta):=\left(1+|\eta|^{2}\right)^{1 / 2}$. For $s \in \mathbb{R}$, we define the Bessel potential operator of order $s, J^{s}: S\left(\mathbb{R}^{m}\right) \rightarrow S\left(\mathbb{R}^{m}\right)$,

$$
J^{s} u(x):=\mathscr{F}^{-1}\left(\rho^{s} \mathscr{F} u\right)(x)=\int_{\mathbb{R}^{m}}\left(1+|\eta|^{2}\right)^{s / 2} \hat{u}(\eta) e^{i 2 \pi \eta \cdot x} d \eta \text { for } x \in \mathbb{R}^{m}
$$

which is extended, in the distribution sense, to the operator $J^{s}: S^{*}\left(\mathbb{R}^{m}\right) \rightarrow S^{*}\left(\mathbb{R}^{m}\right)$.
Let $s \in \mathbb{R}, H^{s}\left(\mathbb{R}^{m}\right)=\left\{u \in S^{*}\left(\mathbb{R}^{m}\right): J^{s} u(x) \in L_{2}\left(\mathbb{R}^{m}\right)\right\}$ denote the Bessel potential space equipped with the norm $\|u\|_{H^{s}\left(\mathbb{R}^{m}\right)}=\left\|J^{s} u\right\|_{L_{2}\left(\mathbb{R}^{m}\right)}=\left\|\rho^{s} \hat{u}\right\|_{L_{2}\left(\mathbb{R}^{m}\right)}$, cf., e.g, [McL00, p. 75-76].

Similarly, let us define the Riesz potential operator

$$
\mathscr{J}^{s} u(x):=\mathscr{F}^{-1}\left(|\eta|^{s} \mathscr{F} u\right)(x):=\int_{\mathbb{R}^{m}}|\eta|^{s} \hat{u}(\eta) e^{i 2 \pi \eta \cdot x} d \eta \quad \text { for } x \in \mathbb{R}^{m}
$$

Let $h^{s}\left(\mathbb{R}^{m}\right)$ denotes the Riesz potential space, i.e., the completion in the norm $\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}=\left\|\mathscr{J}^{s} u\right\|_{L_{2}\left(\mathbb{R}^{m}\right)}=\left\||\eta|^{s} \hat{u}\right\|_{L_{2}\left(\mathbb{R}^{m}\right)}$ of the space of infinitely smooth functions having compact supports in \mathbb{R}^{m}.

If $s>0$, then $H^{s}\left(\mathbb{R}^{m}\right) \subset h^{s}\left(\mathbb{R}^{m}\right)$ and $\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}$ is equivalent to the SobolevSlobodetskii semi-norm $\|u\|_{W_{2}^{s}\left(\mathbb{R}^{m}\right)}^{\prime}$, see, e.g., Theorem 4 in [Ma11, Section 10.1.2]. Particularly, if $0<s<1$, then

$$
\begin{equation*}
\|u\|_{W_{2}^{s}\left(\mathbb{R}^{m}\right)}^{\prime 2}=a_{s, m}\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}^{2}, \tag{18.2}
\end{equation*}
$$

where $a_{s, m}$ is a number depending only on s and m, which is finite and positive for any $s \in(0,1)$, see e.g. [McL00, Lemma 3.15], hence

$$
\begin{equation*}
\|u\|_{W_{2}^{s}\left(\mathbb{R}^{m}\right)}^{2}=\|u\|_{L_{2}\left(\mathbb{R}^{m}\right)}^{2}+\|u\|_{W_{2}^{s}\left(\mathbb{R}^{m}\right)}^{2}=\|u\|_{L_{2}\left(\mathbb{R}^{m}\right)}^{2}+a_{s, m}\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}^{2} \tag{18.3}
\end{equation*}
$$

On the other hand, from the inequality

$$
2^{s-1}\left(1+\psi^{s}\right) \leq(1+\psi)^{s} \leq 1+\psi^{s}, \quad \forall \psi \in(0, \infty), \quad s \in[0,1]
$$

we obtain the following norm equivalence inequalities for any $s \in[0,1]$,

$$
\begin{equation*}
2^{s-1}\left[\|u\|_{L_{2}\left(\mathbb{R}^{m}\right)}^{2}+\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}^{2}\right] \leq\|u\|_{H^{s}\left(\mathbb{R}^{m}\right)}^{2} \leq\|u\|_{L_{2}\left(\mathbb{R}^{m}\right)}^{2}+\|u\|_{h^{s}\left(\mathbb{R}^{m}\right)}^{2} \tag{18.4}
\end{equation*}
$$

For any non-empty open set $\Omega \subset \mathbb{R}^{m}, H^{s}(\Omega):=\left\{u=\left.U\right|_{\Omega}\right.$ for some $\left.U \in H^{s}\left(\mathbb{R}^{m}\right)\right\}$. This space is equipped with the norm $\|u\|_{H^{s}(\Omega)}=\inf _{\left.U\right|_{\Omega}=u, U \in H^{s}\left(\mathbb{R}^{m}\right)}\|U\|_{H^{s}\left(\mathbb{R}^{m}\right)}$. Also for the space $h^{s}(\Omega)$ we define the norm in the similar way, $\|u\|_{h^{s}(\Omega)}=$ $\inf _{\left.U\right|_{\Omega}=u, U \in h^{s}\left(\mathbb{R}^{m}\right)}\|U\|_{h^{s}\left(\mathbb{R}^{m}\right)}$. Moreover, one can prove that $h^{s}(\Omega)=H^{s}(\Omega)$ if the domain Ω is bounded and $-m / 2<s<m / 2$, cf. [Du77, Section 1.3].

We further follow the notations of [McL00, p. 98] for the definition of Bessel potential spaces on Lipschitz manifolds. Let ∂T be a Lipschitz boundary, and for a partition of unity $\left\{\phi_{j}\right\}, \partial T$ is locally a Lipschitz hypograph of some function ζ_{j} up to some rigid motion $\kappa_{j} \equiv \omega_{j}\left(\cdot-a_{j}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where $a_{j} \in \mathbb{R}^{n}$ and ω_{j} is a rotation. Let $u_{j}:=u \phi_{j}$. Then $u=\sum_{j} u_{j}$ and for $s \in[-1,1]$ we have the following definition of the Bessel potential norm on the boundary,

$$
\begin{equation*}
\|u\|_{H^{s}(\partial T)}^{2} \equiv \sum_{j}\left\|u_{j}\left(\kappa_{j}^{(-1)}\left(\cdot, \zeta_{j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{j}(\cdot)\right|^{2}}\right\|_{H^{s}\left(\mathbb{R}^{n-1}\right)}^{2} \tag{18.5}
\end{equation*}
$$

We recall that H^{s} coincide with the Sobolev-Slobodetskii spaces W_{2}^{s} for any nonnegative s. Replacing H^{s} with h^{s} or W_{2}^{s} in (18.5), we arrive at definitions of the norms in $h^{s}(\partial T)$ and $W_{2}^{s}(\partial T)$, respectively, in terms of their counterparts on \mathbb{R}^{n-1}. The same argument is valid, of course, if we replace ∂T with $\partial T_{\mathcal{\varepsilon}}$. This implies an extension of the equality (18.2) to T and T_{ε},

$$
\begin{equation*}
\|u\|_{W_{2}^{s}(T)}^{\prime 2}=a_{s, n-1}\|u\|_{h^{s}(T)}^{2}, \quad\|u\|_{W_{2}^{s}\left(T_{\varepsilon}\right)}^{2}=a_{s, n-1}\|u\|_{h^{s}\left(T_{\varepsilon}\right)}^{2} \tag{18.6}
\end{equation*}
$$

where $a_{s, n-1}$ is a number still depending only on s and $n-1$, which is finite and positive for any $s \in(0,1)$.

Let $\widehat{v\left(\varepsilon^{-1} \cdot\right)}(\eta):=\int_{\mathbb{R}^{m}} v\left(\varepsilon^{-1} x\right) e^{-i 2 \pi \eta \cdot x} d x, \hat{v}(\varepsilon \eta):=\int_{\mathbb{R}^{m}} v(y) e^{-i 2 \pi \varepsilon \eta \cdot y} d y$. Then, changing the variables, we evidently have,

$$
\begin{equation*}
\widehat{v\left(\varepsilon^{-1} \cdot\right)}(\eta)=\varepsilon^{m} \hat{v}(\varepsilon \eta), \quad \widehat{v(\varepsilon \cdot)}(\eta)=\varepsilon^{-m} \hat{v}\left(\varepsilon^{-1} \eta\right), \quad \forall \eta \in \mathbb{R}^{m} \tag{18.7}
\end{equation*}
$$

We will employ these relations for $m=n$ and $m=n-1$.
Let $\varepsilon \in(0, \infty)$. If $\alpha \in \mathbb{R}$, and $v \in h^{\alpha}\left(\mathbb{R}^{m}\right)$, then the substitution $\bar{\eta}=\varepsilon \eta$ gives

$$
\begin{align*}
\left\|v\left(\varepsilon^{-1} \cdot\right)\right\|_{h^{\alpha}\left(\mathbb{R}^{m}\right)}^{2} & \left.=\int_{\mathbb{R}^{m}} \mid \widehat{v\left(\varepsilon^{-1} \cdot\right.}\right)\left.(\eta)\right|^{2}|\eta|^{2 \alpha} d \eta=\varepsilon^{2 m} \int_{\mathbb{R}^{m}}|\hat{v}(\varepsilon \eta)|^{2}|\eta|^{2 \alpha} d \eta \\
& =\varepsilon^{m-2 \alpha} \int_{\mathbb{R}^{m}}|\hat{v}(\bar{\eta})|^{2}|\bar{\eta}|^{2 \alpha} d \bar{\eta}=\varepsilon^{m-2 \alpha}\|v\|_{h^{\alpha}\left(\mathbb{R}^{m}\right)}^{2} \tag{18.8}
\end{align*}
$$

Replacing ε with $1 / \varepsilon$ we obtain $\|v(\varepsilon \cdot)\|_{h^{\alpha}\left(\mathbb{R}^{m}\right)}^{2}=\varepsilon^{-m+2 \alpha}\|v\|_{h^{\alpha}\left(\mathbb{R}^{m}\right)}^{2}$.
Definition 1. For $s \in \mathbb{R}$, let us introduce the following ε-dependent norm in the Bessel potential space $H^{s}\left(\mathbb{R}^{m}\right)$,

$$
\|\phi\|_{H_{\varepsilon}^{s}\left(\mathbb{R}^{m}\right)}^{2}:=\int_{\mathbb{R}^{m}}[\rho(\varepsilon \eta)]^{2 s}|\hat{\phi}(\eta)|^{2} d \eta
$$

where $\rho(\varepsilon \eta)=\left(1+|\varepsilon \eta|^{2}\right)^{1 / 2}, \varepsilon \neq 0$.
For a domain $\Omega \subset \mathbb{R}^{m}$, this norm generates the corresponding ε-dependent norm in the space $H^{s}(\Omega),\|\phi\|_{H_{\varepsilon}^{s}(\Omega)}^{2}:=\inf _{\Phi \in H^{s}\left(\mathbb{R}^{m}\right): r_{\Omega} \Phi=\phi}\|\Phi\|_{H_{\varepsilon}^{s}\left(\mathbb{R}^{m}\right)}^{2}, s \in \mathbb{R}$.

It is easy to verify that due to the first relation in (18.7),

$$
\begin{equation*}
\left\|\phi\left(\varepsilon^{-1} \cdot\right)\right\|_{H_{\varepsilon}^{s}\left(\mathbb{R}^{m}\right)}^{2}=\varepsilon^{m}\|\phi\|_{H^{s}\left(\mathbb{R}^{m}\right)}^{2} \tag{18.9}
\end{equation*}
$$

Recall that the volume of the unite cell Y is $|Y|=1$. Let us provide the following two definitions and two propositions from [CDDGZ12].

Definition 2. Let $p \in[1,+\infty]$ and ϕ be Lebesgue-measurable on $\widehat{\Omega}_{\varepsilon}^{*}$ and extended by zero in $\Omega_{\varepsilon}^{*} \backslash \widehat{\Omega}_{\varepsilon}^{*}$. The unfolding operator $\mathscr{T}_{\varepsilon}$ from $L_{p}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)$ into $L_{p}\left(\Omega \times Y^{*}\right)$ is defined by

$$
\begin{cases}\mathscr{T}_{\varepsilon}(\phi)(x, y)=\phi(\varepsilon[x / \varepsilon]+\varepsilon y) & \text { for a.e. }(x, y) \in \widehat{\Omega}_{\varepsilon} \times Y^{*} \\ \mathscr{T}_{\varepsilon}(\phi)(x, y)=0 & \text { for a.e. }(x, y) \in \Lambda_{\varepsilon} \times Y^{*}\end{cases}
$$

Proposition 1. Let $p \in[1,+\infty]$.
(i) If $\phi \in L_{p}\left(\Omega_{\varepsilon}^{*}\right)$ then $\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{p}\left(\Omega \times Y^{*}\right)}=\left\|\mathbf{1}_{\widehat{\Omega}_{\varepsilon}^{*}} \phi\right\|_{L_{p}\left(\Omega_{\varepsilon}^{*}\right)} \leq\|\phi\|_{L_{p}\left(\Omega_{\varepsilon}^{*}\right)}$.
(ii) If $\phi \in W_{p}^{1}\left(\Omega_{\varepsilon}^{*}\right)$ then $\nabla_{y} \mathscr{T}_{\varepsilon}(\phi)(x, y)=\varepsilon \mathscr{T}_{\varepsilon}(\nabla \phi)(x, y)$ for a.e. $(x, y) \in \Omega \times Y^{*}$
and $\left\|\nabla_{y} \mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{p}\left(\Omega \times Y^{*}\right)}=\varepsilon\left\|\mathbf{1}_{\widehat{\Omega}_{\varepsilon}^{*}} \nabla \phi\right\|_{L_{p}\left(\Omega_{\varepsilon}^{*}\right)}$.
Here $\mathbf{1}_{\widehat{\Omega}_{\varepsilon}^{*}}$ is the characteristic function of the set $\widehat{\Omega}_{\varepsilon}^{*}$.
Definition 3. Let $p \in[1,+\infty]$. The operator $\mathscr{T}_{\varepsilon}^{b}$ from $L_{p}\left(\partial T_{\varepsilon}\right)$ into $L_{p}(\Omega \times \partial T)$ is defined by

$$
\left\{\begin{array}{ll}
\mathscr{T}_{\varepsilon}^{b}(\phi)(x, y)=\phi(\varepsilon[x / \varepsilon]+\varepsilon y) & \text { for a.e. }(x, y) \in \widehat{\Omega}_{\varepsilon} \times \partial T, \\
\mathscr{T}_{\varepsilon}^{b}(\phi)(x, y)=0 & \text { for a.e. }(x, y) \in \Lambda_{\varepsilon} \times \partial T .
\end{array} \quad \forall \phi \in L_{p}\left(\partial T_{\varepsilon}\right) .\right.
$$

Proposition 2. Let $p \in[1,+\infty]$ and $\phi \in L_{p}\left(\partial T_{\varepsilon}\right)$. Then
$\int_{\Omega \times \partial T} \mathscr{T}_{\varepsilon}^{b}(\phi)(x, y) d x d \sigma_{y}=\varepsilon \int_{\partial T_{\varepsilon}} \phi(x) d \sigma_{x},\left\|\mathscr{T}_{\varepsilon}^{b}(\phi)\right\|_{L_{p}(\Omega \times \partial T)}=\varepsilon^{1 / p}\|\phi\|_{L_{p}\left(\partial T_{\varepsilon}\right)}$.

18.3 Rescaling norms on oscillating Lipschitz manifold

Definition 4. Similar to (18.5), we will employ the following norms on $\partial T_{\mathcal{\varepsilon}}=$ $\cup_{\xi \in \Xi_{\varepsilon}}(\varepsilon \xi+\varepsilon \partial T)$,

$$
\begin{align*}
& \|u\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}:=\sum_{\xi \in \Xi_{\varepsilon}} \sum_{j}\left\|u_{\mathcal{\varepsilon}, \xi, j}\left(\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\cdot, \zeta_{\varepsilon, \xi, j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{\varepsilon, \xi, j}(\cdot)\right|^{2}}\right\|_{h^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2}, \\
& \|u\|_{H_{\varepsilon}^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}:=\sum_{\xi \in \Xi_{\varepsilon}} \sum_{j}\left\|u_{\varepsilon, \xi, j}\left(\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\cdot, \zeta_{\varepsilon, \xi, j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{\varepsilon, \xi, j}(\cdot)\right|^{2}}\right\|_{H_{\varepsilon}^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} . \tag{18.10}
\end{align*}
$$

Is is evident that the norms $\|\cdot\|_{H_{\varepsilon}^{s}(\partial T)}$ and $\|\cdot\|_{H^{s}(\partial T)}$ are equivalent if $\varepsilon \neq 0$, although with the equivalence inequality constants depending on ε.

In Definition $4, u_{\varepsilon, j}(x):=u(x) \phi_{\varepsilon, j}(x)$, while $\phi_{\varepsilon, j}, \kappa_{\varepsilon, j}, \zeta_{\varepsilon, j}$ are some periodic families of partitions of unity, local rigid rotations and local Lipschitz hypographs. To this end, we can exploit the families $\phi_{j}, \kappa_{j}, \zeta_{j}$, associated with ∂T, and set

$$
\phi_{\varepsilon, j}(x):=\phi_{j}(\{x / \varepsilon\}), \zeta_{\varepsilon, j}(x):=\varepsilon \zeta_{j}(\{x / \varepsilon\})
$$

where, as before, $\{\cdot\}$ denotes the fractional part of the vector (components). Moreover, if $\kappa_{j}(x)=\omega_{j}\left(x-a_{j}\right)$, we also set $\kappa_{\varepsilon, j}(x):=\varepsilon \omega_{j}\left(\{x / \varepsilon\}-a_{j}\right)$. Note that

$$
x=\kappa_{\varepsilon, \xi, j}^{(-1)}(\bar{x})=\varepsilon\left[\omega_{j}^{(-1)}(\bar{x} / \varepsilon)+a_{j}\right]+\varepsilon \xi=\varepsilon \kappa_{j}^{(-1)}(\bar{x} / \varepsilon)+\varepsilon \xi .
$$

As a consequence,

$$
\begin{aligned}
\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\bar{x}^{\prime}, \zeta_{\varepsilon, j}\left(\bar{x}^{\prime}\right)\right) & =\varepsilon\left[\kappa_{j}^{(-1)}\left(\bar{x}^{\prime} / \varepsilon, \frac{1}{\varepsilon} \varepsilon \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right)+\xi\right] \\
& =\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\bar{x}^{\prime} / \varepsilon, \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\phi_{\varepsilon, j}\left(\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\bar{x}^{\prime}, \zeta_{\varepsilon, j}\left(\bar{x}^{\prime}\right)\right)\right) & =\phi_{\varepsilon, j}\left(\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\bar{x}^{\prime} / \varepsilon, \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right)\right) \\
& =\phi_{j}\left(\kappa_{j}^{(-1)}\left(\bar{x}^{\prime} / \varepsilon, \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right)\right) .
\end{aligned}
$$

Finally, $\sqrt{1+\left|\nabla \zeta_{\varepsilon, j}\left(\bar{x}^{\prime}\right)\right|^{2}}=\sqrt{1+\varepsilon^{2} \frac{1}{\varepsilon^{2}}\left|\nabla_{\bar{y}^{\prime}} \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right|^{2}}=\sqrt{1+\left|\nabla_{\bar{y}^{\prime}} \zeta_{j}\left(\bar{x}^{\prime} / \varepsilon\right)\right|^{2}}$.
Let us return to the geometric setting from Sec. 18.1 and prove the following proposition.

Theorem 1. Let $u \in H^{\alpha}\left(\partial T_{\varepsilon}\right),-1 \leq \alpha \leq 1$. Then

$$
\begin{equation*}
\|u\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1-2 \alpha}\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}\left(\Omega, h^{\alpha}(\partial T)\right)}^{2}:=\varepsilon^{-1-2 \alpha} \int_{\Omega}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{h^{\alpha}(\partial T)}^{2} d x . \tag{18.11}
\end{equation*}
$$

Proof. By (18.8) and taking into account that $|\varepsilon Y|=\varepsilon^{n}$, we obtain

$$
\begin{aligned}
& \sum_{j}\left\|u_{\varepsilon, j}\left(\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\cdot, \zeta_{\varepsilon, j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{\varepsilon, j}(\cdot)\right|^{2}}\right\|_{h^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
= & \sum_{j} \| u\left(\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\cdot / \varepsilon, \zeta_{j}(\cdot / \varepsilon)\right)\right) \phi_{j}\left(\kappa_{j}^{(-1)}\left(\cdot / \varepsilon, \zeta_{j}(\cdot / \varepsilon)\right)\right) \\
& \times \sqrt{1+\left|\nabla \zeta_{j}(\cdot / \varepsilon)\right|^{2}} \|_{h^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
= & \sum_{j} \varepsilon^{n-1-2 \alpha}\left\|u\left(\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\cdot, \zeta_{j}(\cdot)\right)\right) \phi_{j}\left(\kappa_{j}^{(-1)}\left(\cdot, \zeta_{j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{j}(\cdot)\right|^{2}}\right\|_{h^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
= & \varepsilon^{n-1-2 \alpha}\|u(\varepsilon \xi+\varepsilon \cdot)\|_{h^{\alpha}(\partial T)}^{2}=\frac{\varepsilon^{n-1-2 \alpha}}{|\varepsilon Y|} \int_{\varepsilon(\xi+Y)}\|u(\varepsilon\lfloor x / \varepsilon\rfloor+\varepsilon \cdot)\|_{h^{\alpha}(\partial T)}^{2} d x \\
= & \varepsilon^{-1-2 \alpha} \int_{\varepsilon(\xi+Y)}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{h^{\alpha}(\partial T)}^{2} d x .
\end{aligned}
$$

Finally, summing up in $\xi \in \Xi_{\mathcal{E}}$, and taking into account that $\mathscr{T}_{\varepsilon}^{b}(u)(x, y)=0$ at $x \in \Lambda_{\varepsilon}=\Omega \backslash \overline{\widehat{\Omega}_{\varepsilon}}$, we obtain (18.11).

Theorem 2. Let $u \in H^{\alpha}\left(\partial T_{\varepsilon}\right),-1 \leq \alpha \leq 1$. Then

$$
\begin{equation*}
\|u\|_{H_{\varepsilon}^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1}\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}\left(\Omega, H^{\alpha}(\partial T)\right)}^{2} . \tag{18.12}
\end{equation*}
$$

Proof. We will follow the same pattern as in the proof of Theorem 1. By (18.9), (18.10) and taking into account that $|\varepsilon Y|=\varepsilon^{n}$, we obtain

$$
\begin{aligned}
& \sum_{j}\left\|u_{\varepsilon, j}\left(\kappa_{\varepsilon, \xi, j}^{(-1)}\left(\cdot, \zeta_{\varepsilon, j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{\varepsilon, j}(\cdot)\right|^{2}}\right\|_{H_{\varepsilon}^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
= & \sum_{j} \| u\left(\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\cdot / \varepsilon, \zeta_{j}(\cdot / \varepsilon)\right)\right) \phi_{j}\left(\kappa_{j}^{(-1)}\left(\cdot / \varepsilon, \zeta_{j}(\cdot / \varepsilon)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times \sqrt{1+\left|\nabla \zeta_{j}(\cdot / \varepsilon)\right|^{2}} \|_{H_{\varepsilon}^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
& =\sum_{j} \varepsilon^{n-1}\left\|u\left(\varepsilon \xi+\varepsilon \kappa_{j}^{(-1)}\left(\cdot, \zeta_{j}(\cdot)\right)\right) \phi_{j}\left(\kappa_{j}^{(-1)}\left(\cdot, \zeta_{j}(\cdot)\right)\right) \sqrt{1+\left|\nabla \zeta_{j}(\cdot)\right|^{2}}\right\|_{H^{\alpha}\left(\mathbb{R}^{n-1}\right)}^{2} \\
& \left.=\varepsilon^{n-1}\|u(\varepsilon \xi+\varepsilon \cdot)\|_{H^{\alpha}(\partial T)}^{2}=\frac{\varepsilon^{n-1}}{|\varepsilon Y|} \int_{\varepsilon(\xi+Y)} \| u(\varepsilon \mid x / \varepsilon\rfloor+\varepsilon \cdot\right) \|_{H^{\alpha}(\partial T)}^{2} d x \\
& =\varepsilon^{-1} \int_{\varepsilon(\xi+Y)}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{H^{\alpha}(\partial T)}^{2} d x .
\end{aligned}
$$

Finally, summing up in $\xi \in \Xi_{\varepsilon}$, and again taking into account that $\mathscr{T}_{\varepsilon}^{b}(u)(x, y)=0$ at $x \in \Lambda_{\varepsilon}=\Omega \backslash \widehat{\Omega}_{\varepsilon}$, we obtain (18.12).

Remark 1. Rescaling (18.12) coincides with (18.9), i.e., passing from the hyperplane to the Lipschitz boundaries and rescaling the parametrization and its Jacobian does not influence the order of the norm rescaling.

Let us now obtain some inequalities for standard norms.
Theorem 3. Let $u \in H^{\alpha}\left(\partial T_{\varepsilon}\right)$. For $\alpha \in[0,1]$, the following norm equivalence holds

$$
\begin{aligned}
& 2^{\alpha-1} \varepsilon^{-1}\left[\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}(\Omega \times \partial T)}^{2}+\varepsilon^{-2 \alpha}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{L_{2}\left(\Omega, h^{\alpha}(\partial T)\right)}^{2}\right] \leq \\
& \quad\|u\|_{H^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2} \leq \varepsilon^{-1}\left[\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}(\Omega \times \partial T)}^{2}+\varepsilon^{-2 \alpha}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{L_{2}\left(\Omega, h^{\alpha}(\partial T)\right)}^{2}\right]
\end{aligned}
$$

Proof. Owing to (18.4), for $\alpha \in[0,1]$,

$$
2^{\alpha-1}\left[\|u\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\|u\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}\right] \leq\|u\|_{H^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2} \leq\|u\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\|u\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2} .
$$

This gives the equivalence of the norms. It suffices to note that by Proposition 2,

$$
\|u\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1} \int_{\Omega}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{L_{2}(\partial T)}^{2} d x=\varepsilon^{-1}\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}(\Omega \times \partial T)}^{2}
$$

and by Theorem 1,

$$
\|u\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1-2 \alpha} \int_{\Omega}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{h^{\alpha}(\partial T)}^{2} d x=\varepsilon^{-1-2 \alpha}\left\|\mathscr{T}_{\varepsilon}^{b}(u)\right\|_{L_{2}\left(\Omega, h^{\alpha}(\partial T)\right)}^{2}
$$

Definition 5. On pair with Definition 1, we also define the following ε-dependent norms equivalent to the standard ones for the Sobolev-Slobodetskii spaces $W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)$, $s \geq 0$. If s is integer, then let

$$
\|v\|_{W_{2, \varepsilon}^{S}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}:=\sum_{|\alpha| \leq s} \varepsilon^{2|\alpha|}\left\|\partial^{\alpha} v\right\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} .
$$

If s is not integer, then let

$$
\|v\|_{W_{2, \varepsilon}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}:=\sum_{|\alpha| \leq[s]} \varepsilon^{2|\alpha|}\left\|\partial^{\alpha} v\right\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|v\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}
$$

Similarly, we define the equivalent ε-dependent norm in the space $W_{2}^{s}\left(\partial T_{\varepsilon}\right), s \in$ $(0,1)$, cf. [GrOr18],

$$
\begin{equation*}
\|v\|_{W_{2, \varepsilon}^{s}\left(\partial T_{\varepsilon}\right)}^{2}:=\|v\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\varepsilon^{2 s}\|v\|_{W_{2}^{s}\left(\partial T_{\varepsilon}\right)}^{\prime 2} \tag{18.13}
\end{equation*}
$$

Note that the semi-norm in (18.13) can be expressed as $\|v\|_{W_{2}^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}:=a_{\alpha}\|v\|_{h^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}$ with the constant a_{α} depending on α but not on ε, cf. (18.3).

The following assertion is an immediate consequence of Theorem 1, Proposition 2 and relations (18.6).

Corollary 1. Let $u \in H^{\alpha}\left(\partial T_{\varepsilon}\right), \alpha \in(0,1)$. Then

$$
\|u\|_{W_{2}^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1}\left[\int_{\Omega}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{L_{2}(\partial T)}^{2} d x+\varepsilon^{-2 \alpha} \int_{\Omega}\left\|\mathscr{T}_{\varepsilon}^{b}(u)(x, \cdot)\right\|_{W_{2}^{\alpha}(\partial T)}^{2} d x\right]
$$

and in terms of the ε-dependent norm,

$$
\begin{equation*}
\|u\|_{W_{2, \varepsilon}^{\alpha}\left(\partial T_{\varepsilon}\right)}^{2}=\varepsilon^{-1}\left\|\mathscr{T}_{\varepsilon}^{b} u\right\|_{L_{2}\left(\Omega, W_{2}^{\alpha}(\partial T)\right)}^{2} \tag{18.14}
\end{equation*}
$$

Remark 2. By [GrOr18, Lem. 4.1], equality (18.14) is also valid for negative α in the sense of the dual to the Sobolev-Slobodetskii spaces.

18.4 Unfolding in Sobolev-Slobodetskii spaces in perforated domains

Theorem 4.

(i) If $\phi \in W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right), 0<s<1$, then

$$
\begin{align*}
& \left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \leq \varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2} \tag{18.15}\\
& \left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \leq\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}=\|\phi\|_{W_{2, \varepsilon}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}, \tag{18.16}
\end{align*}
$$

where $\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{\prime 2}:=\int_{\Omega}\left\|\mathscr{T}_{\varepsilon}(\phi)(x, \cdot)\right\|_{W_{2}^{s}\left(Y^{*}\right)}^{\prime 2} d x$.
(ii) If $\phi \in W_{2}^{1}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)$, i.e., $s=1$, then

$$
\begin{align*}
& \left\|\nabla \mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, L_{2}\left(Y^{*}\right)\right)}^{2}=\varepsilon^{2}\|\nabla \phi\|_{L_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}, \tag{18.17}\\
& \left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{1}\left(Y^{*}\right)\right)}^{2}=\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2}\|\nabla \phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}=\|\phi\|_{W_{2, \varepsilon}^{1}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} . \tag{18.18}
\end{align*}
$$

(iii) If $\phi \in W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right), 1<s<2$, then (18.15) still holds and

$$
\begin{align*}
\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \leq\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2}\|\nabla \phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} \\
=\|\phi\|_{W_{2, \varepsilon}^{s}\left(\hat{\Omega}_{\varepsilon}^{*}\right)}^{2} . \tag{18.19}
\end{align*}
$$

(iv) If $\phi \in W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right), 0<s<1 / 2$, then

$$
\begin{align*}
& \varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{k}^{*}\right)}^{2} \leq C_{1}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2}, \tag{18.20}\\
& \|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}=\|\phi\|_{W_{2, \varepsilon}^{s}\left(\hat{\Omega}_{\varepsilon}^{*}\right)}^{2} \leq C_{2}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2}, \tag{18.21}
\end{align*}
$$

where C_{1} and C_{2} are independent on ε and ϕ.
(v) If $\phi \in W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right), 1<s<3 / 2$, then (18.20) still holds and

$$
\begin{align*}
\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2}\|\nabla \phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+ & \varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} \\
& =\|\phi\|_{W_{2, \varepsilon}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} \leq C_{3}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \tag{18.22}
\end{align*}
$$

where C_{3} is independent on ε and ϕ.
Proof. (i) Let $s \in(0,1)$. Then

$$
\begin{aligned}
& \|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2}=\int_{\widehat{\Omega}_{\varepsilon}^{*}} \int_{\widehat{\Omega}_{\varepsilon}^{*}} \frac{|\phi(x)-\phi(y)|^{2}}{|x-y|^{n+2 s}} d x d y \\
& =\sum_{\xi_{1} \in \Xi_{\varepsilon}} \sum_{\xi_{2} \in \Xi_{\varepsilon}} \int_{\varepsilon\left(\xi_{1}+Y^{*}\right)} \int_{\varepsilon\left(\xi_{2}+Y^{*}\right)} \frac{|\phi(x)-\phi(y)|^{2}}{|x-y|^{n+2 s}} d x d y \\
& \geq \sum_{\xi \in \Xi_{\varepsilon}} \int_{\varepsilon\left(\xi+Y^{*}\right)} \int_{\varepsilon\left(\xi+Y^{*}\right)} \frac{|\phi(x)-\phi(y)|^{2}}{|x-y|^{n+2 s}} d x d y=\sum_{\xi \in \Xi_{\varepsilon}}\|\phi\|_{W_{2}^{s}\left(\varepsilon \xi+\varepsilon Y^{*}\right)}^{2} \\
& =\sum_{\xi \in \Xi_{\varepsilon}} \varepsilon^{n-2 s}\|\phi(\varepsilon \xi+\varepsilon \cdot)\|_{W_{2}^{s}\left(Y^{*}\right)}^{2}=\sum_{\xi \in \Xi_{\varepsilon}} \frac{1}{|Y|} \varepsilon^{-2 s}\|\phi(\varepsilon \xi+\varepsilon \cdot)\|_{W_{2}^{s}\left(Y^{*}\right)}^{2} \int_{\varepsilon \xi+\varepsilon Y} d x \\
& =\sum_{\xi \in \Xi_{\varepsilon}} \frac{1}{|Y|} \varepsilon^{-2 s} \int_{\varepsilon \xi+\varepsilon Y}\|\phi(\varepsilon[x / \varepsilon]+\varepsilon \cdot)\|_{W_{2}^{s}\left(Y^{*}\right)}^{2} d x \\
& =\frac{1}{|Y|} \varepsilon^{-2 s} \int_{\Omega}\left\|\mathscr{T}_{\varepsilon}(\phi)(x, \cdot)\right\|_{W_{2}^{s}\left(Y^{*}\right)}^{2} d x .
\end{aligned}
$$

Since $|\mathbf{Y}|=1$, we obtain (18.15).
Taking into account that $\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}=\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega \times Y^{*}\right)}^{2}$ by item (i) of Proposition 1, the definition $\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}:=\|u\|_{L_{2}\left(\Omega^{\prime}\right)}^{2}+\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}$, employed with $\Omega^{\prime}=\widehat{\Omega}_{\varepsilon}^{*}$ and $\Omega^{\prime}=Y^{*}$, implies (18.16).
(ii) Equalities (18.17) and (18.18) for the case $s=1$ immediately follow from Proposition 1.
(iii) Let now $s \in(1,2)$ and $\mu=s-1$. Then by (18.1), item (i) of Proposition 1 and inequality (18.15) with ϕ replaced by $\nabla \phi$ and s by μ, we obtain

$$
\begin{aligned}
& \left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{\prime 2}=\left\|\nabla \mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{\mu}\left(Y^{*}\right)\right)}^{\prime 2} \\
& \quad=\left\|\varepsilon \mathscr{T}_{\varepsilon}(\nabla \phi)\right\|_{L_{2}\left(\Omega, W_{2}^{\mu}\left(Y^{*}\right)\right)}^{\prime 2} \leq \varepsilon^{2 \mu} \varepsilon^{2}\|\nabla \phi\|_{W_{2}^{\mu}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2}=\varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2},
\end{aligned}
$$

which implies inequality (18.15) also for $s \in(1,2)$.
Definition of the Sobolev-Slobodetskii space $\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2}$ for $1<s<2$ together with relations (18.18) and (18.15) imply (18.19).
(iv) Let $s \in(0,1 / 2)$. Then

$$
\begin{aligned}
& \|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2}=\int_{\widehat{\Omega}_{\varepsilon}^{*}} \int_{\widehat{\Omega}_{\varepsilon}^{*}} \frac{|\phi(x)-\phi(y)|^{2}}{\left.|x-y|\right|^{n+2 s}} d x d y \\
& =\sum_{\xi_{1} \in \Xi_{\varepsilon}} \sum_{\xi_{2} \in \Xi_{\varepsilon}} \int_{\varepsilon\left(\xi_{1}+Y^{*}\right)} \int_{\mathcal{E}\left(\xi_{2}+Y^{*}\right)} \frac{|\phi(x)-\phi(y)|^{2}}{|x-y|^{n+2 s}} d x d y \\
& =\sum_{\xi_{1} \in \Xi_{\varepsilon}} \sum_{\xi_{2} \in \Xi_{\varepsilon}} \int_{Y^{*}} \int_{Y^{*}} \frac{\left|\phi\left(\varepsilon \xi_{1}+\varepsilon q\right)-\phi\left(\varepsilon \xi_{2}+\varepsilon t\right)\right|^{2}}{\varepsilon^{n+2 s}\left|\xi_{1}+q-\xi_{2}-t\right|^{n+2 s}} \varepsilon^{2 n} d q d t \\
& \leq \varepsilon^{n-2 s} \sum_{\xi \in \Xi_{\varepsilon}} \int_{Y^{*}} \int_{Y^{*}} \frac{|\phi(\varepsilon \xi+\varepsilon q)-\phi(\varepsilon \xi+\varepsilon t)|^{2}}{|\xi+q-\xi-t|^{n+2 s}} d q d t \\
& +2 \varepsilon^{n-2 s} \sum_{\xi_{1} \in \Xi_{\varepsilon}} \int_{Y^{*}}\left|\phi\left(\varepsilon \xi_{1}+\varepsilon q\right)\right|^{2} \sum_{\substack{\xi_{2} \in \Xi_{\varepsilon} \\
\xi_{2} \neq \xi_{1}}} \int_{Y^{*}} \frac{1}{\left|\xi_{1}+q-\xi_{2}-t\right|^{n+2 s}} d t d q \\
& +2 \varepsilon^{n-2 s} \sum_{\xi_{2} \in \Xi_{\varepsilon}} \int_{Y^{*}}\left|\phi\left(\varepsilon \xi_{2}+\varepsilon t\right)\right|^{2} \sum_{\substack{\xi_{1} \in \Xi_{\varepsilon} \\
\xi_{1} \neq \xi_{2}}} \int_{Y^{*}} \frac{1}{\left|\xi_{1}+q-\xi_{2}-t\right|^{n+2 s}} d q d t \\
& =\varepsilon^{n-2 s} \sum_{\xi \in \Xi_{\varepsilon}}\|\phi(\varepsilon \xi+\varepsilon \cdot)\|_{W_{2}^{\prime}\left(Y^{*}\right)}^{2} \\
& +4 \varepsilon^{n-2 s} \sum_{\xi_{1} \in \Xi_{\varepsilon}} \int_{Y^{*}}\left|\phi\left(\varepsilon \xi_{1}+\varepsilon q\right)\right|^{2}\left[\sum_{\substack{\xi_{2} \in \in \Xi_{\varepsilon} \\
\xi_{2} \neq \xi_{1}}} \int_{Y^{*}} \frac{d t}{\left|\xi_{1}+q-\xi_{2}-t\right|^{n+2 s}}\right] d q \\
& \leq \varepsilon^{n-2 s} \frac{1}{|\varepsilon Y|}\left(\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L^{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{\prime}\right)^{2} \\
& +4 C_{s} \varepsilon^{n-2 s} \sum_{\xi_{1} \in \Xi_{\varepsilon}} \int_{Y^{*}}\left|\phi\left(\varepsilon \xi_{1}+\varepsilon q\right)\right|^{2} d i s t\left(\xi_{1}+q, \partial Y_{\xi_{1}}\right)^{-2 s} d q \text {. }
\end{aligned}
$$

Here, similar to the proof of Theorem 3.33 in [McL00], we used the estimate

$$
\sum_{\substack{\xi_{2} \in \xi_{\varepsilon} \\ \xi_{2} \neq \xi_{1}}} \int_{Y^{*}} \frac{d t}{\left|\xi_{1}+q-\xi_{2}-t\right|^{n+2 s}} \leq \int_{\mathbb{R}^{n} \backslash Y_{\xi_{1}}} \frac{d \tau}{\left|\xi_{1}+q-\tau\right|^{n+2 s}} \leq C_{s} \operatorname{dist}\left(\xi_{1}+q, \partial Y_{\xi_{1}}\right)^{-2 s},
$$

where C_{s} is a constant and $Y_{\xi_{1}}:=\xi_{1}+Y$. Applying now Lemma 3.32 from [McL00], we obtain

$$
\begin{aligned}
& \|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2} \leq \varepsilon^{-2 s} \frac{1}{|Y|}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L^{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \\
& +4 C_{s} \varepsilon^{n-2 s} \sum_{\xi_{1} \in \Xi_{\varepsilon}} C_{Y^{*}}\left\|\phi\left(\varepsilon \xi_{1}+\varepsilon \cdot\right)\right\|_{W_{2}^{s}\left(Y^{*}\right)}^{2} \\
& =\varepsilon^{-2 s} \frac{1}{|Y|}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L^{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{\prime 2}+4 C_{s} C_{Y^{*}} \varepsilon^{-2 s} \frac{1}{|Y|}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L^{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \\
& \leq C_{1} \varepsilon^{-2 s} \frac{1}{|Y|}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L^{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2},
\end{aligned}
$$

where $C_{Y^{*}}$ and hence C_{1} do not depend on ε. Since $|\mathbf{Y}|=1$, we obtain (18.20).
Taking into account that $\|\phi\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}=\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega \times Y^{*}\right)}^{2}$ by item (i) of Proposition 1, the definition $\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}:=\|u\|_{L_{2}\left(\Omega^{\prime}\right)}^{2}+\|u\|_{W_{2}^{s}\left(\Omega^{\prime}\right)}^{2}$, employed with $\Omega^{\prime}=\widehat{\Omega}_{\varepsilon}^{*}$ and $\Omega^{\prime}=Y^{*}$, implies (18.21).
(v) Let now $s \in(1,3 / 2)$ and, similar to the proof of item (iii), $\mu=s-1$. Then by (18.1), item (i) of Proposition 1 and inequality (18.20) with ϕ replaced by $\nabla \phi$ and s by μ, we obtain

$$
\begin{aligned}
& \varepsilon^{2 s}\|\phi\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2}=\varepsilon^{2 \mu+2}\|\nabla \phi\|_{W_{2}^{\mu}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2} \leq C_{1} \varepsilon^{2}\left\|\mathscr{T}_{\varepsilon}(\nabla \phi)\right\|_{L_{2}\left(\Omega, W_{2}^{\mu}\left(Y^{*}\right)\right)}^{2} \\
&=C_{1}\left\|\nabla \mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{\mu}\left(Y^{*}\right)\right)}^{2} \leq C_{1}\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2}
\end{aligned}
$$

which implies inequality (18.20) also for $s \in(1,3 / 2)$.
Definition of the Sobolev-Slobodetskii space $\left\|\mathscr{T}_{\varepsilon}(\phi)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2}$ for $1<s<$ $3 / 2$ together with relations (18.18) and (18.20) imply (18.22).

18.5 Rescaling of the Trace Theorem in W_{2}^{s}

For $u \in W_{2}^{s}\left(\Omega_{\varepsilon}^{*}\right), s \in(1 / 2,3 / 2)$, the trace operator (in the Gagliardo sense) γ : $W_{2}^{s}\left(\Omega_{\varepsilon}^{*}\right) \rightarrow W_{2}^{s-1 / 2}\left(\partial \Omega_{\varepsilon}^{*}\right)$, is continuous, see e.g. [McL00].

Now, we can rewrite the trace theorem using the scaling estimates from Theorems 3 and 4.

Theorem 5. Let $u \in W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right), s \in(1 / 2,3 / 2), \varepsilon>0$.
(i) If $s \in(1 / 2,1)$, then

$$
\begin{align*}
& \varepsilon\left(\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\varepsilon^{2 s-1}\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{W_{2}^{s-1 / 2}\left(\partial T_{\varepsilon}\right)}^{\prime 2}\right) \\
& \leq C\left(\|u\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|u\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{\prime 2}\right) \tag{18.23}
\end{align*}
$$

(ii) If $s=1$, then

$$
\begin{equation*}
\varepsilon\left(\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\varepsilon\left\|\gamma_{\partial \tau_{\varepsilon}} u\right\|_{W_{2}^{1 / 2}\left(\partial T_{\varepsilon}\right)}^{2}\right) \leq C\left(\|u\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2}\|\nabla u\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}\right) . \tag{18.24}
\end{equation*}
$$

(iii) If $s \in(1,3 / 2)$, then

$$
\begin{align*}
\varepsilon\left(\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\right. & \left.\varepsilon^{2 s-1}\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{W_{2}^{s-1 / 2}\left(\partial T_{\varepsilon}\right)}^{12}\right) \\
& \leq C\left(\|u\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2}\|\nabla u\|_{L_{2}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}+\varepsilon^{2 s}\|u\|_{W_{2}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}\right) . \tag{18.25}
\end{align*}
$$

In all three cases the constant C is independent of u and ε and, using the ε dependent norms, they can be written in the same form,

$$
\varepsilon\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{W_{2, \varepsilon}^{s-1 / 2}\left(\partial T_{\varepsilon}\right)}^{2} \leq C\|u\|_{W_{2, \varepsilon}^{s}\left(\widehat{\Omega}_{\varepsilon}^{*}\right)}^{2}, \quad 1 / 2<s<3 / 2
$$

Proof. If $1 / 2<s<3 / 2$, then by the trace theorem in Y^{*}, there exists a constant C independent of u and ε, such that

$$
\begin{aligned}
\left\|\gamma_{\partial T} \mathscr{T}_{\varepsilon}(u)(x, \cdot)\right\|_{L_{2}(\partial T)}^{2}+\| & \gamma_{\partial T} \mathscr{T}_{\varepsilon}(u)(x, \cdot) \|_{W_{2}^{s-1 / 2}(\partial T)}^{\prime 2} \\
& \leq C\left(\left\|\mathscr{T}_{\varepsilon}(u)(x, \cdot)\right\|_{L_{2}\left(Y^{*}\right)}^{2}+\left\|\mathscr{T}_{\varepsilon}(u)(x, \cdot)\right\|_{W_{2}^{s}\left(Y^{*}\right)}^{\prime 2}\right) .
\end{aligned}
$$

Integrating in x, we have

$$
\begin{equation*}
\left\|\gamma_{\partial T} \mathscr{T}_{\varepsilon}(u)\right\|_{L_{2}\left(\Omega, W_{2}^{s-1 / 2}(\partial T)\right)}^{2} \leq C\left\|\mathscr{T}_{\varepsilon}(u)\right\|_{L_{2}\left(\Omega, W_{2}^{s}\left(Y^{*}\right)\right)}^{2} \tag{18.26}
\end{equation*}
$$

Let first $1 / 2<s<1$. Employing inequality (18.16) in the right hand hand side of (18.26) and, cf. (18.14), the relation

$$
\begin{aligned}
\left\|\gamma_{\partial T} \mathscr{T}_{\varepsilon}(u)\right\|_{L_{2}\left(\Omega, W_{2}^{s-1 / 2}(\partial T)\right)}^{2} & =\left\|\mathscr{T}_{\varepsilon}^{b}\left(\gamma_{\partial T_{\varepsilon}} u\right)\right\|_{L_{2}\left(\Omega, W_{2}^{s-1 / 2}(\partial T)\right)}^{2} \\
& =\varepsilon\left(\left\|\gamma_{\partial \tau_{\varepsilon}} u\right\|_{L_{2}\left(\partial T_{\varepsilon}\right)}^{2}+\varepsilon^{2 s-1}\left\|\gamma_{\partial T_{\varepsilon}} u\right\|_{W_{2}^{s-1 / 2}\left(\partial T_{\varepsilon}\right)}^{\prime 2}\right)
\end{aligned}
$$

in the left hand side, we arrive at (18.23).
Similar reasoning with relations (18.18) and (18.19) instead of (18.16) lead to (18.24) and (18.25), respectively.

Note that the inequality similar to (18.24), for $s=1$, was first given in [GaKNR14, Lem.3.1(iv)], and appears as an auxiliary result in [GrOr18].

Acknowledgements

The work of the first author on this paper was supported by the Department of Mathematics at the University of Padua, during his research visits there. The work of the second author was supported by the DAAD during his stay at the Fraunhofer ITWM and by the 'Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni' (GNAMPA) of the 'Istituto Nazionale di Alta Matematica' (INdAM).

References

[CDDGZ12] Cioranescu, D., Damlamian, A., Donato, P., Griso, G., and Zaki, R.: The periodic unfolding method in domains with holes. SIAM J. Math. Anal., 44, 718-760 (2012).
[Du77] Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables. Proceedings of a Conference Held at Oberwolfach, April 25 - May 1, 1976, W. Schempp and K. Zeller (eds.), Springer: Berlin, Heidelberg, New York (1977), pp. 85-100.
[GaKNR14] Gahn, M., Knabner, P., and Neuss-Radu, M.: Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells, Preprint Angew. Math., Uni Erlangen, No. 384 (2014).
[GaNRK16] Gahn, M., Neuss-Radu, M., and Knabner, P.: Homogenization of Reaction-Diffusion Processes in a Two-Component Porous Medium with Nonlinear Flux Conditions at the Interface. SIAM J. Appl. Math. 76, 1819-1843 (2016).
[GaMe18] Gaudiello, A. and Melnyk, T.: Homogenization of a Nonlinear Monotone Problem with Nonlinear Signorini Boundary Conditions in a Domain with Highly Rough Boundary. The Oberwolfach Preprints (2018) (OWP, ISSN 1864-7596), DOI 10.14760/OWP-2018-06.
[GrPeSh12] Gómez, D., Pérez, E., and Shaposhnikova, T.A.: On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems. Asymptotic Analysis 80, 289-322 (2012) DOI 10.3233/ASY-2012-1116
[GrOr18] Griso, G., and Orlik, J.: Homogenization of contact problem with Coulomb's friction on periodic cracks, arXiv:1811.06615 (2018).
[KKG17] Khruslov, E.Ya., Khilkova, L.O., and Goncharenko, M.V.: Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain. J. Math. Phys., Analysis, Geometry, 13, 283-313 (2017).
[Ma11] Maz'ya, V.: Sobolev spaces, with applications to elliptic partial differential equations, Springer, Berlin Heidelberg (2011).
[McL00] McLean, W.: Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge (2000).

[^0]: S.E.Mikhailov

 Brunel University, London, UK,
 e-mail: Sergey.Mikhailov@brunel.ac.uk,
 P. Musolino

 University of Padua, Italy,
 e-mail: musolino@math.unipd.it
 J. Orlik

 Fraunhofer ITWM, Kaiserslautern, Germany,
 e-mail: orlik@itwm.fhg.de

