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Abstract
We consider mean-risk portfolio optimisation models, with risk measured by sym-
metric measures (variance) as well as downside or tail measures (lower partial 
moments, conditional value at risk). A framework for including index options in the 
universe of assets, in addition to stocks, is provided. The exercise of index options is 
settled in cash, making this implementable with a variety of strike prices and matur-
ities. We use a dataset with stocks from FTSE 100 and index options on FTSE100. 
Numerical results show that, for low risk-low return and to medium risk-medium 
return portfolios, the addition of an index put further reduces the risk to a consider-
able extent, particularly in the case of mean-CVaR efficient portfolios, where the left 
tail of the portfolio return distribution is dramatically improved. For high risk-high 
return portfolios, the inclusion of an index call improves the right tail of the return 
distribution, creating thus the opportunity for considerably higher returns.

1  Introduction

The portfolio selection problem is about how to divide an investor’s wealth amongst 
a set of available securities. One basic principle in finance is that, due to the lack of 
perfect information about the future asset returns, financial decisions are made in 
the face of trade-offs. Markowitz (1952) identified the trade-off faced by the inves-
tors as risk versus expected return and proposed variance as a measure of risk. He 
introduced the concepts of efficient portfolio and efficient frontier and proposed a 
computational method for finding efficient portfolios.
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Following notations given in Roman and Mitra (2009), we consider an example 
of portfolio selection with one investment period. A rational investor is interested 
in investing their capital such that, at the end of the investment period, the return is 
maximised.

Consider a set of n assets, with asset j ∈ {1… n} having a return Rj at the end of 
the investment period. Since the future price of the asset is unknown, Rj is a random 
variable.

A portfolio is defined by the percentage of money invested in each asset j. Let 
xj be the percentage of capital invested in asset j and let x = (x1,… , xn) denote the 
portfolio choice. This portfolio’s return is the random variable

with distribution function F(r) = P(Rx ≤ r) that depends on the choice of 
x = (x1,… , xn).

The weights (x1,… , xn) belong to a set of decision vectors given in the simplest 
form as

To interpret the portfolio selection problem, let us consider another portfo-
lio return Ry that is determined by the decision vector y = (y1,… , yn) ∈ X : 
Ry = y1R1 +⋯ + ynRn. The problem of choosing between portfolios x and y 
becomes the problem of choosing between the two random variables Rx and Ry . 
Thus, models for choosing amongst random variables are required. The first purpose 
of such a model is to define a preference relation among random variables and the 
second purpose is to identify the non-dominated random variables with respect to 
that preference relation.

One paradigm for choosing among random variables is mean-risk. Here, a ran-
dom variable Rx representing the return of a portfolio x is characterized using two 
statistics of its distribution: the expected value/mean (large value are desired) and a 
“risk” value (low values are desired). The preference relationship is defined based 
on these two statistics: one random variables is “preferred” to another if it has higher 
mean and lower risk. A non-dominated random variable under this relationship rep-
resents an “efficient” portfolio: one that has the lowest risk for a specified level of 
expected return. An efficient portfolio is found by solving an optimisation problem 
in which we minimise risk subject to a constraint on the expected return. Varying 
the level of expected return, we obtain different efficient portfolios.1

Markowitz (1952) proposed variance as a measure of risk. Criticism of vari-
ance, mainly due to its symmetric nature that penalizes upside potential as well as 
downside deviations, led to proposal of other risk measures, most notably below 
target risk measures such as Lower Partial Moments (see Fishburn 1977; Bawa 

Rx = x1R1 +⋯ + xnRn

(1)X = {(x1,… , xn)|
n∑
j=1

xj = 1, xj ≥ 0,∀j ∈ {1,… , n}}

1  This corresponds to examples of low mean-low risk trade-offs up to high mean-high risk trade-offs.
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and Lindenberg 1977) and quantile based risk measures such as Value-at Risk 
(VaR) and Conditional VaR (see Rockafellar and Uryasev 2000; Tasche 2002 ). 
A review of financial risk measures can be found in Roman and Mitra (2009) and 
Albrecht (2004). Mean risk models with various risk measures have been imple-
mented (see for example Roman and Mitra (2009) and references within); this 
has been mainly in the context when the universe of assets consists of stocks and 
bonds.

A closely related area of research concerns financial scenario generation: this is 
about simulating future values for asset prices or returns with the purpose of serv-
ing as parameters in optimisation models. Commonly used methods of financial sce-
nario generation include sampling or bootstrapping (see Efron and Tibshirani 1994 )  
from historical data, or methods based on econometric models (see Bollerslev 
1986). More recently, general purpose scenario generators were proposed and used 
in financial optimisation models, such as the moment matching method (see Høy-
land et al. 2003) or Hidden Markov Models (see Messina and Toscani 2008; Erlwein 
et al. 2011). A review of desirable properties for scenario generators is given in Kaut 
and Wallace (2003).

Options are financial assets that give the right (not the obligation) to trade an 
asset at a specified price. They can be of great use as they put a limit on the losses 
that could be incurred. However, including options in portfolio optimisation is not 
an easy task due to several reasons.

Identifying the return distribution of an option is difficult if the option is traded 
before its maturity date. Options for each of the component stocks with the matu-
rity equal to its investment period may not be available. Constructing a portfolio of 
stocks and adding options for each stock may seem one straightforward way to inte-
grate options, however, even in the case when such options are available, it may be 
one very costly approach, leading to great decrease in portfolio return.

Research efforts towards portfolio optimisation in the presence of options include 
Alexander et al. (2006), Papahristodoulou and Dotzauer (2004), Horasanlı (2008), 
and Faias and Santa-Clara (2017). In Alexander et al. (2006), CVaR minimisation 
for portfolios of options only is considered. They demonstrated possible computa-
tion of optimal CVaR with low number of assets. In Ortobelli et al. (2013), portfo-
lios of stocks and portfolios of options are constructed, employing several preference 
criteria of decision makers. Portfolios of options are created, based on maximisation 
of variability measures of the underlying stock returns. The results are very good; 
however, the authors underline that there are strong assumptions at the basis of the 
computational study, including the fact that options on individual stocks may not be 
available (computed Black–Scholes, instead of real option prices are used). In Faias 
and Santa-Clara (2017), an expected utility maximisation is used for a portfolio of 
options where the payoffs are simulated from distribution of the underlying asset. 
Since options put a limit on the maximum loss, options have been considered in the 
context of robust optimisation (see Zymler et al. 2011).

In this study, we propose to use index options, in addition to a set of stocks, in 
mean-risk scenario based optimisation models. Index options are settled in cash 
(an investor is not required to trade the underlying, i.e. the index) making it an 
implementable strategy with a variety of maturities and exercise prices and with 
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transaction costs. The motivation and contribution of this work lies in finding 
answers to the following research questions: 

1.	 Can improved (in terms of mean-risk trade-off) portfolios be obtained by adding 
index options? How does the addition of options change the return distribution?

2.	 Which risk measures are more sensitive to the introduction of index options?
3.	 What is the numerical framework to use when the universe of assets is composed 

of stocks and index options?

The computational results presented here add interesting insights that, to our knowl-
edge, have not been reported in the literature.

The rest of the paper is organised as follows. Risk measures and the algebraic 
for-mulations of the corresponding mean-risk optimisation models is presented in 
Sect. 2. Section 3 describes the background for incorporating an index option in the 
portfolio op-timisation. Computational results are presented in Sect. 4. Conclusions 
are drawn in Sect. 5.

2 � Risk measures

Adopting the terminology used in Albrecht (2004), there are two types of risk meas-
ures. Risk measures of the first kind measure the magnitude of deviations from a 
specific point. These risk measures can be further divided into symmetric risk meas-
ures and asymmetric risk measures; asymmetric risk measures quantify risk by tak-
ing into account only outcomes below a target, that could be either fixed or distri-
bution specific. Variance is the best known symmetric risk measure. Lower partial 
moments (LPM) and central semi-deviations are among the important asymmet-
ric risk measures (see Fishburn 1977; Bawa and Lindenberg 1977; Ogryczak and 
Ruszczyński 1999).

Risk measures of the second kind measure the overall significance of possible 
losses. These risk measures are concerned only with a certain number of worst out-
comes (the left tail), of the return distribution. The commonly used risk measures in 
this category are Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) (see 
Jorion 2001; Rockafellar and Uryasev 2000, 2002). This section gives a brief over-
view on the risk measures (variance, LPM, VaR and CVaR) that will be used in this 
work (see also Maasar et al. 2016.

•	 Variance
	   Variance is a well-known indicator used in statistics for the spread around the 

mean of a random variable. The variance of a random variable Rx is defined as 
its second central moment: 

The variance of a portfolio return Rx = x1R1 +⋯ + xnRn is a quadratic function 
of x = (x1,… , xn) (see Luenberger 1998; Markowitz 1952): 

�
2(Rx) = E[(Rx − E(Rx))

2]
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 Where �jk is the covariance between Rj and Rk.
•	 Lower partial moments (LPM) 
	   LPM is a generic name for asymmetric measures that consider a fixed target 

below which an investor does not want the return to fall; it quantifies, loosely 
speaking, the average deviation below target.

	   Let � be a predefined target value for the portfolio return Rx , and let � ≥ 0.
	   The LPM of order � around � of the random variable Rx with distribution 

function F is defined as [see Fishburn (1977)]: 

While � is a target fixed by decision maker, � is a parameter describing risk aver-
sion. The larger the value of � , the more risk-averse the investor is (Fishburn 
(1977)).

	   Commonly, LPMs of order 1 and 2 are used in practice. The LPM of order 1 
is commonly referred to as “expected downside risk”, while the LPM of order 2 
is referred to as “target semivariance” (see for example Albrecht (2004), Roman 
and Mitra (2009).) When the LPM of order 1 is constrained to not exceed a user 
specified threshold (rather than being used as an objective function to minimise), 
this constraint is referred to as an “integrated chance constraint”, introduced in 
the literature by Klein Haneveld (Klein  Haneveld (1986), Klein Haneveld and 
van der Vlerk (2006).)

•	 Value-at-risk (VaR)
	   One of the most popular quantile-based risk measures is the Value-at-Risk 

(VaR) (see Jorion 2001). The VaR at parameter � ∈ (0, 1) , or confidence level 
(1 − �) , is defined as the negative of the �−percentile of the portfolio return dis-
tribution, or as the (1 − �)-percentile of the portfolio loss distribution, where � 
is typically chosen as 0.01 or 0.05. Thus, with probability of at least (1 − �) , the 
loss2 will not exceed VaR.

	   Although widely used in practice, VaR has been criticized for not being a 
coherent risk measure of risk (see Artzner et al. 1999) and not being convex with 
respect to x1 … xn ; this makes it difficult to optimise (see Pflug 2000). This is 
also explained in Larsen et al. (2002), Pang and Leyffer (2004) and references 
therein.

•	 Conditional value-at-risk (CVaR)
	   Conditional Value-at-Risk (see Rockafellar and Uryasev 2000, 2002) was pro-

posed as an alternative quantile-based risk measure, to measure approximately the 
average loss beyond VaR. It has gained interest from practitioners and academics 

(2)�
2(Rx) =

n∑
j=1

n∑
k=1

xjxk�jk

LPM
�
(�,Rx) = E{[max(0, � − Rx)]

�} = ∫
�

−∞

(� − r)�dF(r)

2  In our context we refer negative returns as positive losses. Therefeore, any loss related to random vari-
able R

x
 is represented by a random variable −R

x
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due to its desirable computational and theoretical properties. Informally speaking, 
CVaR at parameter � ∈ (0, 1) (or at confidence level (1 − �) ) is the average loss 
under the worst A% of scenarios, where � = A%. A more formal definition involves 
the concept of “ �-tail distribution”; this is the distribution obtained by rescaling 
the worst A% part of the portfolio return distribution . The CVaR at parameter � 
(confidence level (1 − �))is the negative of the expected value of the alpha tail dis-
tribution. For more details, see Rockafellar and Uryasev (2000). Interesting rela-
tions between CVaR and the LPM of order 1 have been developed in Ogryczak and 
Ruszczyński (2002).

2.1 � CVaR calculation and optimisation

It has been shown by Rockafellar and Uryasev (2002) that CVaR can be optimised 
using an auxiliary function F ∶ X × � ↦ �:

In practice, a portfolio return Rx is considered as a discrete random vari-
able because the random returns are usually described by their realisations under 
various scenarios. This makes CVaR optimisation a linear program. Suppose 
that Rx has m possible outcomes r1x,… , rmx with probabilities p1,… , pm with 
rix =

∑n

j=1
xjrij,∀i ∈ {1…m} , then:

The optimal CVaR is obtained by minimizing F
�
 over (x,  v) (Rockafellar and 

Uryasev 2000, 2002); this result is used in the formulation of the mean-CVaR opti-
misation model

We present below the algebraic formulation of the three mean-risk models used in 
our computational analysis. We use the following notation:

The parameters are:

The decision variables are:

F
�
(x, v) =

1

�
E[max(−Rx + v, 0] − v

F
�
(x, v) =

1

�

m∑
i=1

pi[max(v − rix, 0)] − v =
1

�

m∑
i=1

pi

[
max

(
v −

n∑
j=1

xjrij, 0

)]
− v

m = the number of (equally probable) scenarios;

n = the number of assets;

rij = the return of assetjunder scenario i; j = 1… n, i = 1…m;

�j = the expected rate of return of asset j; j = 1… n;

�kj = the covariance between returns of asset kand asset j; k, j = 1… n;

d = target expected rate of return for the portfolio.

xj = the fraction of the portfolio value invested in asset j, j = 1… n.
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2.2 � The mean‑variance model (MV)

2.3 � The mean‑expected downside risk model (M‑LPM0)

We consider the target � = 0 (hence the negative rates of return are penalised under 
each scenario) and � = 1 , (thus, a risk measure sometimes referred to in the litera-
ture as the expected downside risk). In addition to the decision variables xj , there are 
m decision variables, representing the magnitude of the downside deviations of the 
portfolio return from target, for every scenario i ∈ {1…m}:

2.4 � The mean‑CVaR
˛

 model (M‑CVaR
˛

)

For this model, in addition to the decision variables xj , there are m + 1 decision vari-
ables. The variable v represents the negative of an �-quantile of the portfolio return 
distribution. If the �−quantile is unique, the optimal value of v is the VaR

�
 of the 

return distribution of the solution portfolio. The other m decision variables represent 
the magnitude of downside deviations of the portfolio return from the �-quantile, for 
every scenario i ∈ {1…m}:

min
x

n∑
j=1

n∑
k=1

�kjxjxk

subject to:
n∑
j=1

�jxj ≥ d

x ∈ X

yi =

⎧
⎪⎨⎪⎩

−

n�
j=1

rijxj, if

n�
j=1

rijxj ≤ 0;

0, otherwise.

min
1

m

m�
i=1

yi

subject to:

−

n�
j=1

rijxj ≤ yi; ∀i ∈ {1…m}

yi ≥ 0; ∀i ∈ {1…m}
n�
j=1

�jxj ≥ d;

x ∈ X
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3 � Portfolio optimisation with options

3.1 � Basics of option pricing

An option is a financial derivative described as a contract when the holder of the 
contract is given the right (but not the obligation) to exercise a deal: to buy or sell an 
underlying asset at a specified price, at or within a specified time.

A call option gives the holder the right to buy the underlying asset (stock, real 
estate etc.) under the specified conditions, while a put option gives the holder the 
right to sell the underlying asset. The price of underlying specified in the contract is 
known as the exercise price or strike price, while the date in the contract is known as 
the expiration date or maturity (see Hull and Basu 2016).

In this work, we consider only European options, meaning, they can only be exer-
cised at maturity.

The payoff of an option depends on the price ST of the underlying asset at matu-
rity T. If the strike price is K, the payoff functions for a put and a call are:

and

respectively.
The net profit is obtained by subtracting from the payoff the price paid for the 

option.
Determining the “correct” price of an option has been a widely researched sub-

ject and of practical importance. Options are great in reducing risk, if held long, 
as the maximum amount that can be lost is known in advance; however, they also 

yi =

⎧
⎪⎨⎪⎩

−v −

n�
j=1

rijxj, if

n�
j=1

rijxj ≤ −v;

0, otherwise.

min v +
1

�m

m�
i=1

yi

subject to:
n�
j=1

−rijxj − v ≤ yi; ∀i ∈ {1…m}

yi ≥ 0; ∀i ∈ {1…m}
n�
j=1

�jxj ≥ d;

x ∈ X

Vput(ST ) = max{0,K − ST},

Vcall(ST ) = max{0, ST − K},
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reduce the profit because of their cost. If held short, options can be very risky, hence 
their price should be high enough to compensate for this. For European options, the 
Black–Scholes pricing formula (see for example Bodie et al. 2014) has been widely 
used, although often with adjustments and corrections (see Zvi et al. 2004).

In this study, option prices are obtained from Datastream (see Reuters 2010) for 
the at-the-money index options, that is, options whose strike price is equal to the 
current price of the underlying asset. Our dataset is explained further in Sect. 4.

3.2 � Incorporating index options into portfolio optimisation

We consider a one period investment problem with decisions made at time t and 
evaluation made at time (t + 1) . We consider an initial universe of assets consisting 
of the component stocks of the FTSE 100. To this, we add a call and a put option on 
the FTSE 100 index as two extra assets, with (real) prices at time t (obtained from 
Datastream.) We only consider assets being held in long positions (their weights in 
the portfolio being positive); we consider the ask (buy) price of the options.

We employ the historical “look-back” approach, that is, we use past (historical) 
rates of return for the component assets of FTSE100 as scenarios for the rates of 
return between t and (t + 1) . These historical rates of return are computed using past 
prices monitored between periods of time equal to the investment period.

Similarly to Faias and Santa-Clara (2017), we employ a scenario based approach 
in order to simulate the returns of the options at the end of the investment period. In 
order to do this, we first simulate the price of the underlying FTSE100 at the end of 
the investment period t + 1 , knowing the current price at time t.

We use the historical returns of FTSE 100 (calculated in the same way as the his-
torical returns of the component assets), as scenario returns for FTSE 100 between t 
and t + 1 . Using the current (known) price of FTSE100, denoted by St , we simulate 
prices for FTSE100 at time (t + 1) by multiplying St with the scenario returns for 
FTSE100. We summarise the scenario generation as follows: 

1.	 Using the historical prices for the underlying FTSE 100 (monitored over the same 
time periods as the stocks in the universe of assets) we compute the correspond-
ing historical rates of return. For example, if the investment period is one month, 
t denoting the current time and t + 1 next month, we compute past monthly rates 
of return and use them as scenarios for the rate of return between now and next 
month.

2.	 The rates of return from step 1 are used to generate scenarios for the next period’s 
underlying (FTSE100) value St+1 , given its current (known) value St : 

 where rt+1 is a scenario rate of return obtained at step 1.
3.	 Denoting by the Kc the strike price of the call, and by the Kp the strike price of 

the put, and using one period simulated underlying asset value St+1 , we simulate 
option payoffs at their maturity t + 1 . Thus the payoffs for call and put are given 
respectively as: 

St+1 = St(1 + rt+1)
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 and 

4.	 Using the simulated payoff above, the rates of return of the options are: 

 for index call options, and 

 for index put options, where Ct and Pt are the (real) prices of the call and put 
index option, respectively, at decision time t, as described in Sect. 3.1.

4 � Computational results

4.1 � Objectives, dataset and computational setup

The objectives of the computational work relate to the research questions stated at 
the end of Sect.  1. More precisely, the first objective (related to the first research 
question) is to investigate whether the inclusion of index options leads to a signif-
icant decrease in risk, and thus significantly better optimal portfolios in terms of 
mean-risk trade-off; we also investigate the correlation of the return distributions 
obtained (of efficient portfolios of stocks only and efficient portfolios composed 
of stocks and index options) with the return distribution of the index. The second 
objective is related to the second research question posed at the end of Sect. 1. More 
precisely, we investigate the composition of optimal portfolios in terms of: (a) the 
proportion of options in the optimal portfolios, and (b) whether the portfolios with 
options have similar stock composition compared to their ‘stock-only’ counterpart, 
for each of the risk measures employed. A third computational objective is to inves-
tigate the effect of the risk measure employed on the return distribution of the opti-
mal portfolios.

For the first two objectives, we implement mean-variance and mean-CVaR model 
(at parameter 0.05) with a universe of assets composed of (a) stocks only; (b) the 
same stocks and two index options, a call and a put, with maturity equal to the 
investment period.

For the third objective, we implement the mean-variance, mean-expected down-
side risk and M-CVaR0.05 models with a universe of stocks consisting of the com-
ponent stocks of FTSE 100. We choose efficient portfolios with the same expected 
return and investigate the properties of their return distributions.

Vt+1,C = max(St+1 − Kc, 0),

Vt+1,P = max(Kp − St+1, 0).

rt+1,C =
Vt+1,C

Ct

− 1,

rt+1,P =
Vt+1,P

Pt

− 1
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The data used for this analysis is drawn from the FTSE100. The investment 
period is one month. Monthly returns of the 87 stock components of the index from 
January 2005 until May 2014 are considered. The dataset for the in-sample anal-
ysis has 100 time periods, initially from Jan 2005 until May 2013; we employ a 
one month rolling window approach in which we consider 12 in-sample data sets by 
adding a next month of data and removing the oldest data point (thus, always having 
100 time periods in the in-sample data set). For backtesting analysis, the portfolio is 
examined over the twelve months period of June 2013 until May 2014.

We consider at-the-money (that is, strike price equals to current price) call and 
put index options, with maturity one month. The prices are taken from Datastream 
codes ESXC.SERIESC (for calls) and ESXC.SERIESP (for puts) for our analysis 
in Sect. 4.3. All data are obtained from Datastream (see Reuters 2010) and models 
were implemented in AMPL (see Fourer et al. 1993) and solved using the CPLEX 
12.5 (see ILOG 2012) optimisation solver.

The characteristics of efficient portfolios may vary depending on the target return, 
d. Based on our data set, the maximum level of asset expected return is 0.0349 and 
the minimum is at −0.007323 . We chose three different level of d as d1 = 0.01 , 
d2 = 0.02 , and d3 = 0.03 . We solve the three mean-risk models considered above for 
every level of expected return d1 , d2 , and d3.

4.2 � In‑sample analysis: stocks only

The return distributions of the efficient portfolios are discrete with 100 equally prob-
able outcomes. We analyse these distributions using in sample parameters of stand-
ard deviation, skewness, minimum, maximum, and range. We compare sets of three 
distributions, each having the expected values of d1 , d2 , and d3 , respectively; thus, 
we look at portfolios in different regions of efficient frontier: low mean-low risk, 
medium mean-medium risk, high mean-high risk.

For a portfolio distribution, it is desirable to have smaller standard deviation and 
range, and to have larger median, skewness, minimum, and maximum.

In all three cases (refer Tables  1, 2, 3) the LPM0 efficient portfolios have 
the highest median, while obviously the M–V efficient portfolios have the low-
est standard deviation. The other three statistics are consistently better for 
M-CVaR0.05 efficient portfolios. This is somewhat expected for the minimum and 
skewness, as they are statistics describing the left tail (and mean-CVaR efficient 
portfolios should have a better left tail) but interestingly, also the maximum is the 

Table 1   Statistics for the mean-
risk efficient distributions with 
expected value d

1
= 0.01

The best value for each statistic is displayed in bold

M–V M-LPM0 M-CVaR0.05

Median 0.013642802 0.015415625 0.011657133
SD 0.033783896 0.037980983 0.03830069313
Skewness – 0.572809564 – 0.699597028 0.361368572
Minimum – 0.091575414 – 0.13878571 – 0.075281385
Maximum 0.096340696 0.115140014 0.1340699
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highest in the case of mean-CVaR. They are also the only return distributions that 
are positively skewed.  

4.3 � Introducing index options in the universe of assets

We add the two index options as described in Sect. 4.1, and test the performance 
on two mean-risk models, the M–V and the M-CVaR0.05 , for d1 , d2 , and d3 . (For 
brevity, we omit the mean-LPM0 model in which the introduction of index 
options has a similar effect to that obtained with the other two models, especially 
the mean-variance model.) We perform optimisation on 12 data sets, obtained as 
described in 4.1 by using a rolling window of one month.

Table 4 displays the optimal weights of the put and call index options, together 
with the number of assets in the optimal portfolios. We can observe the following.

Firstly, for low to medium expected rates of return (1% and 2%), the M–V effi-
cient portfolios contain more assets than the M-CVaR0.05 efficient portfolios.

Secondly, the index put is (and the call is not) in the composition of these 
portfolios (at 1% and 2% expected rate of return), for both M–V and M-CVaR 
efficient portfolios. The put is in a considerably higher proportion in M-CVaR 
efficient portfolios.

Finally, for high mean—high risk portfolios (mean at 3%), it is the index call 
that is in the composition of the optimal portfolios, and in considerably higher 
amount in the M-CVaR0.05 efficient portfolios.

Table 2   Statistics for the mean-risk efficient distributions with expected value d
2
= 0.02

The best value for each statistic is displayed in bold

M–V M-LPM0 M-CVaR0.05

Median 0.026989273 0.019547821 0.027136642
Standard Deviation 0.045539089 0.048306959 0.053504299
Skewness – 1.068379489 – 0.541590574 0.106153237
Minimum – 0.169911236 – 0.169067343 – 0.147248853
Maximum 0.113089218 0.132563297 0.189886327

Table 3   Statistics for the mean-risk efficient distributions with expected value d
3
= 0.03

The best value for each statistic is displayed in bold

M–V M-LPM0 M-CVaR0.05

Median 0.034052445 0.025471156 0.033057945
Standard Deviation 0.077244906 0.080794207 0.084842553
Skewness – 0.577646499 – 0.307744989 0.199328725
Minimum – 0.254267371 – 0.269452992 – 0.213015378
Maximum 0.186538415 0.200218938 0.274484094
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Table 4   The number of assets in the composition of mean-risk portfolios with weight of index options

The best value for each statistic is displayed in bold

Optim. runs In sample 
returns

M–V M-CVaR
0.05

Number 
of assets

Weight 
of put 
(%)

Weight 
of call 
(%)

Number 
of assets

Weight 
of put 
(%)

Weight of call (%)

1 0.01 24 1.91 0 19 2.31 0
0.02 12 1.67 0 10 2.02 0
0.03 7 0 0.93 7 1.10 3.37

2 0.01 25 1.98 0 19 2.32 0
0.02 13 2.00 0 10 2.83 0
0.03 7 0 0.74 6 1.07 5.19

3 0.01 25 1.98 0 20 2.33 0
0.02 14 2.00 0 10 2.98 0
0.03 7 0 1.77 6 1.81 4.71

4 0.01 25 1.98 0 21 2.27 0
0.02 14 1.96 0 10 2.98 0
0.03 7 0 1.72 6 2.02 4.74

5 0.01 23 1.99 0 21 2.27 0
0.02 15 2.01 0 10 2.90 0
0.03 7 0 1.30 8 1.84 5.93

6 0.01 23 1.98 0 21 2.27 0
0.02 12 1.90 0 9 2.11 0
0.03 7 0 2.32 8 1.73 7.09

7 0.01 24 1.96 0 21 2.27 0
0.02 12 1.84 0 8 2.88 0
0.03 6 0 2.77 6 1.39 9.56

8 0.01 23 1.97 0 19 2.26 0
0.02 13 1.93 0 9 2.78 0
0.03 6 0 1.46 6 1.35 10.75

9 0.01 23 2.01 0 19 2.27 0
0.02 12 1.93 0 8 3.27 0
0.03 4 0 1.52 6 0 12.12

10 0.01 23 1.99 0 19 2.24 0
0.02 12 1.74 0 8 1.92 0
0.03 5 0 1.86 8 0.66 8.92

11 0.01 23 2.00 0 18 2.23 0
0.02 12 1.72 0 8 1.34 0
0.03 3 0 0 2 0 0

12 0.01 21 1.98 0 19 2.22 0
0.02 10 1.62 0 8 1.69 0
0.03 4 0 2.11 4 0 7.52
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4.4 � In‑sample results for the case of stocks and index options

The contribution of index call and put options into the expected rate of return of 
the M-CVaR efficient portfolio is provided in Table 5.

It is observed that the inclusion of the put option contributes negatively to the 
expected rate of return of the portfolio. This is the case because the put does work 
as an insurance for the portfolio, improving the left tail of the return distribution.

On the other hand, the inclusion of a call option (in the high risk- high return 
portfolios, with in-sample expected returns of 3%) contributes positively to the 
total expected return.

This is happening because call options are used to achieve higher returns. Fur-
ther explanation about the effect of this contribution to the level of risk is illus-
trated in Table 7.

These results are further explained by the correlation of the return distributions 
of the optimal portfolios with the return distribution of the index (see Table 6). 
While all efficient portfolios composed of stocks only are positively correlated to 
the index, by adding put options we obtain portfolios that are uncorrelated with 
the index or with a much lower correlation. This is particularly true in the case of 
M-CVaR0.05 efficient portfolios with low in-sample expected return (1%) and to 
somewhat a lesser extent, in the case of medium expected return (2%). The M–V 
efficient portfolios at 1% and 2% expected return are still positively correlated to 
the index but to a lesser extent than their stocks only counterparts. For high risk-
high return portfolios, it is index calls that are in the composition of the efficient 

Table 5   Contribution of index call and put options to the expected rate of return of the In-sample 
M-CVaR efficient portfolios

Optimisa-
tion runs

In-sample returns

d
1
= 1% d

2
= 2% d

3
= 3%

Call (%) Put (%) Call (%) Put (%) Call (%) Put (%) Total (%)

1 0 – 0.49 0 – 0.60 0.43 – 0.23 0.20
2 0 – 0.34 0 – 0.44 0.50 – 0.16 0.34
3 0 – 0.36 0 – 0.41 0.68 – 0.28 0.39
4 0 – 0.37 0 – 0.48 0.68 – 0.33 0.35
5 0 – 0.37 0 – 0.35 0.75 – 0.30 0.45
6 0 – 0.37 0 – 0.47 0.88 – 0.28 0.60
7 0 – 0.36 0 – 0.44 0.90 – 0.22 0.68
8 0 – 0.36 0 – 0.52 0.92 – 0.21 0.71
9 0 – 0.34 0 – 0.29 0.72 0.00 0.72
10 0 – 0.43 0 – 0.26 0.75 – 0.13 0.62
11 0 – 0.35 0 – 0.26 0.00 0.00 0.00
12 0 – 0.35 0 0.00 0.38 0.00 0.38
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portfolios. This makes the resulting portfolio to be even more correlated with the 
index, in both M–V and M-CVaR0.05 models.

Table 7 presents the optimal CVaR values in case of stocks only (S-portfolio) 
versus stocks + options (OS-portfolio). It is remarkable that risk is substantially 

Table 6   Correlation coefficients of the return of FTSE 100 index with the return of efficient portfolios, 
composed of stocks only (“S”) and composed of stocks + index options (“OS”)

M-V M-CVaR0.05

Optim. In sample
runs mean return OS (%) S (%) OS (%) S (%)

0.01 23.40 63.36 -0.27 47.14
1 0.02 41.80 70.00 24.84 53.52

0.03 68.89 61.67 58.71 47.38
0.01 20.46 68.04 -0.56 59.16

2 0.02 36.17 71.96 4.05 55.90
0.03 64.66 59.52 62.70 55.99
0.01 21.97 67.78 1.76 60.85

3 0.02 36.31 72.10 2.37 58.90
0.03 73.82 60.97 57.26 57.05
0.01 23.14 68.77 4.41 58.69

4 0.02 37.89 72.36 11.35 58.83
0.03 73.90 59.25 55.93 52.64
0.01 22.76 68.86 4.50 59.49

5 0.02 35.79 72.40 4.83 58.32
0.03 73.29 63.49 66.23 52.72
0.01 24.14 69.40 4.21 59.29

6 0.02 38.91 71.98 24.42 57.81
0.03 76.74 60.69 69.36 55.68
0.01 23.92 69.35 4.59 59.62

7 0.02 40.66 71.94 8.62 57.50
0.03 74.84 57.84 68.75 55.83
0.01 24.36 69.16 4.04 63.51

8 0.02 39.28 72.50 15.37 57.31
0.03 70.80 61.69 69.92 57.23
0.01 22.59 68.93 3.27 59.56

9 0.02 37.78 72.24 -0.45 56.90
0.03 67.25 58.32 79.01 58.32
0.01 23.78 67.96 1.29 58.46

10 0.02 41.66 71.32 32.42 55.83
0.03 73.25 60.09 74.38 55.45
0.01 21.92 67.52 -1.08 57.54

11 0.02 42.37 71.25 42.91 55.91
0.03 54.66 54.66 52.44 52.44
0.01 22.70 67.10 2.66 56.00

12 0.02 45.06 70.31 34.46 54.58
0.03 66.41 54.60 79.30 54.60
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decreased, especially at low in-sample expected returns. In the case of CVaR, risk 
is drastically reduced for each target returns of d1 and d2 . This is because for these 
two target returns, the optimal portfolios includes a higher weight of put option as 
part of the portfolio. For high risk-high return portfolios ( d3 = 3% ) the decrease 
in risk obtained by adding index options is marginal. This is explained by the 
fact that index calls are mostly present in the composition of optimal portfolios 
(rather than puts) and these are used in order to achieve even higher return, rather 
than to reduce risk. A similar pattern, but to a lesser extent, is observed in case of 
M–V efficient portfolios (Table 8).

We investigate the composition of the efficient portfolios in the models consid-
ered. More precisely, we are interested to see whether by including an option we 
obtain a similar portfolio with the case of stocks only, scaled down to include the 
option weight. The difference of the composition of two portfolios x = (x1,… , xn) 
and y = (y1,… , yn) using the Euclidean distance for an n-dimensional space. This is 
indicated by Dx,y =

√
(x1 − y1)

2 +…+ (xn − yn)
2.

We provide an example of the composition of efficient portfolios in the case 
of d = 2% as shown in Table 9. We also display the Euclidean distance values at 
the bottom of every composition to show the overall difference between OS and 
S-portfolios for the two models. We can see that the difference in portfolio composi-
tion is more obvious and significantly higher for M-CVaR0.05 portfolios. Thus, we 

Table 8   Optimal standard deviations for M–V efficient portfolio; with (OS) and without (S) options

In sample 
returns

M–V

Optim.runs S-portfolio (%) OS-
portfolio 
(%)

Optim.runs S-portfolio (%) OS-portfolio 
(%)

0.01 1 3.36 2.25 3.64 2.31
0.02 4.53 3.81 7 4.97 4.02
0.03 7.68 7.53 11.98 10.89
0.01 2 3.61 2.26 3.66 2.34
0.02 4.92 3.89 8 5.07 4.06
0.03 9.02 8.96 10.60 10.38
0.01 3 3.60 2.24 3.66 2.27
0.02 4.77 3.71 9 4.96 3.89
0.03 8.99 8.20 12.39 12.20
0.01 4 3.64 2.28 3.61 2.28
0.02 4.85 3.84 10 4.78 3.88
0.03 9.07 8.39 10.46 9.99
0.01 5 3.64 2.27 3.63 2.26
0.02 4.85 3.79 11 4.97 4.05
0.03 8.77 8.48 13.20 13.20
0.01 6 3.65 1.89 3.65 2.33
0.02 4.96 2.31 12 5.12 4.34
0.03 10.38 9.37 13.13 12.75
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conclude that the ‘addition’ of options into the universe of assets is more sensitive to 
M-CVaR0.05 model because the nature of minimising CVaR as a left-tail risk.

Apart from the value of Euclidean distance, we can emphasize this ‘sensitiv-
ity’ by looking at the proportion of wealth invested in options for both M–V 
and M-CVaR0.05 portfolios. It is clear that the proportion for index put options 
is lower for the M–V portfolios at 1.67% compared to 2.02% for portfolio under 
M-CVaR0.05 implementation.

Based on portfolio compositions, we see that the stock only portfolios (S-port-
folios) show substantial reshuffling after we include index options. This is more 
obvious for the case of M-CVaR0.05 optimal portfolio, whereas for M–V opti-
mal portfolio, the change from S-portfolios is somewhat close to scaling up (and 
down) of the proportion of investment in each stocks when options are included.
The same reshuffling also happening for different optimisation runs, with higher 
Eucliden distance is found for M-CVaR0.05 compared to M–V implementation.

Table 9   Composition of 
efficient portfolios: stocks only 
(S) and stocks + options (OS) in 
M-CVaR

0.05
 and M–V models 

(for d = 2%)

Components Model implementation

M-CVaR0.05 M–V

S (%) OS (%) S (%) OS (%)

Admiral 0 5.97 2.96 4.19
Aggreko 24.22 21.40 5.62 11.77
Arm holdings 0 18.80 11.47 18.00
Ashtead 0 3.70 0 1.63
Babcock 0 8.00 8.07 16.99
B.A.T 4.13 3.46 18.84 12.73
BT Group 4.18 0 0 0
Capita 0 0 2.15 0
Dixons 0 0 0.03 0
Easyjet 7.55 9.08 11.33 11.45
Glaxosmithkline 5.63 0 0 0
Intertek 0 0 4.87 0
National grid 21.85 0 4.84 0
Rangold 22.31 12.38 9.99 7.46
Shire 10.13 0 4.88 5.45
Tullow oil 0 0 0 2.72
Unilever 0 15.18 14.97 5.95
INDEX PUT n/a 2.02 n/a 1.67
Total 100 100 100 100
D 34.58% 18.60%
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5 � Backtesting

We run backtesting on a monthly basis using as out of sample data the 12 months 
June 2013–May 2014. We use as in-sample data the 100 months preceding the 
“backtested period”. For example, we use data from Jan 2005 to May 2013 in opti-
misation and the optimal weights are used to compute an “actual” (realised) return 
on June 2013; the realised returns of the options are computed by using the (real) 
price of the options on May 2013 and the realised pay-off (computed using the price 
of the FTSE100 index on June 2013). We repeat this by removing the oldest data 
point and adding the next month of data. In general, this backtesting exercise is done 
to see how the 12 in-sample portfolios obtained in Sect. 4.3 would have perfomed in 
reality.

We compare the 12 realised returns of mean-CVaR efficient portfolios com-
posed of stocks only (S-portfolios) and composed of stocks and index options 
(OS-portfolios).

We summarise the performance of S-portfolios and OS-portfolios by looking at 
mean, minimum, maximum and standard deviation of the realised returns. Table 10 
shows the realised returns for the M-CVaR0.05 model. The performance of portfolios 
is different based on the in-sample target portfolio expected return. Performance of 
OS-portfolios under target returns d1 = 1% and d2 = 2% shows better statistics in 
its standard deviation and its minimum. The mean of the realised returns is slightly 

Table 10   Returns for S-portfolios and OS-portfolios under M-CVaR
0.05

 optimisation for each target 
returns d 

The best value for each statistic is displayed in bold

Backtest Realised returns

Periods S (%) OS (%) S (%) OS (%) S (%) OS (%)

d
1
= 1% d

2
= 2% d

3
= 3%

1 – 12.62 1.23 – 10.89 – 1.40 – 11.63 – 11.00
2 8.44 5.05 9.33 7.97 10.85 27.41
3 – 2.76 – 2.49 2.80 – 4.29 – 4.39 – 6.03
4 – 1.85 1.89 0.21 – 0.22 – 3.30 – 2.86
5 0.42 – 1.22 – 0.97 – 4.31 – 2.75 2.55
6 0.44 – 1.84 5.01 – 0.34 – 3.70 – 7.22
7 – 3.31 – 2.53 – 2.60 – 0.22 12.08 – 8.75
8 5.86 0.63 8.27 1.56 5.09 – 7.66
9 4.43 – 0.83 9.15 – 2.36 2.65 19.80
10 – 1.68 5.62 – 3.97 2.76 5.35 – 9.77
11 – 3.45 – 2.80 – 1.48 – 3.03 – 1.87 – 1.87
12 2.56 – 2.72 4.62 – 3.46 – 6.49 8.41
Average – 0.29 0.00 1.62 – 0.61 0.16 0.25
SD 5.45 2.95 6.08 3.50 7.12 12.33
Minimum – 12.62 – 2.80 – 10.89 – 4.31 – 11.63 – 11.00
Maximum 8.44 5.62 9.33 7.97 12.08 27.41
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lower in the case of OS-portfolios. However, if we take into account worst case reali-
sations, OS-portfolios perform substantially better as they avoid extreme losses. This 
is explained by the fact that OS portfolios, at 1% and 2% in-sample expected return, 
have index put options in their composition, which make profit from the decrease in 
price of the index; thus they help in reducing the loss.

There is a different situation in the case of portfolios with in-sample expected 
return d3 = 3% . The OS-portfolios incur highest losses comparable to those of their 
stocks only counterparts. What remarkable is their “best case” realisations, similarly 
to a right tail. While the worst case realisations are somewhat similar for S and OS-
portfolios, the best case realisations are much better in the case of OS-portfolios (as 
a consequence, there is more variability in the realised returns). The OS-portfolios, 
which include index call options, can generate much higher returns than their stocks 
only counterparts.

6 � Conclusions and further work

We have presented a framework for introducing index options, in addition to stocks, 
in scenario based mean-risk models. Our numerical results indicate that index 
options can be used to substantially improve the risk-return trade-off, especially 
when risk is quantified by a tail measure such as CVaR; in this case, the proportion 
of index options in the portfolios is higher than in the case when risk is measured by 
variance. The way index options are selected and their effect on the portfolio return 
distribution depends on the (in-sample) expected portfolio return.

Portfolios in “low risk-low return” or “medium risk-medium return” areas of the 
efficient frontier have index put options in their composition. The addition of the put 
acts as a safety net, as it substantially reduces worst case scenario losses. The stocks-
only portfolios have a return distribution that is positively correlated with the return 
distribution of the index; by introducing put options, we obtain portfolios very dif-
ferent in composition, whose return distributions are uncorrelated with index (in the 
case of mean-CVaR portfolios) or with low correlation with the index (in case of 
mean-variance portfolios). Hence, when the index falls in price—and when stocks 
only portfolios incur losses to some extent—put options help in curtailing this loss 
without reducing much the upside potential.

Portfolios in the “high risk-high return” area of the efficient frontier have index 
call options in their composition. In-sample, the risk (either measured by CVaR or 
by variance) is reduced in comparison to the risk of their stocks only counterparts, 
but only marginally; while, in contrast, the inclusion of put option in less aggres-
sive portfolios can dramatically reduce the risk. The new portfolios have return dis-
tributions that are even more correlated with the index, as compared to the stocks 
only portfolios. In-sample summary of risk-return characteristics would indicate in 
a first instance that, with the addition of index call options, there is only a marginal 
improvement. However, a more detailed analysis of return distribution show that, 
while there might not be a substantial improvement in the left tail, there is a sub-
stantial improvement in the right tail: by considering the call options, in addition to 
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stocks, much higher returns can be achieved, as compared to stocks only portfolios 
or the index itself. These observations are consistent with the backtesting results.

For further research, we consider the idea of generalizing this approach beyond 
the use of maturing options, using known deltas of options.
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